COMPREHENSIVE MULTI-BAND RECEIVERWMNMn

RF AMPLIFIER

The circuit for this stage is sbown in Fig. 5. The 6BA6 is to tbe rigbt of the ganged capacitor, Fig. 3, and L1 is to tbe left, near the panel. In Fig. 5, L1 is a "Blue" coil, and L2 the existing mixer "Yellow" coil.

Leads run from VC6 and VC7 througb the cbassis as in Fig. 3. The aerial trimmer VC8 is fixed to tbe panel in tbe position shown in Fig. 4, near the holder for L1. Arrange the valve and coil bolders to allow sbort leads, with separation of grid and anode circuits, and earth the central spigot of the valveholder to the chassis.

The primary of L2 was originally earthed. Pin 8 is now disconnected from the chassis and wired to Cl , Fig. 4, shown as C4 in tbe r.f. stage circuit Fig. 5 . Pin 9 is disconnected from the aerial socket and connected to pin 5, V1, Fig. 5.

A piece of co-axial cable is now used for the aerial circuit. 1ts inner conductor runs from the aerial socket to pin 8 of L1. The outer conductor is connected to tbe earth socket, chassis, and also to the chassis near L1.

Add the r.f. gain control in the position shown, and disconnect R7 of tbe i.f. amplifier from the cbassis, wiring it to VR1 and R4, Fig. 5.

RF AMPLIFIER ALIGNMENT

lnsert a set of three coils. VC8 sbould peak quite sharply near the h.f. end of each band, unless the aerial is very long. Adjust the core of Li, in tbe way already descrihed for L2, so tbat little or no adjustment of VC8 is required near the l.f. end of the band.
There is no loss of efficiency if VC8 and VC3 can
both be used to peak up signals throughout each band, and are not fully open or fully closed. But correct adjustment of the cores will make it unnecessary to adjust these trimmers frequently, except to peak up weak signals, or wben changing the aerial or coils.
When dealing with the highest frequency range, note that it is possible to tune L1 or L2 to tbe wrong side of tbe oscillator frequency, at tbe b.f. end of the band. This effect is possible when trimming any circuit of this type, witb an i.f. near 465 kHz . L1 and L2 should he tuned l.f. of the oscillator frequency, and the second cbannel, or unwanted response, will be about $930 \mathrm{kHz} \mathrm{h.f} .\mathrm{of} \mathrm{this}$, weaker signal, if a generator is used for alignment.

On the lower frequencies it is not possible to set L1 or L2 to tbe wrong side of the oscillator frequency.

CARRIER OSCILLATOR/PRODUCT DETECTOR

Fig. 6 shows the circuit of tbese sections. The product detector V1 occupies tbe position near tbe last i.f.t. as in Fig. 3. Tbe carrier oscillator is constructed completely in the hox whicb is later holted to the left of tbe chassis, Fig. 3. It is possihle to use the carrier oscillator for the reception of both c.w. and s.s.b. using the diode detector D1 but reception is much improved hy switching it out and bringing in the product detector V1.

The 3-way rotary switcb controls operation of the receiver. Section S1 allows the diode detector D1 to supply signals for a.m. reception, or switches to C5 for s.s.b., c.w. and "Calibrate." Section S1b applies h.t. to hotb stages in the s.s.h./c.w. and "Calibrate" positions.

A 7×2 in "universal cbassis" flanged side is taken and its flanges cut away 2 in from eacb end. It is then given rigbt-angle bends 2 in from eacb end, to make an open hox 2 in high, 3 in wide, and 2 in deep. A plate 3×2 in is cut and bolted to the front flanges.

Tbe valveholder and CO coil are located as in Fig. 3, and all components in the hox in Fig. 6 are assembled and wired, with tag strips to anchor b.t. circuits and other

FIg. 5: Circult of the r.f. amplliter, to give increased sensitivily.

components. A blue lead is run out from pin 4 for heater, a yellow lead from tag 1 for C6, and a red lead from C 7 for h.t circuits.

A back plate 3×2 in with a ${ }_{2}$ in flange to bolt to the chassis is hent up, or cut from a spare 3 in wide "universal chassis" member. It is drilled so that it can he attacbed to the back of the CO box with four self-tapping screws into the flanges of the latter.

