




MECHATRONICS





SECOND EDITION

MECHATRONICS
with Experiments

SABRI CETINKUNT
University of Illinois at Chicago, USA



This edition first published 2015
© 2015 John Wiley & Sons Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom
For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the
Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by
the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names
and product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness of
the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional
services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional
advice or other expert assistance is required, the services of a competent professional should be sought.

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software
or related products does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB® software.

Library of Congress Cataloging-in-Publication Data

Cetinkunt, Sabri.
[Mechatronics]
Mechatronics with experiments / Sabri Cetinkunt. – Second edition.

pages cm
Revised edition of Mechatronics / Sabri Cetinkunt. 2007
Includes bibliographical references and index.
ISBN 978-1-118-80246-5 (cloth)

1. Mechatronics. I. Title.
TJ163.12.C43 2015
621.381–dc23

2014032267

A catalogue record for this book is available from the British Library.

ISBN: 9781118802465

Set in 10/12pt Times by Aptara Inc., New Delhi, India

1 2015

http://www.wiley.com


CONTENTS

PREFACE xi

ABOUT THE COMPANION WEBSITE xii

CHAPTER 1 INTRODUCTION 1

1.1 Case Study: Modeling and
Control of Combustion Engines 16

1.1.1 Diesel Engine
Components 17

1.1.2 Engine Control System
Components 23

1.1.3 Engine Modeling with
Lug Curve 25

1.1.4 Engine Control
Algorithms: Engine
Speed Regulation
using Fuel Map and a
Proportional Control
Algorithm 29

1.2 Example: Electro-hydraulic
Flight Control Systems for
Commercial Airplanes 31

1.3 Embedded Control Software
Development for Mechatronic
Systems 38

1.4 Problems 43

CHAPTER 2 CLOSED LOOP
CONTROL 45

2.1 Components of a Digital
Control System 46

2.2 The Sampling Operation and
Signal Reconstruction 48

2.2.1 Sampling: A/D
Operation 48

2.2.2 Sampling Circuit 48

2.2.3 Mathematical
Idealization of the
Sampling Circuit 50

2.2.4 Signal Reconstruction:
D/A Operation 55

2.2.5 Real-time Control
Update Methods and
Time Delay 58

2.2.6 Filtering and
Bandwidth Issues 60

2.3 Open Loop Control Versus
Closed Loop Control 63

2.4 Performance Specifications for
Control Systems 67

2.5 Time Domain and S-domain
Correlation of Signals 69

2.6 Transient Response
Specifications: Selection of
Pole Locations 70

2.6.1 Step Response of a
Second-Order System 70

2.6.2 Standard Filters 74

2.7 Steady-State Response
Specifications 74

2.8 Stability of Dynamic Systems 76

2.8.1 Bounded Input–Bounded
Output Stability 77

2.9 Experimental Determination of
Frequency Response 78

2.9.1 Graphical
Representation of
Frequency Response 79

2.9.2 Stability Analysis in
the Frequency
Domain: Nyquist
Stability Criteria 87

2.10 The Root Locus Method 89

2.11 Correlation Between Time
Domain and Frequency Domain
Information 93

2.12 Basic Feedback Control Types 97

2.12.1 Proportional Control 100

2.12.2 Derivative Control 101

2.12.3 Integral Control 102

2.12.4 PI Control 103

2.12.5 PD Control 106

2.12.6 PID Control 107

2.12.7 Practical
Implementation Issues
of PID Control 111

2.12.8 Time Delay in Control
Systems 117

2.13 Translation of Analog Control
to Digital Control 125

2.13.1 Finite Difference
Approximations 126

2.14 Problems 128

v



vi CONTENTS

CHAPTER 3 MECHANISMS FOR
MOTION TRANSMISSION 133

3.1 Introduction 133

3.2 Rotary to Rotary Motion
Transmission Mechanisms 136

3.2.1 Gears 136

3.2.2 Belt and Pulley 138

3.3 Rotary to Translational Motion
Transmission Mechanisms 139

3.3.1 Lead-Screw and
Ball-Screw
Mechanisms 139

3.3.2 Rack and Pinion
Mechanism 142

3.3.3 Belt and Pulley 142

3.4 Cyclic Motion Transmission
Mechanisms 143

3.4.1 Linkages 143

3.4.2 Cams 145

3.5 Shaft Misalignments and
Flexible Couplings 153

3.6 Actuator Sizing 154

3.6.1 Inertia Match Between
Motor and Load 160

3.7 Homogeneous Transformation
Matrices 162

3.8 A Case Study: Automotive
Transmission as a “Gear
Reducer” 172

3.8.1 The Need for a
Gearbox
“Transmission” in
Automotive
Applications 172

3.8.2 Automotive
Transmission: Manual
Shift Type 174

3.8.3 Planetary Gears 178

3.8.4 Torque Converter 186

3.8.5 Clutches and Brakes:
Multi Disc Type 192

3.8.6 Example: An
Automatic
Transmission Control
Algorithm 194

3.8.7 Example: Powertrain
of Articulated Trucks 196

3.9 Problems 201

CHAPTER 4

MICROCONTROLLERS 207

4.1 Embedded Computers versus
Non-Embedded Computers 207

