LB-48

Simple Voltmeter Monitors
TTL Supplies

Using a National Semiconductor LM3914 bar/dot display
driver chip, a few resistors and some LEDs, a simple ex-
panded-scale voltmeter is easily constructed. Furthermore,
it runs from the same single 5V + 10% supply it monitors
and can provide TTL-compatible undervoltage and overvolt-
age warning signals.

The complete circuit is shown in Figure 1. Resistors R1 and
R2 attenuate Vg by a factor of three at the LM3914 signal
input, ensuring proper biasing of the IC with Vgg as low as
4V. The IC’s internal reference sets the voltage across the
series combination of R3, R4 and R5 at 1.25V, establishing
a reference load current of about 1 mA. This current is
joined by the small, constant current from the reference ad-
just pin (75 pA, typ) and flows to ground through R6 and R7,
developing a voltage drop. Adjusting R6 varies this voltage
drop and, consequently, the voltage at pin 7, nominally
1.803V (= 5.41V/3).

Pin 7 is connected to the top of the LM3914’s internal ten-
step voltage divider (pin 6). The bottom of this divider (pin 4)
is connected to the center tap of potentiometer R4. By vary-
ing the pot setting this voltage can be set to 1.47V
(= 4.41V/3) without significantly affecting the potential at
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pin 7. The optional diode D1 protects against damaging the
IC by connecting the leads backwards.

In operation, the LM3914’s ten internal voltage comparators
compare the signal input, Vcc/3, to the reference voltage
on the divider, lighting each successive LED for every 100
mV increase in Vgc above 4.5V as shown. The LM3914
regulates the LED currents at 10 times the reference load
current, here about 10 mA, so external current-limiting resis-
tors are not required. With pin 9 left open circuit, the
LM3914 functions in Dot mode (only one LED on at a time).
If desired, a Bar mode display could be obtained by con-
necting pin 9 to Vg, but the dot display seems more suit-
able in this application.

To calibrate, set Vog at 5.41V and adjust R6 until LED #9
and LED #10 are equally illuminated. (A built-in overlap of
about 1 mV ensures all LEDs won’t go out at a threshold
point.) There’s no need to vary the system supply voltage to
perform this adjustment. Instead, disconnect R1 from Veg
and connect it to an accurate reference. Then, at 4.5V, ad-
just R4 until LED #1 just barely turns on. There is a slight
interaction caused by the finite resistance (10k, typ) of the
LM3914’s voltage divider, so that repeating the above pro-
cedure once is advised.
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FIGURE 1. 5V Power Supply Monitor
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The LED driver outputs can directly drive a TTL gate, so that
the LED #1 and LED #10 outputs may be used for under-
voltage and overvoltage warning signals. These may be
used to initiate a soft shutdown or summon an operator, for
example. The interfacing circuitry is shown in Figure 2. The
4709 resistor R8 ensures that the LM3914 output will satu-
rate to provide the proper TTL low level. Pull-up resistor R9
provides the logic high level.

in the previous circuit the undervoltage LED goes out when
Ve is less than 4.51V, a deficiency that is corrected here,
Transistors Q1 and Q2 shut off LED # 1 whenever any other
LED is turned on by the LM3914. Q2's output will directly
drive TTL.

Calibration procedure is the same as before. The LM3914
output thresholds have been shifted up by 100 mV and out-
put #10 is or-tied with output #9. Other outputs may be
wire-or'd together if 100 mV resolution is not necessary. If
desired, the outputs can be color coded by making LED #1
and LED #10 red, LED #2 and LED #9 amber, and the
rest of the LEDs green to ease interpretation.

This circuit is useful where quick and easy voltage adjust-
ments must be made, such as in the field or on the produc-
tion line. The circuit’s low cost makes it feasible to incorpo-
rate it into the system, where the overvoltage and undervol-
tage warning signals provide an attractive extra. Of course,
these techniques can be used to monitor any higher volt-
ages, positive or negative.
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FIGURE 2. Power Supply Monitor with TTL Interface and Extended Undervoltage Range
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LB-49

Programmable Power
Regulators Help Check Out
Computer System
Operating Margins

It is a familiar situation that some computer systems which
are functional with a 5V supply may run marginally at 5.1V
but can show a solid failure at 5.3V (or, vice versa) even
though all these voltages are within the system’s specifica-
tions. The LM338 is an example of a monolithic voltage reg-
ulator which can be placed under computer control, and can
trim the supply to a particular variation above (and below)
the design-center voltage. Simultaneously the computer is
exercised through a standard test sequence. Any deviation
from correct functioning, at one supply voltage level or an-
other, will serve as a warning of impending malfunction or
failure. This test approach can be used for diagnostics, for
troubleshooting, and for engineering evaluation. It can help
detect skew, race conditions, timing problems, and noise
and threshold problems.

HERE’S HOW

During normal operation, the latch (IC 1) is programmed to
have its Q1 and Q2 outputs H/GH, and its Q3 and Q4 LOW.
Then R4 and R5 are connected effectively in parallel with
R6, and Vo is adjusted to 5V. If Q4 is commanded H/GH,
the net conductance from the adjust bus to ground will de-
crease, and Voyr will rise 3% to 5.151V. Conversely if Q1 is
commanded LOW, the output voltage will fall 3.3% to
4.835V. The complete list of output voltages (in approxi-
mately 3.2% steps) is shown in Table |, covering a £9.5%
total range.

The same basic function can be accomplished for —5.2V
regulators (as are used for ECL) using LM337 negative ad-
justable regulators. If the command is from TTL latches, the
circuit of Figure 2 will be suitable to interface between the
(0V and 2.4V) logic levels and the saturated PNP collectors
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as shown. The resistors R101-R104 are switched by tran-
sistors Q101-Q104 in a similar way to Figure 1. Note that
the resistors in Figure 2 are in a binary-weighted proportion.
To decrease Voyt by 2%, just change Q4 to LOW: but to
increase Voyt by 2%, set Q1 HIGH and Q2, Q3, Q4 all
LOW, in a standard offset binary scheme.

TABLE I. Available Trim Range

Q1 Q2 Q3 Q4 Vour %AVouTt
1 1 0 0 5.000V (trimmed)
1 1 0 1 5151V +3.0%
1 1 1 0 5.299V +6.0%
1 1 1 1 5.469Vv +9.4%
0 1 0 0 4.835V —3.3%
1 0 0 0 4.669V —6.6%
0 0 0 0 4.526V -9.5%

Figure 2 also provides another feature. If Q5 goes LOW,
Q105 will saturate and pull the adjust bus to within 100 mV
of ground, and the Vot will collapse to —135V. The nega-
tive supply will be effectively shut down, and the computer
will draw substantially zero power.

In an extreme case of automation, the computer could trim
the —5.2V supply to the “best” value, and the trimpot would
be completely superfluous. The circuit of Figure 2 has a trim
resolution of 3% steps, and can set Voyt well within 2% of
the ideal value, so long as some measurement has decided
which voltage is “ideal”.
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FIGURE 2. Programmable Negative Supply

TABLE Il. Available Trim Range

Qi Q2 Q3 Q4 Vout %AVouTt
0 1 1 1 5.200V (trimmed)
0 1 1 0 5110V ~1.7%
0 1 0 1 5.025V —3.4%
0 1 0 0 4.944V —-4.9%
0 0 1 1 4.853V —6.7%
0 0 1 0 4.779V —8.1%
0 0 0 1 4.707V —9.5%
0 0 0 0 4.638V —10.8%
1 0 0 0 5.310V +21%
1 0 0 1 5.408V +4.0%
1 0 1 0 5513V +6.0%
1 0 1 1 5.622V +8.1%
1 1 0 0 5.757V +10.7%
1 1 0 1 5.880V +13.1%
1 1 1 0 6.010V +15.6%
1 1 1 1 6.147V +18.2%
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LB-51

Add Kelvin Sensing and
Parallel Capability to
3-Terminal Regulators

Paralleling of 3-terminal regulators is generally not recom-
mended because the devices do not share current equally.
If, for instance, you try to make a 3 amp regulator using
three 1 amp regulators, the device with the highest output
could be carrying 2.5 amps in a current limit mode. The
regulator with the second highest output would be carrying
only 0.5 amps, and the third regulator would be totally off.
The reliability of such a system is poor because of the com-
bination of high temperature and high current in the first
regulator. A simple way to improve sharing is to insert a low
value resistor in series with each output. The problem with
this approach is that load regulation is very poor if the resis-
tors are made large enough to ensure adequate sharing.

A new technique for current sharing overcomes the load
regulation problem and, as an added bonus, provides re-
mote sensing capability not available in the standard 3-ter-
minal regulators. This is a great advantage when the regula-
tors must be mounted off-card with their outputs fed
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through a connector. Total cost of added components is
less than 50¢.

Figure 1 shows the new Kelvin sense scheme using the
LM338 5 amp adjustable regulator. A1 forces a voltage drop
across R3 equal to the voltage across the parasitic resist-
ance, rs. The current through R3 flows into the output of A1
and out the negative supply pin. This creates a voltage drop
across R4 just equal to the voltage across rg, cancelling the
effect of rg on load regulation. There is an error in Voyurt
created by the quiescent current of A1, but for a 5V output,
this error is only about 0.7%. Volitage loss across rg must be
limited to 300 mV to avoid current limiting in A1. If larger
drops must be accommodated, R3 and R4 will have to be
increased. C1 is necessary only if intermediate values of
capacitance (2 pF-20 pF) are put directly across the load.
Any of the positive adjustable regulators may be used in
place of the LM338.
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Figure 2 combines Kelvin sensing with paralleling, where
the voltage loss across the current sharing resistors is cor-
rected by the sensing connection. rg¢ through rsg are equal
lengths of #22 gauge lead wire which act as ballasting re-
sistors. These resistors can be kept small because LM338
adjustment pins are paralleled, forcing the outputs to track
to within about 60 mV. rg4 consists of the parasitic resist-
ance of any additional output lead plus connector loss. The

total loss for rg4 may be up to 0.25V without loss of proper
Kelvin sensing. Note that if U1 has the lowest reference
voltage of the three regulators, full Kelvin sensing might not
become effective until output current has increased above a
threshold value of several amps. If this is undesirable, the
adjustment pin of U1 may be connected to a 50 tap on R1,
increasing its effective reference voltage by 50 mV. The cur-
rent load for U1 would be 1.5 amps higher, however.
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LB-52

A Low-Noise Precision
Op Amp

It is well known that the voltage noise of an operational
amplifier can be decreased by increasing the emitter current
of the input stage. The signal-to-noise ratio will be improved
by the increase of bias, until the base current noise begins
to dominate. The optimum is found at:

KT Vhee
Ie(optimum) = ? r—
s

where rg is the output resistance of the signal source. For
example, in the circuit of Figure 1, when rg = 1 k2 and
hpe = 500, the lg optimum is about 500 pA or 560 nA.
However, at this rich current level, the DC base current will
cause a significant voltage error in the base resistance, and
even after cancellation, the DC drift will be significantly big-
ger than when g is smaller. In this example, I, = 1 pA, so
lp X rg = t mV, Even if the I and rg are well matched at
each input, it is not reasonable to expect the I X rg to track
better than 5 or 10 uV/°C versus temperature.

A new amplifier, shown in Figure 2, operates one transistor
pair at a rich current, for low noise, and a second pair at a
much leaner current, for low base current. Although this
looks like the familiar Darlington connection, capacitors are
added so that the noise will be very low, and the DC drift is
very good, too. In the example of Figure 2, Q2 runs at
le = 500 pA and has very low noise. Each half of Q1 is
operated at 11 pA = lq. It will have a low base current
(20 nA to 40 nA typical), and the offset current of the com-
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posite op amp, lp1-lp2, will be very small, 1 nA or 2 nA.
Thus, errors caused by bias current and offset current drift
vs. temperature can be quite small, less than 0.1 uV/°Cat rg
= 1000Q.

The noise of Q1A and Q1B would normally be quite signifi-
cant, about 6 nV/yHz, but the 10 uF capacitors completely
filter out the noise. At all frequencies above 10 Hz, Q2A and
Q2B act as the input transistors, while Q1A and Q1B merely
buffer the lowest frequency and DC signals.

For audio frequencies (20 Hz to 20 kHz) the voltage noise of
this amplifier is predicted to be 1.4 nV/JyHz, which is quite
small compared to the Johnson noise of the 1 k2 source,
4.0 nV/{Hz. A noise figure of 0.7 dB is thus predicted, and
has been measured and confirmed. Note that for best DC
balance R6 = 976 is added into the feedback path, so
that the total impedance seen by the op amp at its negative
input is 1 k(. But the 976Q is heavily bypassed, and the
total Johnson noise contributed by the feedback network is
below 14 nV/JHz.

To achieve lowest drift, below 0.1 pV/°C, R1 and R2
should, of course, be chosen to have good tracking tempco,
below 5 ppm/°C, and so should R3 and R4. When this is
done, the drift referred to input will be well below 0.5 uV/°C,
and this has been confirmed, in the range +10°C to + 50°C.

Overall, we have designed a low-noise op amp which can
rival the noise of the best audio amplifiers, and at the same
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FIGURE 1. Conventional Low-Noise Operational Amplifier
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time exhibits drift characteristics of the best low-drift amplifi-
ers. The amplifier has been used as a precision pre-amp
(gain = 1000}, and also as the output amplifier for a 20-bit

DAC, where low drift and low noise are both important.

To optimize the circuit for other rg levels, the emitter current

for Q2 should be proportional to 1/yrs. The emitter current

of Q1A should be about ten times the base current of Q2A.
The base current of the output op amp should be no more
than 1/1000 of the emitter current of Q2. The values of R1

and R2 should be the same as R7.

Various formulae for noise:

2
Voltage noise of a transistor, per yHz, en = KT 4 fal—é

Current noise of a transistor, per VHz, in=

2qlc

hre

Voltage noise of a resistor, per yHz, ep = V4 KTRs

For a more complete analysis of low-noise amplifiers, see
AN-222, “Super Matched Bipolar Transistor Pair Sets New

Standards for Drift and Noise", Carl T. Neison.
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LB-53

P Interface for a
Free-Running A/D Allows
Asynchronous Reads

In many data acquisition applications it is necessary to have
an A to D converter operate as its maximum conversion
rate. The controlling microprocessor would then be able to
read the most current input data at any point in time as
required by software. To minimize program execution time,
a DATA READ may not be snychronous to the completion
of a conversion, and herein lies a problem. It is entirely pos-
sible that the processor could assert a READ command
right at the instant the A/D converter is updating its output
register. The data read would be the value of the convert-
er's output lines in transition from the result of the previous
conversion to the latest result, and would very likely be in
error.

