Get power from a telephone line without disturbing it

Yongping Xia, Navcom Technology, Torrance, CA

\pmAn idle telephone line tempts designers to use its 48 V potential as a power source. However, Part 68 of the US Federal Communications Commission's telecommunications regulations states that any device that connects to the phone line and is not actively communicating must present
a resistance of at least $5 \mathrm{M} \Omega$ (Reference 1). To meet this requirement, a device's continuous-current drain must not exceed $10 \mu \mathrm{~A}$. Fortunately, many devices that connect to the phone line do not require continuous power and can remain off for long intervals, awakening only for a short time before
relapsing into power-off mode. Providing power for these applications from the phone line presents obvious advantages by eliminating the need for a battery or another power source and the cost of battery maintenance.
The circuit in Figure 1 charges a 1.5 F supercapacitor, C_{1}, from the phone line through a diode bridge and a $5.6-\mathrm{M} \Omega$ resistor. A Maxim (www. maxim-ic.com) MAX917 nanopower comparator, IC_{1}, consumes only 0.75 $\mu \mathrm{A}$ from its power supply. Resistors

Figure 1 This power-conversion circuit delivers intermittent bursts of regulated voltage from a supercapacitor charged by a trickle of current from a telephone line.

designideas

R_{2} and R_{3} halve the voltage across C_{1} and apply it to IC_{1} 's positive input voltage at Pin 3 for comparison with its built-in 1.245 V reference. For voltages across C_{1} that do not exceed $2.49 \mathrm{~V}^{2} \mathrm{IC}_{1}$'s output at Pin 6 remains low. When C_{1} 's voltage reaches 2.5 V , Pin 3's voltage exceeds the reference voltage, and IC_{1} 's output goes high, turning on Q_{1} and Q_{2}.
Several days must elapse before C_{1} becomes fully charged, given its huge capacitance and a charging current of less than $10 \mu \mathrm{~A}$. The voltage on C_{1} can never exceed 2.5 V because, once it reaches $2.49 \mathrm{~V}, \mathrm{Q}_{1}$ and Q_{2} turn on, connecting C_{1} to a switched-mode-power-supply circuit. Because the power-supply current exceeds the
charging current, the voltage across C_{1} starts to decrease when Q_{2} turns on. Transistor Q_{3} holds Q_{2} on when C_{1} 's decreasing voltage causes Q_{1} to turn off.
The switched-mode-power-supply circuit comprises a Linear Technology (www.linear.com) LTC3459 micropower boost converter, IC_{2}, and its associated components, which deliver 5 V at 10 mA . A fully charged C_{1} can supply power to a $10-\mathrm{mA}$ load for approximately 40 sec . With no load, the circuit can sustain its 5 V output for more than 10 hours. For greater output current and shorter operating time, select another boost converter that can operate at a low input voltage.
Mechanical switches, open-drain

MOSFETs, open-collector transistors, or a microcontroller's open-drain output pins can drive two external control inputs to force the circuit on and off. Pulling the On input low forces Q_{2} to turn on and deliver power from C_{1} to the power converter, and pulling the Off input low turns off Q_{2} and removes power from the converter. Note that the power converter's output-return line connects to the telephone line and thus should not connect to an earth ground or to grounded equipment.EDN

REFERENCE

11 "Part 68," Federal Communications Commission, www.fcc.gov/wcb/iatd/ part_68.html.