4.2 Basic Computer Model 214

4.3 Microcontroller Hardware and
Software: PIC 18F452 218

4.3.1 Microcontroller
Hardware 220

4.3.2 Microprocessor
Software 224

4.3.3 I/O Peripherals of PIC
18F452 226

4.4 Interrupts 235

4.4.1 General Features of
Interrupts 235

4.4.2 Interrupts on PIC
18F452 236

4.5 Problems 243

CHAPTER 5 ELECTRONIC
COMPONENTS FOR
MECHATRONIC SYSTEMS 245

5.1 Introduction 245

5.2 Basics of Linear Circuits 245

5.3 Equivalent Electrical Circuit
Methods 249

5.3.1 Thevenin’s Equivalent
Circuit 249

5.3.2 Norton’s Equivalent
Circuit 250

5.4 Impedance 252

5.4.1 Concept of Impedance 252

5.4.2 Amplifier: Gain, Input
Impedance, and
Output Impedance 257

5.4.3 Input and Output
Loading Errors 258

5.5 Semiconductor Electronic
Devices 260

5.5.1 Semiconductor
Materials 260

5.5.2 Diodes 263

5.5.3 Transistors 271

5.6 Operational Amplifiers 282

5.6.1 Basic Op-Amp 282

5.6.2 Common Op-Amp
Circuits 290

5.7 Digital Electronic Devices 308

5.7.1 Logic Devices 309

5.7.2 Decoders 309

5.7.3 Multiplexer 309

5.7.4 Flip-Flops 310

5.8 Digital and Analog I/O and
Their Computer Interface 314

5.9 D/A and A/D Converters and
Their Computer Interface 318

5.10 Problems 324



CONTENTS vii

CHAPTER 6 SENSORS 329

6.1 Introduction to Measurement
Devices 329

6.2 Measurement Device Loading
Errors 333

6.3 Wheatstone Bridge Circuit 335

6.3.1 Null Method 336

6.3.2 Deflection Method 337

6.4 Position Sensors 339

6.4.1 Potentiometer 339

6.4.2 LVDT, Resolver, and
Syncro 340

6.4.3 Encoders 346

6.4.4 Hall Effect Sensors 351

6.4.5 Capacitive Gap
Sensors 353

6.4.6 Magnetostriction
Position Sensors 354

6.4.7 Sonic Distance Sensors 356

6.4.8 Photoelectic Distance
and Presence Sensors 357

6.4.9 Presence Sensors:
ON/OFF Sensors 360

6.5 Velocity Sensors 362

6.5.1 Tachometers 362

6.5.2 Digital Derivation of
Velocity from Position
Signal 364

6.6 Acceleration Sensors 365

6.6.1 Inertial
Accelerometers 366

6.6.2 Piezoelectric
Accelerometers 370

6.6.3 Strain-gauge Based
Accelerometers 371

6.7 Strain, Force, and Torque
Sensors 372

6.7.1 Strain Gauges 372

6.7.2 Force and Torque
Sensors 373

6.8 Pressure Sensors 376

6.8.1 Displacement Based
Pressure Sensors 378

6.8.2 Strain-Gauge Based
Pressure Sensor 379

6.8.3 Piezoelectric Based
Pressure Sensor 380

6.8.4 Capacitance Based
Pressure Sensor 380

6.9 Temperature Sensors 381

6.9.1 Temperature Sensors
Based on Dimensional
Change 381

6.9.2 Temperature Sensors
Based on Resistance 382

6.9.3 Thermocouples 383

6.10 Flow Rate Sensors 385

6.10.1 Mechanical Flow Rate
Sensors 385

6.10.2 Differential Pressure
Flow Rate Sensors 387

6.10.3 Flow Rate Sensor
Based on Faraday’s
Induction Principle 389

6.10.4 Thermal Flow Rate
Sensors: Hot Wire
Anemometer 390

6.10.5 Mass Flow Rate
Sensors: Coriolis Flow
Meters 391

6.11 Humidity Sensors 393

6.12 Vision Systems 394

6.13 GPS: Global Positioning System 397

6.13.1 Operating Principles of
GPS 399

6.13.2 Sources of Error in
GPS 402

6.13.3 Differential GPS 402

6.14 Problems 403

CHAPTER 7 ELECTROHYDRAULIC
MOTION CONTROL SYSTEMS 407

7.1 Introduction 407

7.2 Fundamental Physical
Principles 425

7.2.1 Analogy Between
Hydraulic and
Electrical Components 429

7.2.2 Energy Loss and
Pressure Drop in
Hydraulic Circuits 431

7.3 Hydraulic Pumps 437

7.3.1 Types of Positive
Displacement Pumps 438

7.3.2 Pump Performance 443

7.3.3 Pump Control 448

7.4 Hydraulic Actuators: Hydraulic
Cylinder and Rotary Motor 457

7.5 Hydraulic Valves 461

7.5.1 Pressure Control
Valves 463

7.5.2 Example: Multi
Function Hydraulic
Circuit with Poppet
Valves 469

7.5.3 Flow Control Valves 471



viii CONTENTS

7.5.4 Example: A Multi
Function Hydraulic
Circuit using
Post-Pressure
Compensated
Proportional Valves 482

7.5.5 Directional,
Proportional, and
Servo Valves 484

7.5.6 Mounting of Valves in
a Hydraulic Circuit 496

7.5.7 Performance
Characteristics of
Proportional and Servo
Valves 497

7.6 Sizing of Hydraulic Motion
System Components 507

7.7 Hydraulic Motion Axis Natural
Frequency and Bandwidth Limit 518

7.8 Linear Dynamic Model of a
One-Axis Hydraulic Motion
System 520

7.8.1 Position Controlled
Electrohydraulic
Motion Axes 523

7.8.2 Load Pressure
Controlled
Electrohydraulic
Motion Axes 526

7.9 Nonlinear Dynamic Model of
One-Axis Hydraulic Motion
System 527

7.10 Example: Open Center
Hydraulic System – Force and
Speed Modulation Curves in
Steady State 571

7.11 Example: Hydrostatic
Transmissions 576

7.12 Current Trends in
Electrohydraulics 586

7.13 Case Studies 589

7.13.1 Case Study: Multi
Function Hydraulic
Circuit of a Caterpillar
Wheel Loader 589

7.14 Problems 593

CHAPTER 8 ELECTRIC
ACTUATORS: MOTOR AND DRIVE
TECHNOLOGY 603

8.1 Introduction 603