The addition of a simple binary counter to the A/D interface
circuitry can be used to generate a READY signal to the
microprocessor that will prevent a READ during a data up-
date. The circuit of Figure 1 shows a CD4024BC7-stage rip-
ple carry binary counter used in conjunction with an
ADCO0801, 8-bit microprocessor compatible A to D convert-
er. Circuit operation relies on two basic properties of the
A/D converter. First of all, the free-running conversion time
of the A/D must be a constant number of clock cycles; and
secondly, the output latches must be updated prior to the
end of conversion signal. The ADC0801 fulfills both of these
requirements. The output data latches are updated one A/D
clock period before the INTR falls low, and the free-running
conversion time is always 72 clock periods long.

5v
20
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As part of the system power-up initializaton sequence, a
logic low must be temporarily applied to the SYSTEM
RESET input to the A/D to force the converter to start. At
the end of a conversion, the INTR output goes low, and
both resets the counter outputs to all zeros and signals an-
other conversion to start by pulling WR low. The length of
time that the INTR output stays low is normally only a few
internal gate propagation delays (approximately 300 ns) and
is independent of the A/D clock frequency. The 1000 pF
capacitor on this output extends this time to approximately
1 s to insure adequate reset time for the counter.

A conversion is started on the low to high transition of the
INTR and WR pins. The next data update will occur 71 clock
periods after this edge occurs. The counter will signal that a
data update is about to occur after 64 clock periods. If the
processor attempts a DATA READ within an 8 clock period
time frame around the data update time, its READY input
line will remain low, signifying a NOT READY condition. The
processor would then extend the READ cycle time until it
receives a READY indication created by the counter being
reset by INTR. This insures that the latches have already
been updated and proper data will be read.

If a READ is attempted during the 64 clock period interval
after the start of a conversion, the READY IN line to the
processor will go high to permit a normal READ cycle, and
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the data output by the A/D will be the result of the previous
conversion. The processor READY IN logic, as shown, re-
quires that all system devices that may need special READ
or WRITE timing provide a NOT READY (a Logic 0 on their
READY OUT lines) indication until selected to be read from
or written to.

The chance of having the processor extend its READ cycle
time is 1 in 9 (8 clock periods out of 72) and the maximum
length of time a READ would be extended is 8 A/D clock
periods. These two timing considerations are insignificant
trade-offs to take to insure that proper A/D data is always
read.
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A Tutorial Study

Operational Amplifier

The Monolithic

Appendix A

The Monolithic Operational
Amplifier: A Tutorial Study

Invited Paper—

IEEE Journal of Solid-State Circuits, Vol. SC-9, No. 6
Abstract—A study is made of the integrated circuit opera-
tional amplifier (IC op amp) to explain details of its behavior
in a simplified and understandable manner. Included are
analyses of thermal feedback effects on gain, basic relation-
ships for bandwidth and slew rate, and a discussion of pole-
splitting frequency compensation. Sources of second-order
bandlimiting in the amplifier are also identified and some
approaches to speed and bandwidth improvement are de-
veloped. Brief sections are included on new JFET—bipolar
circuitry and die area reduction techniques using transcon-
ductance reduction.

1.0 INTRODUCTION

The integrated circuit operational amplifier (IC op amp) is
the most widely used of all linear circuits in production to-
day. Over one hundred million of the devices will be sold in
1974 alone, and production costs are falling low enough so
that op amps find applications in virtually every analog area.
Despite this wide usage, however, many of the basic per-
formance characteristics of the op amp are poorly under-
stood.
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It is the intent of this study to develop an understanding for
op amp behavior in as direct and intuitive a manner as pos-
sible. This is done by using a variety of simplified circuit
models which can be analyzed in some cases by inspection,
or in others by writing just a few equations. These simplified
models are generally developed from the single representa-
tive op amp configuration shown in Figures 7 and 2.

The rationale for starting with the particular circuit of Figure
1 is based on the following: this circuit contains, in simplified
form, all of the important elements of the most commonly
used integrated op amps. It consists essentially of two volt-
age gain stages, an input differential amp and a common
emitter second stage, followed by a class-AB output emitter
follower which provides low impedance drive to the load.
The two interstages are frequency compensated by a single
small “pole-splitting” capacitor (see below) which is usually
included on the op amp chip. In most respects this circuit is
directly equivalent to the general purpose LM101 [1], pA
741 [2], and the newer dual and quad op amps [3], so the
results of our study relate directly to these devices. Even for
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BUFFER
TL/H/8745-1

FIGURE 1. Basic two-stage IC op amp used for study. Minimal
modifications used in actual IC are shown in Figure 2.
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FIGURE 2. (a) Modified current mirror used to reduce dc offset caused by base currents in
Q3 and Q4 in Figure 1. (b) Darlington p-n-p output stage needed to minimize gain fall-off when sinking large
output currents. This is needed to offset the rapid 8 drop which occurs in IC p-n-p’s.

more exotic designs, such as wide-band amps using feed-
forward [4], [5], or the new FET input circuits [6], the basic
analysis approaches still apply, and performance details
can be accurately predicted. It has also been found that a
good understanding of the limitations of the circuit in Figure
7 provides a reasonable starting point from which higher
performance amplifiers can be developed.

The study begins in Section 2, with an analysis of dc and
low frequency gain. It is shown that the gain is typically limit-
ed by thermal feedback rather than electrical characteris-
tics. A highly simplified thermal analysis is made, resulting in
a gain equation containing only the maximum output current
of the op amp and a thermal feedback constant.

The next three sections apply first-order models to the cai-
culation of small-signal high frequency and large-signal
slewing characteristics. Results obtained include an accu-
rate equation for gain-bandwidth product, a general expres-
sion for slew rate, some important relationships between slew
rate and bandwidth, and a solution for voltage follower be-
havior in a slewing mode. Due to the simplicity of the results
in these sections, they are very useful to designers in the
development of new amplifier circuits.

Section 6 applies more accurate models to the calculation
of important second-order effects. An effort is made in this
section to isolate ali of the major contributors to bandlimiting
in the modern amp.

In the final section, some techniques for reduction of op
amp die size are considered. Transconductance reduction
and layout techniques are discussed which lead to fabrica-
tion of an extremely compact op amp cell. An example yield-
ing 8000 possible op amps per 3-in. wafer is given.

2.0 GAIN AT DC AND LOW FREQUENCIES

A. The Electronic Gain

The electronic voltage gain will first be calculated at dc us-
ing the circuit of Figure 1. This calculation becomes straight-
forward if we employ the simplified transistor model shown
in Figure 3(a). The resuiting gain from Figure 3(b) is

Vout . 9m1B5BeB7RL

A0 = Vin 1+ ria/roq’

(1)

where
fig = Bs(res + Belos)
ro1’ = roa//roz.
It has been assumed that

B7RL < roe//10g: 9m1 = gmz, B7 = Bs.

The numerical subscripts relate parameters to transistor Q
numbers (i.e., res is re of Qs, Bg is Bo pf Qg, etc.). It has also
been assumed that the current mirror transistors Qz and Q4
have a’s of unity, and the usually small loading of Rg has
been ignored. Despite the several assumptions made in ob-
taining this simple form for (1), its accuracy is quite ade-
quate for our needs.
An examination of (1) confirms the way in which the amplifi-
er operates: the input pair and current mirror convert the
input voltage to a current gm1Vin which drives the base of
the second stage. Transistors Qs, Qg, and Q7 simply multi-
ply this current by 83 and supply it to the load R¢. The finite
output resistance of the first stage causes some loss when
compared with second stage input resistance, as indicated
by the term 1/(1 + rj2/ro1’). A numerical example will help
our perspective: for the LM101A, |1 = 10 pA, I = 300 pA,
Bs = Be = 150, and B7 = 50. From (1) and dc voitage
gain with R = 2 k) is

Ay(0) = 625,000 2)
The number predicted by (2) agrees well with that measured
on a discrete breadboard of the LM101A, but is much higher
than that observed on the integrated circuit. The reason for
this is explained in the next section.

B. Thermal Feedback Effects on Gain

The typical IC op amp is capable of delivering powers of 50—
100 mW to a load. In the process of delivering this power,
the output stage of the amp internally dissipates similar
power levels, which causes the temperature of the IC chip
to rise in proportion to the output dissipated power. The
silicon chip and the package to which it is bonded are good
thermal conductors, so the whole chip tends to rise to the
same temperature as the output stage. Despite this, smalil
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9m1V1/21 ~— Im1Vy
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2 Q,
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] l ‘o1
Imi1Vy/2

|||-—

01202 1704

(a)

— — 03
+
vVout
Qg —_—
L] [LLN
~DOMINANT

(b)

Ti2 = B {res * B fog)
TL/H/B745-5

FIGURE 3. (a) Approximate 7 model for CE transistor at dc. Feedback element r, = B4r, Is ignored since this greatly
simplifies hand calculations. The error caused Is usually less than 10 percent because 84, the intrinsic 8 under the
emitter, is quite large. Base resistance ry Is also ignored for simplicity. (b) Circuit lliustrating calculation of electronic
gain for op amp of Figure 1. Consideration is given only to the fully loaded condition (R = 2 kQ)) where 37 is falling (to
about 50) due to high current density. Under this condition, the output resistance of Q6 and Q9 are nondominant.

temperature gradients from a few tenths to a few degrees
centigrade develop across the chip with the output section
being hotter than the rest. As illustrated in Figure 4, these
temperature gradients appear across the input components
of the op amp and induce an input voltage which is propor-
tional to the output dissipated power.

To a first order, it can be assumed that the temperature

difference (To — T4) across a pair of matched and closely

spaced components is given simply by
(T2 — Ty) = £KyPq

°C 3)

where
Py power dissipated in the output circuit,
Kt a constant with dimensions of °C/W.

The plus/minus sign is needed because the direction of the
thermal gradient is unknown. In fact, the sign may reverse
polarity during the output swing as the dominant source of
heat shifts from one transistor to another. If the dominant
input components consist of the differential transistor pair of
Figure 4, the thermally induced input voltage Vit can be
calculated as

Vint = £ K1Pg(2 X 10-3)
= +y1Py 4
where y1 = Kr(2 X 10—3) V/W, since the transistor emit-
ter-base drops change about —2 mV/°C.
For a thermally well designed IC op amp, in which the power
output devices are made to approximate either a point or a
line source and the input components are placed on the
resulting isothermal lines (see below and Figure 8), typical
values measured for Kt are
Kt = 0.3°C/W 5)
in a TO-5 package.
The dissipated power in the class-AB output stage Pq is
written by inspection of Figure 4:
_ VoVs — V2

P,
d RL

)

where

Vg = +Vge whenVp >0

Vg = —Vge whenVg <0.
A plot of (6) is Figure 5 resembles the well-known class-AB
dissipation characteristics, with zero dissipation occurring
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-1 Vee

~Vee
HEAT

TEMPERATURE GRADIENT ViNT = 17Pg
TL/H/8745-6

FIGURE 4. Simple model illustrating thermal feedback in an IC op amp having a single dominant source of self-heat, the
output stage. The constant y1 = 0.6 mV/W and P4 is power dissipated in the output. For simplicity, we ignore input
drift due to uniform heating of the package. This effect can be significant if the input stage drift is not low, see [7].

*Vee

— Vgg
OUTPUT STAGE

Py

Vo
- Ve o +Veeo

TL/H/8745-7
FIGURE 5. Simple class-B output stage and plot of power dissipated in the stage, Py, assuming device
can swing to the power supplies. Equation (6) gives an expression for the plot.

for Vo = 0, + V¢, —Vee. Dissipation peaks occur for Vg = the amplifier and be sure it will not find an unstable operat-
+Vee/2 and —Vge/2. Note aiso from (4) that the thermally ing point and latch to one of the power supplies?

induced input voltage Vit has this same double-humped The answers to these questions can be found by studying a
shape since it is just equal to a constant times Py at dc. simple model of the op amp under closed-loop conditions,
Now examine Figures 6(a) and (b) which are curves of including the effects of thermal coupling. As shown in Figure
open-loop Vg versus Vi, for the IC op amp. Note first that 7, the thermal coupling can be visualized as just an addition-
the overall curve can be visualized to be made up of two al feedback path which acts in parallel with the normal elec-
components: a) a normal straight line electrical gain curve trical feedback. Noting that the electrical form of the thermal
of the sort expected from (1) and b) a double-humped curve feedback factor is [see (4) and (6)]

similar to that of Figure 5. Further, note that the gain charac- 3Vint vr

teristic has either positive or negative slope depending on Br= e o R—(Vs — 2Vp). %]
the value of output voltage. This means that the thermal . .0 . L .
feedback causes the open-loop gain of the feedback ampli- The closed-loop gain, including thermal feedback is

fier to change phase by 180°, apparently causing negative A(0) = n g
feedback to become positive feedback. If this is really true, v 1+ w(Be * BT ®

the question arises: which input should be used as the in-
verting one for feedback? Further, is there any way to close

1223

v Xipuaddy

Joidwy [euonesadQ d1ylouo ayy :

Apms [enon) v



A Tutorial Study

fier:

The Monolithic Operational Ampli

Appendix A

/ /
TnenMAL——l /
{ /
\ /———ELEc‘rRICAL
\
/
\\ /
/ //

SUM OF THERMAL

/
& ELECTRICAL ——*, 'I
‘ /
\
\

TL/H/8745-8

(a)

Vour

+20V -4-/

Av~5°k—-> i

R =20
S 1ov

t t t t VIN
~100uV 1004V

Ay = 130k —e
-+ —ov

4 -20v
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(b)
FIGURE 6. (a) Idealized dc transfer curve for an IC op amp showing its electrical and thermal components.
(b) Experimental open-loop transfer curve for a representative op amp (LM101).
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FIGURE 7. Diagram used to calculate closed-loop gain with thermal feedback.

