Is
[rse
v

BICHgIV i <t

is
w t
(18e | P

Four-digit, seven-seyment LED display - Part 4

HE all-on-one-pin interface solution we explored last

month allowed us to add a (calculator) keypad to our
original display design, which was first used for a 24-hour
clock. Now we’re ready to program the hardware to turn it
into a calculator.

While the additional modifications to the hardware were
minimal, the software will not be as trivial. As we add
functionality to the code, it’s good to take a step back and
consider the current behaviour of the code before changes
are made.

The code for the 24-hour clock continually rotates around
the four digits. In the background there is a 500ms timer
used to time seconds and minutes. The code then updates
the display every minute to show the current time. This
works well for the clock. However, we must ask ourselves
a question — will it still work when we change the
fundamental operation from a clock to a calculator?

Consider how the calculator should work. Initially, it will
display a zero, indicating it is awaiting an input. Pressing
any key will commence the equation. The equations for this
calculator will be of the type X @ Y = 2z, where X is the first
number to be entered, Y is the second, g is the mathematical
operator and z is the answer. (For our simple calculator,
the o can represent addition, subtraction, multiplication or
division.) So, we need to capture the first number (X), the
mathematical operator (@), the second number (Y) and the
equals sign (=). Once these have been captured, we have
enough data to perform the basic equation.

The first number (X) in the equation will be complete
once an operator key has been pressed, then we can start
entering the second number (¥) in the equation. Finally,
the equals key (=) will be pressed for the answer (z) to be
displayed on screen. In the 24-hour clock code, the display
is updated every minute. This is far too long to wait for a
simple answer, or to update the display with the pressed
digit. Therefore, we must update the display much quicker.

Another issue is that we must continually check for a
button press using the ADC input on RAO. In the original
24-hour clock code, we manually rotated around the digits,
any delay in this would cause one digit to shine brighter
than the other or even worse, cause flicker.

Swapping the fundamental behaviour

The answer lies in swapping the behaviour between the
24-hour clock code and the calculator. In the 24-hour
clock, the timer is used to count the seconds. The main
code then rotates around the digits. The timer uses an
interrupt service routine (ISR), which is meant to be
very lightweight. In any ISR, the goal is to minimise the
interruption to the main code by checking the interrupt
flag, perform a very quick operation, reset the flag and
return to the main code. If we added the digit rotation into
the timer interrupt routine, the seconds would no longer
be timed correctly and the clock would have been wrong.
However, with the calculator, clock timing isn’t important,
while performing prompt calculations and ADC captures
are. For the calculator, it is better to move our digit rotation
into the timer ISR. Now the timer can be set to 1ms for a
1kHz switching frequency. Every time the ISR is called,
the digit will swap. This automatic change gives us much
more freedom to perform calculations and capture and
display the numbers we enter.

48

System Module

f:'} Easy Setup | =5 Registers | /4 Notifications : 0

v INTERNAL OSCILLATOR

Current System clock 8 MHz

Oscillator Select L INTOSC oscillator: I/O function on CLKIN pin l w

System Clock Select | FOSC | :
8MHz_HF - o —PLL Capable Frequency

External Clock 1 MHz

Intemal Clock

[] Piienabled] Software PLL Enabled

Low-voltage programming Enable

Fig.1. Changing the internal oscillator in MCC

Moving the digit rotation and display into the ISR adds
significant delays inside the ISR. With the clock running
at 500kHz and the ISR being called every 1ms, the ISR
ends up taking 0.5ms to operate (this was measured during
testing using the PICkit3 debugger). If the Timer is set to
interrupt every 1ms, then our code only has 0.5ms operation
time. The problem here is the main code is constantly
interrupted, making it difficult to behave normally. This
is a fine example of why ISRs need to be lightweight and
fast. With this current clock speed, the calculator will not
work properly and updating the display becomes near
impossible. Increasing the clock speed to the internal clock
at 8MHz improves this operating time to 0.2ms (See Fig.1).
However, this is still not ideal and very slow for an ISR.

Entering numbers

It may seem trivial, but pressing the number keys on the
keypad and expecting them to appear on the segment display
correctly is a little tricky. Consider pressing the key ‘7’ first,
then ‘8’ followed by ‘9’. We would expect the number 789
to appear on the display. In order to display this, we set up
a four-digit array in the code and map these to the display’s
digits. In the array, we have four elements, numbered 0, 1, 2
and 3, where 0 is the first element in the array. In the four-
digit seven-segment display, we can map this left-most digit
to element 0 in the array and so on until element 3, which
is the right-most digit. In our example, ‘7’ would be entered
into element 3 first. When we press key ‘8’, the ‘7’ on the
display must be shifted into element 2 and the ‘8" will be
stored in element 3. When key ‘9’ is pressed, ‘7’ and ‘8’ will
be shifted to the left and ‘9’ will now be stored in element 3.
In this example, element 0 does not have a number stored
in it. There are two options here, we could display a zero
or display nothing (blank LED). Storing a zero in element
0, will display a zero, so we need to choose another digit to
represent nothing, which we’ll cover further on.