8.1.1 Steady-State
Torque-Speed Range,
Regeneration, and
Power Dumping 606

8.1.2 Electric Fields and
Magnetic Fields 610

8.1.3 Permanent Magnetic
Materials 622

8.2 Energy Losses in Electric
Motors 629

8.2.1 Resistance Losses 631

8.2.2 Core Losses 632

8.2.3 Friction and Windage
Losses 633

8.3 Solenoids 633

8.3.1 Operating Principles of
Solenoids 633

8.3.2 DC Solenoid:
Electromechanical
Dynamic Model 636

8.4 DC Servo Motors and Drives 640

8.4.1 Operating Principles of
DC Motors 642

8.4.2 Drives for DC
Brush-type and
Brushless Motors 650

8.5 AC Induction Motors and Drives 659

8.5.1 AC Induction Motor
Operating Principles 660

8.5.2 Drives for AC
Induction Motors 666

8.6 Step Motors 670

8.6.1 Basic Stepper Motor
Operating Principles 672

8.6.2 Step Motor Drives 677

8.7 Linear Motors 681

8.8 DC Motor: Electromechanical
Dynamic Model 683

8.8.1 Voltage Amplifier
Driven DC Motor 687

8.8.2 Current Amplifier
Driven DC Motor 687

8.8.3 Steady-State
Torque-Speed
Characteristics of DC
Motor Under Constant
Terminal Voltage 688

8.8.4 Steady-State
Torque-Speed
Characteristic of a DC
Motor Under Constant
Commanded Current
Condition 689

8.9 Problems 691

CHAPTER 9 PROGRAMMABLE
LOGIC CONTROLLERS 695

9.1 Introduction 695



CONTENTS ix

9.2 Hardware Components of
PLCs 697

9.2.1 PLC CPU and I/O
Capabilities 697

9.2.2 Opto-isolated
Discrete Input and
Output Modules 701

9.2.3 Relays, Contactors,
Starters 701

9.2.4 Counters and Timers 704

9.3 Programming of PLCs 705

9.3.1 Hard-wired Seal-in
Circuit 708

9.4 PLC Control System
Applications 709

9.4.1 Closed Loop
Temperature Control
System 709

9.4.2 Conveyor Speed
Control System 710

9.4.3 Closed Loop Servo
Position Control
System 711

9.5 PLC Application Example:
Conveyor and Furnace Control 712

9.6 Problems 714

CHAPTER 10 PROGRAMMABLE
MOTION CONTROL SYSTEMS 717

10.1 Introduction 717

10.2 Design Methodology for PMC
Systems 722

10.3 Motion Controller Hardware
and Software 723

10.4 Basic Single-Axis Motions 724

10.5 Coordinated Motion Control
Methods 729

10.5.1 Point-to-point
Synchronized Motion 729

10.5.2 Electronic Gearing
Coordinated Motion 731

10.5.3 CAM Profile and
Contouring
Coordinated Motion 734

10.5.4 Sensor Based
Real-time
Coordinated Motion 735

10.6 Coordinated Motion
Applications 735

10.6.1 Web Handling with
Registration Mark 735

10.6.2 Web Tension Control
Using Electronic
Gearing 738

10.6.3 Smart Conveyors 741

10.7 Problems 747

CHAPTER 11 LABORATORY
EXPERIMENTS 749

11.1 Experiment 1: Basic Electrical
Circuit Components and
Kirchoff’s Voltage and
Current Laws 749

Objectives 749

Components 749

Theory 749

Procedure 751

11.2 Experiment 2: Transistor
Operation: ON/OFF Mode
and Linear Mode of Operation 754

Objectives 754

Components 754

Theory 754

Procedure 756

11.3 Experiment 3: Passive
First-Order RC Filters: Low
Pass Filter and High Pass Filter 758

Objectives 758

Components 758

Theory 758

Procedure 760

11.4 Experiment 4: Active
First-Order Low Pass Filter
with Op-Amps 762

Objectives 762

Components 762

Theory 762

Procedure 765

11.5 Experiment 5: Schmitt Trigger
With Variable Hysteresis
using an Op-Amp Circuit 766

Objectives 766

Components 766

Theory 767

Procedure 768

11.6 Experiment 6: Analog PID
Control Using Op-Amps 770

Objectives 770

Components 770

Theory 770

Procedure 774

11.7 Experiment 7: LED Control
Using the PIC Microcontroller 775

Objectives 775

Components 776



x CONTENTS

Theory 776

Application Software
Description 777

Procedure 777

11.8 Experiment 8: Force and
Strain Measurement Using a
Strain Gauge and PIC-ADC
Interface 780

Objectives 780

Components 781

Theory 781

Application Software
Description 784

Procedure 785

11.9 Experiment 9: Solenoid
Control Using a Transistor and
PIC Microcontroller 787

Objectives 787

Components 787

Theory 787

Hardware 787

Application Software
Description 788

Procedure 788

11.10 Experiment 10: Stepper Motor
Motion Control Using a PIC
Microcontroller 790

Objective 790

Components 790

Theory 790

Application Software
Description 791

Procedure 793

11.11 Experiment 11: DC Motor
Speed Control Using PWM 794

Objectives 794

Components 794

Theory 794

Application Software
Description 795

Procedure 796

11.12 Experiment 12: Closed Loop
DC Motor Position Control 799

Objectives 799

Components 799

Theory 799

Application Software
Description 802

Procedure 804

APPENDIX MATLAB®,
SIMULINK®, STATEFLOW, AND
AUTO-CODE GENERATION 805

A.1 MATLAB® Overview 805

A.1.1 Data in MATLAB®

Environment 808

A.1.2 Program Flow Control
Statements in
MATLAB® 813

A.1.3 Functions in
MATLAB®: M-script
files and M-function
files 815

A.1.4 Input and Output in
MATLAB® 822

