## Phase-sequence indicator uses few passive components

Metodi Iliev, University of California-Berkeley

In a three-phase ac system, a power source with three wires delivers ac potentials of equal frequency and amplitudes with respect to a zero-potential wire, each shifted in phase by $120^{\circ}$ from one wire to the next. Two possibilities exist for establishing a phase sequence. In the first, voltage on the second wire shifts by $120^{\circ}$ relative to the first, and, in the second, a $-120^{\circ}$ shift occurs with respect to the first wire. Phase order determines the direction of rotation of three-phase ac motors and affects other equipment that requires the correct phase sequence: a positive $120^{\circ}$ shift. You can use a few low-cost passive components to build a phase-sequence indicator.
Figure 1 shows a conceptual circuit that can detect both phase sequences.

For certain component values, the following conditions apply: The voltages across $\mathrm{R}_{1}$ and $\mathrm{C}_{2}$ are equal-that is, their magnitudes and phases are the same-only when $\mathrm{V}_{\mathrm{S} 2}$ occurs exactly $120^{\circ}$ ahead of $\mathrm{V}_{\mathrm{S} 1}$, which indicates the correct phase sequence. In this case, the voltage between points A and B is zero. Conversely, the voltages across $\mathrm{C}_{2}$ and $R_{3}$ are equal only when $V_{S 2}$ is ahead of $\mathrm{V}_{\mathrm{S} 3}$ by $120^{\circ}$, which corresponds to a reversed sequence.

Referring to the phasor diagram in Figure 2, when the voltages across $\mathrm{R}_{1}$ and $\mathrm{C}_{2}$ are equal, $\mathrm{V}_{\mathrm{C} 1}=-\mathrm{V}_{\mathrm{R} 2}, \mathrm{~V}_{\mathrm{C} 1}+$ $\mathrm{V}_{\mathrm{R} 1}=\mathrm{V}_{\mathrm{S} 1}$, and $\mathrm{V}_{\mathrm{C} 2}+\mathrm{V}_{\mathrm{R} 2}=\mathrm{V}_{\mathrm{S} 2}$. The following equations satisfy these conditions: $\quad\left|\mathrm{V}_{\mathrm{R} 1}\right|=\left|\mathrm{V}_{\mathrm{C} 2}\right|=(1 / 2)\left|\mathrm{V}_{\mathrm{S} 2}\right|$ $=(1 / 2)\left|\mathrm{V}_{\mathrm{S} 1}\right|$, and $\left|\mathrm{V}_{\mathrm{C} 1}\right|=\left|\mathrm{V}_{\mathrm{R} 2}\right|=$ $\cos \left(30^{\circ}\right)\left|V_{\mathrm{S} 1}\right|=\cos \left(30^{\circ}\right)\left|V_{\mathrm{S} 2}\right|$. You calculate the component values by


Figure 1 This conceptual circuit can detect both phase sequences.
solving the following equations: $\left|X_{C 1}\right|=\tan \left(60^{\circ}\right) \times R_{1}=\sqrt{3 \times R_{1}}$, and $\mathrm{R}_{2}=\tan \left(60^{\circ}\right) \times\left|\mathrm{X}_{\mathrm{C} 2}\right|$, where $\mathrm{X}_{\mathrm{C}}=$ $-\mathrm{j}[1 /(2 \pi \times \mathrm{f} \times \mathrm{C})]$, and f represents the frequency of the $V_{S}$ voltages.

Also, to ensure detection of a reversed phase sequence, $\mathrm{C}_{1}=\mathrm{C}_{3}$, and $\mathrm{R}_{1}=\mathrm{R}_{3}$; that is, the components in the


