
®©@6¢0600606 06 6

In this last part, Mike Bedford takes a look at some
of the sophisticated ciphers which are in use today,
such as the banks and corporations world-wide,
and which will pave the way to the widespread

adoption of e-commerce.

o far in our investigation of code
making - or cryptography to use the
proper terminology - we’ve seen a

progression from ciphers which can be used
by hand to those which required machines
to automate the encryption and decryption
processes. We’ve also seen a trend towards
automation in code breaking or
cryptanalysis. Specifically, we saw how the
first ever electronic computers were
designed for the sole purpose of cracking
German wartime ciphers - and these two
trends continue hand-in-hand. As improving
technology permits ever more sophisticated
ciphers to be used, so the code breakers
also turn to increasingly advanced
technology. As cryptanalysis goes hi tech,
then so the code making has to become
cleverer still. But, whereas 50 years ago the
hardware used for cryptography was rare,
expensive, and protected by the Official
Secrets Act, today it is commonplace. Any
PC can be used to emulate the wartime
cipher machines like Enigma or perform
cryptanalysis in just the same way as the
Bombe electro-mechanical or the Colossus
electronic computers. And so there’s been
another trend in the world of cryptography.
Since the tools of the trade are now easy to
get hold of, ciphers are no longer the sole
domain of spies and the military. Encryption
is now an important commercial tool,
especially as the potentially insecure
Internet is being used to transmit sensitive
information such as credit card details. This
month, to bring our investigation of
cryptography to a close, we’ll take a look at

some of the sophisticated ciphers which are
in use today. These are the ciphers which
are used by banks and corporations world-
wide and which will pave the way to the
widespread adoption of e-commerce.

Data Encryption
Standard - DES
The Data Encryption Standard, or DES, was
developed during the 70s in response to a
US government initiative for the provision
of a cheap, secure encryption technology
for use in the protection of non-classified
information, which would be available to all
and appropriate for use in a wide variety of
applications.

DES is described as a secret key, block
product cipher. We’ve already come across
the term ‘product cipher’ - one which uses
a combination of substitution and
transposition - but, if your knowledge of
ciphers is limited to what you’ve read in the
first two articles in this series, the other

terms will be new to you. All the ciphers
we've seen so far are stream ciphers, that is
ciphers which operate on a single letter at a
time. In a block cipher, the algorithm
operates on a block of data at a time and in
DES that block is 64 bits or eight ASCII
characters long. The final term, secret key, is
an intriguing one. It means exactly what it

sounds like - that the sender and the
receiver use a key which is kept secret from
all other parties in order to maintain secure
communication. Surprisingly, though, there

ELECTRONICS AND BEYOND December 1999

are other types of cipher where the key is
not kept secret but we’ll have to leave an
explanation of this until later in the article.

The DES algorithm isn’t especially difficult
to understand - it can readily be implemented
in hardware, and a high level language
program runs only to around 300 lines - but
it is a rather long and protracted process. In
our description of DES, therefore, I shall
rely heavily on flow diagrams. I suggest that
you refer to the diagrams as you work your
way through the textual description. Figure
13 is the overall flow diagram of the DES
encryption process and Figure 14 is a more
detailed view of what happens in each of
the boxes in Figure 13 which are labelled
‘Iteration 1’ to ‘Iteration 16.’ Note that in
each of these diagrams, blue boxes
represent the data as it progresses through
the process, changing from plain text to
cipher text en route, yellow boxes represent
keys, and green boxes represent operations.
To give an example from Figure 13, the
operation labelled ‘Iteration 1’ takes data LO,
RO and key K1 as its inputs and generates

data L1 and R1 as its outputs. You'll notice
that the flow diagrams show 16 keys labelled
K1 to K16, each of which is used in one of
the iterations. In fact, DES requires just the
one 56-bit key but this is used to generate
the sixteen 48-bit keys used in each of the
iterations. We’ll take a look at how these
sixteen keys are generated once we’ve
worked through the main encryption
process.