where p is the open-loop gain in the absence of thermal
feedback [(1)] and B, is the applied electrical feedback as
in Figure 7. Inspection of (8) confirms that as long as there
is sufficient electrical feedback to swamp the thermal feed-
back (i.e., Be > BT), the amplifier will behave as a normal
closed-loop device with characteristics determined princi-
pally by the electrical feedback (i.e., Ay(0) = 1/8¢). On the
other hand, if B¢ is small or nonexistant, the thermal term in
(8) may dominate, giving an apparent open-loop gain char-
acteristic determined by the thermal feedback factor 8.
Letting B¢ = 0 and combining (7) and (8), Ay(0) becomes

"

1+ BT v — avg)
RL
Recalling from (6) that V ranges between 0 and Vg, we
note that the incremental thermal feedback is greatest when
Vo = 0 or Vg, and it is at these points that the thermally
limited gain is smallest. To use the amplifier in a predictable
manner, one must always apply enough electrical feedback
to reduce the gain below this minimum thermal gain. Thus, a
maximum usable gain can be defined as that approximately
equal to the value of (9) with Vo = 0 or Vg which is
Ry

AVO)lmax = —=—
T Vg

Ay(0) = ©)

(10)

or

AvO)lmax = an

YThmax
It was assumed in (10) and (11) that thermal feedback domi-
nates over the open-loop electrical gain, p. Finally, in (11) a
maximum current was defined Imax = Vs/R( as the maxi-
mum current which would flow if the amplifier output could
swing all the way to the supplies.
Equation (11) is a strikingly simple and quite general result
which can be used to predict the expected maximum usable
gain for an amplifier if we know only the maximum output
current and the thermal feedback constant yT.
Recall that typically KT = 0.3°C/W and y1 = (2 X 10~9)
Kt = 0.6 mV/W. Consider, as an example, the standard iC
op amp operating with power supplies of Vg = £15V and a
minimum load of 2 k2, which gives lmax = 15V/2kQ = 7.5
mA. Then, from (11), the maximum thermally limited gain is
about:

Av(0)|max = 1/(0.6 X 10—3)(7.5 X 10-3)
220,000.
Comparing (2) and (12), it is apparent that the thermal char-
acteristics dominate over the electrical ones if the minimum

(12)

i

load resistor is used. For loads of 6 k€2 or more, the electri-
cal characteristics should begin to dominate if thermal feed-
back from sources other than the output stage is negligible.
It should be noted also that, in some high speed, high drain
op amps, thermal feedback from the second stage domi-
nates when there is no load.

As a second example, consider the so-called “power op
amp” or high gain audio amp which suffers from the same
thermal limitations just discussed. For a device which can
deliver 1W into a 160 load, the peak output current and
voltage are 350 mA and 5.7V. Typically, a supply voltage of
about 16V is needed to allow for the swing loss in the IC
output stage. Imayx is then 8V/16 or 0.5A. If the device is in
a TO-5 package vyt is approximately 0.6 mV/W, so from
(11) the maximum usable dc gain is
1
(0.6 X 10~3)(0.5)
This is quite low compared with electrical gains of, say,
100,000 which are easily obtainable. The situation can be
improved considerably by using a large die to separate the
power devices from the inputs and carefully placing the in-
puts on constant temperature (isothermal) lines as illustrat-
ed in Figure 8. If one also uses a power package with a
IC CHIP

Av(0)|max = = 3300. (13)

QUTPUT
TRANSISTORS

e

PAIR
TL/H/8745-11
FIGURE 8. One type layout in which a quad of input
transistors is cross connected to reduce effect of
nonuniform thermal gradients. The output transistors
use distributed stripe geometrics to generate
predictable isothermal lines.
heavy copper base, y7's as low as 50 uV/W have been
observed. For example, a well-designed SW amplifier driving
an 80 load and using a 24V supply, would have a maximum
gain of 13,000 in such a power package.
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Im1 =ql1/kT

TL/H/8745-12

FIGURE 9. First-order model of op amp used to calculate small signal high frequency gain. At frequencies of interest
the input impedance of the second stage becomes low compared to first stage output impedance due to C. feedback.
Because of this, first stage output impedance can be assumed infinite, with no loss in accuracy.

A0l — —

Aylw)

/ Aytw) = 5@61

w

Wy = Im1/Ce
TL/H/8745-13

FIGURE 10. Plot of open-loop gain calculated from model in Figure 9. The dc and LF gain
are given by (10), or (11) if thermal feedback dominates.

As a final comment, it should be pointed out that the most
commonly observed effect of thermal feedback in high gain
circuits is low frequency distortion due to the nonlinear
transfer characteristic. Differential thermal coupling typically
falls off at an initial rate of 6 dB/octave starting around 100~
200 Hz, so higher frequencies are uneffected.

3.0 SMALL-SIGNAL FREQUENCY RESPONSE

At higher frequencies where thermal effects can be ignored,
the behavior of the op amp is dependent on purely electron-
ic phenomena. Most of the important small and large signal
performance characteristics of the classical IC op amp can
be accurately predicted from very simple first-order models
for the amplifier in Figure 1 (8). The small-signal model that
is used assumes that the input differential amplifier and cur-
rent mirror can be replaced by a frequency independent
voltage controlled current source, see Figure 9. The second
stage consisting essentially of transistors Qs and Qg, and
the current source load, is modeled as an ideal frequency
independent amplifier block with a feedback or “integrating
capacitor” identical to the compensation capacitor, c.. The

output stage is assumed to have unity voltage gain and is
ignored in our calculations. From Figure 9, the high frequen-
¢y gain is calculated by inspection:

9m1| _ Gm1
sCel  ©C¢
where dc and low frequency behavior have not been includ-
ed since this was evaluated in the last section. Figure 10 is
a plot of the gain magnitude as predicted by (14). From this
figure it is a simple matter to calculate the open-loop unity
gain frequency wy, which is also the gain-bandwidth product
for the op amp under closed-loop conditions:

\
Avlw) = iv" (s)f - (149)
i

oy = 81

Ce
In a practical amplifier, w,, is set to a low enough frequency
(by choosing a large C¢) so that negligible excess phase
over the 90° due to C has built up. There are numerous
contributors to excess phase including low f; p-n-p’s, stray
capacitances, nondominant second stage poles, etc.

(15)
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These are discussed in more detail in a later section, but for
now suffice it to say that, in the simple IC op amp, w,/27 is
limited to about 1 MHz. As a simple test of (15), the LM101
or the pA741 has a first stage bias current |1 of 10 A per
side, and a compensation capacitor for unity gain operation,
C,, of 30 pF. These amplifiers each have a first stage gm
which is half that of the simple differential amplifer in Figure
7 s0 gm1 = qly/2kT. Equation (15) then predicts a unity
gain corner of

©y_ gm _ (0192x10°9) oo 18)

2m  2mC. 2mw(30 X 10-12)
which agrees closely with the measured values.
[ V\——
O—AAN—4
+ —0
+
Vi) Volth
- L -
214
t
l I
l l %y
Volt) I/__\/S"Ew' at_ | max.
\ # l
SLEW * = vy ml
dt I max,

TL/H/8745-14
FIGURE 11. Large signal “slewing” response
observed if the input is overdriven.

OVERDRIVE

4.0 SLEW RATE AND SOME SPECIAL LIMITS

A. A General Limit on Slew Rate

If an op amp is overdriven by a large-signal pulse or square
wave having a fast enough rise time, the output does not
follow the input immediately. Instead, it ramps or “slews” at
some limiting rate determined by internal currents and ca-
pacitances, as illustrated in Figure 71. The magnitude of
input voltage required to make the amplifier reach its maxi-
mum slew rate varies, depending on the type of input stage
used. For an op amp with a simple input differential amp, an
input of about 60 mV will cause the output to slew at 90
percent of its maximum rate, while a pA741, which has half
the input gm, requires 120 mV. High speed amplifiers such
as the LM118 or a FET-input circuit require much greater
overdrive, with 1-3V being common. The reasons for these
overdrive requirements will become clear below.

An adequate model to calculate slew limits for the repre-
sentative op amp in the inverting mode is shown in Figure
12, where the only important assumption made is that
Is = 214 in Figure 1. This condition always holds in a well-
designed op amp. (If one lets I be less than 214, the slew is
limited by |5 rather than 11, which results in lower speed than
is otherwise possible.) Figure 12 requires some modification
for noninverting operation, and we will study this later.

The limiting slew rate is now calculated from Fig. 72. Letting
the input voltage be large enough to fully switch the input
differential amp, we see that all of the first stage tail current
214 is simply diverted into the integrator consisting of A and
Ce. The resulting slew rate is then:

dvo ig(t)
slew rate = — ===, 1
dt imax Cc an
Noting that ic(t) is a constant 2i4, this becomes
dv 21
Vo =1 (18)
dt lmax Cec

As a check of this result, recall that the pA741 has |y =
10 pA and Cy = 30 pF, so we calculate:
dv, 2% 105 \
Vo =——— = 0.67— (19)
dt lmax 30 x 10—12 us
which agrees with measured values.

")

—0 -

- +
A —0 V,lt) \

stewrate =SYo! L 2

dt Imax. Cg [
SINCE iglt) = 21,

TL/H/8745-15

FIGURE 12. Model used to calculate slew rate for the amp of Figure 1 in the inverting mode. For simplicity, all transistor
a’s are assumed equal to unity, although results are essentially independent of a. An identical slew rate can be
calculated for a negative-going output, obtained if the applied input polarity is reversed.
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The large and small signal behavior of the op amp can be
usefully related by combining (15) for w, with (18). The slew
rate becomes

ool _ 2ays.

dtlmax  9m1

Equation (20) is a general and very usefui relationship. It
shows that, for a given unity-gain frequency, w,, the slew
rate is determined entirely by just the ratio of first stage
operating current to first stage transconductance, 11/gm1.
Recall that w,, is set at the point where excess phase be-
gins to build up, and this point is determined largely by tech-
nology rather than circuit limitations. Thus, the only effective
means available to the circuit designer for increasing op
amp slew rate is to decrease the ratio of first stage trans-
conductance to operating current, gm1/1.

(20)

B. Slew Limiting for Simple Bipolar Input Stage

The significance of (20) is best seen by considering the spe-
cific case of a simple differential bipolar input as in Figure 1.
For this circuit, the first stage transconductance (for ay =
1) is?

gm1 = qli/kT (21)
so that
gll’ = Q/KT. 22)
1
Using this in (20), the maximum bipolar slew rate is
dvo kT
—_ = — 23
dt Imax o q &3)

This provides us with the general (and somewhat dismal)
conclusion that slew rate in an op amp with a simple bipolar
input stage is dependent only upon the unity gain corner
and fundamental constants. Slew rate can be increased
only by incerasing the unity gain corner, which we have not-
ed is generally difficult to do. As a demonstration of the
severity of this limit, imagine an op amp using highly ad-
vanced technology and clever design, which might have a
stable unity gain frequency of 100 MHz. Equation (23) pre-
dicts that the slew rate for this advanced device is only

dVo _ \"
dt imax M
which is good, but hardly impressive when compared with
the difficulty of building a 100 MHz op amp.2 But, there are
some ways to get around this limit as we shall see shortly.

C. Power Bandwidth

Our intuition regarding slew rate will be enhanced some-
what if we relate it to a term called “power bandwidth”.
Power bandwidth is defined as the maximum frequency at
which full output swing (usually 10V peak) can be obtained
without distortion. For a sinusoidal output voltage vg(t) =
Vpsinwt, the rate of change of output, or slew rate, required
to reproduce the output is

(24

d
% = wVp cos ot. (25)
This has a maximum when cos ot = 1 giving
dVo
) = @V
ra i Vp, (26)

so the highest frequency that can be reproduced without
slew limiting, wmax (Power bandwidth) is

~ 1dvg

Vp dt Imax”
Thus, power bandwidth and slew rate are directly related by
the inverse of the peak of the sine wave V,. Figure 13
shows the severe distortion of the output sine wave which
results if one attempts to amplify a sine wave which results
it one attempts to amplify a sine wave of frequency
0 > Omax.

Note that (21) applies only to the simple differential input stage of Figure

72. For compound input stages as in the LM101 or pA741, gnq is half that in
(21), and the slew rate in (23) is doubled.

2 We assume in all of these calculations that C is made large enough so
that the amplifier has less than 180° phase lag at o, thus making the ampli-
fier stable for unity closed-loop gain. For higher gains one can of course
reduce C, (if the IC allows external compensation) and increase the slew
rate according to (18).

27)

®max

AAA
\AAs

A -—
Vv
+ —O Vit =7
VgSINwt f +
Vol
DISTORTED OUTPUT Vo |
IF 0> wnax \ dt IMAX,
\( ~, ’"
y (\ .

DESIRED V(t) = VpSINwt

TL/H/8745-16

FIGURE 13. Slew limiting effects on output sinewave that occur if frequency is greater than power bandwidth, wmax.
The onset of slew limiting occurs very suddenly as « reaches wmax. No distortion occurs below wmax, while aimost
complete triangularization occurs at frequencies just slightly above wmax.
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Some numbers illustrate typical op amp limits. For a nA741
or LM101 having a maximum slew rate of 0.67V/us, (27)
gives a maximum frequency for an undistorted 10V peak
output of

Wmax

fmax o 10.7 kHz,
which is a quite modest frequency considering the much
higher frequency small signal capabilities of these devices.
Even the highly advanced 100 MHz amplifier considered
above has a 10V power bandwidth of only 0.5 MHz, so it is
apparent that a need exists for finding ways to improve slew
rate.

(28)

| 2

Re Re

ViN

]

TL/H/8745-17
FIGURE 14. Resistive degeneration used to provide
slew rate enhancement according to (29).

D. Techniques for Increasing Slew Rate

1) Resistive Enhancement of the Bipolar Stage: Equation
(20) indicates that slew rate can be improved if we reduce
first stage gm1/11. One of the most effective ways of doing
this is. shown in Figure 74, where simple resistive emitter
degerieration has been added to the input differential ampli-
fier (8). With this change, the gn1/14 drops to

9m1 _ 385

- 29
i 1+ Teh/26mv @9

at 25°C

The quantity gm1/l1 is seen to decrease rapidly with added
Re as soon as the voltage drop across Rg exceeds 26 mV.
The LM118 is a good example of a bipolar amplifier which
uses emitter degeneration to enhance slew rate [4]. This
device uses emitter resistors to produce Rgly = 500 mV,
and has a unity gain corner of 16 MHz. Equations (20) and
(29) then predict a maximum inverting slew rate of

dvo =2wu|—1=wu=1001
dt imax 9m1 ps
which is a twenty-fold improvement over a similar amplifier
without emitter resistors.
A penalty is paid in using resistive slew enhancement, how-
ever. The two added emitter resistors must match extremely
well or they add voltage offset and drift to the input. In the
LM118, for example, the added emitter R’s have values of

(30)

2.0 k2 each and these contribute an input offset of 1 mV for
each 49 (0.2 percent) of mismatch. The thermal noise of
the resistors also unavoidably degrades noise performance.