Figure 2 When the voltages across $\mathrm{R}_{1}$ and $\mathrm{C}_{2}$ are equal, $\mathrm{V}_{\mathrm{C} 1}=-\mathrm{V}_{\mathrm{R} 2}$, $\mathrm{V}_{\mathrm{C} 1}+\mathrm{V}_{\mathrm{R} 1}=\mathrm{V}_{\mathrm{S} 1}$, and $\mathrm{V}_{\mathrm{C} 2}+\mathrm{V}_{\mathrm{R} 2}=\mathrm{V}_{\mathrm{S} 2}$.
third branch are identical to those in the first branch. The phase-sequencedetection circuit in Figure 3 eliminates the requirement for an accessible ground wire by adding resistors $\mathrm{R}_{4}$ and $\mathrm{R}_{5}$ that connect in parallel with the first and third branches. Eliminating the ground-wire requirement also dictates a ratio between $\left|\mathrm{X}_{\mathrm{C} 1}+\mathrm{R}_{1}\right|$ and $\left|X_{C 2}+R_{2}\right|$. For no current to flow to ground from Node G, the sum of currents in the branches must equal zero, and, if you disconnect Node G from
ground, its potential with respect to ground is also zero.
As long as the proportions of $\mathrm{X}_{\mathrm{C} 1}$ to $\mathrm{R}_{1}, \mathrm{X}_{\mathrm{C} 2}$ to $\mathrm{R}_{2}$, and $\mathrm{X}_{\mathrm{C} 3}$ to $\mathrm{R}_{3}$ remain as noted, the balance of voltage drops remains across $\mathrm{R}_{1}, \mathrm{C}_{2}$, and $\mathrm{R}_{3}$. Multiplying the impedance of any branch by a constant influences only the magnitude of the currents through the respective branch. The current through any branch presents the same phase angle as the voltage across a resistor in the branch. The phasor diagram in Figure 4 shows the currents in Figure 3. From this diagram, if $\left|I_{2}\right|=\tan \left(60^{\circ}\right) \times\left|I_{1}\right|$, then $I_{1}+I_{2}=-2 \times I_{3}$. Thus, $I_{3}$ has half the magnitude of and an exactly opposite direction from $\left(I_{1}+I_{2}\right)$.
A vector diagram of the currents shows that adding two currents, each with magnitudes equal to $I_{3}$ and the same phases as $\mathrm{V}_{\mathrm{S} 1}$ and $\mathrm{V}_{\mathrm{S} 3}$, produces a summed current with the same magnitude and phase as $\mathrm{I}_{3}$; therefore, the total current at Node $G$ is zero: $\mathrm{I}_{1}+\mathrm{I}_{2}+$ $\mathrm{I}_{3}+\mathrm{I}_{1}{ }^{\prime}+\mathrm{I}_{3}{ }^{\prime}=\mathrm{I}_{1}+\mathrm{I}_{2}+2 \times \mathrm{I}_{3}=0$. To make the sum of the currents equal zero, $R_{4}=R_{5}=\left|R_{1}+X_{C 1}\right|=\mid R_{1}-j[1 /(2 \pi \times$ $\left.\left.f \times C_{1}\right)\right] \mid$. The two LEDs in Figure 3 indicate correct or reversed-phase sequence. When $\mathrm{LED}_{2}$ lights and $\mathrm{LED}_{1}$ remains dark, the voltage between nodes A and B is OV , which corresponds


Figure 3 This phase-indicator circuit balances branch voltages and currents and requires no ground reference. These component values are for a $60-\mathrm{Hz}$ line frequency.


Figure $4 I_{3}$ has half the magnitude and an exactly opposite direction to $\left(I_{1}+I_{2}\right)$ in Figure 3.
to a correct phase sequence. A re-versed-phase sequence lights LED $_{1}$ while $\mathrm{LED}_{2}$ remains dark. The diodes connected in parallel with the LEDs protect against exceeding the LEDs' reverse-breakdown voltages, and resistors $R_{6}$ and $R_{7}$ limit forward currents through the LEDs. For greater sensitivity, you can replace the LEDs with high-input-impedance ac-detector circuits.

The circuit's final version includes indicators that show whether all three phases carry voltage. In the circuit in Figure 3, a phase that carries OV lights both LEDs. Depending on your application, you can connect voltagedetection circuits comprising LEDs and protection diodes in series with currentlimiting resistors between $\mathrm{V}_{\mathrm{S} 1}, \mathrm{~V}_{\mathrm{S} 2}$, and $V_{S 3}$ and Node G. You can also use lowwattage neon lamps with appropriate series-current-limiting resistors.

When selecting components, ensure that their values conform to the following proportions. For an arbitrarily chosen value for $\mathrm{C}_{1}, \quad \mathrm{R}_{1}=\mathrm{R}_{2}=$ $\mathrm{R}_{3}=1 /\left(2 \pi \times \mathrm{f} \times \mathrm{C}_{1} \times \tan \left(60^{\circ}\right)\right), \mathrm{C}_{1}=\mathrm{C}_{3}$, $\mathrm{C}_{2}=3 \mathrm{C}_{1}$, and $\mathrm{R}_{4}=\mathrm{R}_{5}=2 \times \mathrm{R}_{1}$. When you select a value for $\mathrm{C}_{1}$, the currents through the detection circuitry should be significantly lower than the currents through the branches, which excludes arbitrarily low values for $\mathrm{C}_{1}$.EDN