Initial Permutation
As we’ve already seen, DES works on

blocks of 64-bits. The first stage in the
encryption process is a transposition - this is
designated by the box labelled ‘Initial
Permutation’. This involves jumbling up the
64 bits according to a fixed transposition
table. The 64-bit result is then divided into
32-bit left and right parts, LO and RO which
are processed in the first iteration to give
another pair of 32-bit parts, L1 and R1. This
continues until, after the 16th iteration is

Figure 13.

Figure 14.

complete, L16 and R16 are re-combined and
finally subjected to the Inverse Initial
Permutation - another transposition, in fact
the reverse of the first transposition - to give
the final cipher text.

So, now let’s take a look at what goes on
in each of those 16 iterations. The right-
hand part of the input data to iteration n,
Rn-1, is transposed using another fixed table
call the E-bit selection table. In fact, 16 of
the bits are also duplicated as part of this
process, thereby increasing the length to 48
bits. The result is now XORed with the 48-
bit key for this particular iteration, Kn. The
48-bit result is now split into eight groups of
six bits each. The box labelled Permutation
P is, in fact, a fixed substitution so each of
these 6-bit values is substituted for a
different value, each now 4-bits in length.
The eight 4-bit values are now re-combined
to give a 32-bit result, and this is now
XORed with the left hand part of the input
data to iteration n, Ln-1, to give the right
hand part of the output data from the
iteration, Rn. The left-hand part of the
output data from iteration n, Ln, is simply
the right hand part of the input data, Rn-
1.Turning now to the generation of the Keys
for each iteration, K1 to K16, we’ll refer to
Figures 15 and 16. As before, the first figure
is an overall flow diagram and the second
shows the detail of what goes on in each
iteration. I won’t go through these in detail
—T'll just point out that the boxes labelled
‘Permuted Choice 1’ and ‘Permuted Choice
2’ involve a transposition of bits and that the
second of these also discards some of the
bits to produce Kn, the 48-bit key.for
iteration n.

We haven’t presented all this because we
expect that many of you will feel inclined to
write your own DES software - and you’d
need the details of each of the transposition
and substitution tables if you were to try.
The reason for showing you the flow
diagrams is to illustrate that, despite being
somewhat convoluted, the process is really
just a block-oriented extension of techniques
we've already see. This contrasts with the
RSA cipher which we’ll look at next. But at
this stage it’s appropriate to address the
question of whether this is a
monoalphabetic or a polyalphabetic cipher.
After all, we saw in the first part of this
series that any monoalphabetic cipher - one
which always causes a particular plain text
letter to become the same cipher text letter

: decide on the DES

Figure 15.

- is not very secure. Specifically, it can be
cracked by measuring the frequency of
occurrence of cipher text letters, letter pairs
and triplets and comparing them to the
frequency of occurrence in the English
language. At first sight, DES does appear to
be monoalphabetic — with the same key,
one block of input data will always produce
the same block of output data. However,
the phrase monoalphabetic doesn’t apply
since the algorithm operates on blocks of
64-bits or eight characters at a time rather
than on a single letter. Whereas a block will
always encode the same way, if that block
was composed of eight letter as, for
example, those eight letters wouldn’t all end
up represented by the same eight bits in the
final cipher text. Any attempt to crack a
code by looking at the frequency of
occurrence of blocks of eight characters -
the equivalent of the method we used to
crack monoalphabetic ciphers - just isn’t an
option.

Public Key Ciphers
DES is described as a private key cipher

as, for that matter, are all the ciphers we’ve
seen so far. And in a private key cipher, only
those parties authorised to encrypt or
decrypt messages should have knowledge
of that key. This seems so obvious and so
much a part of all we’ve seen so far that it
will probably come as a surprise to learn
that there is a different class of cipher called
the public key cipher. But before we look at
this in more detail, let’s
give some thought to the
problems with private key
ciphers. Let’s assume that
I want to communicate

with you over a
communication channel
which I know isn’t secure.
We’ve never
communicated before so
we'll need to agree on
some method of
encryption. OK, perhaps I
take the initiative here so I

encryption standard and I
pick a key. But now, of
course, there’s a problem.
How do I let you know
the key I’ve picked -
certainly I can’t transmit it

Figure 16.

