Current source for I²L saves energy

by Stephen H. Nussbaum

Data/Wave Development Inc., San Diego, Calif.

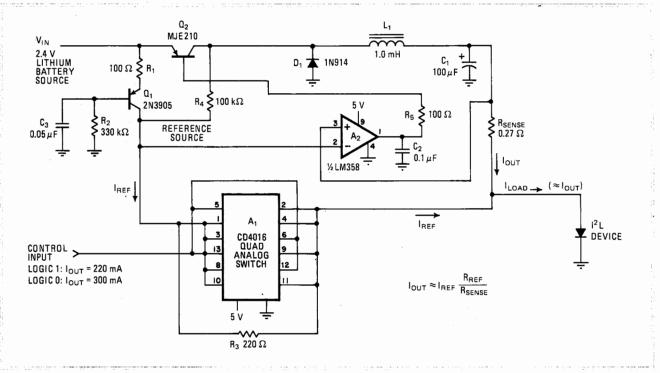
To capitalize on the low-power advantages of integrated injection logic (I²L), a power source that also dissipates relatively small amounts of energy is required. This switched-mode supply provides programmable currents of up to 300 milliamperes at 2.3 volts to boards utilizing I²L loads, with an overhead of only a few milliamperes needed for running the circuit.

The voltage-current characteristics of 1²L devices resemble those of the standard switching diode, whose operation is determined by the amount of driving current available. It is therefore necessary to drive these loads with a current source. Although a single high-value resistor in series with a voltage source would serve to deliver constant current, large amounts of power would be dissipated in the resistor. The difficulty is overcome with this circuit.

 Q_1 and its associated components provide a reference current for the complementary-MOS quad analog switch, A_1 , in the reference-resistance subcircuit. The R_2C_3 combination helps to stabilize the output against changes in input voltages.

A₁'s switches are wired together such that its equivalent series resistance may be set to one of two values by a control signal. It is possible to order as many as five current levels with this switch if additional programming inputs are introduced.

 A_1 , with the aid of R_3 , serves partly as a current-to-voltage converter, so that low-power oscillator A_2 sees the reference current as a representative voltage at its inverting input. This potential will cause Q_2 to switch on periodically. R_4 provides positive feedback for hysteresis, thus controlling the rate at which A_2 and Q_2 are switched—16 kilohertz, in this case. The 10 to 30 millivolts of hysteresis also appears at the output, but this poses no problem with I^2L loads.


 L_1 and C_1 comprise the switcher's required storage elements, acting to release energy to the load through R_{sense} when Q_2 is off. R_{sense} is part of a feedback network used to set I_{out} .

Because the reference current and the output current at summed at the output node, A_2 's input sees only the difference of these currents scaled to a voltage by their respective resistors, R_{sense} and R_{ref} . Thus the output current is set solely by the feedback loop. As a consequence of this arrangement, $I_{\text{out}} \approx I_{\text{ref}}/R_{\text{sense}}$. The efficiency of the supply is maximized by using a lower value of R_{sense} , a faster op amp for A_2 , and a storage inductor (L_1) with as little dc resistance as possible.

With $R_3 = 220$ ohms and with $I_{ref} = 0.60$ mA, $I_{out} = 220$ mA if a logic 1 is applied to the control input. $I_{out} = 300$ mA for a logic 0. These values can be changed by suitable selection of I_{ref} , of course, but R_3 may also be varied. Note that:

$$R_{ref} = [(r_{on}/n)R_3]/[(r_{on}/n) + R_3]$$

where n = number of switches and r_{on} = on-state resistance of one switch in A_1 , typically 600 Ω .

Injecting current. Switching source delivers constant current to members of low-power I²L logic family without wasting much power. Small reference current, C-MOS switches, and low-power oscillator contribute to circuit efficiency. Two-level current source, which generates up to 300 milliamperes at 2.3 volts, can provide one of five current values if additional programming inputs are introduced at switch A₁.