2) Slew Rate in the FET Input Op Amp: The FET (JFET or
MOSFET) has a considerably lower transconductance than
a bipolar device operating at the same current. While this is
normally considered a drawback of the FET, we note that
this “‘poor” behavior is in fact highly desirable in applica-
tions to fast amplifiers. To illustrate, the drain current for a
JFET in the “current saturation” region can be approximat-
ed by
Ip = Ipss (Vas/VT — 1)2 (31)
where
Ipss the drain current for Vgg = 0,
Vgs the gate source voltage having positive polarity for
forward gate-diode bias,
the threshold voltage having negative polarity for
JFET’s.
The small-signal transconductance is obtained from (31) as
dgm = 2dlp/aVg. Dividing by Ip and simplifying, the ratio
gm/Ip for a JFET is
am _ 2 2 [IDss]”Z
o '

VT

s (32)
Maximum amplifier slew rate occurs for minimum gn/Ip
and, from (32), this occurs when ip or Vgg is maximum.
Normally it is impractical to forward bias the gate junction so
a practical minimum occurs for (32) when Vgg = 0V and Ip
= |Ipgs. Then

gm = —23

[») ’min Vr
Comparing (33) with the analogous bipolar expression, (22),
we find from (20) that the JFET slew rate is greater than
bipolar by the factor

JFET slew _ —V12oy
bipolar slew  2kT/qwyp

where wyf and wyp are unity-gain bandwidths for JFET and
bipolar amps, respectively. Typical JFET thresholds are
around 2V (V1 = —2V), so for equal bandwidths (34) tells
us that a JFET-input op amp is about forty times faster than
a simple bipolar input. Further, if JFET’s are properly substi-
tuted for the slow p-n-p’s in a monolithic design, bandwidth
improvements by at least a factor of ten are obtainable.
JFET-input op amps, therefore, offer slew rate improve-
ments by better than two orders of magnitude when com-
pared with the conventional IC op amp. (Similar improve-
ments are possible with MOSFET-input amplifiers.) This
characteristic, coupled with picoamp input currents and rea-
sonable offset and drift, make the JFET-input op amp a very
desirable alternative to conventional bipolar designs.

As an example, Figure 15, illustrates one design for an op
amp employing compatible p-channel JFET’s on the same
chip with the normal bipolar components. This circuit exhib-
its a unity gain corner of 10 MHz, a 33 V/us slew rate, an
input current of 10 pA and an offset voltage and drift of 3
mV amd 3 uV/°C [6]. Bandwidth and slew rate are thus
improved over simple IC bipolar by factors of 10 and 100,
respectively. At the same time input currents are smaller by
about 103, and offset voltages and drifts are comparable to
or better than slew enhanced bipolar circuits.

(33)

(34)
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FIGURE 15. Monolithic operational amplifier employing compatible p-channel JFET’s on
the same chip with normal bipolar components.
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FIGURE 16. Large signal response of the voltage follower. For an op amp with simple n-p-n input stage we get the
waveform vgy(t), which exhibits a step slew “enhancement” on the positive going output, and a slew “degradation” on
the negative going output. For a p-n-p input stage, these etfects are reversed as shown by vq(t).
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5.0 SECOND-ORDER EFFECTS: VOLTAGE FOLLOWER
SLEW BEHAVIOR

If the op amp is operated in the noninverting mode and
driven by a large fast rising input, the ouput exhibits the
characteristic waveform in Figure 16. As shown, this wave-
form does not have the simple symmetrical slew character-
istic of the inverter. In one direction, the output has a fast
step (slew “‘enhancement”) followed by a “‘normal” inverter
slewing response. In the other direction, it suffers a slew
“degradation” or reduced slope when compared with the
inverter slewing response.

We will first study slew degradation in the voitage follower
connection, since this represents a worst case slewing con-
dition for the op amp. A model which adequately represents
the follower under large-signal conditions can be obtained
from that in Figure 12 by simply tying the output to the in-
verting input, and including a capacitor Cs to account for the
presence of any capacitance at the output of the first stage
(tail) current source, see Figure 17. This “input tail” capaci-
tance is important in the voltage follower because the input
stage undergoes rapid large-signal excursions in this con-
nection, and the charging currents in Gg can be quite large.
Circuit behavior can be understood by analyzing Figure 17
as follows. The large-signal input step causes Q4 to turn
OFF, leaving Q, to operate as an emitter follower with its
emitter tracking the variational output voltage, vo(t). It is
seen that vq(t) is essentially the voltage appearing across
both Cg and C so we can write

dvo _ de _ Is

dt  C. GCs ®9)
Noting that i = 2l — ig (unity a's assumed), (35) can be
solved for is:

_ 2l4
' =TT cocs ©6)
+
2, ‘ i

which is seen to be constant with time. The degraded volt-
age follower slew rate is then obtained by substituting (36)
into (35):

dvg - is 2

dtigegr Cs GCc+t Cs’ @n
Comparing (37) with the slew rate for the inverter, (18), it
is seen that the slew rate is reduced by the simple factor
1/(1 + Cg/Cc). As long as the input tail capacitance Cs is
small compared with the compensation amplifiers where Cc
is small, degradation become quite noticeable, and one is
encouraged to develop circuits with small Cs.

As an example, consider the relatively fast LM118 which
has C; = 5 pF, Cg = 2 pF, 2l; = 500 uA. The calcualted
inverter slew rate is 211/C; = 100V/us, and the degraded
voltage foliower slew rate is found to be 211/(C; + Cg) =
70V/us. The slew degradation is seen to be about 30 per-
cent, which is very significant. By contrast a pA741 has C¢

= 30 pF and Cg = 4 pF which results in a degradation of
less than 12 percent.

The slew “enhanced waveform can be similarly predicted
from a simplified model. By reversing the polarity of the in-
put and initally assuming a finite slope on the input step, the
enhanced follower is analyzed, as shown in Figure 18. Not-
ing that Q4 is assumed to be turned ON by the step input
and Qy is OFF, the output voltage becomes

t
volt) = —é; J 0 [213 + ig(t)] dt.

The voltage at the emitter of Qq is essentially the same as
the input voltage, vi(t), so the current in the “tail” capaci-
tance Cg is

(38)

ist) = C %;% 0<t<ty. (39)
1

Combining (38) and (39), vo(t) is

—vo(t)——j 20y dt + — J1—C%\—/'£dt (40)

Ce

Volt)
[0}
{+) (=)
OFF ON l
- Q Q.
| vyt ! 2 ]: Ce
- ) - O —
Qg 2ly~ig M M
Volt)

P‘_‘I}Q

TL/H/8745-20

FIGURE 17. Circuit used for calculation of slew “degradation” in the voltage follower. The degradation is caused by the
capacitor Cg, which robs current from the tail, 21,, thereby preventing the full 214 from slewing Ce.
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FIGURE 18. Circuit used for calculation of slew “enhancement” in the voltage follower. The fast falling
input casues a step output followed by a normal slew response as shown.

or

= Coy 2t

voft) = Ce Vip + Ce

Equation (41) tells us that the output has an initial negative

step which is the fraction Cg/C; of the input voltage. This is

followed by a normal slewing response, in which the slew

rate is identical to that of the inverter, see (18). This re-
sponse is illustrated in Figure 18.

6. LIMITATIONS ON BANDWIDTH

In earilier sections, all bandlimiting effects were ignored ex-
cept that of the compensation capacitor, C¢. The unity-gain
frequency was set at a point sufficiently low so that negligi-
ble excess phase (over the 90° from the dominant pole) due
to second-order (high frequency) poles had built up. In this
section the major second-order poles which contribute to
bandlimiting in the op amp are identified.

41

A. The input Stage: p-n-p’s, the Mirror Pole, and the Tail
Pole

For many years it was popular to identify the lateral p-n-p’s
(which have fi's = 3 MHz) as the single dominant source of
bandlimiting in the IC op amp. It is quite true that the p-n-p’s
do contribute significant excess phase to the ampilifier, but it
is not true that they are the sole contributor to excess phase
[9]. In the input stage, alone, there is at least one other
important pole, as illustrated in Figure 19(a). For the simple
differential input stage driving a differential-to-single ended
converter (““mirror” circuit), it is seen that the inverting signal
(which is the feedback signal) follows two paths, one of
which passes through the capacitance Cg, and the other
through Cy,,. These capacitances combine with the dynamic
resistances at their nodes to form poles designated the mir-
ror pole at

I

Pm = CokT/a’ “2)
and the tail pole at
2l4
= . 43
Pt CgkT/q “3)

It can be seen that if one attempts to operate the first stage
at too low a current, these poles will bandlimit the ampilifier.
If, for example, we choose |1 = 1 pA, and assume C, =
7 pF (consisting of 4 pF isolation capacitance and 3 pF
emitter transition capacitance) and Cg = 4 pF,3 pp/27 =
0.9 MHz and py/27m = 3 MHz either of which would serious-
ly degrade the phase margin of a 1 MHz ampilifier.

If a design is chosen in which either the tail pole or the
mirror pole is absent (or unimportant), the remaining pole
rolls off only half the signal, so the overall response con-
tains a pole-zero pair separated by one octave. Such a pair
generally has a small effect on amplifier response uniess it
occurs near wy, where it can degrade phase margin by as
much as 20°.

Itis interesting to note that the compound input stage of the
classical LM101 and uA741) has a distinct advantage over
the simple differential stage, as seen in Figure 19(b). This
circuit is noninverting across each half, thus it provides a
path in which half the feedback signal bypasses both the
mirror and tail poles.

B. The Second Stage: Pole Splitting

The assumption was made in Section 3 that the second
stage behaved as an ideal integrator having a single domi-
nant pole response. In practice, one must take care in de-
signing the second stage or second-order poles can cause
significant deviation from the expected response. Consider-
able insight into the basic way in which the second stage
operates can be obtained by performing a small-signal anal-
ysis on a simplified version of the circuit as shown in Figure
20 [10]. A straightforward two-node analysis of Figure 20(c)
produces the following expression for vgy.
Vout
i
(1 + s[Ry (C1 + Cp) + R2(Ca + Cp) + gmR1R2C;]
+ 82R4R [C1C2 + Cp (Cy + C2)))- (44)
3 Cg can have a wide range of values depending on circuit configuration. It is
largest for n-p-n input differential amps since the current source has a col-

lector-substrate capacitance (Cg = 3-4 pF at its output. For p-n-p input
stages it can be as small as 1-2 pF.

= —gmR1R2(1 — sCp/gm) +
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FIGURE 19. (a) Circuit showing “mirror” pole due to C, and “tail” pole due to Cg. One component
of the signal due to an inverting input must pass through either the mirror or tail poles. (b) Alternate circuit to Figure
19(a) (LM101, .A741) which has less excess phase. Reason is that half the inverting signal path need
not pass through the mirror pole or the tail pole.

The denominator of (44) can be approximately factored un-
der conditions that its two poles are widely separated. For-
tunately, the poles are, in fact, widely separated under most
normal operating conditions. Therefore, one can assume
that the denominator of (44) has the form
D(s) = (1 + s/py)(1 + s/py)

1+ s(1/p1 + 1/po) + $2/pqpa. (45)
With the assumption that py is the dominant pole and ps is
nondominant, i.e., p1 < po, (45) becomes

D(s) = 1 + s/py + s2/pqpa. (46)
Equating coefficients of s in (44) and (46), the dominant
pole p4 is found directly:

I

.
" R4(Cy + Cp) + Ra(Cz + Cp) + gmR1R2Cp

P3 (47)

1
gmR1R2Cp '
The latter approximation (48), normally introduces little er-
ror, because the gy term is much larger than the other two.
We note at this point that p4, which represents the dominant
pole of the amplifier, is due simply to the familiar Miller-mul-
tiplied feedback capacitance gmRoCp combined with input
node resistance, Ry. The nondominant pole p» is found sim-
ilarly by equating s2 coefficients in (44) and (46) to get P1P2,
and dividing by py from (48). The result is
~ gmC
C+4Co + Cp (Cy + Cg)'
Several interesting things can be seen in examining (48)
and (49). First, we note that py is inversely proportional to
gm (and Cp), while py is directly dependent on gy, (and Cp).

(48)

p2 (49)
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FIGURE 20. Simplification of second stage used for pole-splitting analysis. (a) Complete second stage with input
stage and output stage loading represented by Rg, Cg, and Ry, C|_respectively. (b) Emitter follower ignored to
simplify analysis. (¢) Hybrid 7 model substituted for transistor in (b). Source and load impedances are absorbed
into model with the total inpedances represented by R4, C4, and Rz and C». Transistor base resistance Is ignored
and Cp includes both C¢ and transistor collector-base capacitance.
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FIGURE 21. Pole migration for second stage employing “pole-splitting” compensation. Plot is shown for
increasing Cp and it is noted that the nondominant pole reaches a maximum value for large Cp,
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FIGURE 22, Example of pole-splitting compensation in the pA741 op amp. Values used in (48) and
(49) are: gma = 1/87Q,Cp = 30 pF,Cy = C3 = 10pF, Ry = 1.7 MQ, Rz = 100 k0.

Thus, as either Cp, or transistor gain are increased, the dom-
inant pole decreases and the nondominant pole increases.
The poles p1 and py are being “‘split-apart” by the increased
coupling action in a kind of inverse root locus plot.

This pole-splitting action is shown in Figure 21, where pole
migration is plotted for Cy, increasing from 0 to a large value.
Figure 22 further illustrates the action by giving specific pole
positions for the nA741 op amp. It is seen that the initial
poles (for Cp = 0) are both in the tens of kHz region and
these are predicted to reach 2.5 Hz (py/27) and 66 MHz
(p2/2m) after compensation is applied. This result is, of
course, highly satisfactory since the second stage now has
a single dominant pole effective over a wide frequency
band.

