Application Note 42043

M L4803 240W O ff－Line Power Supply with PFC

INTRO DUCTION

Included in this Application Note are a reference schematic，ML4803 design equations，the circuit layout， and parts list．The reference schematic demonstrates how the ML4803 can meet the requirements of a PFC corrected power supply for desktop computer applications．The design features include a low－cost single sided PCB with 240W of output power，a form factor compatible with desk top computer requirements，and line frequency harmonic content compliant with IEC1000－3－2．

THEO RY OF O PERATIO N

The ML4803 Power Factor Control section uses an input current wave－shaping technique that senses the boost inductor current．It compares the inductor current downslope during the off－time of the main power switch with a ramp programmed by the PFC output voltage variation．When the two signals intersect the off－time is terminated and the on－time is initiated for the remainder of the cycle．Any line or load transients to the PFC will cause the output to either surge or dip below its regulated value．This will either increase or decrease the programmed ramp $\mathrm{dv} / \mathrm{dt}$ ，increasing or decreasing the off－ time of the main power switch and compensating for load demand．Unity power factor is maintained because the sensed inductor current ramp is proportional to the input voltage．

Electrical Specifications

Line voltage
Line harmonic content
85 to 265 VAC
IEC1000－3－2
67 kHz
240 W
$\pm 0.1 \%$
30 mV RMS
85%

PFC CONTROL CIRCUIT DESIGN

Internal Voltage Ramp

The internal ramp current source is programmed by way of the $\mathrm{V}_{\mathrm{EAO}}$ signal voltage（see Figure 1）．This current source is used to develop the internal ramp by charging the internal 30 pF capacitor．Steady－state operation ensures that the $\mathrm{V}_{\mathrm{EAO}}$ signal is 5 V ．The frequency of the internal ramp is set to 67 kHz ．

O ne－Pin Error Amp

The ML4803 utilizes a one－pin voltage error amplifier in the PFC section（ $\mathrm{V}_{\mathrm{EAO}}$ ）．The error amplifier is in reality a $35 \mu \mathrm{~A}$ current sink，which forces $35 \mu \mathrm{~A}$ through the output programming resistor．The nominal voltage of the $\mathrm{V}_{\text {EAO }}$ signal is 5 V and its range is from 4 V to 6 V ．The boost

Figure 1．Internal Ramp Current vs． $\mathrm{V}_{\text {EAO }}$

Application N ote 75

PFC CONTROL CIRCUIT DESIGN

(Continued)
output voltage would be 400 V for a $11.3 \mathrm{M} \Omega$ resistor to the boost output voltage and 5 V steady-state at the $\mathrm{V}_{\text {EAO }}$ pin.

$$
\begin{aligned}
& \mathrm{R} 12+\mathrm{R} 13=\frac{\mathrm{V}_{\text {BOOST }}-V_{\mathrm{EAO}}}{\mathrm{I}_{\mathrm{PGM}}}= \\
& \frac{400 \mathrm{~V}-5 \mathrm{~V}}{35 \mu \mathrm{~A}}=11.3 \mathrm{M} \Omega
\end{aligned}
$$

The $\mathrm{I}_{\text {PGM }}$ variation over temperature and process is 4%. Adding an additional 2% variation in the programming resistor results in a total variation of approximately 6% in the PFC output voltage. This assumes a temperature coefficient of less than 200ppm for the programming resistance. This results in a spread of 377 V to 426 V in the PFC output voltage, requiring a PFC output capacitor rated at 450 V .

Voltage Loop Compensation

The voltage loop bandwidth must be set to less than 120 Hz to limit line current harmonic distortion. A typical crossover frequency is 30 Hz . Equation 2 assumes that the pole capacitor (C15) in the compensation network dominates the error amp gain at the unity gain frequency. Equation 3 places a pole at the crossover frequency providing 45° of phase margin. Equation 4 places a zero a decade prior to the pole providing the necessary phase boost. Figure 3 displays a simplified schematic of the voltage control loop.

Bode plots illustrating the overall gain and phase are shown in Figures 4 and 5.

$$
\begin{equation*}
\mathrm{C} 15=\frac{\mathrm{P}_{\mathrm{IN}}}{\mathrm{R}_{\mathrm{P}} \times \mathrm{V}_{\text {BOOST }} \times \Delta \mathrm{V}_{\text {EAO }} \times \mathrm{C}_{\mathrm{OUT}} \times(2 \pi \mathrm{f})^{2}}= \tag{2}
\end{equation*}
$$

Figure 2. ML4803 PFC Control

Figure 3. Voltage Control Loop

Figure 4. Voltage Loop G ain

PFC CONTROL CIRCUIT DESIGN (Continued)

