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Douglas Clarkson believes it has taken quite some 
time to credit ancient cultures with sophisticated 

numeric skills, here be discusses the proof. 

ore and more of our technical 

Vi landscape mirrors the embrace 

of a digital culture, reflecting the 

increasing use of numbers to store and 

convey knowledge and information. This 
also seems to be stirring an increase in the 

science of numbers, especially where in 

systems these appear to have elusive or 

Curious properties. 

Early Beginnings 
From whatever period of recorded history 

a basis of numeric representation of that 

era can be identified. We in the West are 

familiar with Babylonian, Ancient 

Egyptian, Greek and Roman number 

systems though somewhat less familiar 

with the cultures of South America and 

even less familiar generally with 

Chinese/Japanese systems. The records of 

many cultures, however, have vanished 

without trace.The culture that built the 

ancient megaliths of Britain - Stonehenge, 

Avebury and Callanish have left only the 

stones themselves as witness of their 

~ numeracy. 
From the widespread use of counting 

in units of ten and the similarity in 

structures used in Indo-European 

languages, it is conjectured that the basic 

Indo-European mother tongue had the 
same method of counting. 

Counting can also be undertaken in 

pairs of two as in one, two, two one, two 

two, two two one, two two two etc. 

This can usually be used for numbers up 

to ten. Some cultures in South America 

have used 4-12 to feature in counting 

systems while the Aztecs used a 5-20 

count. These systems are indicated in 

Table 1. There is a trace of 20 count in 

some languages of Western Europe such 

as English, French and Danish. 
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Since many cultures have disappeared 
without trace, the greater part of the 
historical development of number systems 
and number understanding has been lost. 
Often the key to appreciating the number 
systems of ancient cultures has been 

a single artefact - such as the Rhind papyrus 
of Ancient Egypt. 

The Numbers of Babylon 
Some of the oldest records of numbers are 

in the first half of the third millennium BC 

among the Sumerians whose culture was 
supplanted by the Babylonians. From this 

( 

« ‘ ddqddq <dd<4 <=<<«g 

x 
Figure 1a: Examples of representation of 
Babylonian numbers as used in Plimpton 
322 tablet: Symbols are used to establish 
digit values between 1 and 59. 
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_ Figure 1b: Representation of numbers in 
Babylonian cuneiform script using dialect 
of Plimpton 322 tablet - 52:14:41:09 = 
11,284,869; 03:27:31:55 = 747,115; 
49:06:00:30 = 10,605,630 

culture, around the time of Hammurabi in 

1750 BC, surviving records provide an 
: insight into numeric skill and competencies. 

The method of writing numbers in this 
eae is described as cuneifrom (Latin 

cuneus - wedge) and utilises the base 
: number 60. What looks like a exclamation 
: mark represents 1 and a sharp left arrow 

10. Some examples of numbers are 
: indicated in Figure la. The significant 
: feature of this number system was the use 
: of place notation. We very much take 

notation for granted in our Arabic number 
system. Figure 1b gives examples of this 
use of place notation. In some records, 

: there is some ambiguity as to whether such 
: numbers record integers or fractions as 
: recorded in the Plimpton tablet 322 and 
: which subsequently will be described in 
: some considerable detail. 

Babylonian 
Multiplication and 
Division 

| In Babylonian mathematics, multiplication 
: was undertaken by means of the 
: expression:- 

: ab = ((a + b)*a*b’)/2 

: Thus as an example 35 x 22 is given by :- 

(57x57-35x35 - 22x22)/2 = 770 

One clay tablet found at Senkerah on the 
: Euphrates in 1854 is thought to date from 

: 2000 BC and held details of squares of 
through the discovery and decipherment of ' numbers up to 59 and cubes of numbers 

: up to 32. 
The Babylonians undertook long division 

: of integers by recognising that 7/5 could be 
: expressed as the product of 7 times (1/5). 
: The Babylonians established tables of 
: reciprocals as indicated in Table 2. 



Thus the fraction 1/12 can be expressed 
as 5/60 in base 60 representation. As with 
multiplication and division in decimal, an 
indication needs to be maintained of place 
significance of columns being manipulated. 
Numbers such as 7,9,11,13,14,17,19 etc. do 

not produce terminating base fractions but 
would be written as approximations. By 
comparison with denominators between 2 
and 20, there are only seven terminating 
base ten fractions. 

