
Have you ever wanted to send 
complex commands to your robot

without having a computer attached to
it? This column will show you how to
interface with a standard keyboard that
has a PS2 or AT connector at the end
of its cable.

Using a PC’s keyboard in conjunc-
tion with an LCD screen can allow you
to easily control the values of variables
in your robot or to otherwise modify its
behavior. Alternately, if your robot
needs dozens of buttons to control it, a
PC keyboard will certainly be a cheaper
and easier alternative to using standard
buttons.

In an ideal world, when you
pushed a key on your keyboard you
would receive an ASCII character code
that corresponded to that key.
Unfortunately, there appears to be no
obvious rhyme or reason to the codes
that you receive when you press a key.

Most keys follow the rule that one
byte is sent when they are pressed and,
if they are held down for a while, they
repeatedly send that same byte. When
they are released, they send two bytes.
The first is a byte that signifies that a
key has been released and the second
is the byte that corresponds to that key.
That is fairly simple and luckily, most
keys follow this rule.

For the most part, the main 
keyboard and the number pad on the
right follow this rule but the arrow keys

and keys such as page up or delete
don’t. Those keys send two bytes when
they are pressed, send packets of two
bytes if they are held down, and send
three bytes when they are released.
Things get even more complicated for
the ‘Pause Break’ and ‘Print Screen’
buttons. The ‘Print Screen’ key sends
four bytes when it is pressed and the
‘Pause Break’ button sends eight bytes.

Keyboards have sent the same
data since the original PC was released,
so it is likely that these oddball codes
that the keyboard is sending have
something to do with making it easier
for those computers to process their
data. Of course, these days, they make
it harder for us to process their data
but even still, it is relatively painless to
interpret the data that keyboards send.

Let’s start by looking at the physi-
cal interface between the keyboard
and your processor. There are two
types of keyboards that you can use:
an AT keyboard and a PS2 
keyboard. Both of them have
the same data format. The only 
difference between them is the
connector at the end of their
cable.

There are four wires that
must be connected to your 
project. Two of them are +5
volts and ground. The other two
are clock and data. Figure 1
shows the pinouts for these two

connectors. The clock and data lines
are open collector I/O lines.

You might think of a PC keyboard
as being an output only device, but in
reality, it can also receive data from the
computer. This column won’t cover
how to send data to a keyboard, but
some things that you can tell it to do is
to light up its three status LEDs, change
its key repeat rate, and request that it
resend the last byte that it sent.

Eleven bits are sent for each byte
of data that the keyboard transmits.
The signals are similar to the signals
sent by SPI devices. SPI devices usually
play nice and send extra clock cycles if
they have a number of bits that don’t
fit neatly into a multiple of eight. 
The PC keyboard doesn’t do this. It
transmits 11 bits and then goes quiet.
This means that you won’t be able to
use a standard SPI peripheral to receive
its data.

Before continuing on, let’s look at

by Jack Buffingtonby Jack Buffington

Getting Keyed Up
How to Use a Standard PC

Keyboard to Control Your Robot

Figure 1. The PS/2 and five pin
DIN keyboard connectors.

SERVO 04.2006  15

Rubberbands.qxd  3/9/2006  1:30 PM  Page 15



Rubberbands and Bailing Wire

16 SERVO 04.2006

the signals that the keyboard is 
sending. Figure 2 shows a single byte
being sent from the keyboard to the
host computer.

Some documentation says the PC
keyboards are supposed to send their
data with a clock that is somewhere in
the range of 20 kHz to 30 kHz. The 
keyboard that was used for this column
fell outside of that spec. Its clock rate
was 13 kHz. The key point to take 
from this is that you can’t rely on the
keyboard to put out its data at a fixed

baud rate. The keyboard’s clock idles in
a high state. Data is considered to be
valid on the falling edge of the clock.

The data coming from the 
keyboard is as follows. The first bit is a
start bit. This bit is always low. It is 
followed by eight bits, which are the
actual data. This data is sent with the
least significant bit first. The next bit is
a parity bit. Specifically, it is an odd 
parity bit. Parity is a simple way of 
helping you to verify that you received
your data correctly. It can allow you to

detect single bit errors. If you are using
odd parity, the sum of the 1s in the
byte plus the parity bit will be an odd
number. With even parity, the sum of
the 1s in the byte plus the parity bit will
be an even number.

Getting back to how to receive
data, look at the chunk of code in
Figure 4 that shows one way to receive
keyboard commands. This code is 
pretty wasteful of your processor,
though, since it hogs 100% of it. Still,
it lays the groundwork for the next
method that will be shown. In neither
version is the parity bit used. If you are
experiencing problems with the data
that you are receiving, you might want
to put in a check to make sure that the
parity is indeed correct.

