

Everyday Practical Electronics, March 2018 49

simply multiplies whatever number (0-9) is in element 0 by
1000. Element 1 will be multiplied by 100, element 2 will
be multiplied by 10 and element 4 will be left alone. The
results are added to give the result of 789. Now we have our
number to work with.

Fig.2 shows the display as each digit is entered, shifting
each previous number to the left.

Extra digits
In the 24-hour clock, we only needed the numbers 0-9 to
be displayed on the display. This is still the case. However,
the issue here is that we are using code from the original
program, which is capturing a key press and then displaying
it on the display. The normal digits will be mapped but the
mathematical operator key presses now need to be added
for the calculator to be able to work.

The original code uses a switch statement to swap
between the various numbers to be displayed. The function
displayNumber() is used to display the numbers on the
display. In reality, it is used to convert key presses to exact
pins connected to the segments to be controlled. To build
upon that, we need to be able to capture when the multiply,
divide, subtract, add, equals and clear buttons are pressed.
We also want to be able to show a blank digit (ie, no LEDs
lit) as it is easier to read a number on the display with no
leading zeros. For improved calculator functionality it’s a
good idea to try and display an error message if a calculation
goes wrong. This can be done by displayed the letters ‘Err’
as a shorthand for error. This will be called when the
resultant number is larger than the four-digit maximum or
when there’s a divide-by-zero scenario.

0xA => Equals
0xB => CLR
0xC => Multiply
0xD => Divide
0xE => Subtract
0xF => Add
0x10 => E
0x11 => r
0x12 => Nothing

The above maps out the new cases to be added to the
function displayNumber(), where 0xA now represents
equals. In the code, the case switch will perform some
operation when this is seen, as with all the other values.

The code
There are significant changes to the code in order to convert
it to a calculator. We need to move the digit display and
rotate function into the Timer0 ISR. We will also need to
completely change what’s happening in the main code in
order to control the behaviour of the project. We will be
using a state machine (see Fig.3.). Space considerations
mean it is not feasible to look at every change made to the
code, but we will look at some of the key features.

PnM02-Mar18
93mm x 1 COL

0 1 2 3

PnM03-Mar18
105mm x 2 COL

Power on

System intialise

Enabe interrupts

Clear display

While loop

State 1:
a) Push value to display (X)
b) Wait for maths symbol key press (ø)

State 2:
a) Capture value on display
b) Clear display

State 3:
a) Push value to display (Y)
b) Wait for equals symbol key press (=)

State 4:
a) Capture value on display
b) Clear display
c) Perform equation with captured
 numbers (X ø Y = Z)
d) Display answer on LED display (Z)

State 5:
a) Do nothing

Main switch

Get ADC value

Get key press

Fig.2. LED display digit shifting Fig.3. Calculator from chart

void TMR0_ISR(void) {
 INTCONbits.TMR0IF = 0;
 TMR0 = timer0ReloadVal;

displayDigit(currentdigit, digits[currentdigit]);

 if(currentdigit >= 3) {
 currentdigit = 0;
 } else {
 currentdigit++;
 }

 if(TMR0_InterruptHandler) {
 TMR0_InterruptHandler();
 }
}

Instead of incrementing the seconds, the Timer0 ISR now calls
the function displayDigit(). The variable currentdigit
is incremented in the if statement that follows, making sure
it circulates from 0 to 3 and restarts at 0 again.

clrDisplay();
calcstate = 1;

Starting off with the main code, we’re going to first use the
clrDisplay() function to turn off digits 0-2 and place a
waiting 0 on digit 3. This will be our initial starting point.
Since we will be using a state machine, we need to start it off
by setting it to the first position using the calcstate variable.

while (1) {
 KeypadVal = ADC_GetConversion(0);
 disVal = getKeyPress(KeypadVal);

The while loop starts with an ADC capture using the
MCC ADC_GetConversion() function. The value is

Pic n Mix (MP 1st, MoK) – MARCH 2018.indd 49 17/01/2018 09:39

50 Everyday Practical Electronics, March 2018

Not all of Mike’s technology
tinkering and discussions

make it to print.