Babylonian Square 
Roots 
There is clear evidence that the Babylonians 
had a method of calculating square roots. 
This prompts a puzzle as to whether this 
method represented a trial and error 
approach that was found to work or reflects 
a deeper insight into number theory. 

In an example, we start with an integer A 
and with N the largest integer such that its 
square is less than A. In the example of 
A=7, we can select N=2. A sequence of 
integers s(j) of increasing value is 
determined where 
s(j) = 2 N s(j-1) + (A-N2) s(-2) 

In this example this becomes 

s§) = 4s8G-1) + 3 sGj-2) 

Where s(0) is set to 0 and s(1) to 1, the 
sequence becomes 

0,1,4,19,88,409,8827,41008 etc. 

The actual expression giving the 
approximation of the square root is:- 

sqrt(A) = N + (A-N2)( s(G)/sG+1)) 

where j has a value which gives a reasonable 
approximation to the square root value. 

Table 3 indicates the results obtained in 

determining the square root of 7. 

Derived expression 
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Jumping ahead many centuries, Archimedes 
(287-212 BC) is reported to have stated that 
the square root of 3 is given by the 
relationship:- 

(265/153) < sqrt(3)-< (1351/780) 

This is from use of the ratio terms 
(896/2448) and (18272/49920) in the 
expansion of terms in the series. Thus 
either Aristotle had used the Babylonian 
square root generator system or had 
invented a comparable system. Leastways it 
gives the students of the history of 
mathematics something to debate - especially 
if you are a Greek mathematician seeking to 

demean the achievements of the Babylonians. 
Various of the Babylonian tablets read like 

school geometry books. One tablet number 
7289 in the Yale Babylonian collection 
demonstrates a value of sqrt(2) as 1 24 51” 
10’” which is accurate to 6 parts in 10”. It 
comes complete with diagram. The short 
QuickBasic programme EXAMPLE1 indicates 
the nature of the terms developed in the 
process of square root calculation for values 
of N less than 34. 

10 REM Babylonian square roots (N<34) 

15 DIM s(20) AS DOUBLE 

20 PRINT “input value of number for square root:A” 

30 INPUT a: IF a = 0 THEN STOP 

40 PRINT “input value of N ( N*N<A)” 

50 INPUT N 

55 IF N * N > a THEN GOTO 20 

OU 210) = Us Stl) = 1 

70 FOR jj = 2 TO 8 

BU eli) 22) N67 <1). la = N* N).* siz). 2) 

90 NEXT 33 

100 PRINT “ s(jj) s(jj+1) rv r*r" 

110 FOR jj = 1 TO7 

115 r# = N+ (a-N*N) * (s(jj) / s(jj + 1)) 
120 PRINT USING “########HEHHHR HEH EHHE” © S(Jj); S(j] + 1); 

130 PRINT USING “#### #HERRHRRERRRE” > re; 

140 PRINT USING “#### #HEHHHHHEEEHH” © rt * r# 

150 NEXT jj 

160 PRINT : PRINT 

170 GOTO 20 

In line 115, r# signifies double precision real number representation. 

Plimpton 322 

structure of the table which is now widely 
accepted - although this is still a topic of 
some debate. The table with corrected 
numerical interpretation is indicated in table 
4 in the base 60 notation and consists of 
fifteen lines of four columns of numbers. 
Numbering the columns from left to right, 
column 1 is more likely to represent a 
fraction, while columns 2, 3 and 4 integers. 
This set of values contains four corrections 
which are widely agreed and terms are 
indicated with * in Table 4. Column four is 
acting just like an index of the lines of the 
tablet. 

Column 4 Column 3 

00:45 4159 89 2:49 
1:56:56:58:14:50-06:15 Bec; 2S 
1:55:07:41:15:33:45 141641 = 1:50:49 
4:53:10:29:32:52:16 3:31:49 —-5:09:01 
1:48:54:01:40 4:05 1:37 
1:47:06:41:40 Si9si“‘iéiL 
1:43:11:56:28:26:40 38:11 59:04 
co es 1319 20:49 
136333606 = i(‘<‘éi 12:49 
1:35:00228.27:2426 12041-21601 
50 ¢«2 «=~ CSS 
M202use0es =O ABS 
jones | a 
1:25:48:51:35:06:40 29:34 53:49 
123134640 86 1:46" 

OO - © G7 & © h 

Table 4: Base 60 notation values of 
corrected Plimpton 322 tablet. The 1: of 
the first column Is added to all term as” 
indicated. 

