

Analog Engineer's Circuit: Amplifiers

SBOA210A-January 2018-Revised January 2019

3-decade, load-current sensing circuit

Design Goals

Input		Output		Supply		
l _{iMin}	l _{iMax}	V _{oMin}	V _{oMax}	V _{cc}	V _{ee}	V _{ref}
10μΑ	10mA	100mV	4.9V	5.0V	0V	0V

Design Description

This single-supply, low-side, current-sensing solution accurately detects load current between $10\mu A$ and 10mA. A unique yet simple gain switching network was implemented to accurately measure the three-decade load current range.

Design Notes

- 1. Use a maximum shunt resistance to minimize relative error at minimum load current.
- 2. Select 0.1% tolerance resistors for R_1 , R_2 , R_3 , and R_4 in order to achieve approximately 0.1% FSR gain error.
- 3. Use a switch with low on-resistance (R_{on}) to minimize interaction with feedback resistances, preserving gain accuracy.
- 4. Minimize capacitance on INA326 gain setting pins.
- 5. Scale the linear output swing based on the gain error specification.

www.ti.com

Design Steps

1. Define full-scale shunt resistance.

 $R_1 \!=\! \frac{V_{\text{IMax}}}{I_{\text{Max}}} \!=\! \frac{250 \text{mV}}{10 \text{mA}} \!=\! 25 \Omega$

2. Select gain resistors to set output range.

$$\begin{split} G_{IiMax} &= \frac{V_{oMax}}{V_{IMax}} = \frac{V_{oMax}}{R_1 \times I_{IMax}} = \frac{4.9V}{25\Omega \times 10mA} = 19.6\frac{V}{V} \\ G_{IiMin} &= \frac{V_{oMin}}{V_{Min}} = \frac{V_{oMin}}{R_1 \times I_{Min}} = \frac{100mV}{25\Omega \times 10\muA} = 400\frac{V}{V} \\ R_2 &= \frac{R_4 \times G_{IiMin}}{2} = \frac{50k\Omega \times 400\frac{V}{V}}{2} = 10M\Omega \\ R_2 \parallel R_3 &= \frac{R_4 \times G_{IiMax}}{2} = \frac{50k\Omega \times 19.6\frac{V}{V}}{2} = 490k\Omega \\ R_3 &= \frac{490k\Omega \times R_2}{R_2 - 490k\Omega} = 515.25k\Omega \approx 511k\Omega \text{ (Standard Value)} \end{split}$$

3. Select a capacitor for the output filter.

$$f_p = \frac{1}{2 \times \pi \times R_5 \times C_4} = \frac{1}{2 \times \pi \times 100 \Omega \times 1 \ \mu F} = 1$$
 . 59kHz

4. Select a capacitor for gain and filtering network.

$$\begin{split} C_{2} &= \frac{1}{2 \times \pi \times R_{2} \times f_{p}} = \frac{1}{2 \times \pi \times 10M\Omega \times 1.59 \text{kHz}} = 10 \text{pF} \\ C_{3} &= \frac{1}{2 \times \pi \times (R_{2} || R_{3}) \times f_{p}} - C_{2} = \frac{1}{2 \times \pi \times (10M\Omega || 511 \text{k}\Omega) \times 1.59 \text{kHz}} - 10 \text{pF} \\ C_{3} &= 196 \text{pF} \approx 194 \text{pF} \text{ (Standard Value)} \end{split}$$

3-decade, load-current sensing circuit

TEXAS INSTRUMENTS

www.ti.com

Design Simulations

DC Simulation Results

www.ti.com

Design References

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

See circuit SPICE simulation file SBOC498.

See TIPD104, www.ti.com/tool/tipd104.

Design Featured Op Amp

INA326					
V _{ss}	1.8V to 5.5V				
V _{inCM}	Rail-to-rail				
V _{out}	Rail-to-rail				
V _{os}	0.1mV				
l _q	3.4mA				
I _b	2nA				
UGBW	1kHz				
SR	Filter limited				
#Channels	1				
www.ti.com/product/ina326					

Revision History

Revision	Date	Change
A	January 2019	Downscale the title and changed title role to 'Amplifiers'. Added link to circuit cookbook landing page