

Analog Engineer's Circuit: Amplifiers SBOA300-June 2018

Low-drift, low-side, bidirectional current sensing circuit with integrated precision gain resistors

Design Goals

Input			Output		Supply	
I _{inMin}	I _{inMax}	V _{cm}	V _{outMin}	V _{outMax}	Vs	V _{ref}
-4A	4A	12.5V	0.5V	4.5V	5V	2.5V

Design Description

The low-side bidirectional current-shunt monitor solution illustrated in the following image can accurately measure currents from –4A to 4A, and the design parameters can easily be changed for different current measurement ranges. Current-shunt monitors from the INA21x family have integrated precision gain resistors and a zero-drift architecture that enables current sensing with maximum drops across the shunt as low as 10mV full-scale.

Design Notes

- To avoid additional error, use R₁ = R₂ and keep the resistance as small as possible (no more than 10Ω, as stated in INA21x Voltage Output, Low- or High-Side Measurement, Bidirectional, Zero-Drift Series, Current-Shunt Monitors).
- Low-side sensing should not be used in applications where the system load cannot withstand small ground disturbances or in applications that need to detect load shorts.
- The Getting Started with Current Sense Amplifiers video series introduces implementation, error sources, and advanced topics that are good to know when using current sense amplifiers.

Design Steps

1. Determine $V_{\mbox{\scriptsize ref}}$ based on the desired current range:

With a current range of -4A to 4A, then half of the range is below 0V, so set:

$$V_{ref} = rac{1}{2}V_{
m s} = rac{5}{2} = 2.5V$$

2. Determine the desired shunt resistance based on the maximum current and maximum output voltage:

To not exceed the swing-to-rail and to allow for some margin, use $V_{outMax} = 4.5V$. This, combined with maximum current of 4A and the V_{ref} calculated in step 1, can be used to determine the shunt resistance using the equation:

$$R_1 = \frac{V_{outMax} - V_{ref}}{Gain \times I_{loadMax}} = \frac{4.5 - 2.5}{100 \times 4} = 5m\Omega$$

3. Confirm V_{out} will be within the desired range:

At the maximum current of 4A, with Gain = 100V/V, $R_1 = 5m\Omega$, and $V_{ref} = 2.5V$: $V_{out} = I_{load} \times Gain \times R_1 + V_{ref} = 4 \times 100 \times 0 .005 + 2 .5 = 4 .5V$

At the minimum current of 4A, with Gain = 100V/V, $R_1 = 5m\Omega$, and $V_{ref} = 2.5V$:

 $V_{out} = I_{load} \times Gain \times R_1 + V_{ref} = -4 \times 100 \times 0.005 + 2.5 = 0.5V$

4. Filter cap selection:

To filter the input signal at 1kHz, using $R_1 = R_2 = 10\Omega$:

$$C_1 = \frac{1}{2\pi(R_1 + R_2)F_{-3dB}} = \frac{1}{2\pi(10 + 10)1000} = 7$$
 . 958 × 10⁻⁶ ≈ 8µF

For more information on signal filtering and the associated gain error, see INA21x Voltage Output, Low- or High-Side Measurement, Bidirectional, Zero-Drift Series, Current-Shunt Monitors.

Design Simulations

DC Analysis Simulation Results

The following plot shows the simulated output voltage V_{out} for the given input current I_{in} .

AC Analysis Simulation Results

The following plot shows the simulated gain vs frequency, as designed for in the design steps.

Transient Analysis Simulation Results

The following plot shows the simulated delay and settling time of the output V_{out} for a step response in I_{in} from –4A to 4A.

Design References

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

Circuit SPICE simulation File: http://proddms.itg.ti.com/fnview/sboc518

Getting Started with Current Sense Amplifiers video series: https://training.ti.com/getting-started-current-sense-amplifiers

Current Sense Amplifiers on TI.com: http://www.ti.com/amplifier-circuit/current-sense/products.html

For direct support from TI Engineers use the E2E community: http://e2e.ti.com

Design Featured Current Sense Amplifier

INA214C				
V _s	2.7V to 26V			
V _{cm}	GND-0.1V to 26V			
V _{out}	GND-0.3V to V _s +0.3V			
V _{os}	±1µV typical			
۱ _۹	65µA typical			
I _b	28µA typical			
http://www.ti.com/product/INA214				

Design Alternate Current Sense Amplifiers

INA199C				
Vs	2.7V to 26V			
V _{cm}	GND-0.1V to 26V			
V _{out}	GND-0.3V to V _s +0.3V			
V _{os}	±5μV typical			
l _q	65µA typical			
I _b	28µA typical			
http://www.ti.com/product/INA199				

INA181				
V _s	2.7V to 5.5V			
V _{cm}	GND-0.2V to 26V			
V _{out}	GND-0.3V to V_s +0.3V			
V _{os}	±100µV typical			
l _q	65µA typical			
I _b	195µA typical			
http://www.ti.com/product/INA181				