Photo 1: The Famous Plimpton 322 tablet which displays four columns of cuneiform 
numbers and has been interpreted as representing geometrical relationships involving 
Pythagoras theorem. 

All students of the history of mathematics 
are familiar with Plimpton 322. This is a clay 
tablet in the G. A. Plimpton Collection at 
Columbia University and is shown in Photo 
1. Estimates of its age range between 1900 
BC to 1600 BC - so that it could be nearly 
4000 years old. It was initially thought to 
record commercial transactions before O. 
Neugebauer interpreted the numeric 
content in an altogether different way. 

With a small element of understanding of 
elementary geometry and arithmetic it is 
entirely possible to grasp the mathematical 
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The Babylonians are thought to have 
been aware of the ‘rule of the right angle 
triangle’ as indicated in Figure 2. This is 
where for integer values of p and q, the 
sides of a right angle triangle are given by 
2pq, p’-q and p*+q’ and relate to sides b, a 
and c. This would be the basis of what was 
later to become known as Pythagoras 
Theorem. The values in the second and 
third columns can be interpreted as p*-q’ 
and p*+q? for relevant values of p and q. 
This holds except for line 11. So far so good. 
What about the first column? 



Figure 2: The Rule of the Right 
Angle Triangle as known 
to the Babylonians. 

This corresponds to the ratio (c/b)’ if we 
use the number in column one as a fraction 
and add value one as indicated in the table. 
The ratio (c/b) corresponds to the trigonometric 
function of secant or (1/COS) of the angle at 
vertex A on the triangle with reference to 
Figure 2. The table would appear to be that 
of the square of secants for angles between 
45 and 30 degrees. The steps in angles are 
provided by the set of triangles for which 
the ‘rule of the right angle triangle’ holds. 
There is a missing line in this sequence 
between lines 11 and 12. It can never be 
proved, however, that this was the intended 

use of the table. 
The values of angles and of term (c/b)’ 

are often reported in books, papers and on 
the Internet. It is obvious, however, that 
care is not being taken in ensuring sufficient 
resolution in undertaking the calculations to 
interpret the table. 

The real surprise of the Plimpton 322 
tablet is that the values of the fraction in 
column one are expressed as fully resolved 
to exact base sixty fractions. There is no 
point in calculating the value of a given 
fraction to see if it equals the value derived 
from the computer from calculating the 
value (c/b)’. The 4000 year old fraction is 
exactly correct On paper - since the values 
are base 60 terminating fractions. What we 
do see, however, for six lines in the table is 
that double precision arithmetic, at 15 digits 
numeric resolution, demonstrates a finite 

difference between the value of the fraction 
and the calculated value (c/b)’. This is, 
however, a limitation of the numeric 
representation of our modern digital 
computers and not of Babylonian 
mathematics. For line three we see, for 

example, that the Babylonians were able to 
express the ratio (3437680681/182250000) as 
an exact series of base sixty fractions. 

If we consider this issue further, we see 

that the denominator of the expression 
(c/b)’ has a value which is written as 4p’q? 
can be expressed as a sequence of base sixty 
terminating fractions. Thus for index line 
seven, for example, the denominator can be 

Expressed AS. 2K 255K XOX ZK KOK IKZK OR KONO. 
The Babylonians apparently did not like 
irrational numbers. 

For entry seven for example, a calculated 
value of the term (c/b)’ is exactly equal to 
the corresponding base 60 fraction. If we 
change a least significant digit in the fractional 
expression (i.e. 01:43:11:56:28:26:41) then 
the value of the difference is expressed as 
2.2 e'’. If we used single precision real 
numbers we would not be able to show the 
real accuracy of the Babylonian fractional 

values. Your typical pocket calculator would 
be of limited value. 

The short programme EXAMPLE2, written 
in QuickBASIC, indicates how inputs of values 
in column 3 (sum) and column 2 (difference) 
yields parameters of the triangle and a value 
of (c/b)’ expressed in base sixty notation. 

