Number 10 on your Feedback card

PIC Key, PIC Key

This simple CW keyer is a great way to learn about PICs.

0 you recall this phrase:
“These simple projects should
whet your appetite 10 learn

more about the little PIC microcontrol-
lers you see so frequently”™? This com-
ment preceded the article “Using PIC
Microcontrollers in Amateur Radio
Projects.” by John Hansen W2FS, n
the October 1998 issue of QST. This
prediction was certainly true for me!
Before reading that article, I was not at
all familiar with PIC microcontrollers.
To me. they were rerra incognira. But
the article encouraged me to begin
learning about PICs by experimenting
with programming and by producing
my first projects. This article is a direct
result of John Hansen's prediction.
PIC microcontrollers. a new genera-
tion of electronic components, provide
us with fascinatung possibilities of
eliminating early-on rather large num-
bers of discrete elements by utilizing
the power of programming to provide
needed functions. The large printed
circuit board, with its multple conduc-
tors performing functional connections
between parts of schematics, i1s sup-
planted by an invisible program stored in
memory inside a single, small chip. The
small size of a circuit board containing a

10 73 Amateur Radio Today » September 1999

single PIC microcontroller, along with
a very few discrete components to ac-
complish input/output functions. belies
the latent power of the program stored
within the PIC.

The main challenge for the PIC de-
signer 1S (0 create a program Lo 1imple-
ment the project idea. This is a daunting
first-time task—at least it seems so be-
fore you begin your study of microcon-
trollers. I have found that the best way
to study 1s learning-by-doing. To begin
with, all you need for your home les-
sons 1s David Benson's book (see
Notes at end of article). This easy-to-
understand manual will introduce you
to PIC microcontrollers from the inside.
Stepping from page to page. you will ac-
quire increasing ability by learning to
write simple programs and then check-
ing them with the MPLAB media (see
Notes).

Algorithm of simple keyer program

Let’s review how an ordinary kever
works. Let's assume that the keyer's
output i1s connected to the transmitier
keying circuitry. Inputs are connected
to the left and right contacts of the
keyer’s paddle. Normally, the keyer is
in the idle condition: The output is

Viadimir A. Skrypnik UY5DJ
Pravdinska - 58

Kharkiv - 107

Ukraine - 310107
[uy5dj@yahoo.com]

open (or high) and the transmitter is
not activated. When the operator
presses the paddle handle to the “Dot”
contact, the output becomes active and
drives either a relay or a transistor con-
necting the keying circuit to ground
and the transmitter starts sending a
Morse code dot. The keyer supplies the
appropriate length of the dot, as well
as a pause in sequence. The durations
of both the dot and the pause are equal.
When the paddle returns to the neutral
position, the keyer, once again, as-
sumes the idle condition. If the paddle
is pressed and held in the “Dot™ posi-
tion, the keyer performs a precise se-
ries of dots and pauses. The same 1s true
when the operator presses the paddle
to the “Dash™ position. However, the
length of a dash is three times longer
than the length of a dot.

Forming precise dots, dashes, and
pauses, as described above, will be ac-
complished by the PIC’s program, and
a coherent microcontroller program
must have a coherent plan: such a plan
is generally called an algorithm. Fig. 1
depicts the algorithm for our project
keyer. Referring to Fig. 1, keep in mind
that the microcontroller, PIC16F84, has
5 lines of port A and 8 lines of port B.



Any line of port A or B can be used as
either an input or an output. In this
project, we will connect the dot and
dash paddle contacts to the port A
lines, which will function as inputs.
Keyer output and piezo buzzer for au-
dio monitoring will be connected to
port B as outputs.

