The robot’s command language

P t 9 NOW THAT WE'VE AS-
ar sembled the robot’s
hardware, it’s time to dig into the soft-
ware. In this article we’ll describe the R-E
Robot’s command language, RCL
(Robotic Control Language). It’s an easy-
to-learn and easy-to-use language written
in FORTH. Don’t be scared by FORTH:;
you can use RCL without being an expert
at programming in the language. And, as
you learn RCL, you’ll learn (painlessly)
the basics of how FORTH works, so that,
if you want to, you can go on and learn the
language itself. To give you a chance to
see RCL in action, we'll present a robot-
based mail-delivery system. You can
study our program to learn how RCL
works, and you can also use it as the basis
of your own program.

How difficult is RCL? Not very. For
example, suppose you wanted the robot to
move in the forward direction 3.4 feet at a
speed of 2 miles per hour. You would
simply type in the following code:

RERB 2 MPH 3.4 FEET FORWARD

RCL includes commands to move the
robot forward and backward, to turn left
and right, to move its manipulator up and
down, and to open and close a gripper.

You can combine a sequence of com-
mands and store them for execution at a
later time. In addition, commands can
also be executed immediately from the
keyboard.

Real-time control

The R-E Robot consists of a computer-
controlled set of electromechanical de-
vices. The assembly is broadly known as a
motion-control system.

Real-time motion control requires real-
time sensing and processing. One way to
cnsure proper sensing and processing is to
force the computer to exccute a control
loop atregular intervals. That control loop
will be the computer’s highest priority.
Everything else the computer does will be
secondary, and it will have to do those
other things as it finds time.

A simple way to implement the control
loop is to have a clock IC generate an
interrupt at regular intervals. Each time
the clock interrupts the microprocessor, it
will execute the control loop, and then it
will return to whatever it was doing before
the interrupt occurred. The amount of
time the computer spends executing the
control loop must be less than the time
interval between interrupts.

RCL basics

The software that controls the robot is
built up layer by layer. The most primitive
words must be defined first; more-com-
plex words are defined using the pre-
viously defined words; at the top level are
the RCL words that make motion control
casy. As each word is defined it can be
tested and debugged. When it is debug-
ged, the next layer may be defined.

Notice that you are defining words,
rather than writing a program, as with
most computer languages. That’s not just
a matter of semantics; it’s also a way of
looking at a programming problem. The
problem can be broken down into a series
of smaller problems, and then those prob-
lems can be broken down further, and so
on, until you have a set of problems that
can be programmed. Each little problem
becomes a FORTH word, which in turn
becomes part of another FORTH word, so
that eventually all we have to do is say
something like

TURN-LEFT

The real-time control portion of RCL.
consists of the hardware interface, inter-
rupt control, following-error monitoring,
velocity control, and position control,

1861 1SNONY

(3]
~

RADIO-ELECTRONICS

o
o™

Low-level words

The most-primitive words deal with the
robot’s hardware: turning the motors on
and off, setting the direction in which
each motor rotates, and enabling the
specd-control circuits. To control the
hardware, values must be written to and
read from various registers on the robot’s
control board. Those registers are read
and wrilten using the microprocessor’s 1/
O statements (IN and OUT). In RCL, to
write an cight-bit value to an output port,
the word PC! is used:

PC! (value port ----)

That statement specifies that value is to be
output to /O port port. A word about
notation is in order. The stack diagram,
enclosed in parentheses, represents the
parameters required by the word PC! In-
put parameters appear to the to the left of
the dashes, and output parameters appear
to the right. In this case there are no output
parameters.

FORTH words in general (and those of
RCL in particular) make extensive use of
the stack, both for parameters supplied to
aword, and those that it may produce. The
top of the stack is always the parameter
furthest to the right. In the preceding ex-
ample, the stack diagram shows that the
value to be written must be pushed on the
stack followed by the port to which it is to
be written. The word PC! removes these
parameters from the stack, uses them, and
lcaves nothing on the stack. Other words
may leave one or more values on the stack.

Motor-control words

Several words operate the speed-con-
trol circuits and the relays. For example,
ENABLE and DISABLE write an appro-
priate value to turn on or off a particular
function of the hardware. STOP-LEFT,
STOP-RIGHT, and STOP use DISABLE
{o turn the relays off. FORWARD, RE-
VERSE. CW, and CCW enable the proper
relays to allow the motors to turn in the
desired direction. CW and CCW allow
turns to be made by enabling the wheels to
turn opposite to each other. GO and
COAST cnable and disable the speed-
control circuits and the motor-drive cur-
rent as well.