We’ve now entered a number onto the display. The
only problem is this number is split up into an array. We
actually have 3 numbers, ‘7’,’8’ and ‘9’, but what we want
for calculations is ‘789’. We need to convert ‘7°,’8” and ‘9’
into a number that our microcontroller can mathematically
process. A small function will provide this. The function

Everyday Practical Electronics, March 2018

Power on

Main switch

y

System intialise

State 1:
a) Push value to display (X)
b) Wait for maths symbol key press ()

7 Y

Enabe interrupts

State 2:
a) Capture value on display
b) Clear display

State 3:
: a) Push value to display (Y)
Clear display b) Wait for equals symbol key press (=)

-— -'
S
-—

7 Y

While loop

State 4:

a) Capture value on display

b) Clear display

c) Perform equation with captured
numbers (X@Y =Z

)
* d) Display answer on LED display (Z)

Get ADC value

Y

State 5:

* a) Do nothing

Get key press

Fig.2. LED display digit shifting

simply multiplies whatever number (0-9) is in element 0 by
1000. Element 1 will be multiplied by 100, element 2 will
be multiplied by 10 and element 4 will be left alone. The
results are added to give the result of 789. Now we have our
number to work with.

Fig.2 shows the display as each digit is entered, shifting
each previous number to the left.

Extra digits

In the 24-hour clock, we only needed the numbers 0-9 to
be displayed on the display. This is still the case. However,
the issue here is that we are using code from the original
program, which is capturing a key press and then displaying
it on the display. The normal digits will be mapped but the
mathematical operator key presses now need to be added
for the calculator to be able to work.

The original code uses a switch statement to swap
between the various numbers to be displayed. The function
displayNumber() is used to display the numbers on the
display. In reality, it is used to convert key presses to exact
pins connected to the segments to be controlled. To build
upon that, we need to be able to capture when the multiply,
divide, subtract, add, equals and clear buttons are pressed.
We also want to be able to show a blank digit (ie, no LEDs
lit) as it is easier to read a number on the display with no
leading zeros. For improved calculator functionality it’s a
good idea to try and display an error message if a calculation
goes wrong. This can be done by displayed the letters ‘Err’
as a shorthand for error. This will be called when the
resultant number is larger than the four-digit maximum or
when there’s a divide-by-zero scenario.

OxA => Equals
0OxB => CLR

OxC => Multiply
0OxD => Divide
OxXE => Subtract

OxF => Add
0x10 => E
0x11 => r

0x12 => Nothing

The above maps out the new cases to be added to the
function displayNumber(), where OXA now represents
equals. In the code, the case switch will perform some
operation when this is seen, as with all the other values.

Everyday Practical Electronics, March 2018

Fig.3. Calculator from chart

The code
There are significant changes to the code in order to convert
it to a calculator. We need to move the digit display and
rotate function into the Timer0 ISR. We will also need to
completely change what’s happening in the main code in
order to control the behaviour of the project. We will be
using a state machine (see Fig.3.). Space considerations
mean it is not feasible to look at every change made to the
code, but we will look at some of the key features.
void TMRO_ISR(void) {

INTCONbits.TMROIF = O3

TMRO = timerOReloadVal;

displayDigit(currentdigit, digits[currentdigit]);

if(currentdigit >= 3)
currentdigit = 0;
} else {

currentdigit++;
3

if(TMRO_InterruptHandler) {
TMRO_InterruptHandler();
¥

}

Instead of incrementing the seconds, the Timer0 ISR now calls
the function displayDigit(). The variable currentdigit
is incremented in the if statement that follows, making sure
it circulates from 0 to 3 and restarts at 0 again.

clrDisplay(Q);
calcstate = 1;

Starting off with the main code, we’re going to first use the
clrDisplay() function to turn off digits 0-2 and place a
waiting 0 on digit 3. This will be our initial starting point.
Since we will be using a state machine, we need to start it off
by setting it to the first position using the calcstate variable.

while (1) {
KeypadVal = ADC_GetConversion(0);
disval = getKeyPress(Keypadval);

The while loop starts with an ADC capture using the
MCC ADC_GetConversion() function. The value is