Now, let’s examine the operation al-
gorithm diagram. Fig. 1. All working
steps are marked with rectangular
boxes. Box “Start” is the point where
the program will actually start to run.
When supply voltage is applied to the
keyer. the first step in the program is to
instruct all port A lines to function as
inputs. In the next steps, all lines of
port B are instructed to function as
outputs, and they also are switched to
normal low output levels. Up to this
point, the program has only prepared
the PIC microcontroller. But continu-
ing from this point. the program will
begin to run in the normal idle opera-
tion of the keyer. This is marked by the
label “BEGIN™ on the diagram.

et me digress a bit from the algo-
rithm diagram and explain how certain
dot, dash. or pause durations will oc-
cur in the keyer operation. PIC micro-
controllers act by stepping under inter-
nal clock pulses. Every step is called
out as a cycle. Each command instruc-
tion has some quantity of instruction
cycles. I will not describe each one, or
how many cycles it will require. I only
want to point out that in order to pro-
duce a certain length of dot, we need to
calculate how many instruction cycles
the microcontroller will use for pro-
viding the operation, and how many to
add for delaying cycles to establish the
proper relationship between transmit-
ting speed and Morse code elements.
Delay duration depends upon the delay
constants we will incorporate into the
program. There are three different con-
stants used: one each for the dot, dash,
and pause. There are three counters
nominated in the file register’s internal
memory area. To provide the desired
delay. the constants will be put into
their appropriate counters.

But let’'s now return to the algo-
rithm. The box closest to the “BEGIN™
label 1s mitialization of the counters.
Ininalization means to clear counters

START
TEACH PORT
A INPUT
TEACH PORT
B OUTPUT
MAKE PORT
B LOW ¢ ;
| BEGIN LOAD DELAY LOAD DELAY
___.l CONSTANT CONSTANT
|
| INITIALIZE —.J —1
COUNTERS
SOUND ON SOUND ON
PORT RB3 PORT RB3
e
DECREMENT
IS DELAY™_ Yes
COMPLETE? Ir
NG
PORT RBI
SUBROUTINE LOW
"PALISE*
o T
LOAD DELAY
| CONSTANT

Fig. 1. Operation algorithm for the PIC-controlled keyer.

to make them ready for the next opera-
tion. The keyer program now sequen-
tially checks (o determine if the dot or
dash paddle contacts are closed or not.
First. it checks the dot mput. If port
line RA2 is low, the program will call
the subroutine “Dot.” This is depicted
by the right comparison rhomb corner
marked with “Yes.” If not, RA2 is stll
high, which means that the dot paddle
contact was not closed, and the pro-
gram will go to check the status of the
dash input. If the dash paddle contact
1s pressed to make port RA3 low (yes),
the program will call subroutine
“Dash”™ to form a dash. If not (the dash
paddle contact not closed), it will return
to the beginning point and continue to

run this loop until “Yes™ (a dot or dash
paddle contact closure) occurs on one
of the comparison rhombs.

Let’s consider what will happen
when the dot is pressed and the keyer
begins forming the duration of the dot
mark to key the transmitter. First, we
have to make the keying output port
line RB1 go high. This will cause the
transmitter connected to the keyer o
start transmitting a dot.

The next box on the algorithm dia-
gram tells us that we have to load the
delay constant into the counter. After
that, the program will start to generate
a sound pulse sequence to operate the
monitoring buzzer.

The next rhomb is for decreasing the

73 Amateur Radio Today » September 1999 11



counter number by one unit and check-
ing to see if it is equal to zero or not. If
the answer is no, this loop will con-
tinue until the delay is completed, and
then the number in the counter will be
decreased to zero. This will cause an
exit from this point to the “Yes” direc-
tion, and it will make the output port
line RB1 low. This means that dot is
completed and the transmitter stops
transmitting. The same procedures are
followed for producing the dash—ex-
cept that the program will operate under
the control of the “Dash™ subroutine
when it will find a low level on the

input port line RA3. The only differ-
ence is the delay constant, which is
much larger to produce the dash that is
three times longer than the dot.