10 REM Babylonian Fractions EXAMPLE2 

20 REM look at tablet Plimpton 322 

30 PRINT “Input SUM of squares term (0 exits)” 

40 INPUT sum: IF sum = 0 THEN STOP 

50 PRINT “Input DIFFERENCE of squares term” 

60 INPUT dif: IF dif > sum THEN GOTO 30 

70 p# = ((sum + dif) / 2) * .5 

80 g# = ((sum - dif) / 2) * .5 

90 PRINT “p = “; p# 

100 PRINT “g = “; qt 

110 PRINT “" 

120 at = p# * p# - gt * qt 

130 PRINT “ a = “; a# 

140 b# = 2 * p# * qt 

150 PRINT “ b(2pq) = “; b# 

160 c# = p# * p# + gt * qt 

170 PRINT “ c = “; c# 

180 x# = (c# * c#) / (bt * b#) 

190 PRINT “(c/b)*2 = *; 

200 PRINT USING “#. #####HHEHHRERHRERHA S98": xe 

210 a = ATN(a# / bf) 

220 PRINT “ angle A= ", a * 57.2958 

230 PRINT “base 60 fraction:” 

240 num# = sum * sum 

250 dent = bt * bt 
260 cyc = 10 ; 

270 FOR 13 = 1 TO cyc | 

280 dig(jj) = INT(num# / den#) 

290 PRINT dig(jj); 

300 PRINT “:"; 

310 num# = num# - den# * dig(jj) 

320 num# = num# * 60 

330 NEXT 3j 

340 PRINT : PRINT 

350 GOTO 20 

Lame} 

The discovery of the tablet indicates how 
a single artefact can drastically revise the 
appreciation of the mathematical skills of 
ancient cultures. 

Numeric Scale and 
Precision 
When it comes to scale and precision of 
numbers, we are basically determining a 
numeric representation with calculators 
or computers. 

ET ELECTRONICS AND BEYOND December 1999 

The two aspects involved are digit 
precision and range of exponent. The range 
of exponent is not really the issue rather it is 
the precision of digits in which decimal 
numbers are expressed. Single precision 
calculations (typically 7 digit decimal 
resolution) are seen as especially weak 
when set against the demonstrated 
Babylonian resolution of (1/607) used in the 
Plimpton 322 tablet and where Babylonians 
fractions are more typically expressed as 
exact derivations due to the greater number 
of factors of base 60. 

Great care is therefore required in trying 
to analyse ‘old base 60’ numbers since the 
assumptions of unlimited accuracy in base 
10 arithmetic algorithms in digital 
computers do not always hold. It is a little 
disconcerting that the ancient Babylonians 
could write down fractional values of 
numbers with a precision that many of our 
modern calculating devices cannot match. Is 
this progress or were the Babylonians just 
fussy about numbers? 

One thing to be careful of in computer 
calculations, when using standard real 
number representation (short) the 
significance is represented to only about 7 
digits though numbers can be expressed 
with 15 digits of resolution. 

Egyptian 
Representations 
The earliest Egyptian process of writing 

numerals used essentially repetition of 
symbols for one, ten, hundred, thousand, 

ten thousand, hundred thousand and 
million in a hieroglyphic system. The 
representation of such numbers is indicated 
in Figure 3. The hieroglyphs were written 
from right to left, and in this way it didn’t 
matter which way the symbols were written, 

there was no place significance as used 
today in Arabic numbers or in the 
Sumerian/Babylonian system. There must 
have been a temptation, however, to write a 
single character for 1000 as an approximation 
rather than write a true value of 999 which 
would have required 27 characters. 

In time this system of repetition of basic 
units of numbers developed to one of 
encipherment - the process of assignment 
of an individual symbol to a more complex 
number. Such hieratic forms were 
developed for numbers up to 1000. 

The Rhind papyrus was purchased by the 
Scottish Egyptologist A. Henry Rhind in 
Luxor in 1858 and is shown in Photo 2. The 
papyrus is about 6m long and 30cm wide 
and is thought to be written by the scribe 
Ahmes as a copy of a document some 2000 
years older. The papyrus itself is something 
like a ‘how to’ guide to basic arithmetic. 
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Figure 3: Representation of Egyptian 
Numeric notation (hieroglyphics) 

100,000 

Another famous papyrus, the Moscow 
papyrus is shown in Photo 3.Taking a stroll 
down history, it is instructive to see how the 
Ancient Egyptians would multiply 43 and 67. 