A.1.5 MATLAB® Toolboxes 831

A.1.6 Controller Design
Functions: Transform
Domain and
State-Space Methods 832

A.2 Simulink® 836

A.2.1 Simulink® Block
Examples 843

A.2.2 Simulink®

S-Functions in C
Language 852

A.3 Stateflow 856

A.3.1 Accessing Data and
Functions from a
Stateflow Chart 865

A.4 Auto Code Generation 876

REFERENCES 879

INDEX 883



PREFACE

This second edition of the textbook has the following modifications compared to the first
edition:

� Twelve experiments have been added. The experiments require building of electronic
interface circuits between the microcontroller and the electromechanical system,
writing of real-time control code in C language, and testing and debugging the
complete system to make it work.

� All of the chapters have been edited and more examples have been added where
appropriate.

� A brief tutorial on MATLAB®/Simulink®/Stateflow is included.

I would like to thank Paul Petralia, Tom Carter and Anne Hunt [Acquisitions Editor,
Project Editor and Associate Commissioning Editor, respectively] at John Wiley and Sons
for their patience and kind guidance throughout the process of writing this edition of
the book.

Sabri Cetinkunt
Chicago, Illinois, USA

March 19, 2014
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CHAPTER 1
INTRODUCTION

THE MECHATRONICS field consists of the synergistic integration of three distinct
traditional engineering fields for system level design processes. These three fields are

1. mechanical engineering where the word “mecha” is taken from,

2. electrical or electronics engineering, where “tronics” is taken from,

3. computer science.

The file of mechatronics is not simply the sum of these three major areas, but can be defined
as the intersection of these areas when taken in the context of systems design (Figure 1.1).
It is the current state of evolutionary change of the engineering fields that deal with the
design of controlled electromechanical systems. A mechatronic system is a computer
controlled mechanical system. Quite often, it is an embedded computer, not a general
purpose computer, that is used for control decisions. The word mechatronics was first coined
by engineers at Yaskawa Electric Company [1,2]. Virtually every modern electromechanical
system has an embedded computer controller. Therefore, computer hardware and software
issues (in terms of their application to the control of electromechanical systems) are part
of the field of mechatronics. Had it not been for the widespread availability of low cost
microcontrollers for the mass market, the field of mechatronics as we know it today
would not exist. The availability of embedded microprocessors for the mass market at ever
reducing cost and increasing performance makes the use of computer control in thousands
of consumer products possible.

The old model for an electromechanical product design team included

1. engineer(s) who design the mechanical components of a product,

2. engineer(s) who design the electrical components, such as actuators, sensors, ampli-
fiers and so on, as well as the control logic and algorithms,

3. engineer(s) who design the computer hardware and software implementation to con-
trol the product in real-time.

A mechatronics engineer is trained to do all of these three functions. In addition, the design
process is not sequential with mechanical design followed by electrical and computer con-
trol system design, but rather all aspects (mechanical, electrical, and computer control)
of design are carried out simultaneously for optimal product design. Clearly, mechatron-
ics is not a new engineering discipline, but the current state of the evolutionary process
of the engineering disciplines needed for design of electromechanical systems. The end
product of a mechatronics engineer’s work is a working prototype of an embedded com-
puter controlled electromechanical device or system. This book covers the fundamental

Mechatronics with Experiments, Second Edition. Sabri Cetinkunt.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/cetinkunt/mechatronics
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2 MECHATRONICS

Mechatronics

Mechanical
technology

Electrical
technology

Computer
technology

Mechanical
software

Electrical
software

Electro
mechanical

FIGURE 1.1: The field of

mechatronics: intersection of

mechanical engineering,

electrical engineering, and

computer science.

technical topics required to enable an engineer to accomplish such designs. We define the
word device as a stand-alone product that serves a function, such as a microwave oven,
whereas a system may be a collection of multiple devices, such as an automated robotic
assembly line.