Speed control

Hardware on the control board is re-
sponsible for controlling speed (accelerat-
ing and decelerating). The hardware
makes the software system much simpler
than it would be it the software were re-
quired to maintain speed alone. The
phase-locked loop on the control board
maintains the desired motor speed under
varying loads. The software only has to set
the speed. and to accelerate and decele-
rate the base unit.

The speed at which each motor runs is
determined by the frequency of a signal
that is generated by counter 0 of the 8253

timers. Setting the number of counts in
the counter determines the period of a
squarewave output. The phase-locked
loop circuitry responds to the frequency
corresponding to that period.

The frequency of the signal applied to
the 8253’s on the motor-control board is
the 2-MHz system clock divided by 16, or
125 kHz. Therefore a count is generated
every 8 microseconds (1/125,000). The
8253 is programmed to generate a square-
wave whose period corresponds to the val-
ue loaded into the counter. So, if the
counter is loaded with the value 125, the
total period would be 125 X 8 microse-
conds, or I millisecond, which corre-
sponds to a frequency of 1000 Hz.

With a 500-count-per-revolution en-
coder, the motor speed would be 1000/500
= 2 revolutions per second, or 120 rpm.

The counter can be loaded with any
value between 1 and 65,536 (0 actually),
corresponding to frequencies ranging
from 125 kHz to just under 2 Hz.

Interrupt control

Motor speed must be updated many
times per second to produce smooth ac-
celeration and deceleration. The update
rate is set by the interrupt-control routines
to 100 times per second (i. e., there are 10
ms between interrupts). The 80188 micro-
processor has three built-in timers that can
generate interrupts. Timer 0 is used by the
BIOS and the DOS to maintain a time-of-
day clock. The BIOS is set up to generate
interrupt O1Ch every time timer O counts
down to 0. If we change the count value in
timer 0 we can use it to generate the
motor-control interrupt. However, the
time-of-day clock will count in 10-millise-
cond periods instead of the usual 55-milli-
second periods, so a set of time-of-day
words will have to be defined for the new
rate. In addition, we’ll have to install a
new B10S-level interrupt handler to main-
tain compatibility with MS-DOS.

First of all, we must define the interrupt
routine we want to execute. Then we can
install that routine so that it is executed
each time the interrupt is generated by the
timer.

The word INT-OFF disables interrupt
generation by the timer so that we can
change the interrupt vector, or disable it.
INT-ON turns timer-interrupt generation
back on. SET-TIMER takes a count that
sets the period for the timer. The input
frequency to the timer is 2 MHz/3, yield-
ing a period of 1.5 microseconds per
count. If the count is set to 6667, the timer
will count down to O every 10 milliseconds
and generate an interrupt.

GET—CS is a special word that is used
to return the code segment in which the
FORTH system is executing. SET-INT
sets the interrupt vector to the word we
want to execute each time the interrupt is
generated.

INSTALL performs all the tasks neces-

- SOFTWARE SOURCES

Micro K Systems (15874 East Hamilton
Place, Aurora, CO 80013, 303-693-3413)
will provide the following: Commented
source code in RE-robot disk format,
$2.00. Printed source-code listing,
$15.00. Two 27128 EPROM’s with source
screens (and without comments) for the
R-E Robot, $39.00. With EPROMS you

~ won't need a disk drive, but you should
also obtain the printed listing to read the
comments. The Laxen and Perry F83
Model disk with full source code and met-
acompiler for customizing F83, in MS-
DOS 360K format, for a PC compatible

- computer, $25.00. (Very useful for learn-
ing FORTH if you already have a PC.) Al
orders must be prepaid. NO CODs. In-
clude $3.00 for shipping with each order.
Additional source code and applications
_ will be available from Micro K Systems.
Contact them for more information. '

sary to link a new interrupt handler into
the microprocessor’s interrupt vector in
low RAM. After executing INSTALL the
interrupt-control word will be executed
every 10 milliseconds, and will continue
to do so until the system is turned off, the
interrupt is disabled, or a new interrupt
routine is installed.