The series of terms would be written of 

equivalent yalue:- 

67 
134 * 
268 

536 * 
6 1072 
2 2144 * Od eR CO KN 

= 2881 

where the indicated terms (1, 2, 8 and 32) 
which add up to 43 are totalled. This looks 
very much binary arithmetic - multiplication 
by two. Its equivalent in binary | 
representation is moving a binary number 

one place to the left. This concept was 
extended to dividing numbers - say 67 by 8. 

A column of values would be written to 

represent:- 

/R 1 
/4 2 
/2 4 
1 8 
2 16 
4 32 
8 064 ° 

where /8 represents the fraction 1/8. 

The numerator value of 67 is given by 
adding 64, 2 and 1 in the right column 
which is equivalent to 8 + 1/4 + 1/8. 

If we want to divide 171 by 12, this 
method provides a solution but indicates a 
problem:- 

/8 
/4 3 7 
/2 © 
1 12 
2 24 
4 48 
8 96 

By luck the division yields a value 14 +1/4. 
If the number had been 174 we would have 

to have added additional fraction values that 

would reduce to unit values as indicated:- 

/12 1 
io 2 

COANE DH 

— N 

int pg Ta A amoORSS , 
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ST OL TT De 
RoR O11 ee rg 
ee ee oS 
wn @llooda br * 
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Ra? 6S.8H Liiifwesr 8 
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Photo 3: The Moscow papyrus. 
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This gives a value of 14 + 1/4 + 1/6 + 1/12. 

Using these basic techniques the Ancient 
Egyptians could correctly calculate 
expressions as complex as:- 

2/5 * (16 + 156+ 1/679 + 1/776) x1 + 
1/2 + 1/7) 

Egyptian Fractions 
The concept of division provides a good 
introduction to the world of Egyptian 
Fractions. We are perhaps familiar with the 
expression :- 

December 1999 ELECTRONICS AND BEYOND GED 



1/R = 1/R1 + 1/R2 
as describing Resistors R1 and R2 in parallel. 

The Egyptians would express a given 
fraction as the sum of a series of unique 
fractions with unit numerator. Thus the 
fraction 2/7 would be written as 1/4 + 1/28. 
As a niche in the study of ancient number 
systems, there are groups who still study the 
significance of the use of Egyptian fractions 
in solving problems in modern number 
theory. 

Ancient Greece and 
Rome 
The Ancient Greek system essentially used 
27 characters to describe numbers up to 
9999. The initial sequence of characters, 
based on the 24 letters of the Greek 
alphabet with some exotic additions 
described 1,2,....9, 10, 20, ....90, 100, 200 to 

900. The comma was used to indicate a 
character describing 1000, 2000 etc. A dot 
could be used to indicate a scale factor of 
10,000. This method of recording data was, 
however, of not much use in undertaking 
serious arithmetic. 

The Greeks, however, tended to focus 

more on abstract mathematical thought 
than the very practical arithmetic of the 
Egyptians. The greater part, however, of 
Western mathematics has grown out of the 
legacy of mathematics left to use by the 
Greeks. 

The Roman system had been derived 
from the Etruscans, with letters I, V, X, L, C, 

D and M representing 1, 5, 10, 50, 100, 500, 

1000. Symbols had also been used to 
describe 5000, 10000, 50000 and 100000. 
The significance of such a system is that it 
was probably used as a means of recording 
numbers rather than undertaking the 
calculations. Most of the hard mental effort 
of calculating was probably done using 
counting boards where counters would 
signify numeric values. 

Hindu Arabic Numerals 
The most significant development, in 
number representation, was that of Hindu- 
Arabic numerals. 

The core language of Sanskrit in use 
around 2500 BC had incorporated within it 
a basic decimal system with terms for 
numbers 1 to 9, 10, 100 and higher powers 
of ten. By about the 3rd century BC the set 
of Brahmi numerals as indicated in table 7 
were in common usage. 

2 . 
20 30 AO 

3x00 -2x100 
2x1000... 