In both cases, when either the “Dot”
or “Dash” routine is completed, and
the RB1 port line goes low. it will start
the subroutine “Pause.” This routine
must generate a pause between Morse
code elements equal to the length of
one dot. Note that here we are not in-
cluding the provision of the audio
monitoring signal, which takes some
amount of instruction cycles. This
pause is controlled by another delay

L ———————— — —— — —— — — — — — —— S

constant—a bit larger one—than the
one used for the dot. Subroutine
“Pause™ works in the same manner as
the routines for forming the length of
the dot and dash, except that it has its
own unique constant loaded into 1ts
counter. The delay constant number in
the pause counter is decreased by one
unit until it is zero. When pause is
completed, the program returns to the
point labeled *“BEGIN™ to check for dot
or dash inputs by the operator, and the
keyer’s PIC microcontroller continues to
repeat this action until power is turned
off.

Table 1. An assembly language program fnr PIC kever.
12 73 Amateur Radio Today = September 1999

s g . | O e R, ) - subroutine DOT ~ ------ e e
dot bsf portb, 1 ; RB1=1, dot begins
list p=16f84 !
moviw d'12 : delay constant
__config Ox3#i3 ; RC clock oscillator H movwi count  load const to counter
mmmrmnnees - :_u — rptdot bst portb,3 . , Sound on
CPU equates (memory map) [ bct ' portb,3 ; sound off
i porta ] equ Ox05 1 decfsz counti,f - decrement counter
| portb equ Ox06 goto rp;dut ; not 0
count1 equ Ox0c , for DOT delay constant bet F portb, 1 - RB1=0, end dot
| count2 equ Ox0d . for PAUSE delay constant call | pause . start PAUSE subroutine
I——-———-- - -.----m-:——--—--—- subroutine DASH weves
org O0x000 dash . bsf portb, 1 : RB1=1, dash begins
start 1 moviw Dxff B i moviw d'37 , delay constant
tris porta . teach port A inputs movwi } count3 ; load const to counter
moviw Ox00 B rptdsh bsf portb,3 | , sound on
tris portb } : teach port B outputs bet portb,3 » sound oft
cirt ‘ portb . all port B lines low . decisz count3, , decrement counier
goto F rptdsh , not 0
begin crf counti - ; Initialize counters bcf portb, 1  RB1=0, end dash
clrf count2
cirf count3 call pause , start PAUSE subroutine
5 -1 ---._ DOT — -- retum .
bifsc 1 porta,2 1 . Is RA2 low (dot pressed)? - s.mrul.rline PAUSE -- e
Lgﬂt{:— [ dash? | pause moviw d'14’ » delay constant
. call | dot ._, calling subrouting DOT movwf countz2 » load countar with delay const
goto begin rptpau decfsz count2, { . decrement counter
— DASH - wemeanan eas goto rptpau ‘not 0
dash? 1 btfsc porta 3 . Is RA3 low (dash pressed)? relum ; counter 0, end pause
N goto begin - . h
I' call dash ; calling subrouting DASH R et L L —— END of program -—---—--- s
goto begin end




An assembly language program

The assembly language program for
the keyer is presented in Table 1. As-
sembler software will examine this
program and ignore all lines beginning
from the semicolon. Others perform
assembly source code. This part will
be assembled by MPASM, the com-
piler included into the MPLAB inte-
grated development environment from
Microchip. The assembler will con-
vert readable text files into hexadeci-
mal code for programming the PIC
microcontroller.

The line beginning with the word
“list” informs the assembler what type
of a PIC. microcontroller 1s used. The
next line determines the type of inter-
nal clock oscillator built into the de-
vice. In this case, it 1s an RC-type
oscillator.

The next five lines are equating
statements which assign hexadecimal
addresses to file registers in the PIC
memory area. The line with ORG (ori-
gin) defines the address in memory
where the program code starts.

The line with the label “start” in the
first column of the program will teach
all port A lines to function as inputs by
loading hexadecimal FF (or binary
1111 1111) into a special tristate regis-
ter. Actually, this instruction only
needs five “1’s,” because port A has
five input/output lines (named as
RA(O-RA4) in this type of PIC. There-
fore, the three “1’s” in the left “F” are
functionally superfluous. In like man-
ner, the program will teach all port B
lines to function as outputs by loading
hexadecimal 00 (binary equivalent is
0000 0000) into this register. The Port
B register is also cleared, which means
low level statements for each of the
eight output lines RBO-RB7.