$\mathrm{R} 25=\frac{1}{2 \pi \mathrm{f} \times \mathrm{C} 15}=$

$$
\begin{equation*}
\frac{1}{2 \pi \times 30 \mathrm{~Hz} \times 16 \mathrm{nF}}=330 \mathrm{k} \Omega \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{C} 8=\frac{1}{2 \pi \times \frac{\mathrm{f}}{10} \times \mathrm{R} 25}= \tag{4}
\end{equation*}
$$

$$
\frac{1}{2 \pi \times 3 \mathrm{~Hz} \times 330 \mathrm{k} \Omega}=0.16 \mu \mathrm{~F}
$$

PFC Start-Up and Soft Start

During steady state operation $\mathrm{V}_{\text {EAO }}$ draws $35 \mu \mathrm{~A}$. At startup the internal current mirror, which sinks this current, is defeated until V_{CC} reaches 12 V . This forces the PFC error voltage $\left(\mathrm{V}_{\text {EAO }}\right)$ to 12 V at the time that the IC is enabled (see Figure 6). With leading edge modulation, 6 V or more of $\mathrm{V}_{\text {EAO }}$ signal forces zero duty in the PFC output. When designing the external compensation components and the V_{CC} supply circuits $\mathrm{V}_{\text {EAO }}$ must not be prevented from reaching 6 V prior to V_{CC} reaching 12 V in the turn-on sequence. This will guarantee the PFC stage will enter soft start at turn-on. Once V_{CC} reaches 12 V the $\mathrm{V}_{\text {EAO }}$ current sink is enabled. The $\mathrm{V}_{\text {EAO }}$ compensation components are then discharged by way of the $35 \mu \mathrm{~A}$ current sink until the steady-state operating point is reached.

PFC POWER STAGE DESIGN

PFC Inductor

The boost inductor value should ensure that the ripple current is limited to roughly 20% of the peak input current
at low line voltage. This provides for continuous conduction throughout much of the line cycle with sufficient ramp slope to trip the overcurrent comparator at the trailing edge of the "ON" pulse.

$$
\begin{align*}
& \mathrm{I}_{\mathrm{PK}}=\frac{\mathrm{P}_{\mathrm{OUT}} \times \sqrt{2}}{\mathrm{~V}_{\mathrm{AC}} \times \eta}= \tag{5}\\
& \frac{240 \times \sqrt{2}}{85 \mathrm{~V} \times 0.75}=5.3 \mathrm{~A} \\
& \mathrm{D}=\frac{\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{OUT}}}= \tag{6}\\
& \frac{400-85 \times \sqrt{2}}{400}=0.7 \\
& \mathrm{~L}=\frac{\mathrm{V}_{\mathrm{RMS}} \times \sqrt{2} \times \mathrm{D}}{0.2 \mathrm{I}_{\mathrm{PK}} \times \mathrm{f}}= \tag{7}\\
& \frac{85 \mathrm{~V} \times \sqrt{2} \times 0.7}{0.2 \times 5.3 \mathrm{~A} \times 70 \mathrm{kHz}}=1134 \mu \mathrm{H} \\
& \text { PFC } 0 \text { utput Capacitor }
\end{align*}
$$

The dominant consideration in selecting the output capacitor is providing sufficient holdup time at the output to sustain output regulation in the event the AC line drops out for one cycle. The voltage to which the boost cap is allowed to drop is limited by the maximum PWM duty cycle and the main transformer turns ratio (see Transformer section, following).

$$
\begin{equation*}
\mathrm{C} 1=\frac{\frac{2 \mathrm{P}_{\mathrm{OUT}} \times \mathrm{t}_{\text {HOLDUP }}}{\eta}}{{\mathrm{V} 1^{2}}^{2} \mathrm{~V} 2^{2}}= \tag{8}
\end{equation*}
$$

$$
\frac{\frac{2 \times 240 \mathrm{~W} \times 15 \mathrm{~ms}}{0.9}}{(380 \mathrm{~V})^{2}-(320 \mathrm{~V})^{2}}=190 \mu \mathrm{~F}
$$

Figure 6. PFC Soft Start

PFC Current Sense Resistor

In Discontinous Conduction Mode (DCM) the input current wave shaping technique used by the ML4803 can cause the input current to run away, forcing the PFC output to increase until the $\mathrm{V}_{\mathrm{CC}} \mathrm{OVP}$ point is reached. In order for the PWM technique to work properly under DCM, the programmed ramp must meet the boost inductor current down slope at zero amps. Assuming the programmed ramp is zero under light load, the off time will be terminated once the inductor current reaches zero. Subsequently, the PFC gate drive would be initiated eliminating any necessary deadtime needed for the DCM mode. The problem is resolved by adding an offset voltage to the current sense signal, which forces the duty cycle to zero at light loads. The offset prevents the PFC from operating in the Discontinous Conduction Mode (DCM) and forces pulse skipping from Continuous Conduction Mode (CCM) to no duty, avoiding the DCM problem altogether. External filtering of the current sense signal helps to smooth out the signal, expanding the operating range somewhat into the DCM range. This should be done carefully as the filtering reduces the bandwidth of the signal feeding the pulse-by-pulse current limit information.