Numeric eee here used a 

‘composite’ approach. Individual digits were 
defined and in addition individual symbols 
for the sequence 10, 20, 30,...90. For 

counting above 100, two symbols, one for 
100 and one for 1000 were introduced and 
used with place significance so that in this 
approach a number could be written (2) x 
(1000) + (30) + 6 for 2036 where if no 
term for hundreds was included a zero is 

-4x400 

implied. Thus numbers up to 9999 could be 
represented from a selection of only 20 
different symbols. This system further 
developed and around 570 AD the Arabic’ 
system of numbers was in use within India. 

The migration of this system out of India 
probably took place around 662 AD and 
with it first being assimilated by the Arabs 
who had no number system of their own. It 
is known that in 773 AD an Indian brought 

some writings in Astronomy by — 
Brahmagupta to the Court of Caliph Al- 
Mansur in Bahgdad. After having studied 
this work it was Al-Khwarizmi the- 
mathematician who first described the use 
of the Hindu system, and subsequently 
Europeans began to access this information 
through Latin translations. The oldest 
mathematical European manuscript is the 
Codex Vigilanus from about 976 AD which 
contains the digits 1 through 9 but no zero. 

Spain with its Moorish occupation at this 
period, was an interface between cultures 
which allowed the passage of the Hindu 
system into Western culture. The most 
important books in Latin describing the 
Arabic-Hindu system appeared in the 12th 

century. 
We take our number system very much 

for granted with its implicit use of place 
notation. It was a very difficult leap to take 
in those times and in fact there are many 
indications that there was a period when 
Roman and Arabic were all mixed up within 
the representation of a single number. 

The close trading links between the states 
of Italy and the Arabs around this period 
was a further factor which increased the 
acceptance of the Arabic number system. 
Leonardo of Pisa (also known as Finonacci) 
around 1200 AD was to study the Arabic 
system extensively and conclude that it was 
a superior system. It took some 500 years, 
however, from the first awareness of the 

system within Europe to its firm acceptance. 
The rest, as it were, is history. 

Mayan Numbers 
The Mayan culture, unlike that of the Greek, 
Egyptian and Babylonian cultures was a 
living culture when it was first encountered 
by the Conquistadors around 1524 AD. The 
toppling of its power structure and 

wholesale and deliberate destruction of its 
culture caused a great deal of value to be 

7 lost. Also, while archaeological efforts have 
been primarily directed towards Indo- 
European cultures, serious study of Mayan 

culture and its system of counting and 
mathematics is fairly recent. 

76 6 FF 

50 60 
_ 5x100 -6x100_ 

The number system of the Mayas was 
essentially vigesimal - to base twenty. Figure 
4 depicts the basic representation of 
numbers between 0 and 19. This was 
achieved by using only three symbols - for 
zero, one (a dot) and five (a horizontal bar). 
Numbers were typically written vertically 
and with place notation. Zero was 
specifically designated with a unique 
symbol. Two separate ‘type’ of numbers, 
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Figure 4: Representation of the Mayan 
numbers 0 through 19. 

however, can be identified - the 
mathematical count and the calendric or 

‘long count as indicated in Table 8. 

4 20x20) 7200 (18x20x20) 
5 160, 000 eoanenn) 1M, 000 — 

‘Table 8: Place significance values of 

_ Mayen count systems 

We can represent numbers the decimal 
numbers 64404,146849 and 122074 in the 
Mayan mathematical count representation 
as indicated in Figure 5. 

The Mayan system of numbers provided a 
convenient means for recording numbers 
for everyday practical reckoning. Adding 
numbers was especially simple and 
straightforward. A series of glyphs were also 
associated with the numbers 0 to 19. 

The most important use of such numbers 
systems, in particular the ‘long count’ 
system was in calendrical/astronomical 
observations. As studies of archaeological 
records progress, deeper insight is being 
provided into the processes of such 
astronomical observations. Observation of 
the planet Venus was of particular 
importance, and exploits of war and 
sacrifice were apparently linked to Venus’s 
path in the sky. Such observations identified 
a Venus/Earth cycle of 584 days and with a 
longer cycle of 2922 days involving the 
position of the earth, Venus and the stars. 

It has been suggested that the Mayan 
‘long count’ 360,7200,14400,2880000 etc. 
could be related to the Platonic Year, the 

period of 25920 years for a complete 
precession of the equinoxes. Some 

researchers are trying to link ‘important 

numbers’ of the Maya culture, Ancient Egypt 
and Babylon to indicate a shared or 
common basis for systems of numeric 
representation. 

