Supply derives 5 and 3.3V from USB port

Chad Olson, Maxim Integrated Products, Sunnyvale, CA

The circuit in Figure 1 derives its power from a USB port and produces 5 and 3.3 V supply rails for portable devices, such as digital cameras, MP3 players, and PDAs. The circuit allows the port to maintain communications while, for example, charging a lithium-ion battery. IC_{2} boosts the battery voltage, $\mathrm{V}_{\text {BATT }}$, to 5 V , and IC_{3} buck-regulates that 5 V output down to 3.3 V . IC_{1}, a lithium-ion battery charger, draws power from the USB port to charge the battery. Pulling its SELI terminal low sets the charging current to 100 mA for low-power USB ports, and pulling SELI high sets 500 mA for high-power ports. Similarly, pulling SELV
high or low configures the chip for charging a 4.2 or 4.1 V battery, respectively. To protect the battery, IC, 's final charging voltage has 0.5% accuracy. The $\overline{\mathrm{CHG}}$ terminal allows the chip to illuminate an LED during charging.
IC_{2} is a step-up dc/dc converter that boosts $\mathrm{V}_{\text {BATT }}$ to 5 V and delivers currents as high as 450 mA . Its low-battery detection circuitry and true shutdown capability protect the lithium-ion battery. By disconnecting the battery from the output, "true shutdown" limits battery current to less than $2 \mu \mathrm{~A}$. An external resistive divider between $V_{\text {BATT }}$ and ground sets the low-battery trip point. Connect-
ing the low-battery output, LBO, to shutdown, SHDN, causes IC to disconnect its load in response to a low battery voltage. The internal source impedance of a lithi-um-ion battery makes IC_{2} susceptible to oscillation when its low-battery-detection circuitry disconnects a low-voltage battery from its load. As the voltage drop across the battery's internal resistance disappears, the battery voltage increases and turns IC_{2} back on. For example, a lithium-ion battery with $500-\mathrm{m} \Omega$ internal resistance, sourcing 500 mA , has a $250-\mathrm{mV}$ drop across its internal resistance. When IC_{2} 's circuitry disconnects the load, forcing the battery current to
zero, the battery voltage immediately increases by 250 mV .

The n-channel FET at LBO Figure 1 eliminates this oscillation by adding hysteresis to the low-battery-detection circuitry. The circuit in Figure 1 has a lowbattery trip voltage of 2.9 V . When $\mathrm{V}_{\text {batt }}$ drops below 2.9 V , LBO opens and allows SHDN to switch high, turning on the FET. With the FET turned on, the parallel combination of $1.3 \mathrm{M} \Omega$ and $249 \mathrm{k} \Omega$ eliminates oscillation by setting the battery turn-on voltage to 3.3 V . The turnoff and turn-on points are according to the following equations:
$\mathrm{V}_{\text {BATT }}(\mathrm{TURN}-\mathrm{OFF})=\mathrm{V}_{\mathrm{LBI}} \times \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}}$,
where $\mathrm{V}_{\mathrm{LBI}}=0.85 \mathrm{~V}$, and
$\mathrm{V}_{\mathrm{BATT}}(\mathrm{TURN}-\mathrm{ON})=\mathrm{V}_{\mathrm{LBI}} \times \frac{\mathrm{R}_{1}+\mathrm{R}_{2}^{\prime}}{\mathrm{R}_{2}^{\prime}}$,
where

$$
\mathrm{R}_{2}^{\prime}=\frac{\mathrm{R}_{2} \mathrm{R}_{3}}{\mathrm{R}_{2}+\mathrm{R}_{3}}
$$

Drawing power from a USB port, this circuit generates 5 and 3.3 V supply voltages for portable applications.

Finally, a step-down converter, IC_{3}, provides buck regulation to convert 5 V to 3.3 V and delivers currents as high as 250 mA with efficiency exceeding 90%.

Is this the best Design Idea in this issue? Vote at www.ednmag.com.