The CO hox is placed so that the hush and spindle of VC1, Fig. 6, project tbrougb a clearance bole in the receiver panel it is fixed here by two holts through the lower flanges of the hox and chassis. The hack plate described is then screwed on from behind, and is bolted to the receiver chassis.
When VCl is balf closed the knob pointer or mark should he vertical.

Tbe function switch is put in the position shown, and h.t. and beater circuits connected.
Most of tbe small components for the product detector are supported hy the valveholder pins, and an adacent tag strip. The lead from C5 to S1 runs

This photograph of the underneath of the receiver can be compared with Fig. 4 (Part 1).

An audio tone which rises in pitcb can then be produced by rotating VC1 either way.

When receiving s.s.b. the carrier oscillator has to replace the suppressed carrier, heing adjusted slightly one way or the other, as necessary by VCl. The sidehand normally employed depends on the amateur band in use, hut the adjustment of VCl will soon hecome clear.

For c.w. reception, use VCl to ohtain the most suitahle pitch, placing the CO either above or below the c.w. as found to give least interference.

CRYSTAL FILTER

This incorporates an extra stage of i.f. amplification, 3-position selectivity switch, and variable phasing control using the circuit in Fig. 7. It provides

Fig. 7: For increased gain and selectivity this crystal filter unit can be fitted.

components list

RF STAGE:-
R1 1 MS IW R3 $100 \mathrm{k} \Omega \pm \mathrm{W}$ R5 $150 \mathrm{k} \Omega 1 \mathrm{~W}$ R2 47 kS 1 W R4 68Ω iW All 10% tolerance

YRT- $10 \mathrm{k} \Omega$ wire wound potentiometer, linear
C1. 100 pF SM
C3 0.145
C2 0.02 $\mu \mathrm{F}$ diso
C4 (Cl, Fig. 4)
VC6 Front section of bandset capacitor
Ve7 Front section of bandspread capacitor
VC8 50 pF variable
L1 From basic reselver (L.2)
12 Minature plug-in coils (Denco 'Yellow' Ranges 2,3,4 and 5)

Miscellaneous:
V1, $6 B A 6$, Vavehoiders B7G (1) with screen. 89A (1)

CARRIER OSCIP, DETECTOR:

R1. $100 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$ R4 $22 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$ RT $47 \mathrm{ks} \frac{1}{2} \mathrm{~W}$
R2 $820 \Omega \frac{1}{3} \mathrm{~W}$ R5 $33 \mathrm{k} \Omega 1 \mathrm{~W}$ R8 $47 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$
$\mathrm{RB} 47 \mathrm{k} \Omega \frac{1}{1} \mathrm{~W} \quad \mathrm{R} 6-100 \mathrm{k} \Omega+\mathrm{W}$ R9 $47 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$
C1 56 pF SM
C6 47DF SM
C2. $4 \mu \mathrm{~F} 350 \mathrm{~V}$
C7. $0.25 \mu \mathrm{~F} 350 \mathrm{~V}$
C3. 470 pF
C4 470 pF
C8 100 mF SM
C9 100pF SM
C10 140p SM
YC1 15 p varlable
VI 12AUT
V2 6CA

Miscellaneous:

Valveholders, B9A (1), B7G (1) with screen. Sialb/c 3 pole 3 way wafer switch (S1c is for crystal marker). Universal chassis flanged members 7×2 in (1) 4×3 in (Home Radio) L1, BFO2/465 (Dencc):

CRYSTAL FILTER:

	$2.7 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$	R3	68 k 2 2 $\frac{1}{2} \mathrm{~W}$	R5	2W
R2	100k $\frac{1}{}+\mathrm{W}$	R4:	$47 \mathrm{k} \Omega+\mathrm{W}$		
C1	2).024	$\mathrm{C2}$	$0.05 j 4 \mathrm{~F}$	C3	$002 / \mathrm{FF}$

Miscellaneous:

V1, 6BA6. Crystat, 465 kHz (see text). IFT, IFT11] 4651 CT (Denco) Si, 1 pole 3 way wafer switch. Valveholder B7G and screen Bushes (2) DL52C, bouplings (a) DL60, fin dia, polystyrene rod (Denco) Unversal chassis side $7 \times 2 \mathrm{n}(1), 4 \times 3 \mathrm{in}$ (1) (Home Radio),