Figure 7 displays the circuit used to provide offset to the I SENSE pin under light load conditions. It adds a negative offset to the $I_{\text {SENSE }}$ pin that is inversely proportional to the PFC pulse width, preventing excessive input current under light load conditions. Components C23 and CR16 offset the PFC gate drive by -15 V , while the subsequent lowpass network averages the offset square wave. The net effect is a negative voltage summed with the input current sense that increases as the PFC pulse width decreases. Figure 8 illustrates how $\mathrm{I}_{\text {LIMIT }}$ vs. duty cycle varies with the PFC gate drive offset signal. The 120 Hz component of the PFC gate drive is attenuated by more than -50 dB at the $\mathrm{I}_{\text {SENSE }}$ pin. Because this 120 Hz component added to the $I_{\text {SENSE }}$ input will increase the
harmonic distortion in the input AC current, it should kept to a minimum by this low-pass network.

To select the PFC R RENSE value, use a peak current that is 120% of that found in Equation 5.

$$
\begin{equation*}
\mathrm{R} 3=\frac{\mathrm{V}_{\mathrm{LIMIT}}}{120 \% \times \mathrm{I}_{\mathrm{PK}}}= \tag{9}
\end{equation*}
$$

$$
\frac{1 \mathrm{~V}}{1.2 \times 5.3 \mathrm{~A}}=0.15 \Omega
$$

PFC and PWM Gate Drive

The peak current rating of the PFC and PWM gate drive outputs is 1 A . A 36Ω gate drive resistor is used to drive two MOSFETs in parallel and limit the gate drive peak current to less than 1A. The charge required to elevate the gate of the IRF840 to 15 V is taken from the manufacturer's data sheet in order to estimate the gate drive turn-on time. Estimating the current as a constant allows the approximate time to be derived from Equation 10. Given the switching frequency, the average gate current drawn from V_{CC} can be calculated from Equation 11. Since a typical carbon film resistor is only capable of a peak power of 4 times its average, rated power, a $1 / 4 \mathrm{~W}$ resistor is limited to 1 W peak. With a peak current of 0.416 A in a 36Ω resistor, the peak power is 6.23 W , well in excess of the 1W limitation. For this reason carbon composition resistors are typically used for gate drive applications.

$$
\begin{align*}
& \mathrm{t} \approx \frac{\mathrm{Q}_{\mathrm{GATE}}}{\mathrm{I}_{\mathrm{PK}}}=\frac{\mathrm{Q}_{\mathrm{GATE}}}{\frac{\mathrm{~V}_{\mathrm{CC}}}{\mathrm{R}_{\mathrm{GATE}}}}= \tag{10}\\
& \frac{60 \mathrm{nC}}{\frac{15 \mathrm{~V}}{36 \Omega}}=\frac{60 \mathrm{nC}}{0.416 \mathrm{~A}}=144 \mathrm{~ns}
\end{align*}
$$

Figure 7. I ${ }_{\text {SENSE }} 0$ ffset Circuit

Figure 8. $I_{\text {SENSE }}$ and $\mathrm{V}_{\text {OfFSET }} \mathrm{O}$ ver Duty Cycle

PFC POWER STAGE DESIGN
(Continued)

The high-side gate drive transformer magnetizing current can be estimated from Equation 12.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{AVG}}=\frac{\mathrm{V}_{\mathrm{CC}}}{8 \times \mathrm{f}_{\mathrm{S}} \times \mathrm{L}_{\mathrm{MAG}}}= \tag{12}
\end{equation*}
$$

$$
\frac{15 \mathrm{~V}}{8 \times 70 \mathrm{kHz} \times 450 \mu \mathrm{H}}=60 \mathrm{~mA}
$$

The total I_{CC} due to gate drive can now be estimated from the sum of all of the above.

PWM POWER STAGE DESIGN

0 utput Filter

The output inductor value is selected so that the PWM converter can transition into the CCM at roughly 10% of full load and provide sufficient ramp slope for peak current mode operation. With a turns ratio of 0.083 (see Equation 17) and an input voltage of 400 V , the steady state duty cycle can be calculated from Equation 13. Given the steady state duty cycle the output filter inductance can be calculated from Equation 14.

$$
\begin{align*}
& \mathrm{D}=\frac{\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{D}}}{\mathrm{~V}_{\text {BOOST }} \times \mathrm{N}}= \tag{13}\\
& \frac{12 \mathrm{~V}+0.5 \mathrm{~V}}{400 \mathrm{~V} \times 0.083}=0.376 \\
& \mathrm{~L}_{\text {OUT }}=\frac{\left(\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{D}}\right) \times(1-\mathrm{D})}{\mathrm{l}_{\mathrm{OUT}} \times 20 \% \times \mathrm{f}_{\mathrm{S}}}= \tag{14}\\
& \frac{(12 \mathrm{~V}+0.5 \mathrm{~V}) \times(1-0.376)}{20 \times 0.2 \times 70 \mathrm{kHZ}}=28 \mu \mathrm{H}
\end{align*}
$$