As a result, this book has sections on mechanical design of various mechanisms
used in automated machines and robotic applications. Such mechanisms are designs over
a century old and these basic designs are still used in modern applications. Mechanical
design forms the “skeleton” of the electromechanical product, upon which the rest of
the functionalities are built (such as “eyes,” “muscles,” “brains”). These mechanisms are
discussed in terms of their functionality and common design parameters. Detailed stress
or force analysis of them is omitted as these are covered in traditional stress analysis and
machine design courses.

The analogy between a human controlled system and computer control system is
shown in Figure 1.2. If a process is controlled and powered by a human operator, the
operator observes the behavior of the system (i.e., using visual observation), then makes
a decision regarding what action to take, then using his muscular power takes a partic-
ular control action. One could view the outcome of the decision making process as a
low power control or decision signal, and the action of the muscles as the actuator signal
which is the amplified version of the control (or decision) signal. The same functionali-
ties of a control system can be automated by use of a digital computer as shown in the
same figure.

The sensors replace the eyes, the actuators replace the muscles, and the computer
replaces the human brain. Every computer controlled system has these four basic functional
blocks:

1. process to be controlled,

2. actuators,

3. sensors,

4. controller (i.e., digital computer).



JWST499-c01 JWST499-Cetinkunt Printer: Yet to Come October 9, 2014 7:39 254mm×178mm

INTRODUCTION 3

:  Brain for decision making 

S :  Eye for sensing

:  Muscles for actuation

Process
Input

Input

Output

Output

(a)

(b)

Clock

CPU
x = f(x, u)
u = .......

DO,
DAC

DI,
ADC

Actuation
system

Process

Sensors

A

A

S

C

C

FIGURE 1.2: Manual and automatic control system analogy: (a) human controlled,

(b) computer controlled.

The microprocessor (μP) and digital signal processing (DSP) technology had two impacts
on control world,

1. it replaced the existing analog controllers,

2. prompted new products and designs such as fuel injection systems, active suspension,
home temperature control, microwave ovens, and auto-focus cameras, just to name
a few.

Every mechatronic system has some sensors to measure the status of the process vari-
ables. The sensors are the “eyes” of a computer controlled system. We study most common
types of sensors used in electromechanical systems for the measurement of temperature,
pressure, force, stress, position, speed, acceleration, flow, and so on (Figure 1.3). This list
does not attempt to cover every conceivable sensor available in the current state of the art,
but rather makes an attempt to cover all major sensor categories, their working principles
and typical applications in design.

Actuators are the “muscles” of a computer controlled system. We focus in depth
on the actuation devices that provide high performance control as opposed to simple
ON/OFF actuation devices. In particular, we discuss hydraulic and electric power actuators
in detail. Pneumatic power (compressed air power) actuation systems are not discussed.
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Operator /
communications

interfaces

Control computer
 (PLC)

Power source
(Engine pump)

Actuators (Valves)
Machine/process

(Mechanism)
Sensors

FIGURE 1.3: Main components of any mechatronic system: mechanical structure, sensors,

actuators, decision making component (microcontroller), power source, human/supervisory

interfaces.

They are typically used in low performance, ON/OFF type control applications (although,
with advanced computer control algorithms, even they are starting to be used in high
performance systems). The component functionalities of pneumatic systems are similar to
those of hydraulic systems. However, the construction detail of each is quite different. For
instance, both hydraulic and pneumatic systems need a component to pressurize the fluid
(pump or compressor), a valve to control the direction, amount, and pressure of the fluid
flow in the pipes, and translation cylinders to convert the pressurized fluid flow to motion.
The pumps, valves, and cylinders used in hydraulic systems are quite different to those
used in pneumatic systems.

Hardware and software fundamentals for embedded computers, microprocessors, and
digital signal processors (DSP), are covered with applications to the control of electrome-
chanical devices in mind. Hardware I/O interfaces, microprocessor hardware architectures,
and software concepts are discussed. The basic electronic circuit components are discussed
since they form the foundation of the interface between the digital world of computers
and the analog real world. It is important to note that the hardware interfaces and embed-
ded controller hardware aspects are largely standard and do not vary greatly from one
application to another. On the other hand, the software aspects of mechatronics designs
are different for every product. The development tools used may be same, but the final
software created for the product (also called the application software) is different for each
product. It is not uncommon that over 80% of engineering effort in the development of a
mechatronic product is spent on the software aspects alone. Therefore, the importance of
software, especially as it applies to embedded systems, cannot be over emphasized.

Mechatronic devices and systems are the natural evolution of automated systems. We
can view this evolution as having three major phases:

1. completely mechanical automatic systems (before and early 1900s),

2. automatic devices with electronic components such as relays, transistors, op-amps
(early 1900s to 1970s),

3. computer controlled automatic systems (1970s–present)

Early automatic control systems performed their automated function solely through
mechanical means. For instance, a water level regulator for a water tank uses a float
connected to a valve via a linkage (Figure 1.4). The desired water level in the tank is set
by the adjustment of the float height or the linkage arm length connecting it to the valve.
The float opens and closes the valve in order to maintain the desired water level. All the
functionalities of a closed loop control system (“sensing-comparison-corrective actuation”
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FIGURE 1.4: A completely mechanical closed loop control system for liquid level regulation.

or “sensor-logic-actuation”) may be embedded in one component by design, as is the case
in this example.

