
14 SERVO 12.2011

This month’s column is dedicated to software issues
that many of you are struggling with, attempting to go
around, or are just plain avoiding by watching another
edition of The Daily Show, rather than wrestling a problem
to the ground and pinning it.

So, this time I’m going to answer these software
questions that I’ve been queuing up for just such an
occasion. I’ve chosen timers and Interrupt Service Routines
(ISR) for my topics, using as many compilers as I can on the
two most commonly used platforms I get questions about:
the Atmel ATmega and PIC series chips. Contrary to
popular belief, Mr. Roboto has not used every compiler or
chip extensively, just some here and there. Rather than
repeat every question and answer, I’ll break the questions
down into two categories and go over the nuts and bolts
of how to solve the problems.

You will have to bear with me here. Working with
timers and interrupts is rather like tying your shoelaces.
Once you are “in the know,” the process seems simple and
is automatic, but explaining just exactly how and why one
is doing each step is very laborious. So, I will start at “level
0” and work forward. I hope that you will then understand
and be able to apply the process to your own project, and
not just have to copy the code you find in these pages.

Q. So, let’s get started with our first generically
posed question. How do I set up a timer?

A. I’ll start with the always popular ATmega168 or
ATmega328 parts. These are commonly used on a
variety of popular robot controllers like the Pololu

Orangutan and the Arduino series. I use them pretty often
myself. So, how do you set up a timer? Let’s take a look. I
promise, it won’t hurt and after you do it a few times, it
will be automatic to you.

The Compiler
I’m going to use the avr-gcc as my compiler of choice.

It is a good compiler, runs on Windows, Mac OSX, and
Linux, and it’s free. (What more could you want?) You
don’t have that? Well, go back through your SERVO
Magazine archives and find where I detail how to set it up,
either using Winavr or Eclipse (my choice) in the August ‘08
article.

Homework

I am not going to reproduce the entire 376 page
document Atmel provides for us to configure and use the
ATmega168/328 parts. You should get a copy of it from
your favorite parts supplier or Atmel (www.Atmel.com) to
use as a reference while you read this article. Another good
place to get the ATmega168 datasheet is your parts
distributor; it will be easier to find there. I use Digi-Key
(www.digikey.com). Simply search for the ATmega168
and click on the PDF symbol where the part is described.

The Timers
There are three timers in the ATmega168/328 parts:

TMR0 and TMR2 (eight-bit), and TMR2 (16-bit). All of these
timers can do PWM, or they can be configured to just be
timers. TMR2 can also be configured as an Input Capture,
but that is another story. I’ll look at TMR2 for this
discussion.

While all of the timers can take either an I/O pin input
or use the system clock to advance the timer, TMR2 can
also use an external crystal, so this one can be used with a
32.768 KHz source to run a real time clock. We’re not
going there this time. We’ll select the system clock, which
in the case of an Arduino is typically 16 MHz. So, I’ll just
use 16 MHz as our clock source. If you use another system
frequency, substitute that frequency in when doing the
timing calculations that I’ll show you.

Tap into the sum of all human knowledge and get your questions answered here!
From software algorithms to material selection, Mr. Roboto strives to meet you
where you are — and what more would you expect from a complex service droid?

by
Dennis Clark

Our resident expert on all things
robotic is merely an email away.

roboto@servomagazine.com

Discu
ss th

is article
 in the

SERVO Magazine forums at

http://fo
rum.servomagazine.com

MrRoboto - Dec 11.qxd 10/31/2011 10:41 AM Page 14

http://forum.servomagazine.com
mailto:roboto@servomagazine.com
http://www.Atmel.com
http://www.digikey.com

The Timer Registers

To set a timer, you need to fiddle with several
registers. The following registers set up the clock source,
pre-scaling, and what the timer is used for. Each timer will
have its own unique set of registers. They will all use this
naming convention; just change the number to match the
timer/counter number.

TCCR2A: Timer/Counter Control Register A. Configures
PWM configuration on OC2A/OC2B pins, if we use them
for PWM.

TCCR2B: Timer/Counter Control Register B. Configures
Timer 2 pre-scale settings and a little more of the PWM
settings, if used.

TCNT2: Timer/Counter Register. This holds the current
timer/counter value.

