## Phase-sequence indicator uses few passive components

Metodi Iliev, University of California-Berkeley

In a three-phase ac system, a power source with three wires delivers ac potentials of equal frequency and amplitudes with respect to a zero-potential wire, each shifted in phase by 120° from one wire to the next. Two possibilities exist for establishing a phase sequence. In the first, voltage on the second wire shifts by 120° relative to the first, and, in the second, a  $-120^{\circ}$  shift occurs with respect to the first wire. Phase order determines the direction of rotation of three-phase ac motors and affects other equipment that requires the correct phase sequence: a positive 120° shift. You can use a few low-cost passive components to build a phase-sequence indicator.

Figure 1 shows a conceptual circuit that can detect both phase sequences.

For certain component values, the following conditions apply: The voltages across R<sub>1</sub> and C<sub>2</sub> are equal—that is, their magnitudes and phases are the same—only when V<sub>S2</sub> occurs exactly 120° ahead of V<sub>S1</sub>, which indicates the correct phase sequence. In this case, the voltage between points A and B is zero. Conversely, the voltages across C<sub>2</sub> and R<sub>3</sub> are equal only when V<sub>S2</sub> is ahead of V<sub>S3</sub> by 120°, which corresponds to a reversed sequence.

Referring to the phasor diagram in **Figure 2**, when the voltages across R<sub>1</sub> and C<sub>2</sub> are equal,  $V_{C1} = -V_{R2}$ ,  $V_{C1} + V_{R1} = V_{S1}$ , and  $V_{C2} + V_{R2} = V_{S2}$ . The following **equations** satisfy these conditions:  $|V_{R1}| = |V_{C2}| = (\frac{1}{2}) |V_{S2}| = (\frac{1}{2}) |V_{S1}|$ , and  $|V_{C1}| = |V_{R2}| = \cos(30^{\circ}) |V_{S1}| = \cos(30^{\circ}) |V_{S2}|$ . You calculate the component values by



solving the following **equations**:  $|X_{C1}| = \tan(60^\circ) \times R_1 = \sqrt{3 \times R_1}$ , and  $R_2 = \tan(60^\circ) \times |X_{C2}|$ , where  $X_C = -j[1/(2\pi \times f \times C)]$ , and f represents the frequency of the V<sub>s</sub> voltages.

Also, to ensure detection of a reversed phase sequence,  $C_1=C_3$ , and  $R_1=R_3$ ; that is, the components in the

## designideas



third branch are identical to those in the first branch. The phase-sequencedetection circuit in **Figure 3** eliminates the requirement for an accessible ground wire by adding resistors  $R_4$  and  $R_5$  that connect in parallel with the first and third branches. Eliminating the ground-wire requirement also dictates a ratio between  $|X_{C1}+R_1|$  and  $|X_{C2}+R_2|$ . For no current to flow to ground from Node G, the sum of currents in the branches must equal zero, and, if you disconnect Node G from ground, its potential with respect to ground is also zero.

As long as the proportions of  $X_{C1}$  to  $R_1$ ,  $X_{C2}$  to  $R_2$ , and  $X_{C3}$  to  $R_3$  remain as noted, the balance of voltage drops remains across  $R_1$ ,  $C_2$ , and  $R_3$ . Multiplying the impedance of any branch by a constant influences only the magnitude of the currents through the respective branch. The current through any branch presents the same phase angle as the voltage across a resistor in the branch. The phasor diagram in **Figure 3**. From this diagram, if  $|I_2| = tan(60^\circ) \times |I_1|$ , then  $I_1 + I_2 = -2 \times I_3$ . Thus,  $I_3$  has half the magnitude of and an exactly opposite direction from  $(I_1 + I_2)$ .

A vector diagram of the currents shows that adding two currents, each with magnitudes equal to I<sub>3</sub> and the same phases as V<sub>S1</sub> and V<sub>S3</sub>, produces a summed current with the same magnitude and phase as I<sub>3</sub>; therefore, the total current at Node G is zero: I<sub>1</sub>+I<sub>2</sub>+ I<sub>3</sub>+I<sub>1</sub>'+I<sub>3</sub>'=I<sub>1</sub>+I<sub>2</sub>+2×I<sub>3</sub>=0. To make the sum of the currents equal zero, R<sub>4</sub>=R<sub>5</sub>=|R<sub>1</sub>+X<sub>C1</sub>|=|R<sub>1</sub>-j[1/(2 $\pi$ × f×C<sub>1</sub>)]|. The two LEDs in **Figure 3** indicate correct or reversed-phase sequence. When LED<sub>2</sub> lights and LED<sub>1</sub> remains dark, the voltage between nodes A and B is 0V, which corresponds



requires no ground reference. These component values are for a 60-Hz line frequency.



and an exactly opposite direction to  $(I_1+I_2)$  in Figure 3.

to a correct phase sequence. A reversed-phase sequence lights  $LED_1$  while  $LED_2$  remains dark. The diodes connected in parallel with the LEDs protect against exceeding the LEDs' reverse-breakdown voltages, and resistors  $R_6$  and  $R_7$  limit forward currents through the LEDs. For greater sensitivity, you can replace the LEDs with high-input-impedance ac-detector circuits.

The circuit's final version includes indicators that show whether all three phases carry voltage. In the circuit in **Figure 3**, a phase that carries 0V lights both LEDs. Depending on your application, you can connect voltage-detection circuits comprising LEDs and protection diodes in series with current-limiting resistors between  $V_{\rm S1}$ ,  $V_{\rm S2}$ , and  $V_{\rm S3}$  and Node G. You can also use low-wattage neon lamps with appropriate series-current-limiting resistors.

When selecting components, ensure that their values conform to the following proportions. For an arbitrarily chosen value for C<sub>1</sub>, R<sub>1</sub>=R<sub>2</sub>= R<sub>3</sub>=1/( $2\pi \times f \times C_1 \times tan(60^\circ)$ ), C<sub>1</sub>=C<sub>3</sub>, C<sub>2</sub>=3C<sub>1</sub>, and R<sub>4</sub>=R<sub>5</sub>=2×R<sub>1</sub>. When you select a value for C<sub>1</sub>, the currents through the detection circuitry should be significantly lower than the currents through the branches, which excludes arbitrarily low values for C<sub>1</sub>.EDN