December 1999 ELECTRONICS AND BEYOND @-p

to you over that insecure communication
channel. In practice, the only really secure
method would be for me to hand the key to
you in person. But for someone who needs
to communicate with a number of parties
world-wide, communicating the keys would
be a lengthy and expensive process. This
problem of key distribution is the one
which public key encryption is designed to
overcome.

Another name for a private key cipher is a
symmetrical key cipher. What this means is
that the same key is used for encryption and
decryption as shown in Figure 17. A public
key cipher, on the other hand, is
asymmetrical in that one key is used for
encryption and a different key is used for
decryption. This scheme is illustrated in
Figure 18. The two keys are, obviously,
related, but the cipher is designed such that
someone can’t work out the one key from
the other. Strictly speaking, of course, it is
possible to determine one key from the
other but it would take a phenomenal
amount of computing time. When I talk of
something being impossible, therefore,
what I really mean is that it’s computationally
impractical. So let’s now look at how this
helps overcome the problem of key
distribution. All parties intending to
communicate using public key encryption
generate a pair of keys. Note that, although
it’s not possible to work out one key from
the other, it is, of course, possible to
generate a pair of keys with this strange
relationship. One of the keys is kept secret
which is called the private key and is never
divulged to anyone else, and the other key
is published. It would be possible, for
example, for people to publish their public
key in a directory of e-mail addresses. Now,
if 1 want to send a message to you, I encrypt
it using your public key. Only you will now
be able to decrypt that message since the
decryption process requires your private

key. Similarly, to reply, you would encrypt
the message using my public key and I
would decrypt it using my private key. Only
the public keys have to be distributed and
there’s no need to keep these secret, so the
problem of key distribution has been
solved.

RSA Public Key Cipher
The most common public key cipher is

called RSA in recognition of its three
developers, Rivest, Shamir and Adleman. I’m
not going to describe the inner workings of
the RSA cipher at all. Unlike DES, which is

Plain text

Private key

Encryption

Figure 17.

Plain text

Public key

Encryption

Figure 18.

long and convoluted but relatively simple
nonetheless, the mathematics behind
RSA is horrendously complicated.
Encryption and decryption of RSA also
involves about a thousand times more
computing time than DES which is one of
the major disadvantages of the public key
approach. For this reason, a common
technique is to use a public key scheme
for the distribution of a key which is then
used with a separate private key cipher. The
private key would be used for just the one
message and then discarded. Figure 19
shows this hybrid method in use.

At first sight, it would seem that another
disadvantage of a public key cipher is that it
doesn’t allow authentication of the sender.
With a private key cipher, if you receive a
message, purportedly from a known party,
the fact that you’re able to decode it using a
key known only to you and that party would
indicated that it had indeed been sent by
that party. As it stands, of course, no such
authentication is provided by a public key
cipher. Anyone could encode a message to
you using your public key and you’d have
no way of telling whether the message
actually came from whom it claims to have
been sent by. However, a well designed
public key cipher, such as RSA, does allow a
sender to electronically ‘sign’ a message in a
unique way. Let’s see how this works by
referring to Figure 20. First of all, though,
we need to take a look at the concept of a
one-way hash function. This is a function
which operates on a block of data to
generate a unique value but for which there
is no reverse function which would allow
the original data to be recovered. An
example is the checksum which is
appended to the end of a block of data to
allow the receiver to verify whether or not
the data had been corrupted during
transmission. The receiving party calculates
the checksum from the received data and
compares it with the checksum calculated
by the sender and appended to the
message. A discrepancy indicated data
corruption. So, to return to the digital
signature, the sending party encrypts the
message using the intended recipient’s
public key using the method Wwe’ve already

Cipher text

Cipher text

Plain text

Same
private key

Decryption

Plain text

Private key

Decryption

Garbage
=

ne

Public key

Attempted
Decryption

seen. The sender also performs a one-way
hash function on the unencrypted text and
encrypts the result of the hash function
using his own private key. Now, RSA allows
messages either to be encrypted using the
public key and decrypted using the private
key or vice versa. Encrypting using the
private key is not normally very useful since
anyone could then decrypt that message
using the public key but it is useful in this
instance. The recipient decrypts the message
using his own private key and then
performs the one-way hash function on the
decrypted message. The recipient now
decrypts the hash function result sent by
the other party using that party’s public key.
If the result is the same as the locally-
generated hash function result, this proves
that the message had been sent by the party
whose public key had been used to decrypt
the hash function result. The sender is,
therefore, authenticated.