49

then stored in KeypadVal . The next
function called is get KeyPress(),
which takes the value in KeypadVal

and tries to evaluate which button
has been pressed. These two function
calls are outside the main switch,
meaning they will always be called.
get KeyPress() will convert any key
press to a specific value (all except
one key, which is the CLR key).
When the CLR key is pressed, a soft
reset occurs using the assembly soft
reset command asm (“reset”);. A
software (or sof t) reset is one where
the code jumps to instruction zero.
(A hard reset, is where the power is
cycled on and off. A soft reset will
often start everything from fresh, but
it may not always work, especially if
poorly designed code writes over parts
of memory that it shouldn’t, thereby
corrupting the memory space.)

switch(cal cstate) {
case 1:
i f(mathSign > 0) {
cal cstate = 2;
br eak;

}

i f (KeypadVal < nmaxADC) {
pushToDi spl ay(di sVval) ;

}

br eak;

Starting with Case 1 in the switch
statement, we want to display the
numbers captured and converted in
the previous functions. The value to
be displayed is stored in the variable
di sVval . First, we check to see if the
value mat hSi gn has been assigned
a value. mat hSi gn is initialised as
zero in the functions. c file. When
a mathematical operator key has been
pressed, mat hSi gn will be assigned a
value based on the key pressed. At this
point, the next state will be selected.
Before that, we check the KeypadVal
is less than maxADC. This verifies a
valid number key has been pressed.
maxADC represents the maximum ADC
input for a valid key press. Then the
value is pushed to the display using
the pushToDi spl ay() function. This
function will not be discussed here, it
simply left shifts any current digits and
stores the new value in the right-most
digit. It will only allow four values,
maximum. Any numbers pressed after
that will be ignored.

case 2:
get Di spl ayNunber () ;
clrDisplay();
__delay_ns(100);
cal cstate = 3;
br eak;

In Case 2, we want to grab the number
on the display. This is currently stored
in a 4-byte array called di gi t s[] . The
get Di spl ayNunber () function takes
the separate numbers in the di gi t s[]

array and converts them into a single
number. For example, 7, 8 and 9 would
be combined to get 789. The display

50

is then cleared using cl r Di spl ay()
— again, a small wait and the state
machine moves onto the next state.

case 3.
if(disval == 0xA) {
cal cstate = 4;
br eak;

}
i f (KeypadVal < maxADC) {

pushToDi spl ay(di sval) ;
}
br eak;

In Case 3, we want to capture the second
number and display it on the LED
display. This is similar to Case 1, except
we’re looking specifically for the equals
key to be pressed (which is represented
by 0xA as mentioned earlier).

case 4:
get Di spl ayNunber () ;
clrDisplay();
mat hAnswer = performvat h();

convert Di spl ayNunm(mat hAnswer) ;

cal cstate = 5;
br eak;

Case 4, we want to capture the second
number on the display. We clear the
display using the clrDisplay()
function again. Next up we have a
function caller performvath(),
which takes the first number entered,
the captured math operator and the
second number entered and evaluate
the answer, which is then stored in the
variable mat hAnswer. This number
must now be converted into a format
that can be displayed on the LED
display. convertDi spl ayNun{) is
the function that converts the number
into the 4-byte array digits[]. To
finish, we move onto the next state
using the cal cst at e variable again.

case 5:
/1 Do nothing here
br eak;

This is an important state in the state
machine. Here we enter a state, from
which we will not easily exit. At this
point, the result will be displayed
on the LED display. The only way
to get out of this is to press the CLR
key, which will reset the PIC and the
calculator.

defaul t:
cal cstate = 1;
br eak;

}

}

It’s not always necessary to add the
default case in a switch statement,
but it is good practice. If for some
weird reason the variable cal cst at e
contains a value other than 1-5, then
the default case will reset this variable
back to 1, resetting the process again.
There’s a few interesting points to
see in the software. One of the key
points from above is keeping the ISR

Fig.4. Fully working calculator showing
789 as the result

as lightweight and as fast as possible.
Although adding more functionality
to the ISR can be good providing the
risks and delays are understood. It’s
also interesting to note the changes
to the hardware were minimal, while
the software changes were rather
extensive. There’s very little code that
could be re-used.

Last but not least, the display is
noticeably brighter. Having the display
and rotation in the ISR ensures that
each digit is given equal power-on
time.

Next month

I'm taking a small sabbatical for my
greatest adventure yet — the birth of
my newborn twins: Chris and Ethan.
While I'm away, the original and
highly esteemed PIC ‘n Mix columnist
Mike Hibbett will be making a short
return to fill in for me. He has some
exciting projects in store for you. All
I'll say is that it has something to do
with ‘FFT’. I look forward to seeing
him back in action and I will see you
all again upon my return.

Not all of Mike’s technology
tinkering and discussions
make it to print.

You can follow the rest of it on
Twitter at @MikePOKeeffe,

on the EPE Chat Zone or
EEWeb’s forums as
‘mikepokeeffe’

and from his blog at
mikepokeeffe.blogspot.com

Everyday Practical Electronics, March 2018