Another classic automatic control system that is made of completely mechanical
components (no electronics) is Watt’s flyball governor, which is used to regulate the speed
of an engine (Figure 1.5). The same concept is still used in some engines today. The engine
speed is regulated by controlling the fuel control valve on the fuel supply line. The valve
is controlled by a mechanism that has a desired speed setting using the bias in the spring
in the flywheel mechanism. The actual speed is measured by the flyball mechanism. The
higher the speed of the engine is, the more the flyballs move out due to centrifugal force.
The difference between the desired speed and actual speed is turned into control action by
the movement of the valve, which controls a small cylinder which is then used to control the
fuel control valve. In today’s engines, the fuel rate is controlled directly by an electrically
actuated injector. The actual speed of the engine is sensed by an electrical sensor (i.e.,
tachometer, pulse counter, encoder) and an embedded computer controller decides on how

“Compare”

Oil under
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supply

Control
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Engine Load

“Speed sensing”
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FIGURE 1.5: Mechanical “governor” concept for automatic engine speed control using all

mechanical components.
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FIGURE 1.6: Closed loop cylinder position control system with mechanical feedback used in

the actuation of the main valve.

much fuel to inject based on the difference between the desired and actual engine speed
(Figure 1.9).

Figure 1.6 shows a closed loop cylinder position control system where the position
feedback is mechanical. The command signal is the desired cylinder position and is gener-
ated by the motion of the lever moved by the pilot, and converted to the actuation power
to the valve spool displacement through the mechanical linkage. The position feedback is
provided by the mechanical linkage connection between the cylinder rod and the lever arm.
When the operator moves the lever to a new position, it is the desired cylinder position
(position 1 to position 2 in the figure). Initially, that opens the valve, and the fluid flow to the
cylinder makes the piston move. As the piston moves, it also moves the linkage connected to
the lever. This in turn moves the valve spool (position 2 to position 3 in the figure) to neutral
position where the flow through the valve stops when the cylinder position is proportional
to the lever displacement. In steady-state, when the cylinder reaches the desired position, it
will push the lever such that the valve will be closed again (i.e., when the error is zero, the
actuation signal is zero). The proportional control decision based on error is implemented
hydro-mechanically without any electronic components.

xvalve(t) = 1
a
⋅ xcmd(t) − 1

b
⋅ xactual(t) (1.1)

Analog servo controllers using operational amplifiers led to the second major change
in mechatronic systems. As a result, automated systems no longer had to be all mechanical.
An operational amplifier is used to compare a desired response (presented as an analog
voltage) and a measured response by an electrical sensor (also presented as an analog
voltage) and send a command signal to actuate an electrical device (solenoid or electric
motor) based on the difference. This brought about many electromechanical servo control
systems (Figures 1.7, 1.8). Figure 1.7 shows a web handling machine with tension control.
The wind-off roll runs at a speed that may vary. The wind-up roll is to run such that no
matter what the speed of the web motion is, a certain tension is maintained on the web.
Therefore, a displacement sensor on the web is used to indirectly sense the web tension
since the sensor measures the displacement of a spring. The measured tension is then
compared to the desired tension (command signal in the figure) by an operational amplifier.
The operational amplifier sends a speed or current command to the amplifier of the motor
based on the tension error. Modern tension control systems use a digital computer controller
in place of the analog operational amplifier controller. In addition, the digital controller may
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FIGURE 1.7: A web handling motion control system. The web is moved at high speed while

maintaining the desired tension. The tension control system can be considered a mechatronic

system, where the control decision is made by an analog op-amp, not a digital computer.

use a speed sensor from the wind-off roll or from the web on the incoming side in order to
react to tension changes faster and improve the dynamic performance of the system.

Figure 1.8 shows a temperature control system that can be used to heat a room or oven.
The heat is generated by the electric heater. Heat is lost to the outside through the walls.
A thermometer is used to measure the temperature. An analog controller has the desired
temperature setting. Based on the difference between the set and measured temperature, the
op-amp turns ON or OFF the relay which turns the heater ON/OFF. In order to make sure
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   signal
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Electric heater

Op-Amp

FAN

Electric
motor

Relay

Relay

L      N 
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FIGURE 1.8: A furnace or room temperature control system and its components using analog

op-amp as the controller. Notice that a fan driven by an electric motor is used to force the air

circulation from the heater to the room. A timer is used to delay the turn ON and turn OFF time

of the fan motor by a specified amount of time after the heater is turned ON or OFF. A

microcontroller-based digital controller can replace the op-amp and timer components.
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the relay does not turn ON and OFF due to small variations around the set temperature, the
op-amp would normally have a hysteresis functionality implemented on its circuit. More
details on the relay control with hysteresis will be discussed in later chapters.