C. Fallure of Pole Splitting

There are several situations in which the application of pole-
splitting compensation may not result in a single dominant
pole response. One common case occurs in very wide-band
op amps where the pole-splitting capacitor is small. In this
situation the nondominant pole given by (49) may not be-
come broadbanded sufficiently so that it can be ignored. To

illustrate, suppose we attempt to minimize power dissipation
by running the second stage of an LM118 (which has a
small-signal bandwidth of 16 MHz) at 0.1 mA. For this op
amp Cp = 5 pF, Cqy = Cy = 10 pF. From (49), the nondom-
inant pole is

P2

2m
which lies right at the unity-gain frequency. This pole alone
woutd degrade phase margin by 45°, so it is clear that we
need to bias the second stage with a collector current great-
er than 0.1 mA to obtain adequate gp,. Insufficient pole-split-
ting can therefore occur; but the cure is usually a simple
increase in second stage gm.

A second type of pole-splitting failure can occur, and it is
ofen much more difficult to cope with. If, for example, one
gets over-zealous in his attempt to broadband the nondomi-
nant pole, he soon discovers that other poles exist within
the second stage which can cause difficulties. Consider a
more exact equivalent circuit for the second stage of Figure
20(a) as shown in Figure 23. If the follower is biased at low
currents or if cp, Qo gm, and/or ry are high, the circuit can
contain at least four important poles rather than the two

[

16 MHz (50)

Cc
A1
1
R
ig c
—_— |y v 2 v u2
1 2 x. 3
O—( i} o OV
M LS
| Cr1 R <
R C. <
S Cs gmi1 (V1~V2)? 2 gm2 Va‘ L T Cu

nl"—qb

TL/H/8745-27

FIGURE 23. More exact equivalent circuit for second stage of Figure 20(a) including a simplified
7 model for the emitter follower (Rw 4, C4, gm1) and a complete 7 for Q, (rxg, Ry, etc.).
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FIGURE 24. Root locus for second stage illustrating failure of pole splitting due to
high gm2, rx2, Cp, and/or low bias current in the emitter follower.

considered in simple pole splitting. Under these conditions,
we no longer have a response with just negative real poles
as in Figure 21, but observe a root locus of the sort shown
in Figure 24. It is seen in this case that the circuit contains a
pair of complex, possibly underdamped poles which, of
course, can cause peaking or even oscillation. This effect
occurs so commonly in the development of wide-band pole-
split amplifiers that it has been (not fondly) dubbed “the
second stage bump.”

There are numerous ways to eliminate the “bump,” but no
single cure has been found which is effective in all situa-
tions. A direct hand analysis of Figure 23 is possible, but the
results are difficult to interpret. Computer analysis seems
the best approach for this level of complexity, and numer-
ous specific analyses have been made. The following is a
list of circuit modifications that have been found effective in
reducing the bump in various studies: 1) reduce gma, rx2s
C’,,g, 2) add capacitance or a series RC network from the
stage input to ground—this reduces the high frequency local

v
LN

L -G/C

feedback due to Cp, 3) pad capacitance at the output for
similar reasons, 4) increase operating current of the follow-
er, 5) reduce Cp, 6) use a higher f; process.

D. Troubles in the Output Stage

Of all the circuitry in the modern IC op amp, the class-AB
output stage probably remains the most troublesome. None
of the stages in use today behave as well as one might
desire when stressed under worst case conditions. To itlus-
trate, one of the most commonly used output stages is
shown in Figure 2(b). The p-n-p’s in this circuit are “sub-
strate” p-n-p’s having low current fi's of around 20 MHz.
Unfortunately, both B¢ and f; begin to fall off rapidly at quite
low current densities, so as one begins to sink just a few
milliamps in the circuit, phase margin troubles can develop.
The worst effect occurs when the ampilifier is operated with
a large capacitive load (>100 pF) while sinking high cur-
rents. As shown in Figure 25, the load capacitance on the

u2CL
“r2

TL/H/8745-29

FIGURE 25. Troubles in the conventional class-AB output stage of Figure 2(b). The low f; output p-n-p’s
interact with load capacitance to form the equivalent of a one-port oscillator.
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FIGURE 26. The “BI-FET™” output stage employing JFET’s and bipolar n-p-n’s to eliminate sensitivity to load
capacitance.

output follower causes it to have negative input conduct-
ance, while the driver follower can have an inductive output
impedance. These elements combine with the capacitance
at the interstage to generate the equivalent of a one-port
oscillator. In a carefully designed circuit, oscillation is sup-
pressed, but peaking (the “output bump’’) can occur in most
amplifiers under appropriate conditions.

One new type of output circuit which does not use p-n-p's is
shown in Figure 26 [6]. This circuit employs compatible
JFET's (or MOSFET's, see similar circuit in [11]) in a FET/
bipolar quasi-complementary output stage, which is insensi-
tive to load capacitance. Unfortunately, this circuit is rather
complex and employs extra process steps, so it does not
appear to represent the cure for the very low cost op amps.

+

d

nly/14n)

‘1,m+n)

7. The Gain Cell: Linear Large-Scale Integration

As the true limitations of the basic op amp are more fully
understood, this knowledge can be applied to the develop-
ment of more “optimum” amplifiers. There are, of course,
many ways in which one might choose to optimize the de-
vice. We might, for example, attempt to maximize speed
(bandwidth, slew rate, settling time) without sacrificing dc
characteristics. The compatible JFET/bipolar amp of Figure
15 represents such an effort. An aiternate choice might be
to design an amplifier having all of the performance features
of the most widely used general purpose op amps (i.e.,
wA741, LM107, etc.), but having minimum possible die area.
Such a pursuit is parallel to the efforts of digital large-scale
integration (LSI) designers in their devlelopment of minimum

€ = 30pFA14n)

{1
L

—O Vo

TL/H/8745-31

FIGURE 27. Basic gp, reduction obtained by using split collector p-n-p’s. C. and area are reduced since C¢ = gpyy/wy.
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area memory cells or gates. The object of such efforts, of
course, is to develop lower cost devices which allow wide
and highly economic usage.

In this section we briefly discuss certain aspects of the lin-
ear gain cell, a general purpose, internally compensated op
amp having a die area which is significantly smaller than
that of equivalent, present day, industry standard amplifiers.

A. Transconductance Reduction

The single largest area component in the internally compen-
sated op amp is the compensation capacitor (about 30 pF,
typically). A major interest in reducing amplifier die area,
therefore, centers about finding ways in which this capacitor
can be reduced in size. With this in mind, we find it useful to
examine (15), which relates compensation capacitor size to
two other parameters, unity gain corner frequency wy, and
first stage transconductance gy 1. It is immediately apparent

+

l | 4re

TL/M/8745-32
(@)

that for a fixed, predetermined unity gain corner (about 27
X 1 MHz in our case), there is only one change that can be
made to reduce the size of C.: the transconductance of the
first stage must be reduced. If we restrict our interest to
simple bipolar input stages (for low cost), we recall the gm1
= ql4/kT. Only by reducing |1 can gm1 be reduced, and we
earlier found in Section 6-A and Figure 19(a) and (b) that |4
cannot be reduced much without causing phase margin diffi-
culties due to the mirror pole and the tail pole.

An alternate basic approach to gp, reduction is illustrated in
Figure 27 [12). there, a multiple collector p-n-p structure,
which is easily fabricated in IC form, is used to split the
collector current into two components, one component (the
larger) of which is simply tied to ground, thereby “throwing
away” a major portion of the transistor output current. The
result is that the g, of the transistor is reduced by the ratio
of 1/(1 + n) (see Figure 27), and the compensation capaci-

TL/H/8745-33

(b)
FIGURE 28. Variations on g, reduction. (a) Cross-coupled connection eliminates all ac current
passing through the mirror, yet maintains dc balance. (b) This approach maintains high current on the
diode side of the mirror, thereby broadbanding the mirror pole.
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tance can be reduced directly by the same factor. It might
appear that the mirror pole would still cause difficulties since
the current mirror becomes current starved in Figure 27, but
the effect is not as severe as might be expected. The rea-
son is that the inverting signal can now pass through the
high current wide-band path, across the differential amp
emitters and into the second stage, so at least half the sig-
nal current does not become bandlimited. This partial band-
limiting can be further reduced by using one of the circuits in
Figure 28(a) or (b).4 In (a), the p-n-p collectors are cross
coupled in such a way that the ac signal is cancelled in the
mirror circuit, while dc remains completely balanced. Thus
the mirror pole is virtually eliminated. The circuit does have
a drawback, however, in that the uncorrelated noise cur-
rents coming from the two p-n-p’s add rather than subtract
at the input to the mirror, thereby degrading noise perform-
ance. The circuit in Figure 28(b) does not have this defect,
but requires care in matching p-n-p collector ratios to n-p-n
emitter areas. Otherwise offset and drift will degrade as one
attempts to reduce g, by large factors.

B. A Gain Cell Example

As one tries to make large reductions in die area for the gain
cell, many factors must be considered in addition to novel
circuit approaches. Of great importance are special layout/
circuit techniques which combine a maximum number of
components into minimum area.

In a good layout, for example, all resistors are combined into
islands with transistors. If this is not possible initially, circuit
and device changes are made to allow it. The resulting de-
vice geometrics within the islands are further modified in
shape to allow maximum “packing” of the islands. That is,
when the layout is complete, the islands should have
shapes which fit together as in a picture puzzle, with no
waste of space. Further area reductions can be had by mod-
ifying the isolation process to one having minimum spacing
between the isolation diffusion and adjacent p-regions.

As example of a gain cell which employs both circuit and
layout optimization is shown in Figure 29: This circuit uses
the gpy, reduction technique of Figure 28(a) which results in a
compensation capacitor size of only 5 pF rather than the
normal 30 pF. The device achieves a full 1 MHz bandwidth,
a 0.67V/us slew rate, a gain greater than 100,000, typical
offset voltages less than 1 mV, and other characteristics
normally associated with an LM107 or pA741. In quad form
each amplifier requires an area of only 23 x 35 mils which is
one-fourth the size of today's industry standard pA741 (typi-
cally 56 x 56 mils). This allows over 8000 possible gain cells
to be fabricated on a single 3-inch wafer. Further, it appears
quite feasible to fabricate larger arrays of gain cells, with six
or eight on a single chip. Only packaging and applications
questions need be resolved before pursuing such a step.
4The circuit in Figure 28(a) is due to R. W. Russell and the variation in Figure

(+)

28(b) was developed by D. W. Zobel.
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FIGURE 29. Circuit for optimized gain cell which has been fabricated
in one-fourth the die size of the equivalent uA741.
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V/F Converter ICs Handle
Frequency-to-Voltage
Needs

Simplify your F/V converter designs with versatile V/F ICs.
Starting with a basic converter circuit, you can modify it to
meet almost any application requirement. You can spare
yourself some hard labor when designing frequency-to-volt-
age (F/V) converters by using a voltage-to-frequency IC in
your designs. These ICs form the basis of a series of accu-
rate, yet economical, F/V converters suiting a variety of ap-
plications.

Figure 1 shows an LM331 iC (or LM131 for the military tem-
perature range) in a basic F/V converter configuration
(sometimes termed a stand-alone converter because it re-
quires no op amps or other active devices other than the
IC). (Comparable V/F ICs, such as RM4151, can take ad-
vantage of this and other circuits described in this article,
although they might not always be pin-for-pin compatible).

This circuit accepts a pulse-train or square wave input am-
plitude of 3V or greater. The 470 pF coupling capacitor suits
negative-going input puises between 80 us and 1.5 us, as
well as accommodating square waves or positive-going
pulses (so long as the interval between pulses is at least 10
us).

IC Handles the Hard Part

The LM331 detects an input-signal change by sensing when
pin 6 goes negative relative to the threshold voltage at pin 7,
which is nominally biased 2V lower than the supply volitage.
When a signal change occurs, the LM331’s input compara-
tor sets an internal latch and initiates a timing cycle. During
this cycle, a current equal to Vggp/Rg flows out of pin 1 for

Vg =15V

National Semiconductor
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atimet = 1.1 RC. The 1 pF capacitor filters this pulsating
current from pin 1, and the current’'s average value flows
through foad resistor R. As a result, for a 10 kHz input, the
circuit outputs 10 Vpg across R with good (0.06% typical)
nonlinearity.

Two problems remain, however: the output at V1 includes
about 13 mVp-p ripple, and it also lags 0.1 second behind
an input frequency step change, settling to 0.1% of full-
scale in about 0.6 second. This ripple and slow response
represent an inherent tradeoff that applies to almost every
F/V converter.

The Art of Compromise

Increasing the filter capacitor’s value reduces ripple but also
increases response time. Conversely, lowering the filter ca-
pacitor’s value improves response time at the expense of
larger ripple. In some cases, adding an active filter results in
faster response and less ripple for high input frequencies.

Although the circuit specifies a 15V power supply, you can
use any regulated supply between 4 Vpc and 40 Vpc. The
output voltage can extend to within 3 Vpc of the supply
voltage, so choose R to maintain that output range.
Adding a 220 k2/0.1 uF postfilter to the circuit slows the
response slightly, but it also reduces ripple to less than 1
mVp-p for frequencies from 200 Hz to 10 kHz. The reduction
in ripple achieved by adding this passive filter, while not as
good as that obtainable using an active filter, could suffice
in some applications.
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Sk ;:Wk S samkan
68k
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470 pF | == —_—G
; - 6 To.m uF
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2 L _ _(vz) v
OCFS
4 3 <R
. _]_ L
12k 1% -=L -l- 1uF S 100k 0.1 uF
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FIGURE 1. A Simple Stand-Alone F/V Converter Forms the
Basis for Many Other Converter-Circuit Configurations
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V/F Converter ICs Handle Frequency-to-Voltage Needs

Appendix C

{

Improving the Basic Circuit

Further modifications and additions to the basic F/V con-
verter shown in Figure 7 can adapt it to specific perform-
ance requirements. Figure 2 shows one such modification,
which improves the converter’s nonlinearity to 0.006% typi-
cal.

Reconsideration of the basic stand-alone converter shows
why its nonlinearity falls short of this improved version’s. At
low input frequencies, the current source feeding pin 1 in
the LM331 is turned off most of the time. As the input fre-
quency increases, however, the current source stays on
more of the time, and its own impedance attenuates the
output signal for an increasing fraction of each cycle time.
This disproportionate attenuation at higher frequencies
causes a parabolic change in full-scale gain rather than the
desired linear one.