The output capacitor ripple current can be estimated from Equation 15, while the RMS output voltage ripple is calculated from Equation 16.

$$
\begin{align*}
& \mathrm{I}_{\mathrm{CAP}}^{\mathrm{RMS}} \tag{15}\\
& =\sqrt{\frac{l_{\mathrm{PP}}^{2}}{12}}= \\
& \sqrt{\frac{(20 \mathrm{~A} \times 0.2)^{2}}{12}}=1.15 \mathrm{~A}_{\mathrm{RMS}} \tag{16}\\
& \mathrm{~V}_{\mathrm{OUT}_{\mathrm{RMS}}}=\mathrm{I}_{\mathrm{CAP}}^{\mathrm{RMS}} \\
& \times \mathrm{ESR}= \\
& 1.15 \mathrm{~A}_{\mathrm{RMS}} \times 0.03 \Omega=35 \mathrm{mV} \mathrm{~V}_{\mathrm{RMS}}
\end{align*}
$$

Transformer

The transformer turns-ratio is set by the holdup voltage available at the boost output in the case of a missing cycle in the AC line. With a 50% maximum duty cycle, a
holdup voltage of 320V (Equation 8), and a transformer coupling coefficient of 0.9, the transformer turns ratio required is 0.087 . The actual transformer used in this example has a turns ratio of 0.083 .

$$
\begin{align*}
& \mathrm{N}=\frac{\mathrm{N}_{\mathrm{SEC}}}{\mathrm{~N}_{\mathrm{PRI}}} \tag{17}\\
& \mathrm{~N}=\frac{\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{D}}}{\mathrm{~V}_{\mathrm{HU}} \times \mathrm{D}_{\mathrm{MAX}} \times \mathrm{k}}= \tag{18}\\
& \mathrm{N}=\frac{12 \mathrm{~V}+0.5 \mathrm{~V}}{320 \mathrm{~V} \times 0.5 \times 0.9}=0.087
\end{align*}
$$

The primary magnetizing inductance of the main transformer is selected so that the magnetizing current is roughly equal to the reflected output inductor ripple current.

$$
\begin{align*}
& L_{P R I}=\frac{V_{O U T} \times D}{I_{P P} \times N \times f_{S}}= \tag{19}\\
& \frac{400 \mathrm{~V} \times 0.376}{(20 \mathrm{~A} \times 0.2) \times 0.083 \times 70 \mathrm{kHz}}=6.5 \mathrm{mH}
\end{align*}
$$

Current Sense Resistor

The peak current seen at the primary is the sum of the reflected load current and the primary magnetizing current. The trip level for the PWM current limit is 1.65 V . The $\mathrm{k}_{\text {MAG }}$ term in Equation 20 accounts for the magnetizing current in the primary and the ripple current in the secondary. The 1.1 factor sets the current limit at 110% of rated full load.

$$
\begin{array}{r}
\mathrm{R}_{\mathrm{SENSE}}=\frac{\mathrm{VI}_{\mathrm{LIMIT}}}{\mathrm{l}_{\mathrm{OUT}} \times \mathrm{k}_{\mathrm{MAG}} \times 110 \% \mathrm{xN}}= \tag{20}\\
\frac{1.65 \mathrm{~V}}{20 \mathrm{~A} \times 1.2 \times 1.1 \times 0.083}=0.75 \Omega \\
\mathbf{V}_{\mathrm{CC}} \mathbf{O V P} \text { and } \mathbf{V}_{\mathrm{CC}}
\end{array}
$$

Full-load to no-load transients at low input voltages can cause excessive overshoot in the PFC output voltage. The $\mathrm{V}_{\mathrm{CC}} \mathrm{OVP}$ is designed to limit the PFC output voltage under a large transient at load off. However, when generating V_{CC} via a winding off the main PWM transformer, the winding will not generate sufficient voltage to trip the $\mathrm{V}_{\mathrm{CC}} \mathrm{OVP}$ during a load off transient. This is due to the fact that the PWM duty approaches zero under the load off transient, thus removing the drive necessary to raise the V_{CC} rail high enough to trip the $\mathrm{V}_{\mathrm{CC}} \mathrm{OVP}$. By generating the V_{CC} from the boost choke, as shown on the reference schematic, this problem can be eliminated.

