
# RADIO-ELECTRONICS

## **NEW IDEAS**

### Broadcast-band RF amplifier



UNLESS YOU OWN A TOP-OF-THE-LINE receiver or car radio, your AM reception may not be as good as it should be. The reason is that few low- to mid-price receivers and radios include RF amplifiers. By adding one yourself, however, you can improve reception at minimal cost. The RF amp shown here uses readily available parts, has wide bandwidth, and is very stable. In addition, by varying the values of several resistors, you can match the amplifier's input impedance to your antenna, and its output impedance to your radio.

#### How it works

The complete schematic is shown in Fig. 1. The circuit has a frequency response ranging from 100 Hz to 3 MHz; gain is about 30 dB.

Field-effect transistor Q1 is configured in the common-source self-biased mode; optional resistor R1 allows you to set the input impedance to any desired value. Commonly, it will be 50 ohms.

The signal is then direct-coupled to Q2, a common-base circuit that isolates the input and output stages and provides the amplifier's exceptional stability.

Last, Q3 functions as an emitterfollower, to provide low output impedance (about 50 ohms). If you need higher output impedance, include resistor R8. It will affect impedance according to this formula:  $R8 \approx R_{OUT} - 50$ . Otherwise, connect output capacitor C4 directly to the emitter of Q3.

#### Construction

The circuit can be wired up on a piece of perfboard; a PC board is not necessary, although one can be used. However you build the circuit, keep lead lengths short and direct, and separate the input and output stages. You may have space to install the amplifier in your receiver. Otherwise, installing it in a metal case will reduce stray-signal pickup. You'll have to provide appropriate connectors on the case. Connect the amplifier to the antenna and radio using short lengths of coax.

The circuit has only one adjustment. Connect a source of 12-volt DC power to the circuit, and adjust R3 so that there is a 1.6-volt drop across R2.

If you're not sure of the impedance of your antenna, connect a 500-ohm potentiometer for R1, and adjust it for best reception. Then substitute a fixed-value resistor for the potentiometer.

You may want to follow the same procedure with the output circuit (R8), if you're not sure of your receiver's input impedance. Common impedances are 50, 75, and

#### **NEW IDEAS**

This column is devoted to new ideas, circuits, device applications, construction techniques, helpful hints, etc.

All published entries, upon publication, will earn \$25. In addition, for U.S. residents only, Panavise will donate their model 333—The Rapid Assembly Circuit Board Holder, having a retail price of \$39.95. It features an eight-position rotating adjustment, indexing at 45-degree increments, and six positive lock positions in the vertical plane, giving you a full teninch height adjustment for comfortable working.

I agree to the above terms, and grant Radio-Electronics Magazine the right to publish my idea and to subsequently republish my idea in collections or compilations of reprints of similar articles. I declare that the attached idea is my own original material and that its publication does not violate any other copyright. I also declare that this material has not been previously published.

| Title of Idea          |                             |     |
|------------------------|-----------------------------|-----|
| Signature              |                             |     |
| Print Name             | nt Name D                   |     |
| Street                 |                             |     |
| City<br>Mail your idea | State along with this coupo | Zip |
| to:                    | along was allo coupo        |     |
|                        | New Ideas                   |     |
|                        | adio-Electronics,           |     |
| 500-B                  | Bi-County Boulevar          | d   |

300 ohms, so the same 500-ohm potentiometer can be used.

You can connect an external antenna through the amplifier to a receiver that has only a ferrite rod antenna. Connect the amplifier's output to a coil composed of 10–15 turns of #30 hookup wire wound around the existing ferrite core, near the existing winding. To obtain best reception, experiment with the number of turns and their placement. You may need to reverse the connections to the coil if output is weak.—D. J. Housley