The code in Figure 4 works, but
there is a better way to collect this
data. Since the keyboard is supplying
the clock pulses, we can connect the
clock line to an I/O pin on your proces-
sor that can generate an interrupt
when that pin changes. This particular
piece of code uses the PIC’s port B
interrupt which happens whenever a

pin that is set to be an
input on port B pins 4
through 7 changes state.
Since we only want to look
at the data when the clock
line has fallen, the interrupt
routine simply returns
when the clock is high.

The way that this 
interrupt routine works is
that it forms a simple state
machine that keeps track
of which bit is being
received at any given time.
Each time that the interrupt
happens, if the clock is
falling, then it uses a switch
statement to jump to code
that does what is appropri-
ate for that particular bit. It

Figure 2. A byte of data being sent from the keyboard.

Byte Even parity Odd parity

01010110 0 1

11001011 1 0

00000001 1 0

00000000 0 1

Figure 3. Examples of parity.

If an output is open collector, then it will only be able to pull the signal line 
low so you will need to have a ‘pull-up’ resistor to make that output actually be able 
to send data. A pull-up resistor is not a special type of resistor. It is simply any resistor
that is connected between the positive supply (usually five volts) and the output; 10K
resistors work well as pull-up resistors.

If you go higher in value, you may experience noise. If you go lower, your 
circuit will draw more power when the output is being driven low. While at first open
collector outputs might seem like the manufacturer was just being lazy when 
implementing their hardware, it actually allows their device to be connected to
devices that have a different operating voltage without any problems.

TECH TIDBIT

int8 I, theByte;
int16 RXdata;

For(I = 0; I < 11; I++)
{
while(input(KEYCLOCK)) {} // do nothing while the clock is high

if(input(KEYDATA))
bit_set(RXdata,10);

else
bit_clear(RXdata,10);

rxData /=2

while(!input(KEYCLOCK)) {} // do nothing for the remainder of the time that
//the clock is low

} // end of for loop

// the result is now in the low byte of RXdata.
theByte = *(&RXdata); // grabs the low byte
theByte = RXdata; // another way to grab the low byte.  Since the upper bits

// don’t fit into an 8-bit variable, they are simply truncated.

Figure 4. Code that receives keyboard data.

Rubberbands.qxd  3/9/2006  1:30 PM  Page 16





letters, then you will need a fourth
lookup table to deal with that. The
code on SERVO’s website only deals
with the shift key and ignores the caps
lock.

As was mentioned earlier, for most
keys you get one byte when a key is
pressed and two bytes when a key is
released. Let’s use the ‘A’ key as our
example. It sends the hexadecimal
value 1C when it is pressed. When it is

released, it sends two bytes F0 and 1C.
The F0 signifies that the key was
released. This is the way that all of the
one-byte keys work.

Now, let’s look at the ‘Insert’ key.
This key sends the two bytes E0 70
when it is pressed. The E0 specifies
that it is an extended key. When this
key is released, it will send the three
bytes E0 F0 70. It first sends the byte
E0, which signifies an extended key,

then it sends an F0 which indicates that
a key has been released, then finally it
sends the key code for Insert.

The following two keys are a lot of
trouble, but if you are determined to
use them, the Print Screen key puts out
E0 12 E0 7C when it is pushed and will
repeat that code if it is held down.
When you release it, it puts out E0 F0
7C E0 F0 12. The Pause Break key is
easier. It puts out E1 14 77 E1 F0 14 F0

77 only when it is
pressed. It does not
repeat and does not put
out a code when it is
released. 

Okay! You now know
how to read a PC’s key-
board, but what can you
do with it? One thing that
would be really handy is if
you could examine and
change the values of
some of the variables in
your robot without having
to drag your computer
with you as you followed
your robot. You could sim-
ply mount an LCD screen
somewhere on the robot
and include a keyboard
connector. This is what
the sample code on the
SERVO website does.

It has an LCD screen
and the keyboard con-
nected to a PIC processor.
When you type, the
appropriate letter or 
character appears on the
screen. You can connect
and disconnect the 
keyboard as often as you
want because the pull-up
resistors that are on your
circuit board will keep the
input lines from floating.

One minor thing to
keep in mind though is
that each time the key-
board is attached to your
robot and receives power,
it will go through a power
on self test and return 
the value of 170 (AA) to
signify that it has passed.
You will just need to add

18 SERVO 04.2006

Rubberbands and Bailing Wire

#int_RB
RB_isr()
{
if(!input(KEYCLOCK))

{// this was a falling transition so go ahead and record the bit if it is a
// data bit

switch (whichBit)
{
case 0:  // this is the start bit.

parity = 0;
if(input(KEYDATA))

whichBit = 0; // this wasn’t a start bit if KEYDATA was high
break; // this will give the code another chance to get it right

case 1:  // these are the actual data
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:

loadBit();
break;

case 9:  // this is the parity bit
break;

case 10: // this is the stop bit.
if(!isBufferFull())

putInBuffer(RXbyte);
break;

}// end of the switch statement

if(++whichBit == 11)
{
whichBit = 0;
set_timer0(0);
}

}// end of if this was a falling edge
//set_timer0(0);

}

//————————————————————————————————————————————————————————————————————————————————————————
void loadBit()

{
RXbyte /= 2;
if(input(KEYDATA))

{
RXbyte += 128;
parity++;
}

}

Figure 6. Better code to receive the keyboard’s data.