In the design example V_{CC} is generated from a winding of the PFC choke. The turns ratio of the auxiliary winding vs. the primary winding is $102: 4 . \mathrm{V}_{\mathrm{CC}}$ should be set as high as possible while guaranteeing the $\mathrm{V}_{\mathrm{CC}} \mathrm{OVP}$ does not trip under normal steady state operating conditions. The output

Application Note 75

PWM POWER STAGE DESIGN

voltage will range from 377 V to 426 V , as discussed in the "one-pin error amp" section. Given this variation, the minimum $\mathrm{V}_{\mathrm{CC}} \mathrm{OVP}$ trip level must be guaranteed to occur at a voltage greater than 426 V while the maximum OVP trip level must be less than the output capacitor's rated voltage (450 V). The spread on the $\mathrm{V}_{\mathrm{CC}} \mathrm{OVP}$ is $\pm 0.5 \mathrm{~V}$ for a maximum of 16.5 V and a minimum of 15.5 V . Given the specified PFC choke winding turns ratio, one can calculate the required additional series drop required to limit the minimum OVP trip level to greater than 426 V . This additional drop can be achieved by selecting an appropriate value for resistor R 31 . The maximum $\mathrm{V}_{\mathrm{CC}} \mathrm{OVP}$ trip level can then be checked.

$$
\begin{align*}
& \mathrm{N} 2=\frac{\mathrm{N}_{\text {AUX }}}{\mathrm{N}_{\text {PRI }}}=\frac{4}{102}=0.039 \tag{21}\\
& \mathrm{~V}_{\text {SERIES }}=\left(\mathrm{V}_{\text {OUTMIN }} \times \mathrm{N} 2 \times \mathrm{k}\right)-\mathrm{V}_{\text {CCOVP }_{\text {MIN }}}= \tag{22}\\
& (426 \mathrm{~V} \times 0.039 \times 0.95)-15.5 \mathrm{~V}=0.283 \mathrm{~V} \\
& V_{\text {OUTMAX }}=\frac{V_{\text {CCOVP }_{\text {MAX }}}+V_{\text {SERIES }}}{N 2 \times k}= \tag{23}\\
& \frac{16.5 \mathrm{~V}+0.283 \mathrm{~V}}{0.039 \times 0.95}=450 \mathrm{~V}
\end{align*}
$$

In general, the $\mathrm{V}_{\mathrm{CC}} \mathrm{OVP}$ trip level should not interfere with the normal steady-state operation of the PFC, and at the same time should be guaranteed to trip at a level below the maximum rating of the 450 V output capacitor.

The maximum voltage at V_{CC} is limited internally by a low current ($<10 \mathrm{~mA}$) zener clamp ranging from 16.7 V to 18.3 V . This will limit the V_{CC} voltage applied to the IC during conditions where V_{CC} is applied through the high impedance start up resistors R26 and R27. During normal operation, when the V_{CC} voltage is supplied by way of the boost choke bootstrap winding, V_{CC} will be limited by the $\mathrm{V}_{\mathrm{CC}} \mathrm{OVP}$ protection circuitry ($<16.5 \mathrm{~V}$). In the case where V_{CC} is supplied by a low impedance source other than a bootstrap winding, the zener minimum voltage (16.7 V) must not be exceeded.

RESULTSAND CONCLUSIONS

Table 1 displays the IEC input current harmonic content requirements. A summary of the power supply performance is shown in Table 2. Figures 9 through 14 display input current under various operating conditions, load transients, and turn-on overshoot.

This design shows that the ML4803 provides an effective, inexpensive solution for a power factor corrected 240 W switching power supply. Higher power levels can be achieved with proper buffering of the gate drive outputs and detailed attention paid to printed circuit board (PCB) layout. The design has also shown that proper layout can be achieved with a single-sided PCB layout. Applications include desktop PCs, servers, monitors, and distributed power systems.

Figure 9. Input AC Current @ 85 V AC. 50W, 100W, 200W, 300W Input Power. $2 \mathrm{~A} / \mathrm{div}$.

Figure 10. Input AC Current @ 115 V AC. 50W, 100W, 200W, 300W Input Power. 1 A/div.

Application Note 75

Figure 11. Input AC Current @ 230 V AC. 50W, 100W, 200W, 300W Input Power.
$0.5 \mathrm{~A} / \mathrm{div}$.

Figure 13. Boost O utput Voltage Turn- O n 0 vershoot @ 115 V AC Full Load and No Load 230 V AC Full Load and No Load

Figure 12. Input AC Current @ 265 V AC. 50W, 100W, 200W, 300W Input Power. 0.5 A/div.