Position-counter words

The hardware position counters must
be initialized by the robot’s software. In
addition, the position counters are only 16
bits wide, so the robot won’t move very
far before the counters overflow. So it’s
necessary to extend counter length with
software. If we look at the counters often
enough, they will not overflow. The soft-
ware maintains a 32-bit position counter.

Because the counter routines must be
executed many times per second, the time
required to execute those routines is im-
portant. So all counter routines (and sever-
al others) have been written as CODE
words. To experiment with those words,
you'll have to know 80188 assembly-lan-
guage programming.

The high-level words for reading the
counters are 2CNTI and ?CNT2 to read
the positions of motor | and motor 2,
respectively. The hardware causes the 16-
bit counters in the 8253 IC’s to decrement
for each encoder count that is in the proper
direction. The difference between a
motor’s forward and reverse counts gives
the absolute position of the motor.

Following-error words

To detect a problem with the motors, it
is necessary to compare actual speed with
expected speed. If the two differ by more
than a small percentage, an overload con-
dition exists, so the motors could overheat
and be destroyed. The following-error
words constantly monitor the motors and
detect a stalled motor by comparing the

current motor position with the expected
position. If the difference is too great the
motors are turned off immediately. This
also means that if you specify a value of
acceleration that is too high. a following-
error will be detected, and the motors will
be shut down.

Numeric input

FORTH normally works with 16-bit
signed integers. Such numbers can range
in value from —32768 to +32767. In
addition, a decimal point may be included
anywhere in a number and FORTH will
treat it as a signed double-precision integ-
er with a possible range of
—2,147,483,648 to +2,147,483,647.
The position of the decimal point is kept
in a system variable, DPL. If a number
without a decimal point is entered, the
system sets DPL to —1. If a number is
entered with a decimal point, DPL will
contain the position of the decimal point
relative to the least significant digit en-
tered. A number may have a maximum of
four digits to the right of the decimal
point. The FORTH system converts the
input number to a signed integer repre-
senting the integer part and a signed integ-
er representing the fractional part. The
pair of single precision numbers each car-
ries a sign bil; the numbers can be used
alone or together.

Table 1 illustrates how various numbers
are stored. Keep in mind the fact that the
decimal-point position stored in DPL is
correct only for the last number entered by
the user from the keyboard. Numbers
compiled into a definition do not affect the
value of DPL after compilation. You must
be in the decimal base (base 10) when
entering numbers with decimals.

The word FIXED converts the last
number input to an integer and a fraction.
FIXED gets the value from DPL and puts
it on the stack, then it calls (FIXED). We
defined the separate word (FIXED) to do
the actual conversion, because it can be
made more general—it can convert any
number, even if it was not entered from the
keyboard.

EXTRACT strips the fraction digits
from the number one by one until all have
been removed. That leaves the integer part
of the number on the TOS (Top Of Stack)
with the digits beneath it. The digits are
reassembled into a single number with
BUILD. SCALAR produces a value that
is used to adjust the fraction to the proper
range. If the unscaled fraction is 9, we
need to know whether it is 9000/10,000,
9/10.000, or another value.

The word FRACTION takes a fraction,
an integer, and a multiplier and creates a
double-precision integer. So the value
—932.015 converted by FIXED is a frac-
tion and an integer. Taking these two
numbers and a multiplier of 1000 would
give us the double precision number
—932015 as follows:

TABLE 1—NUMERIC STORAGE

Input Value Size DPL
725 725 16 =1
-1 —1 32 0
1.2 12 32 1
-9.999 -9999 32 3
38.04 3804 32 2

932.015 FIXED 1000 FRACTION.

FRACTION is used by many other words
to convert values for internal use.

User-input conversion words

Several words convert user-input values
to more basic units the hardware can use
for the move commands.

Distances are entered in units of
INCHES, FEET, MILES and DE-
GREES. INCHES takes the value spec-
ified and converts it to internal form. The
input value and a scale factor are saved for
later conversion. FEET takes a distance in
fect and MILES takes a distance in miles.
The scale factor is set appropriately for
each word in terms of the number of
inches each word represents. DEGREES
calculates how far each motor must move
to make the specified turn.

Speed can be entered in miles per hour
by using the word MPH, inches per sec-
ond by IPS, feet per second by FPS, and
feet per minute by FPM. Each of those
words stores the value and an appropriate
scale factor for later conversion.