The label “BEGIN” shows the point
where delay counters are cleared.
When all three counters are ready, the
program begins the *“Dot” portion.
Here the program checks for the low
level at the input port RA2. Electri-
cally, this point is wired to the dot con-
tact of the paddle. If bit 2 of port A is
high (paddle is not pressed to dot) in
accordance with the instruction “goto,”
the program goes to the “Dash” portion.

However, if bit 2 of port A is low, the
next executed instruction will be “call.”
This means call the Dot subroutine.

In the first subroutine, the line la-
beled as “dot,” bit 1 of the port B is set
to “1.” This high level will activate the
transmitter’s keying circuitry to start
transmitting a dot. The next two pro-
gram lines load decimal value *“12”
(the delay constant) into counter 1.
Following this step, the program be-
gins to generate signals for the buzzer.
Instruction “bsf” sets to “1” bit 3 of
port B. If you remember, previously
we made all port bits low. Now RB3
goes high and the buzzer produces one
click. But in the next step instruction,
“bef” makes this output low, causing a
new click. A fast repetition rate trans-
forms the clicks into a tone.

Instruction “decfsz” decrements
counter 1 contents by one unit and
compares the result with zero. Until
zero has been reached, the instruction
“goto” loops to the label “rptdot” to
produce new clicks, and continues to
decrement the counter until the content
of the counter becomes zero—then
the following instruction “bcf” will
make RB1 low. The dot is now over
and the transmitter no longer transmits
RF energy.

But subroutine “Dot” isn’t over. In-
struction “‘call” will execute another
subroutine, “Pause.” This begins by
loading decimal value “14” (delay con-
stant) to counter 2. The next instruction
decrements this counter until the delay
is complete and the counter is clear.
Note that output port lines RB1 and
RB3 are not used in this subroutine.
We do not need to either key the trans-
mitter or produce sound. We only need
to get a standard length pause equal to
the length of one dot. The pause for the
audio signal is controlled by counter 2
and a much larger delay constant.

When subroutine “Pause” 1s over,
instruction “return” returns us to sub-
routine “Dot.” But the last instruction
here also is “return,” and the program
goes back to the “Dot” portion. From
there the program jumps to the point
labeled “BEGIN” to initialize counters
again, and starts checking which con-
tact on the paddle is being pressed.

Subroutine “Dash” is the same as

Pittman #
GMB212C127-R2. 4
Small, powerful y
gearhead motor. #
187:1 ratio. No load specs: 40 RPM @ 191
Vdc, 130 mA. 24 RPM @ 12 Vdc, 160 mA.
Overall dimensions 3" long X 1.37" diameter.
0.185" (3/16") diameter X 0.75" long shaft. A
brass 0.56" diameter gear with 16 cogs is fas-

tened to the shaft. 17" leads
catspcmzs $15H%0,

| 10 for $125.00 |

Farbell# DU200P (A). Standard & <%
12 button telephone keypad  §
with touchtone (DTMF) circuit- fi#™ 5%
ry. Field replacement for L
some GTE payphones.
White plastic buttons with pll|
black numerals and let- éﬁﬁ i
=31

ters. 11 color-coded | ﬁ A i gl
leads, 9" long with spade ,ﬂl Lﬁ‘ﬁﬁﬁ(ﬁ
ugs. CAT # KP-11 ]l A 00

25 for $75.00

Small arc shaped neodymium magnets
with a shiny finish. Sizes vary. The

o

smallest are 0.39" long x 0.15" x 0.085" thick.
Some are slightly larger.

CAT# MAG-49
100 for $17.00 |

4for $"|ﬂ—0

Optrex # DMC 20434-CEM
(PWB 20434-CEM)

5 x 8 dot format.

3" x 1" viewing area.

3.88" x 2.38” module.
Removed from new equipment, may have felt
padding on metal bezel. 14 pin single row head-
er is pre-attached. Includes spec/nook-up sheet.