Political Wranglings
In the section on DES, we spoke about a

key length of 56 bits. In fact, there has been
quite some controversy over the years about
the key length of this and other encryption
algorithms. The standard which formed the
basis of DES, IBM’s Lucifer, had a 128-bit
key. Before authorising it for public release,
though, the National Security Agency — the
USA's equivalent of MI5 — insisted on a
reduction to 56 bits. As you could well
imagine, this made the cipher substantially
less secure, in fact, a brute force attack
would manage to crack the 56-bit DES a few
trillion times quicker than the full 128-bit
variant. However, as you'll know if you’ve
followed the political tos-and-fros reported
in the computer magazines, the US
government imposed even more stringent

Gp ELECTRONICS AND BEYOND December 1999

limitations on what could be exported.
Encryption software is considered to fall
into the same category as munitions for
export purposes. Accordingly, such software
can only be shipped from the USA with an
appropriate export license. Licenses were,
initially, only granted for products with a 40-
bit keys - another 64,000 times less secure
than the 56-bit version.

The fact that something is illegal, doesn’t
always prevent it from happening, though,
as is evidenced by the Zimmermann saga.
American mathematician Phil Zimmermann,
developed a system of cryptography called
PGP or Pretty Good Privacy which had a
128-bit key and could not, therefore, be
exported legally. This didn’t deter
Zimmermann, though, and, in common
with much of the early Internet community,
felt that a stand had to be made in the
interests of free speech. That stand involved
making the source code of PGP freely
available over the Internet and it came very
close to gaining Zimmermann a four year
spell in a Federal Penitentiary. Another line
of attack against apparently unjust export
restrictions was totally legal. Academics and
hackers everywhere started a consorted
attack on 40-bit versions of DES and similar
ciphers. Some of the cryptanalysts were
flying the ‘free speech’ flag by showing how
insecure a 40-bit key was, for others the
motivation was the pure technical challenge
of cracking a cipher, but it’s also significant
that for many others the motivation was
financial — cash prizes were on offer. And
who was putting up this money? Well, if I
tell you that the export restrictions were
causing American software houses to loose
out to foreign competition, you'll probably
guess the answer — these companies had a
vested interest in proving to the NSA that a
40-bit cipher is virtually useless. So how did
these amateur cryptanalysts fare? In 1995,
French student Damien Doligez cracked a
40-bit cipher in eight days using a
combination of 120 workstations and a few
supercomputers. The next year, a group of
cryptographers estimated that a 40-bit key
could be cracked in 12 minutes and a 56-bit
key in 18 months using a $10,000 machine
consisting of 25 FPGAs. For $10 million, a
machine with 25,000 FPGA chips could
crack a 56-bit DES key in 13 hours; one with
250,000 ASICs could do it in 6 minutes. In
1997, following RSA Data Security’s
announcement of cash prizes for the first
person breaking each cipher of varying key
lengths, Ian Goldberg, a student at Berkeley,
walked away with a $1,000 prize of cracking
the 40-bit RCS cipher in three and a half
hours using a network of 250 computers
that tested 100 billion keys per hour. A few
weeks later, Germano Caronni of the Swiss
Federal Institute of Technology won the
$5,000 48-bit prize. Caronni used more than
3,500 computers networked over the
Internet to search 1.5 trillion keys per hour.
The key was found after 13 days.

Well, to cut a long story short, the US
government eventually relented about a
year ago and encryption systems with key
lengths up to 56-bits can now be exported.
However, it’s questionable how much more
secure 56-bit key is today than a 40-bit key
was when DES was first introduced. More
recently, a team assembled by the Electronic
Frontier Foundation cracked the 56-bit DES
in less than 23 hours. In fact, a bill which
will abandon all export controls on
encryption products is in the process of

Plain text Cipher text

public key

Encryption Encrypted DES key DES key

Figure 19.