Rubberbands.qxd  3/9/2006  1:31 PM  Page 18



code in your robot that will ignore
this value.

Having a large array of keys in
a ready-made package can free
you from the tedious task of wiring
buttons and figuring out how to
connect all of them to your micro-
controller in a way that doesn’t use
all of its I/O pins. In its simplest
form, you could use a keyboard so
that each key triggered a certain
event to happen, such as a light
coming on or a motor energizing
to drive your robot forward.

Getting more complex, if you
wanted to change the values of
the variables in your robot, you
could just decide on a strategy
where, for example, the Q key
might increase a variable by one
and the A key would decrease it 
by one.

Of course, if you were really 
ambitious, you might decide to write a
command interpreter for your proces-
sor so that you could give it commands

such as ‘set maxspeed = 57’. That
might be a bit of overkill, though.

Having a keyboard port on your
robot may be a solution to input 
problems that you are having that
won’t add much cost or code space to

your project. Stay tuned for next
month when this column will go over
how to use the new Nordic
Semiconductor chip that allows for
wireless data transfers of up to 1
Megabit per second!  SV

Rubberbands and Bailing Wire

SERVO 04.2006  19

// These are ASCII codes if the shift key is not pressed
const int8 noShift[] =

{ 0, 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  9, 96,  0,
0,  0,  0,  0,  0,113, 49,  0,  0,  0,122,115, 97,119, 50,  0,
0, 99,120,100,101, 52, 51,  0,  0, 32,118,102,116,114, 53,  0,
0,110, 98,104,103,121, 54,  0,  0,  0, 97,106,117, 55, 56,  0,
0, 44,107,105,111, 48, 57,  0,  0, 46, 47,108, 59,112, 45,  0,
0,  0, 39,  0, 91, 61,  0,  0,  0,  0, 15, 93,  0, 92,  0,  0,
0,  0,  0,  0,  0,  0,  8,  0,  0, 49,  0, 52, 55,  0,  0,  0,
48, 46, 50, 53, 54, 56, 27,  0,  0, 43, 51, 45, 42, 57,  0, 0};

// these are ASCII codes if the shift key is pressed
const int8 shift[] =

{ 0, 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  9,126,  0,
0,  0,  0,  0,  0, 81, 33,  0,  0,  0, 90, 83, 65, 87, 64,  0,
0, 67, 88, 68, 69, 36, 35,  0,  0, 32, 86, 70, 84, 82, 37,  0,
0, 78, 66, 72, 71, 89, 94,  0,  0,  0, 77, 74, 85, 38, 42,  0,
0, 60, 75, 73, 79, 41, 40,  0,  0, 62, 63, 76, 58, 80, 95,  0,
0,  0, 34,  0,123, 43,  0,  0,  0,  0, 15,125,  0,124,  0,  0,
0,  0,  0,  0,  0,  0,  8,  0,  0, 49,  0, 52, 55,  0,  0,  0,
48, 46, 50, 53, 54, 56, 27,  0,  0, 43, 51, 45, 42, 57,  0, 0};

Figure 7. Lookup tables to convert the codes returned by the keyboard into ASCII codes.

1-888-395-9029
www.YostEngineering.com

Taking over the world, one step at a time.

Independent and simultaneous control 

of the speed and position of 16 RC servos 

per board, up to 256 total servos

$48.95 - $89.95
Full Package Includes: Power adapter, cable, 

sample CD, and programming guide.

Servo Controller Boards & Chips

www.YostEngineering.com/ServoCenter

YEI ServoCenter™ 3.1 Controller
USB, Serial, MIDI, or Chip

What will your robot do?
It’s up to you!

The ServoCenter™ 3.1 is an embedded controller 
allowing any device with a serial, USB, or MIDI port 
to control the seek position and speed 
of up to sixteen servos per board, up 
to 256 total servos -- all independently 
and simultaneously.  This control 
scheme allows each servo to move to 
its own position, at its own speed, at 
its own schedule.  This unparalleled 
independent control of both 
servo position and speed makes 
ServoCenter 3.1 especially useful for 
servo control applications including 
robotics, animatronics, motion 
control, automation, retail displays, 
and other areas where independent 
and coordinated fluid servo motion 
is desired.  Also available in DIP, 
PLCC, or TQFP packages.

Rubberbands.qxd  3/9/2006  1:31 PM  Page 19