In the improved circuit, on the other hand, the PNP transis-
tor acts as a cascade, so the output impedance at pin 1
sees a constant voltage that won’t modulate the gain. Also,
with an alpha ranging between 0.998 and 0.990, the transis-
tor exhibits a temperature coefficient of between 10 ppm/°C
and 40 ppm/°C—a fairly minor effect. Thus, this circuit's

? Vg =45V TO 20v

nonlinearity does not exceed 0.01% maximum for the 10V
output range shown and is normally not worse than 0.01%
for any supply voltage between 4V and 40V.

Add an Qutput Buffer

The circuit in Figure 3 adds an output buffer (unity-gain fol-
lower) to the basic single-supply F/V converter. Either an
LM324 or LM358 op amp functions well in a single-supply
circuit because these devices’ common-mode ranges ex-
tend down to ground. But if a negative supply is available,
you can use any op amp; types such as the LF351B or
LM308A, which have low input currents, provide the best
accuracy.
The output buffer in Figure 3 also acts as an active filter,
furnishing a 2-pole response from a single op amp. This
filter provides the general response

Vout/lout = RL/(1 + Kip + K2p2).
(p is the differential operator d/dt.) As shown, R controls
the filter's DC gain. The high frequency response rolis off at
12 dB/octave. Near the circuit's natural resonant frequency,
you can choose the damping to give a little overshoot—or
none, as desired.

Q1 = 2N4250, 2N3906 or similar
high-beta PNP transistor

C1
470 pF

1

LM331

Select R = [(Vg — 3V)/3V]
Sh X 10 k2
& BBk 1%t *Use stable components with
5 low temperature coefficients
—t Cy
0.01 uf*

12k £1%*
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ADJUST
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FIGURE 2. Adding a Cascade Transistor to the LM331’s Output Improves Nonlinearity to 0.006%
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FIGURE 3. The Op Amp on This F/V Converter’s Output Acts as a Buffer as Well as a 2-Pole Fiiter
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Dealing with F/V Converter Ripple

Voltage ripple on the output of F/V converters can present
a problem, and the chart shown in Figure A indicates exactly
how big a problem it is. A simple, slow, RC filter exhibits low
ripple at all frequencies. Two-pole filters offer the lowest
ripple at high frequencies and provide a 30-times-faster step
response than RC devices.

To reduce a circuit’s ripple at moderate frequencies, howev-
er, you can cascade a second active-filter stage on the F/V
converter's output. That circuit's response also appears in
Figure A and shows a significant improvement in low-ripple
bandwidth over the single-active-filter configuration, with
only a 30% degradation of step response.

Figures B and C show filter circuits suitable for cascading.
The inverting filter in Figure B requires closely matched re-
sistors with a low TC over their temperature range for best
accuracy. For lowest DC error, choose R6 = R2 +
(Rin|IRF). This circuit’s response is

—Vout/ViN=n/(1+(Rr+R2+nR2)C4p + RgR2C3C4p2).

where n = DC gain. If Ry = Rpandn = 1,
—VouT/ViN=1/(1 +(Rr + 2R2)C4p + RFR2C3C4p2).

* . USING 2PDLE ACTIVE
F.".T[R PER FIE.UR[ 3
\ o+ USING SIMPLE 100 k2 -1 uF
\ FILTER PER FIGURE 1
100 2 USING TW0 2¢0LE ACTIVE T
- FILTERS CASCADED
2 \ PP
o - \.& De . .-
~ 10 Y “JpP
[ A NP
s — e e
\ yRMS
1 -— -—
N P
sows NGF
0.1
0.01 0.1 1 10 100

FREQUENCY (kHz)
TL/H/8741-4
FIGURE A. Output-Ripple Performance of Several
Different F/V Converter Configurations
Illustrates the Effect of Voltage Ripple
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FIGURE B. You Can Cascade This 2-Pole Inverting
Filter onto an F/V Converter’s Output
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FIGURE C. This 2-Pole Noninverting Filter Suits
Cascade Requirements on F/V Converter Outputs
The circuit shown in Figure C does not require precision
passive components, but for best accuracy, choosing an A1
with a high CMRR is critical. An LM308A op amp’s 96 dB
minimum CMRR suits this circuit well, but an LM358B's 85
dB typical figure also proves adequate for many applica-

tions. Circuit response is
Vout/ViN = 1/(1 + (R1 + R2) C2p + R1R2C1C2p2).
For best results, choose R3 = R1 + R2.

Components Determine Response
The specific response of the circuit in Figure 3 is
Vout/lout = RL/{(1 + (R + R2)C2p +
RLR2C1C2C2p2).

Making C2 relatively large eliminates overshoot and sine
peaking. Alternatively, making C2 a suitable fraction of C1
(as is done in Figure 3) produces both a sine response with
0 dB to 1 dB of peaking and a quick real-time response
having only 10% to 30% overshoot for a step response. By
maintaining Figure 3’s ratio of C1:C2 and R2:R|, you can
adapt its 2-pole filter to a wide frequency range without tedi-
ous computations.

This filter settles to within 1% of a 5V step’s final value in
about 20 ms. By contrast, the circuit with the simple RC filter
shown in Figure 1 takes about 900 ms to achieve the same
response, yet offers no less ripple than Figure 3’s op amp
approach.

As for the other component in the 2-pole filter, any capaci-
tance between 100 pF and 0.05 uF suits C3 because it
serves only as a bypass for the 200 k( resistor. C4 helps
reduce output ripple in single positive power-supply systems
when VoyT approaches so close to ground that the op
amp’s output impedance suffers. In this circuit, using a tan-
taium capacitor of between 0.1 uF and 2.2 uF for C4 usually
helps keep the filter's output much quieter without degrad-
ing the op amp’s stability.
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Avoid Low-Leakage Limitations

Note that in most ordinary applications, this 2-pole filter per-
forms as well with 0.1 pF and 0.02 uF capacitors as the
passive filter in Figure 7 does with 1 uF. Thus, if you require
a 100 Hz F/V converter, the circuit in Figure 3 furnishes
good filtering with C1 = 10 uF and C2 = 2 pF, and elimi-
nates the 100 uF low-leakage capacitor needed in a pas-
sive filter.

Note also that because C1 always has zero DC voltage
across it, you can use a tantalum or aluminum electrolytic
capacitor for C1 with no leakage-related problems; C2, how-
ever, must be a low-leakage type. At room temperature, typ-
ical 1 uF tantalum components allow only a few nanoam-
peres of leakage, but leakage this low usually cannot be
guaranteed.

Compensating for Temperature Coefficients

F/V converters often encounter temperature-related prob-
lems usually resulting from the temperature coefficients of
passive components. Following some simple design and
manufacturing guidelines can help immunize your circuits
against loss of accuracy when the temperature changes.
Capacitors fabricated from Teflon or polystyrene usually ex-
hibit a TC of —110 +£30 ppm/°C. When you use such a
component for the timing capacitor in an F/V converter
(such as C in the figure) the circuit’s output voltage—or the
gain in terms of volts per kilohertz—also exhibits a —110
ppm/°C TC.

But the resistor-diode network (Rx, D1, D2) connected from
pin 2 to ground in the figure can cancel the effect of the
timing capacitor’s large TC. When Rx = 240 k{2, the current
flowing through pin 1 will then have an overall TC of 110
ppm/°C, effectively canceling a polystyrene timing capaci-
tor's TC to a first approximation. Thus, you needn't find a
zero-TC capacitor for Cy, so long as its temperature coeffi-
cient is stable and well established. As an additional advan-
tage, the resistor-diode network nearly compensates to zero
the TC of the rest of the circuit.

Bake it for a While

After the circuit has been built and checked out at room
temperature, a brief oven test will indicate the sign and the
size of the TC for the complete F/V converter. Then you
can add resistance in series with Ry, or add conductance in

parallel with it, to greatly diminish the TC previously ob-
served and yield a complete circuit with a lower TC than you
could obtain simply by buying low TC parts.

For example, if the circuit increases its full-scale output by
0.1% per 30°C (33 ppm/°C) during the oven test, adding
120 kQ in series with Rx = 240 kQ cancels the tempera-
ture-caused deviation. Or, if the full-scale output decreases
by —0.04% per 20°C (—20 ppm/°C), just add 1.2 MQ in
paraliel with Ry.

Note that to allow trimming in both directions, you must start
with a finite fixed TC (such as the —110 ppm/°C of Cy),
which then nominally cancels out by the addition of a finite
adjustable TC. Only by using this procedure can you com-
pensate for whatever polarity of TC is found by the oven
test.

You can utilize this technique to obtain TCs as low as 20

ppm/°C, or perhaps even 10 ppm/°C, if you take a few

passes to zero-in on the best value for Ry. For optimum

results, consider the following guidelines:

® Use a good capacitor for Cy; the cheapest polystyrene
capacitors can shift value by 0.05% or more per temper-
ature cycle. In that case, you would not be able to distin-
guish the actual temperature sensitivity from the hystere-
sis, and you would also never achieve a stable circuit.

® After soldering, bake or temperature-cycle the circuit (at
a temperature not exceeding 75°C in the case of polysty-
rene) for a few hours to stabilize ail components and to
relieve the strains of soldering.

¢ Do not rush the trimming. Recheck the room tempera-
ture value before and after you take the high tempera-
ture data to ensure a reasonably low hysteresis per cy-
cle.

* Do not expect a perfect TC at —25°C if you trim for 5
ppm/°C at temperatures from +25°C to 60°C. None of
the components in the figure’s circuit offer linearity much
better than 5 ppm/°C or 10 ppm/°C cold, if trimmed for a
zero TC at warm temperatures. Even so, using these
techniques you can obtain a data converter with better
than 0.02% accuracy and 0.003% linearity, for a £20°C
range around room temperature.

® Start out the trimming with Ry installed and its value near
the design-center value (e.g., 240 k2 or 270 k(2), so you

Vg= 18V
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68k
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istor Help Decrease an F/V Converter’s Temperature Coefficient
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will be reasonably close to zero TC; you will usually find
the process slower if you start without any resistor, be-
cause the trimming converges more slowly.

e If you change Ry from 240 kQ to 220 k{2, do not pull out
the 240 kQ part and put in a new 220 kQ resistor—you will
get much more consistent results by adding a 2.4 MQ
resistor in parallel. The same admonition holds true for
adding resistance in series with Rx.

e Use reasonably stable components. If you use an LM331A
(+50 ppm/°C maximum) and RN55D film resistors (each
+100 ppm/°C) for R|, Ry and Rg, you probably won't be
able to trim out the resulting +350 ppm/°C worst-case
TC. Resistors with a TC specification of 25 ppm/°C usually
work well. Finally, use the same resistor value (e.g., 12.1
kQ +1%) for both Rg and Ry; when these resistors come
from the same manufacturer’s batch, their TC tracking will
usually rate at better than 20 ppm/°C.

Whenever an op amp is used as a buffer (as in Figure 3), its
offset voltage and current (+7.5 mV maximum and +100
nA, respectively, for most inexpensive devices) can cause a
+17.5 mV worst-case output offset. If both plus and minus
supplies are available, however, you can easily provide a
symmetrical offset adjustment. With only one supply, you
can add a small positive current to each op amp input and
also trim one of the inputs.

Need a Negative Output?

If your F/V converter application requires a negative output
voltage, the circuit shown in Figure 4 provides a solution
with excellent linearity (+0.003% typical, £0.01% maxi-
mum). And because pin 1 of the LM331 always remains at 0
Vpg, this circuit needs no cascade transistor. (Note, howev-

er, that while the circuit’s nonlinearity error is negligible, its
ripple is not.)

The circuit in Figure 4 offers a significant advantage over
some other designs because the offset adjust voltage de-
rives from the stable 1.9 Vpg reference voltage at pin 2 of
the LM331; thus any supply voltage shifts cause no output
shifts. The offset pot can have any value between 200 k
and 2 MQ.

An optional bypass capacitor (C2) connected from the op
amp’s positive input to ground prevents output noise arising
from stray noise pickup at that point; the capacitance value
is not critical.

A Familiar Response

The circuit in Figure 4 exhibits the same 2-pole response—
with heavy output ripple attenuation—as the noninverting
filter in Figure 3. Specifically,

Vout/lout = Re/(1 + (R4 + Rg)Cép + R4REC3C4p2).

Here also, R5 = R4 + Rg = 200 kQ provides the best bias
current compensation.
The LM331 can handle frequencies up to 100 kHz by utiliz-
ing smaller-value capacitors as shown in Figure 5. This cir-
cuit increases the current at pin 2 to facilitate high-speed
switching, but, despite these speed-ups, the LM331’s 500
ppm/°C TC at 100 kHz causes problems because of switch-
ing speed shifts resulting from temperature changes.

To compensate for the device’s positive TC, the LM334
temperature sensor feeds pin 2 a current that decreases
linearly with temperature and provides a low overall temper-
ature coefficient. An Ry value of 30 k€ provides first-order
compensation, but you can trim it higher or lower if you need
more precise TC correction.
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6.8 1k 0.01 uF*
+1%*
| ﬁ_
> >
< <
> » -
<& 10k & 10k -
< a > 8
‘v‘i‘. ! d c3
c1
470 oF -.L— DLk
fin o—{ ( LM331 ) | I
Rg =
2 f 100k*
AAA~ - o
ouT
12 £1%° -L 3 R4 <:
= = xS ¢4
- < 0.02 uf
Rs ) |
r 3
5k*
GAIN 1
ADJUST 21 L
AAA S
- vV < ™
OFFSET <
ADJUST
>
5] —r;b RS
0.001 uf <& 200k
b *Use stable components with
e low temperature coefficients

-
- TL/H/8741-8
FIGURE 4. In This F/V Circuit, the Output-Buffer Op Amp Derives its
Offset Voltage from the Precision Voitage Source at Pin 2 of the LM331
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Detect Frequencies Accurately

Using an F/V converter combined with a comparator as a
frequency detector is an obvious application for these devic-
es. But when the F/V converter is utilized in this way, its
output ripple hampers accurate frequency detection, and
the slow filter frequency response causes delays.