Figure 14. Boost 0 utput Voltage Load Transient Responce Top Trace: Load Current Step No Load to 15A
Bottom Traces: Boost 0 utput Voltage Transient Responce @ 85 V AC, 115 V AC, and 265 V AC Input Voltage

Application N ote 75

HARMONIC ORDER	MAXIMUM PERMISSABLE	INPUT PO W ER				
n	mA/W	50	100	200	300	W
3	3.4	170	340	680	1020	mA
5	1.9	95	190	380	570	mA
7	1	50	100	200	300	mA
9	0.5	25	50	100	150	mA
11	0.35	17.5	35	70	105	mA
$13<=n=>39$ odd harmonics only	3.85/n	192.5/n	385/n	770/n	1155/n	mA

Table 1. IEC 1000-3-2
Input Current Harmonic Distortion Limits

HARMONIC DISTO RTIO N SUMMARY

PF	FREQ U EN CY (Hz)	LINE (V)	PO W ER (W)	$\begin{gathered} \text { THD } \\ \text { (\%) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 3RD } \\ & \text { (mA) } \end{aligned}$	$\begin{aligned} & 5^{\mathrm{TH}} \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{aligned} & 7 \mathrm{TH} \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{aligned} & 9 \mathrm{TH} \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{aligned} & 11^{\mathrm{TH}} \\ & (\mathrm{~mA}) \end{aligned}$	Lout (A)	Vout (V)	EFFICIENCY (\%)
0.997	60	85	50.04	5	27	8.6	1.8	2.2	3.3	2.64	12.112	64
0.986	60	120	52.9	13.3	56	19.1	6	3	2.5	2.85	12.112	65
0.966	60	230	47.9	18.8	40.7	11.8	4.3	1.35	3	2.89	12.112	73
0.936	60	265	49.86	22	41.4	10.9	3.2	1.4	2	2.89	12.112	70
0.996	60	120	105	7.2	56	19	11.9	5.3	2.1	6.56	12.116	76
0.973	60	230	101.4	18.8	81	12.9	15.3	1.2	7.8	6.56	12.116	78
0.959	60	265	101	22.9	85.8	9.4	8.2	4.2	2.6	6.56	12.118	79
0.978	60	230	202	17.2	148	36	7.4	4.5	6.27	13.64	12.122	82
0.970	60	265	199.5	20.2	149	18	13.5	13.5	3.8	13.64	12.122	83
0.983	60	230	293	15.5	182	59	25	13.6	3.5	19.81	12.125	82
0.975	60	265	290	18.8	200	46	9	6.9	8.03	19.81	12.125	83

