Here's an application that can give
a robot builder great “joy.”

t 1 Now that we’ve
— ar finished building
the Robotic Personal Computer (RPC),
the mechanical drive system, and the in-
terface and controller board, we have a
robot that is ready to run. But what are we
going to do with it? In this article we are
going to show you a simple application
program that will demonstrate how to:
® Develop programs on the RPC.
@ Read the A/D converter.
® Read the switch status.
e Control motor direction.
® Control motor speed.

in addition, our first application, a
joystick controller for the robot, illus-
trates the use of the underlying Forth-83
language. You will want to become famil-
iar with Forth-83, even though you have
the power of the Robotic Command Lan-
guage (RCL) at your disposal, because
Foirth-83 allows you to extend the RCL to
suit your needs. Remember, the RCL is
simply an application written in Forth-83.
Your application can use the resources of
RCL or Forth-83 or both. That is shown
graphically in Fig. .

Stephen E. Sarns

The application

A joystick is attached to the discrete
user bus (PL3 on the control board). Ana-
log channel 0 is used to monitor the
Joystick’s forward/backward position.
Analog channel I monitors its left/right
position. For safety, a pushbutton dead-
man switch is connected to the D7 (data
bit 7) input. That switch must be de-
pressed for the robot to operate; if it is
released. all power to the motors is cut.

ROBOTIC APPLICATION

RADIO-ELECTRONICS

The schematic for the joystick hookup is , TR e L rmeaa e o
shown in Fig. 2. FIG. 1—AN APPLICATION PROGRAM for the robot can be written in RCL, Forth, or both.

(4]
(=]

All of the code we are going to write
will fit into six Forth screens. Therefore,
you do not need a disk drive. You can use
the RAM word to store all of your source
code in virtual memory above 32K. Alter-
natively, you can attach a disk drive and
keep all of your code on disk. Last. you
could type in all of the colon definitions
from the keyboard, but doing so is handy
for testing, not developing an application.

If you are going to use RAM as the
development media, power down and in-
stall a RAM IC in the IC5 socket on the
RPC, execute the RAM word, and re-
member that you now have virtual memo-
ry screens 32 to 39. If you have a disk
drive attached, simply insert a disk for-
matted under MS-DOS version 2.x or the
BIOS formatter. Decide where you want
to start (never screen () among the 360
available screens on the disk. For
simplicity and clarity, we’ll assume that
you'll start your first screen at 32 just like
the RAM-based example. Incidentally,
the example was developed on a disk, but
there is no {unctional difference after ex-
ecuting the RAM or DISK word.

Install a blank 2764 EPROM at IC31,
the EPROM programming socket on the
RPC; once again, power should be off
when doing that. It's handy to keep an
EPROM installed there, especially if you
are developing code in RAM and do not
want to risk losing it during a power down.

Invoke the editor by typing 32 EDIT.
The 32nd screen is read in from disk (or
RAM), the terminal’s display is cleared,
and then the screen of text is listed. Alter-
natively, you can type EDITOR 32 LIST.
Your first command will probably be
WIPE; that clears the entire screen. Now
begin entering the source code with the
editor. When you want to test a word,
make sure you FLUSH your changes to
disk before you LOAD the screen¢ other-
wise all of your changes will be lost if
your system crashes.

The program

One of the most common criticisms of
Forth is that it is unreadable and therefore
unmaintainable. We think you will find
Forth quite the opposite—if you start at

the end and work backwards. Remember.
in Forth, you can design your program

FIG. 2—A SIMPLE JOYSTICK can control the robot. The circuit is wired to the user
control board. For safety, a “deadman” or kill switch must be provided.

from the top down, meaning that you can
figure out how it should work, write that
part of the code, and later add the support
words to make it work that way. By start-
ing your examination of the application
from the end, you will understand how the
program works, leaving the details for
later.

Therefore, for now we’ll ignore the low-
level words, which can be rather esoteric,
and begin with screen 37, which contains
a single word called JOY. That is the
joystick program. While it is executing,
pushing the stick forward causes the robot
to go forward; pulling the stick back
causes it to reverse. Turns are made by
moving the joystick in the desired direc-

/861 H38W31d3S

[3.]
o

RADIO-ELECTRONICS

[=1]
o

LISTING 1 (continued)

Scr #35
8 / joystick - left motor control
1 decimal
2 : leftmotor
3 lspeed @ 18 > switch? and
4 if 1fwd lspeed @ speed-conv lmtr-period enable-left then
5 1speed @ -1 < switch? and
6 if lrev lspeed @ speed-conv lmtr-period enable-left
7 then
8 lspeed @ -10 1@ between switch? @= or
9 if stop-left then ;
190
11 : testleft
12 begin interrogate leftmotor lspeed @ . key ? until ;
13 —=> ;
14
15
Scr #36

@ / joystick - right motor control
1

2 : rightmotor
3 rspeed @ 10 > switch? and
4 if rfwd rspeed @
5 speed-conv rmtr-period enable-right
6 then
7 rspeed @ -1¢ < switch? and
8 if rrev rspeed @ .
9 speed-conv rmtr-period enable-right
10 then
11 rspeed @ -10 180 between switch? @= or
12 if stop-right then
13 -
14
15 -=>
Scr #37
- B/ joy
1 hex
2 :
3 : joy
4 begin
B interrogate rightmotor leftmotor
6 lspeed @ 10 .r rspeed @ 10 .r
1 cr key?
8 if key @d =
9 else @
10 then
11 until ;
12
13 decimal
14

-
e

tion. Speed is controlled by the displace-
ment of the joystick.