G converts the input value (in terms of
the acceleration due to the earth’s gravity,
i.e., 32.2 ft/sec/sec) to a count that is used
to accelerate or decelerate the motors, if
necessary, each time speed is updated by
the interrupt routines.

Motion
To move from one point to another, the
motors must be accelerated and decele-

rated. By allowing the user to set a value
for acceleration, deceleration, and max-
imum speed, the behavior of the robot can
be controlled precisely.

Before a move is actually made, the
software does a series of calculations to
determine the top speed that can be at-
tained, and the positions at which acceler-
ation should end and deceleration should
begin in order to attain a trapezoidal ve-
locity curve, as shown in Fig. 1.

Calculated speed may be less than de-
sired speed. but that is not a problem for
short moves. Maximum speed will be
used for moves that are long enough to
allow the motors to accelerate to their
maximum velocity. For short moves, ac-
celeration is more important than max-
imum speed.

To perform a move, breakpoints on the
trapezoidal velocity curve must be found.
The points where acceleration ends and
deceleration begins, as well as the end
point position, must be calculated.

The robot is a speed-controlled system,
so the acceleration and deceleration
breakpoints must be used to calculate
what speed will be achieved by accelerat-
ing at the specified value of acceleration
to the breakpoint position. That new
speed is saved with the breakpoint posi-
tion. The same values of speed and dis-
tance are used to calculate the breakpoint
where deceleration is to begin.

Trapezoidal velocity control

To perform a move, the robot must be
accelerated from a speed of zero to top
speed, and then decelerated at the appro-
priate point to arrive at the desired posi-
tion. The simplest system would just set
the speed of the motors, turn the motors
on until the end point was reached, and
then turn the motors off. That type of
approach assumes instantaneous acceler-
ation and deceleration, but in an actual

f//
POSITION
VELOCITY~ N |
z L7
= N Pl
2 ACCELERATION \ DECELERATION
& i
>
5 / P
2 y > z
E 4.1 N
// L N
\\
; N
7
TIME

FIG. 1—ACCELERATION AND DECELERATION BREAKPOINTS must be calculated in order to move

the robot from one point to another.

2861 1SNONYVY

[24]
(7]

RADIO-ELECTRONICS

(2]
o

system il’s not practical. Therefore, we
have to take into account the acceleration
that actually can be achieved by the sys-
tem. In practical terms, acceleration
might be a fraction of G, or it could be
several G’s, depending on the size of the
motors in relation to the size of the load.

To accelerate and decelerate the robot,
velocity actually must be changed many
times per second. In general, the robot
starts with a velocity of zero and then
accelerates at a constant rate to the top
speed. Then it must decelerate at a con-
stant rate until it stops at the final position.

The velocity-versus-time profile is also
shown in Fig. 1, but superimposed on the
velocity trapezoid. Note that the position
profile is not simply a straight line. In
terms of calculus, position is the integral
of speed over time. The basic equations of
motion are as follows:

Vi= VO + AT
D = VoT + %AT?

where V stands for velocity, A for acceler-
ation, T for time, and D for distance. V,
refers to starting velocity.

From the previous equations we can
derive an equation that describes the dis-
tance required to accelerate from one
speed to another:

D = (V2 - Vp?)/(2A)

We can use that equation to compute the
distance required to change speeds.

For a short move, the distance required
to accelerate to the desired speed and then
decelerate to a stop may exceed the dis-
tance to move. In such a case, decelera-
tion must begin at some speed less than
maximum.

The word DISTANCE takes the origi-
nal speed and the desired speed (both in
rpm) and calculates the distance in inches
that will be required to change speeds.
The word COUNTS changes the distance
from inches to position-encoder counts.
The word EXPECTED converts the user-
input distance to position-encoder counts.
The word SPEED converts the user-input
maximum speed into rpm.

The word BREAKPOINTS calculates
the positions on the velocity trapezoid to
stop accelerating and begin decelerating.
The acceleration and deceleration seg-
ments can’t be more than half the total
move distance, so the distance to acceler-
ate from 0 to the input speed is calculated
and compared to half the move distance.
The minimum of these two values is then
used as the acceleration distance. The
breakpoint positions are saved in arrays
for use during the move.