Table 2. ML4803 Performance Summary

Figure 15. Application Schematic

Figure 16. Top Silkscreen

Figure 17. Bottom Plane

Application N ote 75

PARTS LIST

QUANTITY	DESIG NATOR	DESCRIPTION	MANUFACTURER	PART NUMBER
4	R1, R2, R5, R8	$36 \Omega 1 / 4 \mathrm{~W} 5 \%$ Carbon Comp. resistor	Mouser	30BJ250-36
1	R3	$0.15 \Omega 3 \mathrm{~W} 1 \%$ Wirewound resistor	Huntington Electric Digi Key	$\begin{aligned} & \hline \text { ALSR3F-0.15 } \\ & \text { ALSR3F-0.15-ND } \end{aligned}$
1	R32	$100 \Omega 1 / 4 \mathrm{~W}$ 5\% Carbon Film	Mouser	29SJ250-100
2	R7	$10 \Omega 1 / 4 \mathrm{~W} 5 \%$ Carbon Comp resistor	Mouser	30BJ250-10
1	R6	$1.2 \mathrm{k} \Omega 1 / 4 \mathrm{~W} 5 \%$ Carbon Film resistor	Mouser	29SJ250-1.2k
1	R9	$1.5 \mathrm{k} \Omega 1 / 4 \mathrm{~W} 5 \%$ Carbon Film resistor	Mouser	29SJ250-1.5k
1	R10	0.75Ω 3W 1\% Wirewound resistor	Huntington Electric Digi Key	ALSR3F-0.75 ALSR3F-0.75-ND
1	R11	$150 \Omega 1 / 4 \mathrm{~W}$ 5\% Carbon Film resistor	Mouser	29SJ250-150
2	R12, R13	$5.62 \mathrm{M} \Omega 1 / 4 \mathrm{~W} 1 \%$ Metal Film resistor	Dale	CMF-55-5.62M Ω
1	R14	150 2 2 5\% Metal Oxide Film resistor	Digi Key	150W-2-ND
2	R15	$9.09 \mathrm{k} \Omega 11 / 4 \mathrm{~W} 1 \%$ Metal Film resistor	Mouser	29MF250-9.09k
1	R16	$2.37 \mathrm{k} \Omega 1 / 4 \mathrm{~W} 1 \%$ Metal Film resistor	Mouser	29MF250-2.37k
1	R17	$3.3 \mathrm{k} \Omega 1 / 4 \mathrm{~W} 5 \%$ Carbon Film resistor	Mouser	29SJ250-3.3k
2	R18,R4	$1 \mathrm{k} \Omega 11 / \mathrm{W}$ 5\% Carbon Film resistor	Mouser	29SJ250-1k
1	R30	200Ω 1/4W 5\% Carbon Film resistor	Mouser	29SJ250-200
1	R20	$510 \Omega 1 / 4 \mathrm{~W} 5 \%$ Carbon Film resistor	Mouser	29SJ250-510
4	R19, R21, R22, R23	10k Ω 1/4W 5\% Carbon Film resistor	Mouser	29SJ250-10k
1	R24	$470 \mathrm{k} \Omega 1 / 2 \mathrm{~W} 5 \%$ Carbon Film resistor	Mouser	29SJ250-470k
1	R25	$390 \mathrm{k} \Omega 11 / \mathrm{W}$ 5\% Carbon Film resistor	Mouser	29SJ250-390k
2	R26, R27	20k Ω 3W 5\% Metal Oxide Film resistor	Digi Key	P20kW-3BK-ND
2	R28, R29	$20 \mathrm{k} \Omega$ 1/4W 5\% Carbon Film resistor	Mouser	30BJ250-20k
1	R31	5.1Ω 1/4W 5\% Carbon Film resistor	Mouser	30BJ250-5.1
1	R36	220 1W 5\% Metal Oxide Film resistor	Digi Key	220W-1-ND
1	R37	$330 \Omega 1 / 4 \mathrm{~W} 5 \%$ Carbon Film resistor	Mouser	29SJ250-330
1	R38	$22 \Omega 1 / 4 \mathrm{~W} 5 \%$ Carbon Film resistor	Mouser	30BJ250-22
1	C1	$\begin{array}{\|l} 220 \mu \mathrm{~F} 450 \mathrm{~V} 25 \mathrm{~mm} \times 50 \mathrm{~mm} \text { TSHB Series } \\ \text { capacitor } \end{array}$	Panasonic Digi Key	$\begin{array}{\|l} \hline \text { ECO-S2WB221CA } \\ \text { P10163-ND } \end{array}$
1	C2	$2200 \mu \mathrm{~F} 16 \mathrm{~V} 12.5 \mathrm{~mm} \times 30 \mathrm{~mm}$ capacitor	Panasonic Digi Key	$\begin{aligned} & \text { ECA-1CFQ222 } \\ & \text { P5681-ND } \end{aligned}$
5	$\begin{aligned} & \text { C3, C6, C9, } \\ & \text { C21, C22 } \end{aligned}$	1 $\mu \mathrm{F} 50 \mathrm{~V} 20 \% \mathrm{Z} 5 \mathrm{U}$ capacitor	Panasonic Digi Key	$\begin{aligned} & \text { ECU-S1H105MEB } \\ & \text { P4968-ND } \end{aligned}$
1	C4	$0.47 \mu \mathrm{~F} 250 \mathrm{~V}$ capacitor	Panasonic Digi Key	$\begin{aligned} & \text { ECQ-E2A474MW } \\ & \text { P4607-ND } \end{aligned}$
3	C7, C12, C17	0.1瑗50V 20\% Z5U capacitor	Panasonic Digi Key	$\begin{aligned} & \text { ECU-S1H104MEB } \\ & \text { P4924-ND } \end{aligned}$
1	C8	0.15 $\mu \mathrm{F} 100 \mathrm{~V} 10 \% \mathrm{X} 7 \mathrm{R}$ capacitor	Panasonic Digi Key	$\begin{aligned} & \text { ECU-S1H154KBB } \\ & \text { P4957-ND } \end{aligned}$
1	C10	2.2nF 100V 10\% X7R capacitor	Panasonic Digi Key	$\begin{aligned} & \text { ECU-S1H222KBB } \\ & \text { P4900-ND } \end{aligned}$
1	C11	1000رF 25V 20\% capacitor	Panasonic Digi Key	$\begin{aligned} & \text { ECA-1EM102 } \\ & \text { P5156-ND } \end{aligned}$
1	C13	1nF 100V 10\% X7R capacitor	Panasonic Digi Key	$\begin{aligned} & \text { ECU-S1H102KBB } \\ & \text { P4898-ND } \end{aligned}$
1	C14	$4.7 \mu \mathrm{~F} 25 \mathrm{~V} 10 \%$ capacitor	Panasonic Digi Key	$\begin{aligned} & \text { ECS-F1EE475K } \\ & \text { P2047-ND } \end{aligned}$
1	C15	15nF 100V 10\% X7R capacitor	Panasonic Digi Key	$\begin{aligned} & \text { ECU-S1H153KBB } \\ & \text { P4952-ND } \end{aligned}$

PARTS LIST (Continued)