Party A

Plain text Cipher text Cipher text

private key

Encryption

Encrypted
Hash result

Figure 20.

Encrypted Hash result
Hash result

being introduced. Until recently, though, it
looked as if this bill only stood a chance of
being approved if it required suppliers of
products to build in a key recovery
mechanism. Also referred to as ‘the back
door’, this is a method, in theory known
only to the supplier and to certain
government departments including law
enforcement agencies, which would permit
a message to be decrypted without use of
the key. Needless to say, civil liberty groups
voiced opposition to this, as
did other parties concerned
that the back door could well
jeopardise security. So, if
you’re concerned about civil
liberties you'll be dismayed to
hear, no doubt, that the British
government, in its proposed
forthcoming legislation, looks
set to require something
similar. But instead of a back
door, the proposed solution is
to use the services of a so-
called Trusted Third Party.
Users of encryption products
would be required to lodge
their key with this trusted
third party. In the event of an
investigation relating to
criminal or terrorist activity,
the police and other
government departments
would be ably to apply to
obtain the key from the

trusted third party.

Hands-on
Encryption

To conclude our
investigation of the world of
cryptography, I thought it
would be appropriate to give
pointers on where you can get
hold of cryptographic
software. ’m not talking here
of software which could be
described as a curiosity -

Cipher text

Encrypted
DES key

Party B

Party B's
private key

: part
Decryption | cetsis

Party A's
public key

Decryption

\/

software to illustrate
the use of the various
historical ciphers we
looked at earlier in
this series - I’m talking
about software which
can be used for real
world applications.
However, if you do
want to play around
with some of the
historical ciphers,
search engines will list
a wealth of
information. Bear in
mind, though, that if
you just look for
words such as cipher,
encryption,

cryptography and the
like you'll get just too
many references and
most of them will be

va to current day
— cryptography. So try

looking for
information on
specific historical
ciphers such as Playfair
or Enigma.

But to return to my main emphasis,
practical cryptographic software will, almost
certainly, be based on the ciphers described
in this article, that is DES or RSA. And
commercial products are available from
companies like Sophos (www.sophos.com)
who specialise in computer security. In

addition to encryption for the purpose of
secure electronic transmission of data,
packages which will encrypt data as it’s

Party B

Step 2:
DES 2

Decryption Fr

Plain text

private key

Decryption pee hey

Plain text

One-way
Hash

Hash result

Hash result

written to your hard disk and decrypt it as
it’s read back are also available. This, of
course, provides protection from
unauthorised access to your PC and secures
your data in the event of the PC being
stolen. However, there is also plenty of
public domain software and shareware
available for downloading from the Web. If
you look around I’m sure you'll find plenty
but here are a couple of examples of free
software which you may like to take a look
at. Do bear in mind, though, that you
should properly virus-check any software
you download from the Web before you use
it. Scramdisk, available from
http://www.scramdisk.clara.net, encrypts the
data on your hard disk to protect it from
prying eyes. The software decrypts data on
the fly but only to a user who can enter the
appropriate password (i.e. key). And a
number of packages for file encryption and
secure e-mailing can be downloaded from
http://abi.hypermart.net.

Finally, as a parting shot, I thought you
might also be interested in taking a look at
http:/Aveb.mit.edu/network/pgp.html which
is the Web site from which PGP - the
software which got Phil Zimmermann into
so much trouble - can be downloaded.
However, you won't actually be able to
obtain the software from that site, not
unless you make some false declarations,
that is, since it is still governed by US export
restrictions. Specifically, in order to be
provided with complete details of how to
download the software, you have to
electronically sign a declaration stating
either that you’re a US citizen living in the
USA or that you’re a Canadian citizen living
in Canada. Personally, I wouldn’t risk
incurring the wrath of the CIA by making a
false declaration.

Figure 8. Logical wiring diagram of the German wartime Enigma machine.
This is reprinted in colour and applies to the text in Part 2 from last month.

December 1999 ELECTRONICS AND BEYOND @}