ASSR: Asynchronous Status Register. Allows selection
of external clock sources.

These next registers are used to match PWM periods —
more on that later; they aren’t needed if you are just using
the timer.

OCR2A: Output Compare Register 2A. Match value for
PWM on OC2A pin.

OCR2B: Output Compare Register 2B. Match value for
PWM on OC2B pin.

This next set of registers allow us to set interrupts on
the timer conditions and check for interrupt flags.

TIMSK2: Timer/Counter Interrupt Mask Register.
Configures the type of interrupt (if any) you want to have
on PWM or Timer conditions.

TIFR2: Timer/Counter
Interrupt Flag Register. We can
look here for flags set by
configured interrupts.

Setting Up a Timer
We are going to start by just

setting up a timer — not PWM —
so these settings will reflect that.
Listing 1 shows the init routine.
I’ll comment on what was done.

1). Always clear your flags
before you turn something
on, especially interrupts.

2). Have the timer match on
the OC2A setting. Table 17-
8, mode 2, CTC is the
counter/timer clock match
on OCRA. When this match
occurs, the clock is cleared
back to zero to start over.

3). Use the internal clock with no prescale. Table 17-9
shows the prescale settings. Use other settings if
you want a slower clock.

4). Clear the timer to zero; start from a known place.
5). Here we set the interrupt. A timer just running by

itself is useful for some things; don’t use interrupts
if you don’t need them. Here we will use the timer
match to fire an interrupt (more on that later). I’ve
shown two ways to set a bit in a register.

6). 160 = 10 µs (microseconds) is the timer match with
a 16 MHz system clock. I did this because it was a
good value to use for controlling an RC servo pulse.

By now you’re thinking, “Why use an interrupt?” There
are good reasons for your timer to cause an interrupt. One
is to provide a background ticker for timing your program. I
find that such a timer is handy for timing state machines
and checking for timeouts in various places in the program.
Every time the interrupt goes off, you can increment a large
counter in your program. In this way, you can check timing
for many things without blocking program flow. Listing 2
shows what the ISR for just such a timer might look like.

My ISR does two things: it controls the position of an
RC servo (match count), and it handles my system timer tic
(1_1ms) at a 1 ms resolution. Handy, isn’t it? If all you

www.servomagazine.com/index.php?/magazine/article/december2011_MrRoboto

SERVO 12.2011 15

Listing 1: Setting Up the Timer.
TIFR2 = 0; // (#1)
TCCR2A = 0x02; // (#2)
TCCR2B = 0x01; // (#3)
TCNT2 = 0; // (#4)
TIMSK2 |= (unsigned char)_BV(OCIE2A); // (#5)
TIMSK2 |= (unsigned char)(1 <<OCIE2A); // (#5)
OCR2A = 160; // (#6)

Listing 2: Timer ISR.
ISR(TIMER2_COMPA_vect)
/*
* 10 microsecond ISR on TIMER2, a 8 bit clock
*/

{
static uint8_t t_10us;
static uint16_t match; // The single servo used
static uint8_t next_pulse;

t_10us++;
if (t_10us == 100) // 1ms background tic
{

t_1ms++;
t_10us = 0;

}

match++; // increment every 1
if (match > next_pulse)

SPIN = 0; // drop servo bit
else

SPIN = 1; // raise servo pin high

if (match > 1900)
{

next_pulse = servo;
match = 0; // restart servo timer

}
}

MrRoboto - Dec 11.qxd 10/31/2011 10:41 AM Page 15

http://www.servomagazine.com/index.php?/magazine/article/december2011_MrRoboto

16 SERVO 12.2011

needed to do was keep a 1 ms background tic, you could
set up the timer to interrupt at a 1 ms rate by choosing a
pre-scale value and match count that would cause the
interrupt every 1 ms. (Hint: 16 MHz/128 * 125 = 1 ms).

That wasn’t so hard, was it? The most difficult part of
this process is probably finding out how avr-gcc wants you
do set up interrupts (which I also showed you). But how did
I find the name of the interrupt so it would call the correct
ISR? Okay, you got me. That was really hard to find, so I
went to good ol’ Google, and it found www.nongnu.org/
avr-libc/user-manual/group__avr__interrupts.html
which set me right up. Somewhere in the avr-gcc
documentation it says this. I was sure, but I didn’t find it
without Google! At least now you don’t have to search for it.