Finally, with the introduction of microprocessors into the control world in the late
1970s, programmable control and intelligent decision making were introduced to auto-
matic devices and systems. Digital computers not only duplicated the automatic control
functionality of previous mechanical and electromechanical devices, but also brought about
new possibilities for device designs that were not possible before. The control functions
incorporated into the designs included not only the servo control capabilities but also many
operational logic, fault diagnostics, component health monitoring, network communica-
tion, nonlinear, optimal, and adaptive control strategies (Figure 1.3). Many such functions
were practically impossible to implement using analog op-amp circuits. With digital con-
trollers, such functions are rather easy to implement. It is only a matter of coding these
functionalities in software. The difficulty is in knowing what to code that works.

The automotive industry, the largest industry in the world, has transformed itself both
in terms of its products (the content of the cars) and the production methods of its products
since the introduction of microprocessors. Use of microprocessor-based embedded con-
trollers significantly increased the robotics-based programmable manufacturing processes,
such as assembly lines, CNC machine tools, and material handling. This changed the way
the cars are made, reducing the necessary labor and increasing the productivity. The prod-
uct itself, cars, has also changed significantly. Before the widespread introduction of 8-bit
and 16-bit microcontrollers into the embedded control mass market, the only electrical
components in a car were the radio, starter, alternator, and battery charging system. Engine,
transmission, and brake subsystems were all controlled by mechanical or hydro-mechanical
means. Today, the engine in a modern car has a dedicated embedded microcontroller that
controls the timing and amount of fuel injection in an optimized manner based on the
load, speed, temperaturem and pressure sensors in real time. Thus, it improves the fuel
efficiency, reduces emissions, and increases performance (Figure 1.9). Similarly, auto-
matic transmission is controlled by an embedded controller. The braking system includes
ABS (anti-lock braking system), TCS (traction-control system), DVSC (dynamic vehicle

Accelerator
pedal sensor Other

operator
inputs

Other engine
sensors

Speed
sensorFuel

injections

ECU

Engine

FIGURE 1.9: Electronic “governor” concept for engine control using embedded

microcontrollers. The electronic control unit decides on fuel injection timing and amount in real

time based on sensor information.
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stability control) systems which use dedicated microcontrollers to modulate the control of
brake, transmission and engine in order to maintain better control of the vehicle. It is esti-
mated that an average car today has over 30 embedded microprocessor-based controllers
on board. This number continues to increase as more intelligent functions are added to
cars, such as the autonomous self driving cars by Google Inc and others. It is clear that the
traditionally all-mechanical devices in cars have now become computer controlled elec-
tromechanical devices, which we call mechatronic devices. Therefore, the new generation
of engineers must be well versed in the technologies that are needed in the design of
modern electromechanical devices and systems. The field of mechatronics is defined as the
integration of these areas to serve this type of modern design process.

Robotic manipulator is a good example of a mechatronic system. The low-cost,
high computational power, and wide availability of digital signal processors (DSP) and
microprocessors energized the robotics industry in late 1970s and early 1980s. The robotic
manipulators, the reconfigurable, programmable, multi degrees of freedom motion mech-
anisms, have been applied in many manufacturing processes and many more applications
are being developed, including robotic assisted surgery. The main sub-systems of a robotic
manipulator serve as a good example of mechatronic system. A robotic manipulator has
four major sub-systems (Figure 1.3), and every modern mechatronic system has the same
sub-system functionalities:

1. a mechanism to transmit motion from actuator to tool,

2. an actuator (i.e., a motor and power amplifier, a hydraulic cylinder and valve) and
power source (i.e., DC power supply, internal combustion engine and pump),

3. sensors to measure the motion variables,

4. a controller (DSP or microprocessor) along with operator user interface devices and
communication capabilities to other intelligent devices.

Let us consider an electric servo motor-driven robotic manipulator with three axes. The
robot would have a predefined mechanical structure, for example Cartesian, cylindrical,
spherical, SCARA type robot (Figures 1.10, 1.11, 1.12). Each of the three electric servo
motors (i.e., brush-type DC motor with integrally mounted position sensor such as an
encoder or stepper motor with position sensor) drives one of the axes. There is a separate
power amplifier for each motor which controls the current (hence torque) of the motor. A
DC power supply provides a DC bus at a constant voltage and derives it from a standard
AC line. The DC power supply is sized to support all three motor-amplifiers.

The power supply, amplifier, and motor combination forms the actuator sub-system
of a motion system. The sensors in this case are used to measure the position and velocity

FIGURE 1.10: Three major robotic manipulator mechanisms: Cartesian, cylindrical, spherical

coordinate axes.
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FIGURE 1.11: Gantry, SCARA, and parallel linkage drive robotic manipulators.

of each motor so that this information is used by the axis controller to control the motor
through the power amplifier in a closed loop configuration. Other external sensors not
directly linked to the actuator motions, such as a vision sensors or a force sensors or
various proximity sensors, are used by the supervisory controller to coordinate the robot
motion with other events. While each axis has a dedicated closed loop control algorithm,
there has to be a supervisory controller that coordinates the motion of the three motors in
order to generate a coordinated motion by the robot, that is straight line motion, and so on
circular motion etc. The hardware platform to implement the coordinated and axis level
controls can be based on a single DSP/microprocessor or it may be distributed over multiple
processors as shown. Figure 1.12 shows the components of a robotic manipulator in block
diagram form. The control functions can be implemented on a single DSP hardware or a
distributed DSP hardware. Finally, just as no man is an island, no robotic manipulator is an
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FIGURE 1.12: Block diagram of the components of a computer controlled robotic manipulator.
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island. A robotic manipulator must communicate with a user and other intelligent devices
to coordinate its motion with the rest of the manufacturing cell. Therefore, it has one or
more other communication interfaces, typically over a common fieldbus (i.e., DeviceNET,
CAN, ProfiBus, Ethernet). The capabilities of a robotic manipulator are quantified by the
following;