You can follow the rest of it on
Twitter at @MikePOKeeffe,

on the EPE Chat Zone or
EEWeb’s forums as

‘mikepokeeffe’

and from his blog at
mikepokeeffe.blogspot.com

then stored in KeypadVal. The next
function called is getKeyPress(),
which takes the value in KeypadVal
and tries to evaluate which button
has been pressed. These two function
calls are outside the main switch,
meaning they will always be called.
getKeyPress() will convert any key
press to a specific value (all except
one key, which is the CLR key).
When the CLR key is pressed, a soft
reset occurs using the assembly soft
reset command asm (“reset”);. A
software (or soft) reset is one where
the code jumps to instruction zero.
(A hard reset, is where the power is
cycled on and off. A soft reset will
often start everything from fresh, but
it may not always work, especially if
poorly designed code writes over parts
of memory that it shouldn’t, thereby
corrupting the memory space.)

switch(calcstate) {
case 1:
 if(mathSign > 0) {
 calcstate = 2;
 break;
 }
 if(KeypadVal < maxADC) {
pushToDisplay(disVal);
 }
 break;

Starting with Case 1 in the switch
statement, we want to display the
numbers captured and converted in
the previous functions. The value to
be displayed is stored in the variable
disVal. First, we check to see if the
value mathSign has been assigned
a value. mathSign is initialised as
zero in the functions.c file. When
a mathematical operator key has been
pressed, mathSign will be assigned a
value based on the key pressed. At this
point, the next state will be selected.
Before that, we check the KeypadVal
is less than maxADC. This verifies a
valid number key has been pressed.
maxADC represents the maximum ADC
input for a valid key press. Then the
value is pushed to the display using
the pushToDisplay() function. This
function will not be discussed here, it
simply left shifts any current digits and
stores the new value in the right-most
digit. It will only allow four values,
maximum. Any numbers pressed after
that will be ignored.

case 2:
 getDisplayNumber();
 clrDisplay();
 __delay_ms(100);
 calcstate = 3;
 break;

In Case 2, we want to grab the number
on the display. This is currently stored
in a 4-byte array called digits[]. The
getDisplayNumber() function takes
the separate numbers in the digits[]
array and converts them into a single
number. For example, 7, 8 and 9 would
be combined to get 789. The display

Case 4, we want to capture the second
number on the display. We clear the
display using the clrDisplay()
function again. Next up we have a
function caller performMath(),
which takes the first number entered,
the captured math operator and the
second number entered and evaluate
the answer, which is then stored in the
variable mathAnswer. This number
must now be converted into a format
that can be displayed on the LED
display. convertDisplayNum() is
the function that converts the number
into the 4-byte array digits[]. To
finish, we move onto the next state
using the calcstate variable again.

case 5:
 // Do nothing here
 break;

This is an important state in the state
machine. Here we enter a state, from
which we will not easily exit. At this
point, the result will be displayed
on the LED display. The only way
to get out of this is to press the CLR
key, which will reset the PIC and the
calculator.

default:
 calcstate = 1;
 break;
}
}

It’s not always necessary to add the
default case in a switch statement,
but it is good practice. If for some
weird reason the variable calcstate
contains a value other than 1-5, then
the default case will reset this variable
back to 1, resetting the process again.

There’s a few interesting points to
see in the software. One of the key
points from above is keeping the ISR

is then cleared using clrDisplay()
– again, a small wait and the state
machine moves onto the next state.

case 3:
 if(disVal == 0xA) {
 calcstate = 4;
 break;
 }
 if(KeypadVal < maxADC) {

pushToDisplay(disVal);
 }
 break;

In Case 3, we want to capture the second
number and display it on the LED
display. This is similar to Case 1, except
we’re looking specifically for the equals
key to be pressed (which is represented
by 0xA as mentioned earlier).

Fig.4. Fully working calculator showing
789 as the result

case 4:
 getDisplayNumber();
 clrDisplay();
 mathAnswer = performMath();
 convertDisplayNum(mathAnswer);
 calcstate = 5;
 break;

as lightweight and as fast as possible.
Although adding more functionality
to the ISR can be good providing the
risks and delays are understood. It’s
also interesting to note the changes
to the hardware were minimal, while
the software changes were rather
extensive. There’s very little code that
could be re-used.

Last but not least, the display is
noticeably brighter. Having the display
and rotation in the ISR ensures that
each digit is given equal power-on
time.

Next month
I’m taking a small sabbatical for my
greatest adventure yet – the birth of
my newborn twins: Chris and Ethan.
While I’m away, the original and
highly esteemed PIC ‘n Mix columnist
Mike Hibbett will be making a short
return to fill in for me. He has some
exciting projects in store for you. All
I’ll say is that it has something to do
with ‘FFT’. I look forward to seeing
him back in action and I will see you
all again upon my return.

Pic n Mix (MP 1st, MoK) – MARCH 2018.indd 50 17/01/2018 09:40