After the robot starts moving, the
breakpoint positions are compared
against the current position every time the
control loop executes to determine when
acceleration should stop and deceleration
should begin. If the move distance is long
enough, there will be a period during

which the motors run at maximum speed.
For a short move, acceleration will stop
before maximum speed is attained, and
deceleration will start immediately after
acceleration stops.

Command language

The RCL includes a simple command
set to allow movement of both the base
unit and the arm.

The base-movement commands allow
forward and backward motion, and left
and right turns. Maximum speed, acceler-
ation rates, and move distance may all be
altered by user input. After each move is
complete, a new move command can be
executed. By defining FORTH words we
can chain several move commands to-
gether in a motion sequence. We'll dis-
cuss such a sequence shortly.

The arm commands move the arm up
and down, and open and close the jaws.

Command syntax

In general, a command consists of a
device name, a speed value, a distance
value, and the command:

[DEVICE] [n SPEED] [n DISTANCE]
COMMAND

where bracketed quantities indicate op-
tional values that will be: the value
entered with the command; the last value
if a new value is not included; or a default
value if this is the first time the particular
command is issued. The value of n de-
pends on the command. DEVICE may be
RERB for the base unit or ARM for the
arm unit.

Base commands
The general syntax for the base-move-
ment commands is as follows:

[RERB] [n SPEED] [n DISTANCE]
COMMAND

COMMAND may be one of the follow-
ing: FORWARD, BACKWARD, LEFT,
or RIGHT. SPEED may be one of the
following: MPH, IPS, FPS or FPM. DIS-
TANCE may be one of the following:
INCHES, FEET, MILES or DEGREES.
The command G is used to set the ac-
celeration constant used to change speed;
the constant is expressed in G's of acceler-
ation. Any acceleration may be specified,
up to the maximum acceleration the sys-
tem can achieve. The acceleration may be
specified in a separate command.

Arm Commands
The basic syntax for the arm-movement
commands is as follows:

[ARM] [n DISTANCE] COMMAND

COMMAND may be one of the follow-
ing: UP, DOWN, OPEN, or CLOSE.
DISTANCE may be INCHES or FEET.
DISTANCE is the amount specified in the
COMMAND direction relative to the cur-
rent position.

The example program shown in Listing
1 illustrates how you can combine several
RCL commands to cause the robot to tra-
verse a square. The sequence first sets the
acceleration constant to 0.1 G. Then the
RERB device (i. e., the base) is selected
to move at 25.5 inches per second. Then it
moves 3.5 feet forward and makes a left
turn. The latter actions are repeated three
times so that the robot ends up where it
started.

Here’s a short routine that moves the
arm down and then back up:

ARM 3.1 INCHES DOWN 2 INCHES UP

By defining FORTH words we can
create macros to perform various func-
tions. For example, Listing 2 shows a
macro that will cause the robot to traverse
a box of any size.

Example program

Now let’s show how the robot could be
used to collect and deliver office mail.
Figure 2 shows the office layout that we
will use in the example program. Trays for
incoming and outgoing mail are attached
to the robot.

The overall sequence of operations
goes like this: The robot starts from a
“nest,”” and travels around the corridors,
waiting at several locations for people to
retrieve and deposit mail and then returns
to the mail room.

We defined several low-level FORTH
words for the program. To allow the robot
to wait for different time periods, we de-
fined several words to execute time de-
lays. See Listing 3. The firstis MS, which
waits for the specified number of millise-
conds. The next is SECONDS, which

LISTING 1
AG (3.22 fisec/sec)
RERB 255 IPS
3.5 FEET FORWARD 90 DEGREES LEFT
3.5 FEET FORWARD 90 DEGREES LEFT

3.5 FEET FORWARD 90 DEGREES LEFT |
35 FEET FORWARD 90 DEGREES LEFT

uses MS to delay the specified number of
seconds. The last is MINUTES, which
uses SECONDS to delay the specified
number of minutes.

Next we define several words for con-
venience and to improve the readability of
the source code. The robot will announce
its arrival at each place it stops. That is
done by sounding a beep. The word AT-
TENTION generates the beep.

WARNING, sounds several short
beeps. It is used to avoid running over
anyone when the robot is ready to move.

