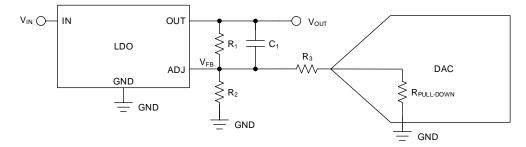


Analog Engineer's Circuit: Data Converters SBAA341–January 2019

Power-supply margining circuit for LDOs using a precision DAC


Uttama Kumar Sahu

Design Goals

Power Supply (VDD)	Nominal Output	Margin High	Margin Low
5V	3.3V	3.3V + 10%	3.3V – 10%

Design Description

A power-supply margining circuit is used for tuning the output of a power converter. This is done either to adjust the offset and drift of the power supply output or to program a desired value at the output. Adjustable power supplies like Low-Dropout Regulators (LDOs) and DC/DC converters provide a feedback or adjust input that is used to set the desired output. A precision voltage output digital-to-analog converter (DAC) is suitable for controlling the power supply output linearly. The following image shows an example power-supply margining circuit. Typical applications of power-supply margining is in Test and Measurement, Communications Equipment, and Power Delivery.

Design Notes

- 1. Choose a DAC with the required resolution, pulldown resistor value, and output range.
- 2. Derive the relationship of the DAC output to V_{OUT} .
- 3. Choose R₁ based on typical current through the feedback circuit.
- 4. Calculate the start-up or nominal value of V_{DAC} considering the power-down and power-up conditions of the DAC.
- 5. Select R₂, and R₃ such that the desired start-up output voltage is met along with the DAC output voltage range for the desired tuning range.
- 6. Calculate the margin low and margin high DAC outputs.
- 7. Choose a compensation capacitor to achieve the desired step response.

Design Steps

- 1. Select the LDO TPS79501 device for the calculations. The DAC53608 device is an ultra-low cost, 10bit, 8-channel, unipolar output DAC suitable for such applications
- 2. The output voltage of the power supply is given by:

$$V_{OUT} = V_{REF} + I_1 R_1 = V_{REF} + (I_2 + I_3) R_1$$

where

- I_1 is the current flowing through R_1
- I₂ is the current flowing through R₂
- I_3 is the current flowing through R_3

DACs in this application typically include power-down mode, which includes an internal pulldown resistor at the voltage output. Hence, replacing the values of the currents in the previous equation yields:

• When the DAC is in *Power Down* mode:

$$V_{OUT} = V_{REF} + \left(\left(\frac{V_{REF}}{R_2} \right) + \left(\frac{V_{REF}}{R_3 + R_{PULL-DOWN}} \right) \right) R_1$$

• When the DAC output is powered-up:

$$V_{OUT} = V_{REF} + \left(\left(\frac{V_{REF}}{R_2} \right) + \left(\frac{V_{REF} - V_{DAC}}{R_3} \right) \right) R_1$$

For DAC53608, $R_{PULL-DOWN}$ is 10k Ω . For the LDO part number TPS79501, the value of V_{REF} is 1.225V. 3. R_1 can be calculated by the following method.

The current through the FB pin of TPS79501 is 1 μ A. To make this current negligible, I₁ should be >> I_{FB}. Choose I₁ to be 50 μ A. Calculate R₁ as follows:

$$R_1 = \frac{V_{OUT} - V_{REF}}{I_1} = 41.5 \text{ k}\Omega$$

The nominal value of I_1 can be given by:

• When the DAC is in *Power Down* mode

$$I_{1-Nom} = \left(\frac{V_{REF}}{R_2}\right) + \left(\frac{V_{REF}}{R_3 + 10 \text{ k}\Omega}\right)$$

• When the DAC output is powered-up

$$I_{1-Nom} = \left(\frac{V_{REF}}{R_2}\right) + \left(\frac{V_{REF} - V_{DAC}}{R_3}\right)$$

The values of I₁ at Margin High and Margin Low outputs are given by:

$$I_{1-HIGH} = \frac{V_{OUT-HIGH} - V_{REF}}{R_1} = 57.95 \ \mu A$$
$$I_{1-LOW} = \frac{V_{OUT-LOW} - V_{REF}}{R_1} = 42.05 \ \mu A$$
$$I_{1-HIGH} - I_{1-Nom} = I_{1-Nom} - I_{1-LOW} = 7.65 \ \mu A$$