If a quick response is not important, though, you can effec-
tively utilize an LM331-based F/V converter to feed one or
more comparators, as shown in Figure 6. For an input fre-
quency drop from 1.1 kHz to 0.5 kHz, the converter's output

responds within about 20 ms. When the input falls from 9
kHz to 0.9 kHz, however, the output responds only after a
600 ms lag, so utilize this circuit only in applications that can
tolerate F/V circuits’ inherent delays and ripples.

Author’s Biography

Bob Pease is a staff scientist in the Advanced Linear Inte-
grated Circuit Group at National Semiconductor Corp., San-
ta Clara, CA. Holder of four patents, he earned a BSEE from
MIT. Bob lists tracking abandoned railroad roadbeds and
designing V/F converters as hobbies.
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FIGURE 5. An LM334 Temperature Sensor Compensates for the F/V Circuit’s Temperature Coefficient
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Versatile Monolithic V/Fs
Can Compute as Well as
Convert with High
Accuracy

The best of the monolithic voltage-to-frequency (V/F) con-
verters have performance that's so good it equals or ex-
ceeds that of modular types. Some of these ICs can be
designed into quite a variety of circuits because they’re no-
tably versatile. Along with versatility and high performance
come the advantages that are characteristic of all V/F con-
verters, including good linearity, excellent resolution, wide
dynamic range, and an output signal that's easy to transmit
as well as couple through an isolator.

One of the recently introduced monolithic types, the LM131,
has both high performance and a design that's rather flex-
ible. For instance, it can compute and convert at the same
time; the computation is a part of the conversion. Among
other functions, it can provide the product, ratio and square
root of analog inputs.

This IC has an internal reference for its conversion circuitry
that's also brought out to a pin, so it's available to external
circuits associated with the converter. Not surprisingly, it
turns out that any deviations of the reference, due to pro-
cess variations and temperature changes have equal and
opposite effects on the scale factors of the converter and
the external circuitry. (This presumes, of course, that the
scale factor of the external circuitry is a linear function of
voltage.)

PRECISION RELAXATION OSCILLATOR
Before looking at some applications, quickly take a look at
the basic circuit of an LM131 V/F converter (Figure 1). Basi-

cally, this IC, like any V/F converter, is a precision relaxation
oscillator that generates a frequency linearly proportional to

National Semiconductor
Appendix D
Robert A. Pease

the input voltage. As might be expected, the circuit has a
capacitor, C;, with a sawtooth voltage on it. Generally
speaking, the circuit is a feedback loop that keeps this ca-
pacitor charged to a voltage very slightly higher than the
input voltage, V|N. If V) is high, C discharges relatively
quickly through Ry, and the circuit generates a high frequen-
cy. If Viy is low, C discharges slowly, and the converter
puts out a low frequency.

When C|_ discharges to a voltage equal to the input, the
comparator triggers the one-shot. The one-shot closes the
current switch and also turns on the output transistor. With
the switch closed, current from the current source recharg-
es Ci to a voltage somewhat higher than the input. Charg-
ing continues for a period determined by Rt and Cr. At the
end of this period, the one-shot returns to its quiescent state
and C, resumes discharging.

Resistor Rg sets the amount of current put out by the cur-
rent source. In fact, the current in pin 1, with the switch on,
is identical to the current in pin 2. The latter pin is at a
constant voltage (nominally 1.90V), so a given resistor value
can set the operating currents. When connected to a high
impedance buffer, this pin provides a stable reference for
external circuits.

The open-collector output at pin 3 permits the output swing
to be different from the converter's supply voltage, if the
load circuit requires. The supplies don’t have to be sepa-
rate, however, and both the converter and its load can use
the same voltage.
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FIGURE 1. A voltage-to-frequency converter such as this is a relaxation oscillator with a frequency proportional
to the input voltage. Current puises keep C ’s average voltage slightly greater than the input voltage.

Reprinted from ELECTRONIC DESIGN-December 6, 1978 © 1979 Hayden Publishing Co., Inc.
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STEADY AS SHE GOES

By far the simplest of the circuits that make use of the refer-
ence output voltage from the LM131 is one that simply ties
this output pin right back to the signal input. This connection
is just a V/F converter with a constant input, which makes it
a constant-frequency oscillator. Even with this simple circuit
(Figure 2), variations in the reference voltage have two op-
posite effects that cancel each other out, so the circuit is
particularly stable. In this type of circuit, the temperature-de-
pendent internal delays tend to cancel as well, which isn’t
true of relaxation oscillators based on op amps or compara-
tors.

Vs
fog = 19V Rs
OUT = Yeov “ R, " 1ARCr &
p ol
1 >
2.2RTCt F:f“: Ry
C. =10 xCy <
S son
b3 %R
*Stable components with 8
low tempco 1 5
I Pl [

o oy
LM331 I
7 ——
S 15k =
S -y 2 3
RL WL o OUTPUT
< 15k Rg )
>
1 S i1y | ‘:‘,“ 2

I—

TL/H/8742-2

FIGURE 2. A V/F converter is a stable-frequency

oscillator if its input is connected to its reference
output. If the reference voltage changes, the
effects of the change cancel out, so the frequency
doesn’t change. With low tempco components for Rt
and Cr, frequency stability vs temperature can be
as good as +25 ppm/°C.

Resistors R and Rg are best taken from the same batch.
(RL must be larger than Rg, so it's made up of two resis-
tors.) By doing this, the tempco tracking, which is the critical
parameter, is five to ten times better than it would be if R_
were a single 30.1 ke resistor.

Although the reference output, pin 2, can't be loaded with-
out affecting the converter’s sensitivity, the comparator in-
put, pin 7, has a high impedance so this connection does no
harm.

Frequency stability is typically +25 ppm/°C, even with an
LM331, which as a V/F converter is specified only to 150
ppm/°C maximum. From 20 Hz to 20 kHz, stability is excel-
lent, and the circuit can generate frequencies up to 120 kHz.

Although the simplest way of using the reference output is
to tie it back to the input, the reference can also be buffered
and amplified to supply such external circuitry as a resistive
transducer, which might be a strain gauge or a pot (Figure
3). As in the stable oscillator already described, deviations
of the internal reference voltage from the ideal cause the
transducer's and the converter’s sensitivities to change
equally in opposite directions, so the effects cancel.

In this circuit, op amp A2 buffers and amplifies the constant
voltage at pin 2 of the converter to provide the 5V excitation
for the strain gauge. Amplifier A1, connected as an instru-
mentation amplifier, raises the output of the strain gauge to
a usable level while rejecting common-mode pickup.

A potentiometer-type transducer works just as well with this
circuit. Its wiper output takes the place of A1’s output as
shown at the X.

The reference terminal is both a constant voitage output
and a current programming input. So far, it's been shown
simply with one or two resistors going to ground. It is, how-
ever, a full-fledged signal input that accepts a signal from a
current source quite well.

Vs Vi
Q 8V T0 20V
*Stable components with low tempco < 2
. k

A1 should have low offset; LM308A, 1/2 LM358A, LF351B, or simifar :’

A2: General purpose, such as LF351, 1/2 LM358A or LM741 ooy P O 0uTPUT
F————————

|

| RiN"

] M < 681k

| ——— et ——— ] 3 Siw <

r e | < & 0.1k

| 1 1 < 5 <

| ) | b3

| POT 1 | L

‘TRANSDUCER ] - 3% 7 0.01 uF*
1 At N LM131/LM331 ! I >
1 v = lm B
- -
1 1 1 ' 2 Tiev Az
] | | ! REF 1]

| | | | [ 1 g 1 < .

by (I SN R ! g |
I $a 14uF - 1 Qe
| | STRAIN < : | 1 uF b3

GAUGE < Sk*
> a0k*

| | | S SCALE $

1 | a FACTOR &

1 | R AU S Sp—— TRIM

L —_— > ? 3 ¢

TL/H/8742-3

FIGURE 3. In this strain-to-frequency converter, the converter’s reference excites the strain gauge (or the optional pot)
through buffer amp A2. This makes the circuit insensitive to changes in the reference voltage.




This extra input is what enables the LM131 to compute
while converting. For instance, it will convert the ratio of two
voltages to a frequency proportional to the ratio (Figure 4).
The circuit is still a V/F converter, but has two signal inputs,
both of them going to rather unorthodox places at that. The
inputs, shown as voltages, are converted to currents by two
current pumps (voltage-to-current converters). Of course, if
currents of the proper ranges are available, the current
pumps aren’t needed. The left current pump, which includes
Q1 and A1, determines how fast capacitor C| discharges
between output pulses. The other pump sets the current in
the reference circuit to control the amount of recharge cur-
rent when the one-shot fires. Tying the comparator input,
pin 7, to the reference pin sets the comparator’s trip point at
a constant voltage.

*Stable components with low tempco Vs
A1, A2 should have low offset and low bias Q
current: LM351B, LM358A, LF353B, or similar
Q1, Q2: 2N3565, 2N2484, or similar high 8

>
L:’u'
P
tour = 1 B e B
2 A 1.1R1Ct . m"‘:buzv
V1 <
= = X 10kHz 1
v2 .5_4
-

SIGNAL
INPUTS

v2
0.1V 70 10V

Vi
oV T0 -0V
TL/H/8742-4
FIGURE 4. This circuit converts the ratio of two
voltages to an equivalent frequency without a
separate analog divider. Full-scale output
is 15 kHz. The two op amp circuits convert the
inputs to proportional currents.
To get an idea of how the circuit works, consider first the
effect of, for instance, tripling the input voltage, V1. This
make C;_discharge to the comparator trip point three times
as fast, so the frequency triples. Next, consider a given
change, such as doubling the voltage at the other input, V2.
This doubles the recharge current to Ci_ during the fixed-
width output pulse, which means Ci’s voltage increases
twice as much during recharging. Since the discharge into
Q1 is linear (for V1 constant), it takes twice as long for C_ to
discharge-~the frequency becomes half of what it was be-
fore.

Although the current pumps in Figure 4 must have negative
inputs, rearranging the op amps according to Figure 5
makes them accept positive inputs instead. Trimming out
the offset in the op amp gives the ratio converter better

linearity and accuracy. The trim circuit in Figure 5a needs
stable positive and negative supplies for the offset trimmer,
while the one in Figure 5b needs only a stable positive sup-
ply. Unmarked components in Figure 5b are the same as in
Figure 5a.

CURRENT

ouTPUT

100 LA
FULL-SCALE

50k TO 1M
OFFSET ADJ

a TL/H/8742-5

R1, R2, R3: Stable components
with fow tempco

Q1: 8 2 330

VWA—O

A
\A4

Vs 4
50 T0 18
OFFSET ADJ

b TL/H/8742-6
FIGURE 5. These current pumps adapt the converter
circuits in Figures 4 and 6 to positive input voltages.
Optional offset trimming improves linearity and
accuracy, especially with input signals that have a
wide dynamic range.

Note that the full-scale range of the current pumps can be
changed by varying the value of the input resistor(s). If ei-
ther of these pump circuits is used with a single positive
supply, the op amp should be a type such as 1/2 LM358 or
1/4 LM324, which has a common-mode range that includes
the negative-supply bus.

COMPUTING SQUARE ROOTS IMPLICITLY

An analog divider computes the square root of a signal
when the signal is fed to the divider's numerator input, and
the output is fed back to the divider’s denominator input.

weut ouT = O'_gT
ANALOG
INPUT] DIVIDER O 0UTPUT ouT? = IN
ouT = JIN

TL/H/8742-7

This type of computation is called implicit, because the end
result of the computation is only implied, not explicitly stated
by the equation that defines the computation.

In the implicit square root computing loop described in the
text, a V/F converter serves as a divider. Since it’s a con-
verter, its inputs are voltages (or currents), but its output is a
frequency. To connect its output back to one of its inputs so
it will compute a square root means that its output frequen-
cy must be converted back to a voltage. This is taken care
of by the frequency-to-voltage converter.
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Versatile Monolithic V/Fs Can Compute as Well as Convert with High Accuracy

Appendix D

Vin
INPUT O=—bp]

V/F
CONVERTER/
DIVIDER

FN
CONVERTER
TL/H/8742-8

Doing some algebraic substitution shows that:
fout = k3 X Wiy

v
oUTPUT fout = k1 X N
O FREQUENCY Vx
=four Vx = k2 X fout

where
k3 = Jk1/k2.
IT'LL TAKE RECIPROCALS

Taking the ratio of two inputs—in other words, doing divi-
sion—is only one of the mathematical operations that can
be combined with converting. Another one is a special case
of division, which is taking reciprocals. In this instance, the
numerator (V1 in Figure 4) is held constant, and the denomi-
nator, V2, changes over a wide range such as one or two
decades. In this case, since the frequency is the reciprocal
of the input, the period of the output is proportional to the
input. When operated this way, the V2 current pump should
have an offset trimmer. A constant current circuit is still
needed to discharge capacitor C;.

Nonlinearity (that is, deviation from the ideal law) with an
LM331 is a little better than 1% for 10 kHz full-scale. In-
creasing Ct to 0.1 uF reduces the nonlinearity to below
0.2% while decreasing full-scale output to 1 kHz.

Two inputs can also be multiplied while converting to a fre-
quency. The multiplying converter circuit (Figure 6) that

does this has a more elaborate current pump than the ratio
circuit of Figure 4. This pump is really two cascaded circuits;
it includes op amps A2 and A3 as well as transistors Q2 and
Q3. Current from this pump goes to pin 5 to control the one-
shot’s pulse width. (This current ranges from 13.3 pA to
1.33 mA))

As in the ratio circuit, the left current pump controls the
discharge rate of C|.. The other pump, however, controls the
one-shot’s pulse width to vary the amount that C; charges
during the pulse. If the V2 input is close to zero, the current
from the pump into pin 5 is small, and the one-shot devel-
ops a wide pulse. This allows C| to charge quite a bit. It
takes a relatively long time for C;_to discharge to the com-
parator threshold, so the resulting frequency is low. As V2
goes negative (a greater absolute magnitude), the output
frequency rises. Op amp A3 must have a common-mode
range that extends to the positive supply voltage, which the
specified types do.

Multiplying, dividing and converting can all be done at the
same time by combining the V2 input current pump of Figure
4 with the circuit of Figure 6. If a scale-factor trimmer is
needed, R4 in Figure 6 is a good choice, better than input
resistors such as R1 or R2. Using the latter as trimmers
would make the input impedance of the circuit change with
trim setting.

