

Single-supply, low-side, unidirectional current-sensing solution with output swing to GND circuit

Design Goals

Input		Output		Supply		
l _{iMin}	I _{iMax}	V _{oMin}	V _{oMax}	V _{cc}	V _{ee}	V _{ref}
0A	1A	0V	4.9V	5V	0V	0V

Design Description

This single-supply, low-side, current sensing solution accurately detects load current between 0A to 1A and converts it to a voltage between 0V to 4.9V. The input current range and output voltage range can be scaled as necessary and larger supplies can be used to accommodate larger swings. A negative charge pump (such as the LM7705) is used as the negative supply in this design to maintain linearity for output signals near 0V.

Copyright © 2018, Texas Instruments Incorporated

Design Notes

- 1. Use precision resistors to minimize gain error.
- 2. For light load accuracy, the negative supply should extend slightly below ground.
- 3. A capacitor placed in parallel with the feedback resistor will limit bandwidth and help reduce noise.

www.ti.com

Design Steps

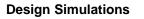
1. Determine the transfer function.

 $V_o = I_i \times R_1 \times (1 + \frac{R_3}{R_2})$

2. Define the full-scale shunt voltage and shunt resistance.

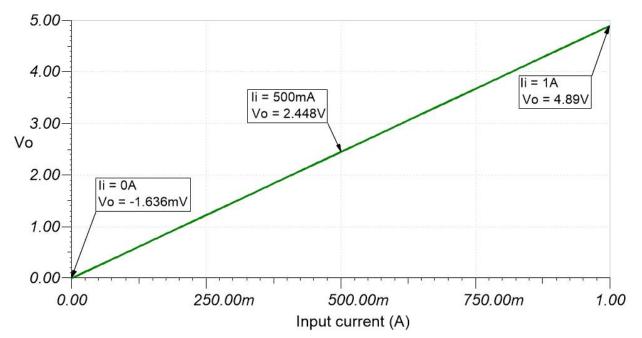
3. Select gain resistors to set the output range.

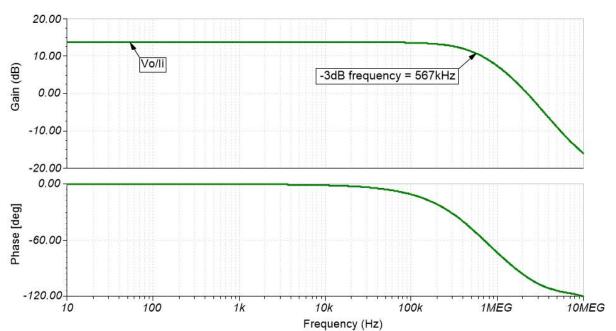
$$\begin{split} V_{iMax} &= 100 mV \quad and \ V_{oMax} = 4 \ . \ 9V \\ Gain &= \frac{V_{oMax}}{V_{iMax}} = \frac{4.9V}{100 mV} = 49 \frac{V}{V} \\ Gain &= 1 + \frac{R_3}{R_2} = 49 \frac{V}{V} \end{split}$$


4. Select a standard value for R_2 and R_3 .

 $\mathsf{R}_2 = 7$. 5k Ω (0.05% Standard Value)

 $R_3 = 48 \times R_2 = 360 \text{k}\Omega \ (0.05\%$ Standard Value)


www.ti.com


Texas

STRUMENTS

AC Simulation Results

www.ti.com

Design References

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

See circuit SPICE simulation file SBOC499.

See TIPD129, www.ti.com/tool/tipd129.

Design Featured Op Amp

OPA320				
V _{cc}	1.8V to 5.5V			
V _{inCM}	Rail-to-rail			
V _{out}	Rail-to-rail			
V _{os}	40µV			
l _q	1.5mA/Ch			
I _b	0.2pA			
UGBW	10MHz			
SR	10V/µs			
#Channels	1, 2			
www.ti.com/product/opa320				

Design Alternate Op Amp

TLV9002				
V _{cc}	1.8V to 5.5V			
V _{inCM}	Rail-to-rail			
V _{out}	Rail-to-rail			
V _{os}	400µV			
Ι _q	60µA			
I _b	5рА			
UGBW	1MHz			
SR	2V/μs			
#Channels	1, 2, 4			
www.ti.com/product/tlv9002				

Revision History

Revision	Date	Change	
A	January 2019	Downscale the title and changed title role to 'Amplifiers'. Added link to circuit cookbook landing page.	