Note the BEGIN/UNTIL structure in
screen 37. The code executed within the
loop is indented for easier understanding.
The loop repeats or ends depending on the
value of an argument left by the IF/ELSE/
THEN construct. The loop checks to see
il a key has been pressed. If so. the KEY
statement retrieves the character and it is
compared to a ODH (carriage return). If
the result of the comparison is true, a rrue
flag (— 1) is left on the stack. If the KEY
statement is false, ELSE is executed,
which leaves a fulse flag on the stack (0).
UNTIL causes the loop to continue until a
true flag is found on the top of the stack.
Thus, JOY will execute until the carriage-
return key is pressed.

Why not terminate on any key? Some-
times after you disconnect your terminal,
the floating RS-232 input can be subject
to noise. Generally, after your code is in
ROM and you are running without the
terminal, install a shorting bar between
RxD and ground on the RS-232 con-
nector.

INTERROGATE (in line 5 of screen
37) is a word that updates the two varia-
bles LSPEED (left motor speed) and
RSPEED (right motor speed). The num-
bers in LSPEED and RSPEED range from
—128 to +127. Positive means forward,
negative means reverse.

The next two words, RIGHTMOTOR
and LEFTMOTOR, examine the contents
of the words of LSPEED and RSPEED
respectively and set the appropriate

motor’s speed accordingly.

Finally, the contents of variables
LSPEED and RSPEED are fetched and
displayed on the screen followed by a car-
riage return. The .R word is used to right
justify the displayed values.

Testing

Each word should be tested after it is
written and compiled into the dictionary
(LOADED from disk). A common test/
debug method is to load up the stack with
a few easily identified values, suchas 1, 2,
and 3. Then type in each word of the
definition being tested (not in a colon defi-
nition, but interactively). After each
word, execute .S, which prints out the
contents of the stack without modifying it.
Do so to make sure that nothing has been
removed from or left on the stack.

It can be useful to define small test. For
example, having defined the word ATOD,
which takes a channel number off the
stack and returns the value of the corre-
sponding A/D converter, you can make
sure that it works with all 8 channels by
using the following word:

: TEST-ATOD

BEGIN 8 0

DO 1 ATOD . LOOP CR KEY?
UNTIL ;

That word prints out the results of all 8
A/D conversions. Your joystick should
show up at the first two positions. Termi-
nate the test by pressing any key.

SOFTWARE SOURCES

Micro K Systems (15874 East Hamilton
Place, Aurora, CO 80013, 303-693-3413)
will provide the following: Commented
source code in RE-robot disk format,
$2.00. Printed source-code listing,
$15.00. Two 27128 EPROM's with source
screens (and without comments) for the
R-E Robot, $39.00. With EPROM's you
won't need a disk drive, but you should
also obtain the printed listing to read the
comments. The Laxen and Perry F83
Model disk with full source code and met-
acompiler for customizing F83, in MS-
DOS 360K format, for a PC compatible
computer, $25.00. (Very useful for learn-
ing FORTH if you already have a PC.) All
orders must be prepaid. NO COD’s. In-
clude $3.00 for shipping with each order.
Additional source code and applications
will be available from Micro K Systems.
Contact them for more information.

Speed and direction

The word RIGHTMOTOR, shown in
screen 36, examines three possibilities:
® [s the value of RSPEED greater than
+ 10 and is the switch pressed?
® Arc the contents of RSPEED less than
— 10 and is the switch pressed?

continued on page 63

R-E ROBOT
[continued from page 60

> contents of RSPEED between

.~ ff{;.rll?le+ 10 or is the switch rqlt?ased?

You will sce the three IF/THEN state-

s that test those cases. -
me;\lssuming motion is going l-odmk:r
place, RFWD (right-motor ‘tor\\.'ar‘) t!
RREV (right-motor reverse) is executed.
Those words enable the appropriate relay
and disable the other so that motion takes
place in the desired direction. It is impor-
tant to notice that the relays are set before
the motor is enabled. That prevents intush

currents from damaging the relay.

Next, the value of RSPEED is fetched
and used as an argument to SPEED-
CONV. SPEED-CONV takes an argu-
ment (from the stack) that is proportional
to the speed and returns an argument (on
the stack) that is the period of the motor
control-frequency generator. Speed may
vary from O to 128. When reverse motion
has been requested, the speed argument 1s
negative. We could NEGATE it before
passing it to SPEED-CONV; however, it
is more convenient to have SPEED-
CONYV use the ABS operator to make sure
all arguments are positive.

As shown in lines 5 and 9 of screen 36,
the output of SPEED-CONV is passed
directly to RMTR-PERIOD (right-motor
period), which sets the frequency of the
8253 control element in the right motor’s
phase-locked loop circuit on the control
board.

Last, ENABLE-RIGHT (again shown
in lines 5 and 9 of screen 36) elec-
tronically enables the high-power output
stage of the motor-control circuit. If no
motion is going to take place, STOP-
RIGHT is executed. The code is identical
for the left motor; it is shown in screen 35.

Moving on to screen 34, INTERRO-
GATE reads channel @ of the analog-to-
digital converter, converts it to the — 128
to + 127 range and stores the result in both
LSPEED and RSPEED. Next channel |
(sideways displacement) is read. That re-
sult is converted to the + 128 range and
passed as an argument to DIFF-CON-
VERT on the stack. The result iy dupli-
cated (DUP), one copy negated (NE-
GATE) aud used to alter the contents of
LSPEED and RSPEED.

Low-level control
Now we start getting into the low-level
words shown in screen 33. Those words
could be rewritten many different ways
and the overall program would still func-
tion the same, but the response would
change. For example, SPEED-CONV
could be rewritten to provide a greater
range of motion, limit the top speed, or
provide a constant speed.
continued on page 86

4861 H3GW31d3s

(=]
[#]