Two V/F converter ICs along with some extra circuitry will
take the square root of a voltage input. Square root func-
tions are used mostly to simulate natural laws, but also to
linearize functions that have a natural square-law relation-
ship. One of the latter is converting diffential pressure to
flow, where flow is proportional to the square root of differ-
ential pressure.

*Stable components with low tempco Vs O
V1 V2

f =—X=——xX

ouT = Tov X Tov < 10Kz

Vs = 15V, regulated and stable

15.0
R3 = ( ov X 7500 with +1% tolerance
+Vg

A1, A2: Eachis 1/2 LM158/LM358A or 1/2 LF353B
A3: LM301A, LM307, or LF13741 only

Q1, Q2: High B such as 2N2484, 2N3565 or similar
Q3: High 8 such as 2N4250, 2N3906 or similar

CL

Sy @ Sht
S an ok
Sy € < +%*
10k
ARk !
A\ A4
30 pF

1uf

LM131/LM331

0.01 uF*
22k
= m—o vy
3 QuTPUT

12k
1%

TL/H/8742-9

FIGURE 6. The product of two input voltages becomes an equivalent frequency in this converter. A current pump that
includes op amps A2 and A3 controls the pulse duration of the converter’s internal one-shot.




VERSATILE PIN FUNCTIONS GIVE DESIGN
FLEXIBILITY

Two features—the reference and the one-shot—of the
LM131/LM331 V/F converter deserve a closer look be-
cause they are the key to its versatility. The simplified sche-
matic of the chip, shown here along with a transducer and
the components needed for a basic V/F converter, will help
to illustrate how these features work.

The reference circuit, connected to pin 2, is both a constant
voltage output and a current setting, scale-factor control in-
put. The constant voltage can supply external circuitry, such
as the transducer, that feeds the converter’s input.

One great advantage of using the converter’s internal refer-
ence to supply the external circuitry is that any variation in
the reference voltage affects the sensitivities of the convert-
er and the external circuitry by equal and opposite amounts,
so the effects of the variation cancel.

While providing a constant voltage output, pin 2 also pro-
vides scale-factor, or sensitivity control for the converter.
Current supplied to an external circuit by this terminal
comes from the supply (Vg) through the current mirror and
the transistor. The op amp drives this transistor to hold pin 2
at a constant voltage equal to the internal reference, which
is nominally 1.9V.

The current mirror provides a current to the switch that's
essentially identical to that in pin 2. This means that a

resistor to ground or a signal from a current source will set
the current that is switched to pin 1. In most circuits, a ca-
pacitor goes from pin 1 to ground, and the switched current
from this pin recharges the capacitor during the pulse from
the one-shot.

The one-shot circuit is somewhat like the well known 555
timer's circuit. In the quiescent state, the reset transistor is
on and holds pin 5 near ground. When pin 7 becomes more
positive than pin 6 (or pin 6 falls below pin 7), the input
comparator sets the flip-flop in the one-shot.

The flip-flop turns on the current limited output transistor
(pin 3) and switches the current coming from the current
mirror to pin 1. The flip-flop also turns off the reset transis-
tor, and the timing capacitor Cy starts to charge toward Vg.
This charge is exponential, and Ct's voltage reaches 2/3 of
Vs in about 1.1 RTCr time constants. (The quantity 1.1 is
—In 0.333..) When pin 5 reaches this voltage, the one-
shot's comparator resets the flip-flop which turns off the
current to pin 1, discharges Cr, and turns off the output
transistor.

If the voltages at pins 6 and 7 still call for setting the flip-flop
after pin 5 has reached 2/3 Vg, internal logic not shown in
this simplified diagram overrides the reset signal from the
one-shot's own comparator, and the flip-flop stays set. In
this instance, Ct continues charging past 2/3 Vs.
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TL/H/8742-10
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Versatile Monolithic V/Fs Can Compute as Well as Convert with High Accuracy

Appendix D

ROOT LOOP COMPUTES

The circuit in Figure 7 is an implicit loop (see *‘Computing
Square Roots Implicitly”) that uses IC1 as a voltage-to-fre-
quency converter and divider, and IC2 as a frequency-to-
voltage converter. The F/V converter, IC2, and the current
pump that includes A1 and the transistor return the output of
IC1 to its denominator input. A relatively elaborate feedback
circuit like this is needed to convert IC1’s frequency output
back to a current for its denominator input.

Looking at the circuit in more detail, IC1 puts out a frequen-
cy proportional to Vy divided by the feedback voltage, V.
The current |y is generated by a current pump that has Vy
as its input (Figure 5a). To develop the feedback IC2 con-
verts the pulse output from IC1 into standard width precision
current pulses that charge capacitor C1. This capacitor inte-
grates them into the voltage Vy, thus closing the loop.

Op amp A2, serving as a comparator, ensures that the cir-
cuit will always start and continue running. If Vi suddenly
jumps to a higher voltage, one pulse from the one-shot in
IC1 may not be enough to recharge C_ to a voltage higher
than the input. In such a case, the IC’s internal logic keeps
its internal current switch turned on, and the voltage on C_
ramps up until it exceeds the input. During this time, howev-
er, IC1's output hasn’t changed state. (Such a temporary
hang-up isn’t unique to this circuit, and equivalent things
happen to other V/Fs besides the LM131/LM331.) What is
worse here, though, is that the lack of pulses to IC2 means
that Vx and |4 decay. The recharging current, l, is the same
as |4, so it not only becomes progressively harder for the
voltage on C to catch up with the input, it may even fail to
catch up entirely if (I2XRL) is less than the input voltage.

As a sign of this condition, when the converter hangs up,
the one-shot's timing node, pin 5, continues to charge well
beyond its normal peak of 2/3 Vg. As soon as the compara-
tor A2 detects this rise, it pulls up voltage Vy, current |4
increases, and the loop catches its breath again.

After all these nonlinear computations, this last circuit is
about as linear as it can be. It's a precision, ultralinear V/F
converter based on an LM331A (Figure 8) that has several
detail refinements over previous V/F converter circuits.
Choosing the proper components and trimming the tempco
give less than 0.02% error and 0.003% nonlinearity for a
+20°C range around room temperature.

This circuit has an active integrator, which includes the op
amp and the integrating feedback capacitor, Ck. The inte-
grator converts the input voltage, which is negative, into a
positive-going ramp. When the ramp reaches the converter
IC’s comparator threshold, the one-shot fires and switches
a pulse of current to the integrator’s summing junction. This
current makes the integrator’s output ramp down quickly.
When the one-shot times out, the cycle repeats.

There are several reasons this converter circuit gives high
performance:

* A feedback limiter prevents the op amp from driving pin 7
of the LM331A negative. The limiter circuit arrangement
bypasses the leakage through CR5 to ground via R5, so
it won’t reach the summing junction. Bypassing leakage
this way is especially important at high temperatures.
The offset trimming pot is connected to the stable 1.9V
reference at pin 2 instead of to a power supply bus that
might be unstable and noisy.
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FIGURE 7. Two converter ICs generate an output frequency proportional to the square root of the input voltage. The
circuit is an implicit loop in which IC1 serves as a divider and V/F converter. This IC’s output goes back to its
denominator input through F/V converter IC2 to make the circuit output equal the input’s square root.
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FIGURE 8. An ultraprecision V/F converter, capable of better than 0.02% error and 0.003% nonlinearity for a
+20°C range about room temperature, augments the basic converter with an external integrator.

o A small fraction (180 pV, full-scale) of the input voltage
goes via R4 to the Rg network, which improves the non-
linearity from 0.004% to 0.002%.

® Resistors R2 and R3 are the same value, so that resis-
tors such as Allen-Bradley type CC metal-film types can
provide excellent tempco tracking at low cost. (This
tracking is very good when equal values come from the
same batch.) Resistor R1 should be a low tempco metal-
film or wirewound type, with a maximum tempco of
+10 ppm/°C or =25 ppm/°C.
In addition, Ct should be a polystyrene or Tefion type. Poly-
styrene is rated to 80°C, while Tefion goes to 150°C. Both
types can be obtained with a tempco of —110 +30 ppm/°C.
Choosing this tempco for Ct makes the tempco, due to Cr,
of the full-scale output frequency 110 ppm/°C.
Using tight tolerance components results in a total tempco
between 0 ppm/°C and 220 ppm/°C, so the tempco will
never be negative. The voltage at CR1 and Ry has a temp-
co of —6 mV/°C, which can be used to compensate the
tempco of the rest of the circuit. Trimming Ry compensates
for the tempco of the V/F IC, the capacitor, and all the
resistors.
A good starting value for selecting Ry is 430 kQ2, which will
give the 135 p.A flowing out of pin 2 a slope of 110 ppm/°C.
If the output frequency increases with temperature, a little
more conductance should be added in parallel with Ry.

When doing a second round of trimming, though, note that a
resistor of, say, 4.3 MQ, has about the same effect on temp-
co when shunted across a 220 k) resistor that it does when
shunted across one of 430 k2, namely, —11 ppm/°C. This
technique can give tempcos below *20 ppm/°C or even
+10 ppm/°C.

Some precautions help this procedure converge:

. Use a good capacitor for Ct. The cheapest polystyrene
capacitors wilt shift in value by 0.05% or more per tem-
perature cycle. The actual temperature sensitivity would
be indistinguishable from the hysteresis, and the circuit
would never be stable.

. After soldering, bake and/or temperature-cycle the circuit
(at a temperature not exceeding 75°C if Cr is polystyrene)
for a few hours, to stabilize all components and to relieve
the strains from soldering.

. Don't rush the trimming. Recheck the room temperature
value, before and after the high temperature data are tak-
en, to ensure that hysteresis per cycle is reasonably low.

4. Don't expect a perfect tempco at —25°C if the circuit is
trimmed for +5 ppm/°C between 25°C and 60°C. If it's
been trimmed for zero tempco while warm, none of its
components will be linear to much better than 5 ppm/°C
or 10 ppm/°C when it's cold.

The values shown in this circuit are generally optimum for

+12V to =16V regulated supplies but any stable supplies

between *4V and +22V would be usable, after changing a

few component values.

—y
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w
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Standard Resistance Values

Appendix H

National
Semiconductor

APPENDIX H: Standard Resistance Values

The standard 1% (and 1,%) resistor values are recommended for ease of design and for best availability when designing
precision analog circuits.

Standard Resistance Values for the 10-to-100 Decade

Resistance Tolerance (+ %)

0.1 0.1 0.1 0.1 0.1 0.1

0.25 1 2 | 0.25 1 2 | 025 1 2 | 025 1 2 | 025 1 2 | 025 1 2

0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5

100 100 10| 147 147 — (215 215 — | 316 316 — |464 46.4 — | 681 68.1 68
10.1 - — | 149 —_ — | 218 —_ — | 320 _ — | 470 —_ 47 | 69.0 —_ —
102 102 — | 150 150 15221 221 — | 324 324 — |475 475 — | 698 69.8 —
10.4 _ — | 15.2 —_ — | 223 — 22 | 32.8 - — | 481 — — | 70.6 — —
105 105 — | 154 154 — | 226 226 — |332 33.2 333|487 487 — | 715 715 —
10.6 - — | 156 —_ — | 229 _ — | 33.6 — — | 493 — — | 723 —_ —
107 107 — | 158 158 — | 232 23.2 — |340 340 — | 499 499 — |732 73.2 —
10.9 — — | 16.0 —_ 16 | 234 —_ — | 344 —_ — | 50.5 - — | 7441 - —
110 110 11162 162 — | 237 237 — |348 348 — |511 511 51| 750 750 75
1.1 — — | 16.4 —_ — | 240 _ 24 | 35.2 —_ — | 51.7 - — | 759 _ —
113 11.3 — 165 165 — |243 243 — |357 357 — 523 523 — |768 768 —
1.4 —_ — | 16.7 — — | 24.6 — — | 361 _ 36 | 53.0 — — | 777 — —
115 115 — | 169 169 — | 249 249 — |365 365 — 536 536 —|787 787 —
1.7 - — | 17.2 — — | 25.2 —_ — | 37.0 —_ — | 54.2 — — | 79.6 — —
118 118 — | 174 174 — | 255 255 — |374 374 — |549 549 — | 806 80.6 —
12.0 — 12 | 17.6 — — | 258 — — | 37.8 - — | 56.6 —_ - | 81.6 — -
121 4214 — | 178 178 — 261 26,1 — |383 383 — |562 856.2 56| 825 825 82
123 —_ — | 18.0 — 18 | 264 —_ — | 38.8 . — | 56.9 - — | 83.5 _— -
124 124 — | 182 18.2 — | 267 267 — |392 39.2 39|576 576 — |845 845 —
12.6 —_ — | 18.4 — — | 271 —_ 27 | 39.7 - — | 58.3 - — | 85.6 - —
127 12,7 — | 187 18.7 — | 274 274 — | 402 40.2 — | 590 59.0 — |86 86.6 —
12.9 _ — | 18.9 —_ — | 27.7 -_— — | 40.7 - — | 59.7 —_ — | 87.6 - —_
130 13.0 13| 192 19.1 — | 280 28,0 — |412 41.2 — | 604 604 — |887 887 —
13.2 — — | 193 — — | 28.4 —_ — | 41.7 —_ — | 61.2 - — | 89.8 — -
133 13.3 — | 196 196 — | 287 287 — |422 422 — |619 619 62| 9.9 909 91
13.5 - — | 198 —_ — | 291 — — | 427 —_ — | 62.6 - — | 92.0 —_ —
187 13.7 — | 200 200 20 (294 294 — |432 43.2 43 |/634 634 — | 931 ©3.1 —
13.8 — — | 20.3 —_ — | 208 —_ — | 437 — — | 64.2 — — | 94.2 — —
140 140 — (205 205 — (301 30.1 30| 442 44,2 — | 649 64.9 — | 953 953 —
14.2 — — | 20.8 — — | 305 — — | 448 —_— — | 65.7 — — | 96.5 — -
143 143 — | 210 210 — (309 309 — | 453 453 — | 665 66.5 -— | 976 97.6 —
14.5 — — | 213 — — | 312 — — | 45.9 —_ — | 67.3 - — | 98.8 — —

Standard Resistance Values are obtained from the Decade Table by multiplying by multiples of 10. As an example, 12.1 can
represent 1.21$, 12.1Q, 1210, 1.21 kQ, etc.
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