CRYSTAL MARKER:

R1	$470 \mathrm{k} \Omega . \mathrm{W}$	R3	100k9
F22	10kS $\frac{1}{2} \mathrm{~W}$	R4	22 k
C1	220 pF SM	C3	0.02
Cl 2	$0.02 \mu \mathrm{~F}$ dise	C4	100pF
vef 100 pF variable			

Miscellaneous:

Crystal, 1 MHz , Valve, EFg1. Valvehold r, B7G. Universal chassis side $4 \times 3 \mathrm{in}$ (Home Rado). Crystal holder.
additional gain, and a very great increase in selectivity.

The i.f.t. has a centre-tapped secondary, and VC1 can he adjusted to halance stray capacitance in the crystal and wiring, or to give a rejection notch either side of the crystal frequency. With the switch in position 1, the crystal is out of circuit, and selectivity is that provided hy the three i.f.t.'s. With position 2, the crystal is in use working into the relatively high impedance of R3. For position 3, the crystal provides maximum selectivity. Position 1 is suitahle for general reception and position 2 is used for other signals except when severe interference from adjacent transmissions is trouhlesome.

A $3 \times 2 \times 2$ in hox is made in the same way as descrihed for the carrier oscillator. The circuit in Fig. 7 is huilt entirely in this hox, which is then holted to the chassis, and closed hy a plate fixed to the hack with self-tapping screws.

The i.f. transformer is situated ahove a hole in the main chassis, so that its lower core can he adjusted.

VCl must he insulated from the front of the hox, and it is also mounted so as to avoid unnecessary

stray capacitance to the metal. This was done by punching a lin hole in the hox and holting a $\frac{1}{16}$ in strip of paxolin across inside, with a hole to take the capacitor hush. The spindle is extended hy using a small coupling and length of ${ }_{1}$ in diameter insulated rod, which runs through a hush at the panel.

The 3-way switch is situated immediately under the hox, on a chassis hracket and an extension spindle is also fitted.

The exact frequency of the crystal is not too important, provided it falls near the frequency of the i.f.t.'s (465 kHz). A 464 kHz surplus crystal was used and a 455 kHz crystal, availahle as a spare for a wellknown communications receiver, also tried. No difficulty arose in adjusting the i.f.t.'s to 455 kHz .

A wire-ended crystal can he supported hetween pin 4 and VC1. Other crystals may need fixing to an insulated strip or bracket.

Coloured leads pass down through the chassis to identify heater and other circuits. R2 runs to the common a.g.c. line. R5 is connected to the r.f. gain control, which now adjusts the hias of all i.f. stages.

RF leakage round the filter will degrade the very high selectivity so the lead from the f.c. anode to i.f.t. primary is screened from the valveholder right up to the pin of the i.f.t. The anode lead of V1, Fig. 7 , is similarly screened.

ALIGNMENT WITH FILTER

Alignment sbould he cbecked with a meter, such as used earlier wben adjusting the i.f.t. cores. A multi-range meter clipped in to read cathode current of one of the stages receiving a.g.c. is suitahle, adjustments being directed towards securing minimum current.
Set the pbasing control about half open and the selectivity switcb at 1 . Tune in a strong transmission. Switch to position 2 and tune slowly across the signal, observing the tuning meter. There will probahly be one normal response on the meter, ohserved as a steady rise and fall while tuning through the signal. A second response sbould he found, very much sharper, and prohahly giving only a small dip on the meter. This is the crystal frequency. Leave the tuning at tbis frequency, and adjust all tbe i.f.t. cores for hest results (lowest meter reading). Switching from 1 to 2 and tuning sbould show that the i.f.t.'s are now virtually on the crystal frequency.

The phasing control is now adjusted slowly to find the exact point where selectivity is greatest and the

Fig. 8: As a finisshing touch thls 1 MHz crystal marker will provide calibration points throughout the range of the receiver.
response peak (or meter movement) approximately symmetrical a eacb side of the signal. Repeat this with the switcb at 3, and adjust all the i.f.t. cores sligbtly, if necessary, with a signal tuned in precisely. Adjust the pointer of the pbasing control so tbat it is vertical witbout moving tbe control itself.