Since all the turns in our model office
are at right angles, it’s convenient to de-
fine left and right 90° turn words, TURN-
LEFT and TURN-RIGHT. When the
robot starts its trip it must back out of the

continued on page 80

RADIO-ELECTRONICS

R-E ROBOT

continued from page 60

LISTING 2

: BOX (feet)
RERB

25.5 IPS

2DUP (FEET) FORWARD
90 DEGREES RIGHT
2DUP (FEET) FORWARD
90 DEGREES RIGHT
2DUP (FEET) FORWARD
90 DEGREES RIGHT
2DUP (FEET) FORWARD
90 DEGREES RIGHT;

LISTING 3

.MS (milliseconds -)
02D0 330 DO LOOP LOOP ;

: SECONDS (séconds -)
- 07DO 1000 MS LOOP ;.

: MINUTES (minutes -)
0 ?7DO 60 SECONDS LOOP

LISTING 4

- ATTENTION (-)
BEEP BEEP 1 SECONDS

- WARNING (----)
50 DO BEEP 1 SECONDS LOOP ;

: TURN-AROUND (-)
RERB 10 IPS 180 DEGREES
LEFT :

: TURN-LEFT (----
90 DEGHEES LEFT ;

: TURN-RIGHT (-
90 DEGREES HIGHT

: AHEAD (feet ----)
FEET FORWARD ;

- COLLECT (minutes --—)
ATTENTION MINUTES WARNING ;

recharging area and turn around to go
forward. The word TURN-AROUND
makes a 180° turn. The word AHEAD is
shorthand for a forward move. COLLECT
combines the ATTENTION, WAITING.,
and WARNING functions, because we al-
ways use them together. The definitions of
those words are shown in Listing 4.

A trip consists of backing out of the
recharger and exiting the mail room. mak-
ing a ‘clockwise trip around the office.
stopping at several pmnls (including a
long stop at the president’s office), and
hnall\ returning to the mail room. The

ROBOT
PRESIDENT'S malL NEST
OFFICE ROOM i
= —————— - - ——— -:
1
|
]
— F 4 1 =
-
1
R
L H v
1 1
i ! 1
5 S l .
= ! !
= i o
i 1
: o =
I =
ade
i
= 1]
’ 1
: I
= i
. —af
i
1
B P e O sl _;
50
40 FEET

FIG. 2—MODEL OFFICE FOR THE EXPERIMENTAL TRIP program that is shown in Listing 5.

LISTING 5

THIE - L _
WARNING BERB ' 20IPS 3 FEET
BACKWARD TURN-AROUND 2.5 AHEAD
TURN-RIGHT 12 AHEAD TURN-LEFT
5 AHEAD TURN-LEFT 36 IPS
10 AHEAD TURN-RIGHT 2 COLLECT
7 AHEAD 2 COLLECT 8 AHEAD
TURN-RIGHT 25 AHEAD TURN-RIGHT
3 AHEAD 2 COLLECT 11.5 AHEAD
4 COLLECT 11.5 AHEAD TURN-RIGHT
ATTENTION 3 COLLECT (President)
14 AHEAD TURN-LEFT 4.5 AHEAD
TURN-RIGHT 12 AHEAD TURN-LEFT
10 IPS 5.5 AHEAD

word TRIP executes the entire program; it
is shown in Listing 3.

TRIP only causes the robot to make one
excursion around the office, but we want

LISTING 6

: MAILBOT (-—-)
8.5 AM WAIT-UNTIL TRIP
9.5 AM WAIT-UNTIL TRIP
10.5 AM WAIT-UNTIL TRIP
11.5 AM WAIT-UNTIL TRIP
1.5 PM WAIT-UNTIL TRIP
2.5 PM WAIT-UNTIL TRIP
3.5 PM WAIT-UNTIL TRIP
4.5 PM WAIT-UNTIL TRIP

the robot to make several trips during the
day, without having to tell it to do so each
time. We can schedule the trips when de-
sired using the words AM, PM, and
WAIT-UNTIL. WAIT-UNTIL simply

waits in a delay loop until the current time
is identical to the desired time. AM and
PM set the desired time. Time is specified
in hours, so minutes must be expressed as
fractional hours. For example, 8.5 AM is
8:30 am. The entire MAILBOT program
is shown in Listing 6.

You can extend RCL to deal with addi-
tional hardware and to provide greater
software flexibility. FORTH gives you the
freedom to experiment and add to the ca-
pabilities of the system. R-E