CAT # LCD-46 _ 0
$79=Eh

10 for $60.00 |

ORDER TOLL FREE

1-800-826-5432

CHARGE ORDERS to Visa, Mastercard,
American Express or Discover

TERMS: NO MINIMUM ORDER. Shipping and handling for the
48 continental U.S.A. $5.00 per order. All others including AK,
HI, PR or Canada must pay full shipping. All orders delivered
in CALIFORNIA must include local state sales tax, Quantilies
| Limited. NO COD. Prices subjecl

CALL, WRITE 1o change without nolice.

EAX or E-MAIL MAIL ORDERS TO:
for our FREE W-\RMNJegyz{e] |03

96 Page CORPORATION

CATALOG P.O. Box 567
outside the US.A.  IVETS W IVATE- SR o7 We R L1015

bt -/ X (818)781-2653
www.allelectronics.com
e-mail

allcorp@allcorp.com

73 Amateur Radio Today » September 1999 13




IN Ul ouT
+91015V ; 78L05 3
Cl C2 C3
SPEED 25V 25V
CONTROL
R] U2
RPT 47K PIC16F84 R3 R4
5K - 10K 10K
10K
, gt o ¢
C4 DASH DOT
lSn;J; 9
5 RS Sl
LS] l 47K
KEYING
TO
TRANSMITTER
Ql
| 2N2222

Fig. 2. Schematic of the simple PIC CW kever. Unless otherwise specified, resistors are
14 W, 5% rolerance, carbon-composition or film units. Appropriate equivalent parts
from Digi-Key (DK) can be substituted as shown in Table 2.

subroutine “Dot.” It 1s followed by
subroutine “Pause™ as well. The only
difference is in delay constant value.
The decimal equivalent is “37,” which
makes the dash duration almost three
times larger than the dot or pause.

Circuit description

Refer to the schematic diagram. Fig.
2. The circuit is powered from +5 V
voltage regulator Ul. Capacitors Cl
and C3 provide clear DC, and C2 is for
suppression of incoming RF energy
from the transmitter.

The keyer itsell 1s microcontroller
U2. Resistor R1 keeps the reset input
on pin 4 high. Resistors R3 and R4 are
pull-up resistors for inputs RA2 and
RA3. They provide high idle level at
the paddle’s dot and dash contacts.
Note that I do not specify left or right
contacts on the paddle because that is a
matter of the operator’s taste.

Onboard components R2 and C4 to-
gether with outboard potentiometer
RPI are the RC circuitry for the ternal
clock oscillator. With the component
values shown here, the transmitting

14 73 Amateur Radio Today = September 1999

speed varies from approximately 5 wpm
to over 30. To make a more narrow
speed range, you may use a higher
value of R2.

Signal from pin 7 of U2 is used for
keying the transmitter. Q1 functions as
a bipolar switch to key the transmitter
keying circuitry. When port RB1 goes
high it turns Q1 on, thereby connect-
ing the collector network to ground.
Resistor RS is for limiting base current.

The piezo buzzer, connected 1o pin 9.
monitors the transmitted Morse code
text. There is another unusual function
of the buzzer. You will notice that the
buzzer’s pitch is related to the clock
speed of the microcontroller. When the
operator varies the Morse transmission
speed by rotating the knob on RPI, it
will also vary the sound pitch. At first
this may seem like a disadvantage, but
the positive effect of this is to make it
possible to estimate desired Morse
speed just by listening to the pitch of
the tone. The lower the tone of one dot,
the lower the Morse speed. No need to
overload the band with a series of dots
to check the transmitting speed. This,

of course, is true only for the buzzer's
tone, not for the signals heard from
your station headphones! Your trans-
ceiver uses other methods to get a
monitoring tone.

Construction

The keyer was built on a 30 x 35 mm
glass-epoxy single-sided PC board
(see Fig. 3). If you notice my name
and callsign, you will understand why
metric sizes were cited. Customary
English dimensions are approximately
1-1/4 x 1-3/8 inches. I am not familar
with companies outside of the Ukraine
that produce custom boards in small
quantities. However, | think 1t 1s nor-
mal practice for radio amateurs to
make their own boards.