Using a Timer for PWM
Our first step has nothing to do with timers at all!

We’re going to turn off the comparator module on the
chip. This module deals with comparing analog voltages
and causing things to happen by comparing them. This
module defaults to on and will cause you no end of
headaches with your I/O if you don’t disable it!

ACSR = 0x80; // turn off the comparator

This time, I’ll pick TMR0 for our PWM. In this series of
microcontrollers, a PWM block typically controls two PWM
output pins. In this case, our PWM outputs will be called
OC0A and OC0B, for Output Compare Zero A and Output
Compare Zero B. We’ll use similarly named registers in a
different way. In fact, we could just as easily have used
TMR2 or even TMR1 for PWM, but I thought that I’d
change it up a little. Yes, this is just an eight-bit PWM, but
for most of us, we use about three speeds: off, slow, and
fast. Eight bits does that just fine.

Timer0 PWM Registers
TCCR0A: Timer/Counter Control Register A. Configures

PWM configuration on OC0A/OC0B pins, if we use them
for PWM.

TCCR0B: Timer/Counter Control Register B. Configures
Timer 0 pre-scale settings and a little more of the PWM

settings, if used.
OCR0A: Output Compare Register 2A. Match value

for PWM on OC2A pin.
OCR0B: Output Compare Register 2B. Match value

for PWM on OC2B pin.
DDRD: Data Direction Register PORTD. Set the

direction of data transfer for the pins on port B. In this
case, OC0A and OC0B are PD6 and PD5, respectively.

Setting Up the PWM
Above we disabled the comparator module. This

assures us that our I/O pins are really digital. Now, we’ll
configure the registers above to PWM some motors. Since
we’re going to send a PWM signal out, we’ll need to deal
with the data direction registers, as well as the timer
registers. Listing 3 shows how to initialize all of the needed
registers.

Set the DDRD register for outputs on PD5 (OC0B) and
PD6 (OC0A). Set the fast PWM mode, clear the output on
match, count up from the bottom (0). Fast PWM will only
count up from 0, match (clear output), count the rest of
the period, then restart at 0 again with the output set to 1.
Set the prescale to 64 which on a 16 MHz part means the
clock will be 250 kHz divided by 256 (an eight-bit count)
which translates to a PWM rate of 977 Hz. Set both PWMs
to 0. We should always start out stopped, don’t you think?

At this point, all you need to set a motor speed is to
put a non-zero value into OCR0A or OCR0B, and the motor
will go that speed. This is simple motor speed control! If I
was going to use a PID algorithm, I would use the PWMs
on TMR1 which is 16 bits of resolution; this would give me
a smoother PID loop with more control. For simple motor
control, eight bits is plenty.

Wrap-Up for the ATmega168/328
Using these techniques, you can build your next robot

with a background timer that you don’t need to pay
attention to — except to read it. I like to use a 32-bit
variable and either a 1 ms or 10 ms tic; these will last a
good long time. (Get out your calculators class! There will
be a quiz: How long will it take for a 32-bit counter to turn
over to zero when incremented every one millisecond?) You
should do some defensive programming, however, to make
sure you don’t roll over to zero between when you take a
time reading and wait for a certain period of time to pass.
When dealing with PWM, it is even simpler than setting up
a timer with an ISR. Now, go do it!

Next Time, PIC Microcontrollers
I’ll be writing about a few different PIC micros and a

couple of different compilers next month. PICs are different
than the ATmega parts, but not more difficult to use. Well,
we’ve come to the end of another Mr. Roboto! Keep those
letters rolling in to roboto@servomagazine.com. SV

Listing 3: Setting Up PWM.
void InitMotors(void)
/*
* Set up the motors and PWM and such.
*/

{
DDRD |= (unsigned char)(1 <<PD5); // (#1)
DDRD |= (unsigned char)(1 <<PD6);

TCCR0A = 0xF3; // (#2)
TCCR0B = 0x03; // (#3)

OCR0A = 0; // (#4)
OCR0B = 0;

}

MrRoboto - Dec 11.qxd 11/1/2011 6:39 PM Page 16

mailto:roboto@servomagazine.com
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html