QUANTITY	DESIG NATO R	DESCRIPTIO N	MANUFACTURER	PART NU MBER
1	C16	0.01 $\mu \mathrm{F} 500 \mathrm{~V} 10 \%$ Y5P capacitor	Panasonic Digi Key	$\begin{aligned} & \text { ECK-D2H103KB5 } \\ & \text { P4198A-ND } \end{aligned}$
1	C18	4.7nF 100V 10\% X7R capacitor	Panasonic Digi Key	$\begin{aligned} & \text { ECU-S1H472KBB } \\ & \text { P4902-ND } \end{aligned}$
2	C19, C20	4.7 nF 250 V capacitor	Panasonic Digi Key	$\begin{aligned} & \text { ECQ-U2A472MV } \\ & \text { P4625-ND } \end{aligned}$
2	C25, C26	$0.01 \mu \mathrm{~F} 500 \mathrm{~V}$ Ceramic disk capacitor	Panasonic Digi Key	$\begin{aligned} & \text { ECK-D2H103KB5 } \\ & \text { P4198A-ND } \end{aligned}$
1	C27	0.01 F 25V Ceramic Disk capacitor	Panasonic Digi Key	$\begin{aligned} & \text { ECK-F1E103ZV } \\ & \text { P4300A-ND } \end{aligned}$
1	C28	$1 \mu \mathrm{~F} 50 \mathrm{~V}$ Y5V 20\% 1206 capacitor	Panasonic Digi Key	ECJ-3YF1E105Z PCC1903CT-ND
3	C5, C23, C29	$0.01 \mu \mathrm{~F} 50 \mathrm{~V} 20 \% \mathrm{Z} 5 \mathrm{U}$ capacitor	Panasonic Digi Key	$\begin{aligned} & \text { ECU-S1H103MEB } \\ & \text { P4963-ND } \end{aligned}$
1	Q1	PNP transistor	Liteon	2N3906
4	Q2, Q3, Q4, Q5	500V MOSFET	Int'I Rect.	IRF840
1	BR1	600V 4A Diode bridge	Microsemi	RS405L
1	CR1	8A 600V HEXFRED diode	Int'I Rect.	HFA08TB60
1	CR2	TO247 30 Amp 60 Volt Schottky diode	Int'I Rect.	30CPQ060
2	CR3, CR4	1A 600V diode	Liteon	MUR160
2	CR5, CR9	16V 0.5W Zener diode	Microsemi	1N5246BMSCT-ND
4	$\begin{aligned} & \text { CR7, CR10, CR11, } \\ & \text { CR12 } \end{aligned}$	1A 30V Schottky Diode	Liteon	1N5818
3	CR8, CR15, CR16	150mA 75V Diode	Liteon	1N4148DITR
1	CR18	51V Bidirectional Transorb	Microsemi	P6KE51CAMSCT
1	U1	PFC/PWM Combo IC	Micro Linear	ML4803CP-1
1	U2	Three-Terminal Zener Regulator IC	Nat. Semi.	LM431A
1	U3	Opto-isolator IC	Motorola	MOC8112
1	L1	Output Choke inductor	Premier Mag.	TSD-1273
1	L2	Boost Choke inductor	Premier Mag.	TSD-1274
1	L3	Ferrite bead	Panasonic Digi Key	$\begin{aligned} & \hline \text { EXC-ELSA38 } \\ & \text { P98188K-ND } \end{aligned}$
1	T1	67 kHz 12 V Transformer	XFMRS, Inc.	XF4317-00
1	T2	Gate Drive Transformer	P0584	Pulse
1	F1	5A 250VAC $5 \times 20 \mathrm{~mm}$ Fast Blow Fuse	Littlefuse Digi Key	$\begin{aligned} & \hline \text { Series } 216 \\ & \text { F920-ND } \end{aligned}$
2	Ref. F1	$5 \times 20 \mathrm{~mm}$ Fuse Clips	Littlefuse	111501
1	TH1	$10 \Omega 5 \mathrm{~A}$ RMS Thermistor	Keystone Digi Key	$\begin{aligned} & \text { KC006L-ND } \\ & \text { KC006L-ND } \end{aligned}$
1	J2	20A 2-pin Connector	RDI Mouser	$\begin{aligned} & \hline \text { NC6-02 } \\ & \text { 506-NC6-P107-02 } \end{aligned}$
1	J1	3 -pin 0.156 Header	Molex Digi Key	$\begin{array}{\|l\|} \hline 26-60-4030 \\ \text { WM4621-ND } \\ \hline \end{array}$
1	J1	3-pin 0.156 Connector	Molex Digi Key	$\begin{aligned} & \text { 09-50-3031 } \\ & \text { WM2101-ND } \end{aligned}$
2	Ref. J1	Terminal for 0.156 Housing	Molex Digi Key	$\begin{array}{\|l\|} \hline 08-50-0106 \\ \text { WM2300-ND } \\ \hline \end{array}$
4	$\begin{aligned} & \text { Ref. CR1, CR2, } \\ & \text { Q2, Q5 } \end{aligned}$	Heatsinks	$\begin{array}{\|l\|} \hline \text { AAVID } \\ \text { Digi Key } \\ \hline \end{array}$	$\begin{aligned} & \text { 530102B00150 } \\ & \text { HS152-ND } \\ & \hline \end{aligned}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