The assembled board can be in-
stalled mnto almost any transceiver.
Limitations will be either not enough
room in its case (which seems incred-
ible) or some specific feature of the
keying circuitry such as keying with
high sink current or high voltage above
ground. In this situation, transistor Q1
should be used to drive a small relay
with open contacts. Don’t forget to in-
clude a small silicon diode across the
relay coil to manage the inducuve
spike when the relay coil is de-ener-
gized (and, of course, do ensure that

Parts List
Designation Part
S1 Any type CW keyer paddle
C1,C3 10 uF, 25 V electrolytic or
tantalum (DK P5148-ND)
—
C2, C4 Ceramic (C2: DK P4924-
ND; C4: DK P4905-ND)
| LS1 Piezo buzzer element (DK
P9924-ND)
RP1 25 k potentiometer (DK
CT2266-ND)
U1 78L05 small 5 V positive
regulator (DK NJM78L05-
ND)
| uz2 PIC16F84 microcontroller
| (DK PIC16F84-04/P-ND)
| 1
Q1 2N222 or any general |
purpose NPN silicon
transistor (DK |
| PN2222ADICT-ND) |

Table 2. Paris list.



R3 R1

Uz

Dot -
Dash
GND
XMTR

R4
a1 RS

d

Buz.

R2

T

caO+
c4 D Ut
Dcf

Ci

RP1

+9-15 V
GND

SAVE 47%!
on 12 months of 75

Only $24.97
~ Call 800-274-7373

Fig. 3(a). PIC kever printed circuit board, component side.

the polarity is correct and the diode 1s
not DC conductive when the relay coil
is energized).

It is wise to install the keyer board
directly onto the keyer paddle assem-
bly. This will ensure the shortest pos-
sible input wires, and keep 1t away
from strong RF fields. A metal enclo-
sure to further shield against RF en-
ergy in your shack is also a wise 1dea.
The accompanying photo reveals that
my keyer is an improvisation (which in
the Ukraine is standard procedure due
to the cost of living and scarcity of
manufactured electronic parts). It 18
mounted on an old-fashioned telephone
polarized relay modified as a paddle.
But this is also the amateur radio tradi-
tion, and I'm sure you will conjure up
your own unique improvisations.

Programming

First of all, you have to work with
your assembler program in Microchip’s

Tile

:

UysDJ PIC keuer, ver.d.0

Fig. 3(b). PIC keyer printed circuit board,
soldering side.

MPLAB software. This is the best en-
vironment for design and debugging
your programs. This software can be
obtained free from the Microchip Web
site (see Notes). The assembler com-
piler MPASM is included in MPLAB
and also supplied separately. It may be
used to obtain source files for the pro-
grammer, but I prefer to use the whole
MPLAB package. On the Web site,
you will also find a manual for the
newest version of MPLAB, with de-
tailed explanations on how to work
with this software.

The results of your work in MPLAB
will be a file with extension *.hex. It
should be used in programming solft-
ware PIX (see Notes, note 3). Also,
you will need the programmer itself. I

ham A. PIC-based CW keyer.

am using the simple serial port program-
mer, which was included (along with
a detailed description and operating
procedure) in W2EFS's article.

Summary

This simple keyer is an example of
caining knowledge and skills by self-
study, experimentation, and construc-
tion—and you end up with a very usetul
station accessory as well! And, of
course, like most amateur radio projects,
the project itself is ripe for further im-
provements and modifications. Keep 1n
mind that the program described in
this short article utilizes only a very
small part of PIC16F84 capabilities.

In closing, I would like to express
my heartiest gratitude to my friend
Dave Evison W7DE for his valuable
remarks and comments.

Notes

1. David Benson, “Easy PIC'n. A
Beginner’s Guide to Using PIC 16/17
Microcontrollers.” Version 3.0, Square
| Electronics, 1997.

2. Available at [http://www.microchip.
com].

3. Available at [http://home5.swipnet.
se/~wH3783]. =

73 Amateur Radio Today = September 1999 15