With the switch at 2 or 3 , sligbt adjustments of VCl one way or the other will produce a rejection notcb which can be moved across tbe i.f. passband. This should be found to eliminate any interfering signal whicb is so near the wanted signal that it produces a heterodyne.

CRYSTAL MARKER

Fig. 8 is the circuit of the harmonic marker, which provides crystal-controlled "pips" from 1 MHz to 30 MHz . TCl allows a sligbt sbift in crystal frequency, so that the unit can he set to zero heat with MSF on 5 MHz . HT is applied to the EF91 only wben tbe function switcb is in the "Calihrate" position.
The marker is assembled on a sub-cbassis wbicb
is $1^{3}{ }_{4} \mathrm{in}$. higb, 4 in . wide, and $1_{4}{ }_{4} \mathrm{in}$. deep made from a single "universal cbassis" member 4×3 in cut to leave two pieces, one 4×1^{3} in and the otber $4 \times 1^{1}{ }_{4} \mathrm{in}$. Tbe flange of the smaller piece is holted to the straight edge of tbe larger piece, wbich can later be attached to the cbassis by its flange. After wiring, it is holted 31_{2} in from the rear edge of the cbassis, behind the handspread capacitor.
Tbe EF91, TC1, and crystal holder are mounted in line on the top of the sub-cbassis with TC1 insulated from the metal. This may he done by puncbing a hole which adequately clears the busb, and using two washers of $1_{16 i n}$ paxolin.
A small tag strip anchors C2, R3 and R4, and a flexihle lead to pass to tbe function switch. C4 is similarly ancbored, and a rigid insulated wire a few inches long is soldered bere and runs near the ganged tuning capacitor. This was found to give adequate coupling into the receiver.

A blue lead from pin 4 passes to the heater circuit. Tbe chassis return is formed hy holting the marker to tbe receiver cbassis.

Initially place TCl ahout balf closed. With the function switch at "Calihrate" the 5th harmonic at 5 MHz can be located with tbe appropriate coils in place. Switch off the marker and tune in MSF, wbich will probahly he found on almost exactly the same frequency. If necessary, TC1 is rotated so that the marker harmonic is on the same frequency. Turning TCl either way from this position will cause a flutter, rising to a low pitched growl or audio tone, tbe correct setting for VCl heing the central, zero position.
Tbe marker can be used for calibration, enabling tbe 1 MHz tuning points to he marked in, from 1 MHz to 30 MHz .
It also allows exact positioning of the bandset capacitor, so that frequencies in a narrow band can be read with tbe bandspread tuner. To do this, turn the bandspread pointer to the nearest MHz reading, and adjust the handset capacitor for zero heat. This assures exact reading on tbe bandspread dial, wbich is not possible if tbe bandset capacitor is adjusted visually. This procedure is used at $4 \mathrm{MHz}, 7 \mathrm{MHz}$, $14 \mathrm{MHz}, 21 \mathrm{MHz}$ and 28 MHz , for the $80,40,20,15$ and 10 metre amateur hands.

GENERAL NDTES

A piece of thin perspex $8^{1}{ }_{4} \times 3^{1}{ }_{2}$ in is used to cover tbe scales, held with chrome bolts. The perspex was beld slightly clear of the panel by ${ }^{1}{ }_{2}$ in wide strips of card at the bottom and eacb side. This allows sligbtly thinner card to he slid in, so that a separate pair of scales can be used witb each set af coils. Tbere is sufficient space to take all the four ranges on a single permanent card, if preferred.
The case top was cut to give an opening lid ahout $111_{2} \times 7 \mathrm{in}$. A line scrihed ${ }_{4}$ in from the hack, 11_{2} in from the front, and $1^{3} 4$ in from each side. A small drill is used to start a metal saw, to remove tbis piece. Strips ahout lin wide are bolted on inside the cabinet, for the piece removed to close upon, and it is secured along the hack witb a piano type hinge.

Several 1_{2} in boles are puncbed in the case bottom, and along the hack, for ventilation. Openings $31_{2} \times 1^{1}{ }_{2}$ in are cut for the aerial and otber connections and the mains cord. This can he done hy punching pairs of 11_{2} in diameter holes, and sawing between tbem.