4. The nominal or startup value of V_{DAC} can be calculated using the following method:

To make sure the 10-k Ω resistor does not impact when the DAC is transitioning from power-down to power-up, the power-up value for the DAC voltage can be calculated with:

$$\frac{V_{REF}}{R_3 + 10 \text{ k}\Omega} = \frac{V_{REF} - V_{DAC}}{R_3}$$

The previous equation can be further simplified to:

$$V_{DAC} = V_{REF} \left(\frac{10 \text{ k}\Omega}{\text{R3} + 10 \text{ k}\Omega} \right)$$

5. The values of R_2 and R_3 can be calculated as follows:

www.ti.com

If the power-up or nominal value of V_{DAC} is kept at one-third of V_{REF}, that is, 408.3mV, then R₃ will be 2 x 10k Ω = 20k Ω . R₂ can be calculated as:

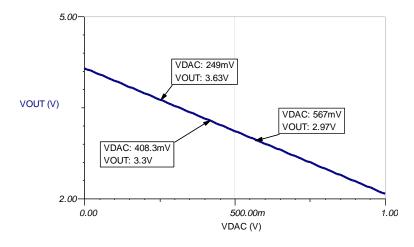
$$\frac{V_{REF}}{R_2} + \frac{V_{REF}}{R_3 + 10 \text{ k}\Omega} = 50 \text{ }\mu\Omega$$

Replacing the value of R_3 , R_2 can be calculated to equal 133k Ω .

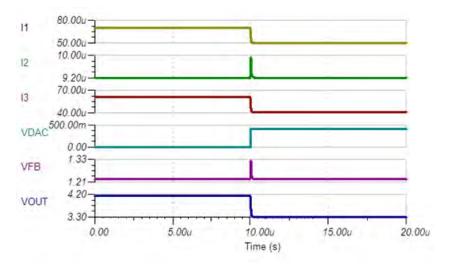
6. Subtracting the Margin High and Nominal values of I₁ and the corresponding equations, we get

$$\frac{V_{REF} - V_{DAC}}{R_3} - \frac{V_{REF}}{R_3 + 10 \text{ k}\Omega} = 7.95 \text{ }\mu\text{A}$$

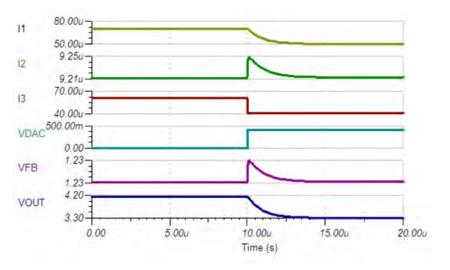
So, the *Margin High* value of V_{DAC} will be 249mV and similarly, the *Margin Low* value can be calculated as 567mV from the following equation:


$$\frac{V_{REF}}{R_3 + 10 \ k\Omega} - \frac{V_{REF} - V_{DAC}}{R_3} = 7.95 \ \mu A$$

7. The step response of this circuit without a compensation capacitor has some overshoot and ringing as shown in the following curves. This kind of transient response can cause errors at the load circuits. To minimize this, use a compensation capacitor C₁. The value of this capacitance is usually obtained through simulation. A comparative output shows the waveforms with a compensation capacitor of 22pF.



www.ti.com


DC Transfer Characteristics

Small Signal Step Response Without Compensation

Small-Signal Step Response With C1= 22pF

www.ti.com

Design Featured Devices and Alternative Parts

Device	Key Features	Link
DAC53608	8-channel 10-bit, I2C interface, buffered-voltage-output DAC	http://www.ti.com/product/DAC53608
DAC60508	8-channel, true 12-bit, SPI, voltage-output DAC with precision internal reference	http://www.ti.com/product/DAC60508
DAC60501	12-bit, 1-LSB INL, DAC with precision internal reference	http://www.ti.com/product/DAC60501
DAC8831	16-bit, ultra-low power, voltage output DAC	http://www.ti.com/product/DAC8831
TPS79501-Q1	Automotive catalog single output LDO, 500mA, adj.(1.2 to 5.5V), low-noise, high PSRR	http://www.ti.com/product/TPS79501-Q1

Design References

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

Link to Key Files

TINA source files - http://www.ti.com/lit/zip/sbam415.

For direct support from TI Engineers use the E2E community

e2e.ti.com