Dual-Frequency Oscillator Design

By LEONARD KLIENBERG, Research \& Development Lab, Gulton Industrles, Inc., Metuchen, N. J.

Oscillators capable of oscillating at two different frequencies simultaneously provide outputs that are a linear addition of two sine waves. Frequency ratios of $20: 1$ have been obtained, and the two output frequencies need not be harmonically related.

Theory

Qualitative operation of the oscillators is relatively simple to understand, but quantitatively they are quite difficult. Synthesis of the circuit is much simpler than analysis.
The generalized dual-frequency oscillator configuration is shown in Fig. 1A. Neglecting effects of the active element, oscillator frequency is $Z_{1}+Z_{2}+Z_{3}=0$. The circuits in Fig. 1B and 1C are simultaneous dual-frequency oscillators.

The circuit shown in Fig. 2A is a conventional Hartley oscillator and that in Fig. 2B is a Colpitts oscillator. If capacitors and inductors were interchanged, the Hartley oscillator would become a Colpitts oscillator and the Colpitts oscillator would become a Hartley oscillator. Two networks capable of appearing capacitive at one fre-

$P=P L A T E, C=$ COLLECTOR G=GRID, B= 8ASE $K=$ CATHODE,$E=$ EMITTER (A)

(B)

(C)

FIG. 1-Generolized dual-frequency oscillator is shown of (A). Lower of two frequencies is produced by Hortley oscillator of (B) and by Colpitts oscillotor of (C)
quency and inductive at another are shown in Fig. 3.

Design

Assume two properly designed single-frequency oscillators, a Hartley and a Colpitts. Angular velocity ω_{1} of the Hartley oscillator is less than angular velocity ω_{2} of the Colpitts oscillator. A network configuration is required that appears as a Hartley oscillator at ω_{1} and as a Colpitts oscillator at ω_{2}. These conditions are satisfied in Fig. 1B.

At ω_{1}, network $L_{A} C_{A}$ appears as

Electrostatically Focused TWT

[^0]

FIG. 2-Hartley oscillator (A) and Colpitts (B)
L_{1}; and at ω_{2}, it appears as C_{2}. Network $L_{B} C_{n}$ appears as C_{1} at ω_{1} and L_{3} at ω_{2}. Network $L_{c} C_{c}$ appears as L_{2} at ω_{1} and as C_{3} at ω_{2}.

The equations for circuit values are:
$\left(-1 / \omega_{1} L_{A}\right)+\omega_{1} C_{A}=-1 / \omega_{1} L_{1}$ and $\left(-1 / \omega_{2} L_{4}\right)+\omega_{2} C_{4}=\omega_{2} C_{2} ;$ $\omega_{1} L_{B}-\left(1 / \omega_{1} C_{B}\right)=-1 / \omega_{1} C_{1}$ and $\omega_{2} L_{B}-\left(1 / \omega_{2} C_{B}\right)=\omega_{2} L_{3} ;$
$\left(-1 / \omega_{1} L_{c}\right)+\omega_{1} C_{C}=-1 / \omega_{1} L_{2}$ and $\left(-1 / \omega_{2} L_{C}\right)+\omega_{2} L_{C}=\omega_{2} C_{3}$.
The dual-frequency oscillator in Fig. 1C is for ω_{1} greater than $\omega_{\%}$. The equations are:

$$
\begin{aligned}
& \omega_{1} L_{D}-\left(1 / \omega_{1} C_{D}\right)=\omega_{1} L_{1} \text { and } \\
& \omega_{2} L_{D}-\left(1 / \omega_{2} C_{D}\right)=-1 / \omega_{2} C_{2} ; \\
& \left(-1 / \omega_{1} L_{E}\right)+\omega_{1} C_{E}=\omega_{1} C_{1} \text { and } \\
& \left(-1 / \omega_{2} L_{B}\right)+\omega_{2} C_{E}=-1 / \omega_{2} L_{n} ; \\
& \omega_{1} L_{F}-\left(1 / \omega_{1} C_{F}\right)=\omega_{1} L_{2} \text { and } \\
& \omega_{2} L_{F}-\left(1 / \omega_{2} C_{F}\right)=-1 / \omega_{2} C_{3} .
\end{aligned}
$$

The number of frequencies at which an oscillator can oscillate

" 500 SERIES" MINIATURE

 CIRCUITBREAKER

POSITIVE PROTECTION

Available in series, shunt and relay types, Airpax Miniature Magnetic Circuit Breakers are stocked in DC, 60 and 400 CPS models. Current ratings are from 0.05 to 10 amperes. Trip action can be instantaneous or delayed depending on the circuit requirement. These Circuit Breakers are also available in 2 and 3 gang assemblies, in any combination, for interlock-circuit protection.

Ask for Bulletins B-07 and B-16

CAMBRIDGE DIVISION
CAMBRIDGE, MARYLAND
simultaneously is not limited to two. Three single-frequency oscillators could also be combined to form a triple-frequency oscillator. It would combine a Hartley oscillator at ω_{1}, a Colpitts at ω_{2} and a Hartley at ω_{3}. Three-element networks would appear as C_{11} at ω_{1},

FIG. 3-Networks appear capacitive at one frequency and inductive at the other
L_{11} at ω_{2} and C_{m} at ω_{3}; or L_{m} at $\omega_{1}, C_{\mathrm{z}}$ at ω_{2} and L_{s} at ω_{3}.

In the dual-frequency oscillator, adjustment or control of either of its operating frequency is difficult because the value of each component in the circuit is a function of the two frequencies.

Thin-Film Memories

Each of 64 magnetic thin film dots an 2-inch square glass contains one piece of information. Minneapolis-Honeywell scientists have placed as many as 1,024 dots on same size glass haping to replace ferrite core memories like that shown at left

[^0]: One-wott twt is one of mony developments to be shown at the 1960 Internotionol IRE convention. Developed by Huggins Loborotories, it operotes over the range of 500 to 1,000 Mc with minimum smoll-signol goin of 28 db

