LED drivers minimize power dissipation

Fons Janssen, Maxim Integrated Products Inc, Bilthoven, Netherlands

One option for driving highbrightness LEDs uses the standard stepdown buck converter (Fig-

ure 1). The sense resistor, R_s , generates a feedback voltage, V_{FB} , that sets the desired LED current, I_{LED} , ac-

cording to the equation $R_S = V_{FB}/I_{LED}$. Unfortunately, most buck converters require a relatively high feedback

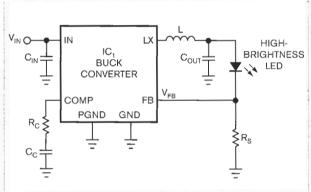


Figure 1 A generic buck converter, IC₁, provides constantcurrent drive for a high-brightness LED.

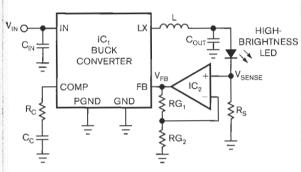


Figure 2 An op amp, IC₂, increases the LED-current error signal and reduces power dissipation in the sense resistor.

designideas

voltage on the order of 1V, which dissipates high power in the sense resistor ($P_{SENSE} = V_{Fg}/I_{LED}$). Reducing the sense resistor's value and adding an op amp to boost the sensed voltage reduces the power penalty (**Figure 2**). In some cases, you can eliminate the op amp by using a stable reference voltage, which is available on some converter ICs, to pull up the sense voltage (**Figure 3**).

THE VARIATION OF LED CURRENT AVER-AGES APPROXI-MATELY 5 mA OVER AN INPUT-VOLTAGE RANGE OF 4 TO 5.5V.

The switching converter, a Maxim (www.maxim-ic.com) MAX1951, requires a feedback voltage of 800 mV and provides a 2V reference voltage at the reference pin. Connecting $R_{\rm t}$, a 50-k Ω resistor, between $R_{\rm S}$ and $V_{\rm FB}$, and $R_{\rm p}$, a 100-k Ω resistor, between the reference and the feedback pins shifts the operating point from 200 mV at $R_{\rm S}$ to 800 mV at the feedback pin:

$$V_{FB} = V_{REF} \frac{50k}{50k + 100k} + V_{SENSE} \frac{100k}{50k + 100k} = 0.667V + \frac{2}{3}(V_{SENSE}).$$

Thus, for V_{SENSE} =0.2V, V=0.8V. For the cost of two inexpensive resistors, power dissipation in the sense resistor diminishes by a factor of four.

Using the Luxeon K2 LED from Lumileds (www.lumileds.com), power measurements on the circuits of figures 1 and 3 illustrate how the feedback adjustment influences power that the LED driver delivers. Two graphs illustrate LED currents and voltages as a function of input voltage for a half-load of 400 mA (Figure 4) and a full load of 800 mA (Figure 5). As you would expect, the current regulation deteriorates at half-load. The variation of LED current averages approximately 5 mA over an input-voltage range of 4 to 5.5V and 1 mA for the circuit

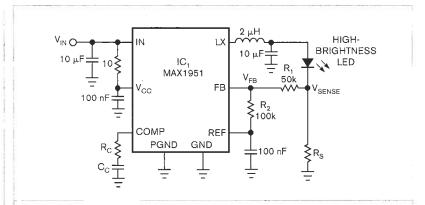


Figure 3 Adjusting the feedback signal improves the efficiency in this buckconverter driver for high-brightness LEDs.

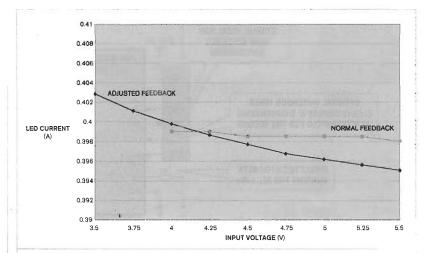


Figure 4 This graph shows LED current as a function of input voltage at half-load for the circuit of Figure 3.

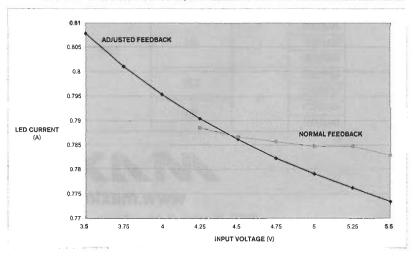


Figure 5 This graph shows LED current as a function of input voltage at full load for the circuit of Figure 3.

designideas

with normal feedback. The input-voltage range, however, increases by more than 0.5V. Regulation also deteriorates for full load, and the variation increases to approximately 22 mA versus 6 mA for the circuit with normal feedback (Figure 6). Again, the adjustedfeedback circuit of Figure 3 increases the input-voltage range.

You can define the improvement in efficiency, η , as follows:

$$\eta = \frac{V_{LED} \times I_{LED}}{V_{IN} \times I_{IN}}.$$

The buck converter's power-conversion efficiency and power dissipated in the sense resistor determine the circuit's efficiency. As Figure 5 shows, the adjusted feedback of Figure 3 increases the efficiency more than 10% at either half-load or full load. Assuming that the sense voltage doesn't change, efficiency improves for lower outputcurrent loads because the sense resistor dissipates less power.EDN

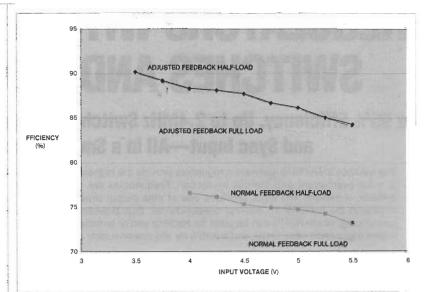
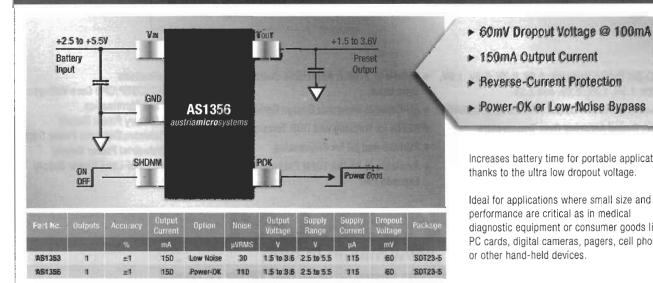



Figure 6 A comparison of a normal-feedback circuit (Figure 1) and an adjusted-feedback circuit (Figure 3) shows significant improvements in overall efficiency at half-loads and at full loads.

For all things Design Ideas, including a search option, archived Design Ideas, and Brad Thompson's "Designing Ideas" blog, please visit www.edn.com/designideas.

AS1353/56 – Ultra-Low Dropout Regulators

Get more technical info on austriamicrosystems complete portfolio of High Performance Analog solutions at www.austriamicrosystems.com

Increases battery time for portable applications

thanks to the ultra low dropout voltage.

Ideal for applications where small size and performance are critical as in medical diagnostic equipment or consumer goods like PC cards, digital cameras, pagers, cell phones

austria**micro**systems

or other hand-held devices.

West Coast (408) 345-1790 East Coast (919) 676-5292 Order samples at https://shop.austriamicrosystems.com