LZ 0 

ecee 4 Beek 14 

(64404) (122074) 

Figure 5: Representation of numbers in 
Mayan notation (mathematical count). 
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Chinese Number Systems 
There is generally less information available 
on Chinese number systems. The basic 
division of knowledge is between the 
reckoning devices such as count boards and 
the written text of numeric representation. 

It is likely that these two activities were kept 
relatively separate between the marketplace 
and the intellectual/literate class of China 
and this division is also characteristic of 
many parallel cultures. One approach used 
in counting was to use so called reckoning 
blocks, as indicated in Figure 6, where these 

can be considered numeric tokens used to 
represent numbers. The Chinese numerical 
notation was derived from these reckoning 
blocks but did not facilitate calculation. Its 
role would have been possibly comparable 
with Roman letters used to record an 
arithmetic result. The basic arithmetic 
system was based on factors of ten. In China 
the modern abacus was developed from 
about 900 AD. In the orient, the modern 

abacus is still used to great effect in 
undertaking highly complex calculations. 

Proficiency tests in Japan during the 
1960’s, for example, required the adding of 
ten sets of 15 numbers, each up to 10 digits 
long, in 10 minutes. In the use of the 
abacus, properties of numbers such as 
symmetry and complimentary values are 

100’s_ 1000's 

harnessed to speed up 
number processing. This 
aspect, however, is almost 
completely lacking when we 
use computers and calculators 
to do the reckoning. 

The Role of the 
Abacus in 
Counting 
Systems 
It is possible to distinguish two 
main divisions of number use 
and development. One level 
related to commercial, market 

place transactions while the 
other related to more abstract 
mathematical thought and 
astronomical reckoning. We 
are familiar with the abacus as 
beads on columns, but 

counting by means of counters 
such as pebbles can be traced 
to the very dawn of history. The 
word abacus in fact is derived 
from ‘abax’ meaning flat 
surface. Even the word 
calculate is derived from the 
Latin ‘calculus’ meaning pebble. 

Pythagoras is credited with 
introducing the abacus into 
Greece which led to its 
subsequent uptake throughout 
the Roman empire. But it is 

| | | not readily appreciated just 
how strong an influence the 
abacus/counting board would 
have on western culture. A 
typical Roman counting board 
is indicated in Figure 7 and 
displays the number 2802. 

Counters cast between M 

and C (1000 and 100) would 
imply a value 500 and with 50 

and 5 being also implied in mid lines. 
Numbers to be added would be represented 
side-by-side and the counters amalgamated 
from the units upwards. There were rules 
for subtracting multiplying and dividing. 
When a value was determined, it was 

recorded as the number of counters on the 
lines of the counting board. The real 
arithmetic was not done by manipulating 

Figure 6: System of Chinese reckoning blocks. 
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Figure 7: Roman style abacus with example of adding 1382 and 3134. 

the written number. 
Western Europe used this same method 

of counting board arithmetic widely until 
the 16th century though it was the French 
Revolution that would ultimately rule it out 
of favour. The term Chancellor of the 
Exchequer relates to the use of a large 
calculating table - the exchequer - which 
probably went out of use around 1783. The 
counters used to signify value in such a 
system were known as jettons. It is only 

relatively recently, therefore, that ‘counting 
house’ methods have been replaced by 
book work using Arabic numerals. 

Summary 
It has taken quite some time to credit 

ancient cultures with sophisticated numeric 

skills. The example referenced in the 

Plimpton 322 tablet, when interpreted with 

double precision arithmetic shows that the 

Babylonians could compute with this 

accuracy or better around 4000 years ago. It 

is likely, however, that just as the last 150 

years has witnessed a development in 

understanding such systems of records, 

even more rapid progress can be made 

using modern computers to decipher such 

records with caution and an ample measure 

of respect. 

There is great curiosity, however, in 

revisiting ancient concepts of numbers since 

mathematics is itself a form of universal 

language which can pass from one culture 

to another. So in our highly numerate age, it 

is surely useful to obtain a sense of 

perspective in the way in which we use 

numbers now and how also previous 

cultures used them. This could even add a 

level of interest in acquiring numeracy skills. 
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