## Complementary-pair dc/dc converter simultaneously doubles, inverts supply voltage

Ajoy Raman, Bangalore, India

The circuit in this Design Idea uses an intrinsic property of collector voltages in one-transformer push-pull dc/ dc converters: They have a swing of twice the supply voltage. When you implement these circuits with an NPN device, the collector swings from 0V to twice the supply-rail voltage. When you use PNP devices, the collector voltage swings from  $V_{\rm CC}$  to an equal amplitude but negative  $V_{\rm CC}$  (**Reference 1**). In this circuit, a complementary pair of transistors, simultaneously implementing a voltage doubler and a negative-voltage source, drives the two windings of the transformer.

One of the windings of transformer  $T_1$  connects to ground, driven by PNP transistor  $Q_1$  from  $V_{\rm CC}$  (Figure 1). The other winding of  $T_1$  connects to  $V_{\rm CC}$ , and NPN transistor  $Q_3$  drives the lower end to ground.  $Q_2$  and  $Q_4$  drive  $Q_1$  and  $Q_3$ , respectively. The collectors of  $Q_3$  and  $Q_1$  through resistors  $R_4$  and  $R_3$  provide cross-coupled drives to  $Q_2$  and  $Q_4$ .  $R_1$  and  $R_2$  form the collector loads for  $Q_2$  and  $Q_4$ .  $D_1$  and  $D_4$  prevent the reverse breakdown of



Figure 1 Cross-coupled regeneration drives switching transistors  $Q_1$  and  $Q_3$  and the windings of the transformer. The resulting voltage swings at their collectors are rectified to twice the positive and the negative power-supply rails.

 $Q_1$  and  $Q_3$ . The drive configuration and the transformer's winding polarity provide regenerative feedback and self-oscillation so that the transformer alternates between positive and negative saturation, inducing voltages to drive transistors  $Q_1$ and  $Q_3$  alternately on and off.

A square wave with an amplitude twice  $V_{CC}$  is generated at the collector of  $Q_1$ , which swings nominally from  $V_{CC}$  to the equal but negative output voltage. Simultaneously, a square wave with an amplitude twice the supply-rail voltage is generated at the collector of  $Q_3$ , which swings nominally from 0V to twice the supply-rail voltage.

 $D_2$  and  $C_2$  provide half-wave rectification and filtering of the  $Q_1$  collector waveform generating the negative voltage output. Half-wave rectification and filtering of the  $Q_3$  collector waveform using  $D_3$  and  $C_3$  generate the doubler's output.

 $T_1$  is 200 turns of bifilar AWG 37 enameled wire wound 1-to-1 on a ferrite toroid core (**references 2** and **3**). **Table 1** shows the experimental results with the voltage doubler and negative-voltagegeneration circuit operating over an input voltage of 5 to 30V, demonstrating operation over a wide input voltage range and providing power at both outputs simultaneously at moderate efficiency. **EDN** 

## REFERENCES

Raman, Ajoy, "Voltage doubler uses inherent features of push-pull dc/dc converter," *EDN*, Aug 16, 2007, pg 72, http://bit.ly/GTlveF.

"T503125," Ceramic Magnetics Inc, http://bit.ly/L3FzeW.

MN60 manganese-zinc material specs, Ceramic Magnetics Inc, http://bit.ly/KoyO4Y.

| TABLE T EXPERIMENTAL RESULTS |                          |                    |                           |                            |                            |                             |                       |                        |                   |
|------------------------------|--------------------------|--------------------|---------------------------|----------------------------|----------------------------|-----------------------------|-----------------------|------------------------|-------------------|
| Input<br>voltage<br>(V)      | Input<br>current<br>(mA) | Frequency<br>(kHz) | Voltage<br>doubler<br>(V) | Current<br>doubler<br>(mA) | Negative<br>voltage<br>(V) | Negative<br>current<br>(mA) | Input<br>power<br>(W) | Output<br>power<br>(W) | Efficiency<br>(%) |
| 5                            | 253                      | 2.1                | 7.68                      | 81.7                       | -3.41                      | -72.5                       | 1.27                  | 0.87                   | 69                |
| 9.97                         | 360                      | 4.05               | 17.33                     | 115.5                      | -8.65                      | -86.5                       | 3.59                  | 2.75                   | 76.6              |
| 15                           | 420                      | 6.02               | 27.2                      | 136                        | -13.58                     | -90.5                       | 6.3                   | 4.93                   | 78.2              |
| 19.4                         | 400                      | 7.37               | 34.9                      | 145.4                      | -18.33                     | -61.1                       | 7.76                  | 6.19                   | 79.8              |
| 25                           | 340                      | 10.47              | 48.5                      | 97                         | -23.8                      | -79.3                       | 8.5                   | 6.59                   | 77.5              |
| 30                           | 410                      | 12.07              | 56.5                      | 113                        | -27.6                      | -92                         | 12.3                  | 8.92                   | 72.5              |