1. workspace: volume and envelope that the manipulator end effector can reach,

2. number of degrees of freedom that determines the positioning and orientation capa-
bilities of the manipulator,

3. maximum load capacity, determined by the actuator, transmission components, and
structural component sizing,

4. maximum speed (top speed) and small motion bandwidth,

5. repeatability and accuracy of end effector positioning,

6. manipulator’s physical size (weight and volume it takes).

Figure 1.13 shows a computer numeric controlled (CNC) machine tool. A multi
axis vertical milling machine is shown in this figure. There are three axes of motion
controlled precisely (i.e., within 1∕1000 in or 25 micron = 25∕1000 mm accuracy) in x,
y and z directions by closed loop controlled servo motors. The rotary motion of each of
the servo motors is converted to linear motion of the table by the ball-screw or lead-screw

××

××

HMI

CNC

DC PS

AMP E M

Coupling

Table

Linear encoder

Lead/ball screw

CNC Controller

X-axis motor/encoders

Z-axis motor/encoders

Y-axis motor/
encoders

Operator interface
controller, DC PS,

amps

FIGURE 1.13: Computer numeric controlled (CNC) machine tool: (a) picture of a vertical CNC

machine tools, reproduced with permission from Yamazaki Mazak Corporation, (b) x-y-z axes of

motion, actuated by servo motors, (c) closed loop control system block diagram for one of the

axis motion control system, where two position sensors per axis (motor-connected and

load-connected) are shown (also known as dual position feedback).
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mechanism in each axis. The fourth motion axis is the spindle rotation which typically
runs at a constant speed. Each axis has its own servo motor (i.e., brushless DC motor with
position feedback), amplifier and DC power supply. In high precision machine tools, in
addition to the position sensors integral to the servo motor, there are also linear position
sensors (i.e., linear encoders) attached to the moving part of the table on each axis in order
to measure the translational position of the table directly. Using this measurement, the
controller can compensate for position errors due to backlash and mechanical transmission
errors in the lead-screw/ball-screw. The CNC controller implements the desired motion
commands for each axis in order to generate the desired cut-shape, as well as the closed
loop position control algorithm such as a PID controller. When two position sensors are
used for one degree of motion (one located at the actuator point (on the motor shaft) and
one located at the actuated-tool point (table)), it is referred to as dual position feedback
control system. A typical control logic in dual-position feedback system is to use the motor-
based encoder feedback in velocity loop, and load-based encoder feedback in position loop
control. Current state of the art technology in CAD/CAM and CNC control is such that a
desired part is designed in CAD software, then the motion control software to run on the
CNC controller (i.e., G-code or similar code which defines the sequence of desired motion
profiles for each axis) is automatically generated from the CAD file of the part, downloaded
to the CNC controller, which then controls each motion axis of the machine in closed loop
to cut the desired shape.

Figure 1.14 shows the power flow in a modern construction equipment. The power
source in most mobile equipment is an internal combustion engine, which is a diesel engine
in large power applications. The power is hydro-mechanically transmitted from engine
to transmission, brake, steering, implement, and cooling fan. All sub-systems get their
power in hydraulic form from a group of pumps mechanically connected to the engine.
These pumps convert mechanical power to hydraulic power. In automotive type designs,
the power from engine to transmission gear mechanism is linked via a torque converter. In
other designs, the transmission may be a hydrostatic design where the mechanical power is
converted to hydraulic power by a pump and then back to mechanical power by hydraulic
motors. This is the case in most excavator designs. Notice that each major sub-system has its
own electronic control module (ECM). Each ECM deals with the control of the sub-system
and possibly communicates with a machine level master controller. For instance, ECM for
engines deals with maintaining an engine speed commanded by the operator pedal. As
the load increases and the engine needs more power, the ECM automatically commands
more fuel to the engine to regulate the desired speed. The transmission ECM deals with
the control of a set of solenoid actuated pressure valves which then controls a set of clutch
and brakes in order to select the desired gear ratio. Steering ECM controls a valve which
controls the flow rate to a steering cylinder. Similarly, other sub-system ECMs controls
electrically controlled valves and other actuation devices to modulate the power used in
that sub-system.

The agricultural industry uses harvesting equipment where the equipment technology
has the same basic components used in the automotive and construction equipment industry.
Therefore, automotive technology feeds and benefits agricultural technology. Using global
positioning systems (GPS) and land mapping for optimal utilization, large scale farming has
started to be done by autonomous harvesters where the machine is automatically guided
and steered by GPS systems. Farm lands are fertilized in an optimal manner based on
previously collected satellite maps. For instance, the planning and execution of an earth
moving job, such as road building or a construction site preparation or farming, can be
done completely under the control of GPSs and autonomously driven machines without
any human operators on the machine. However, safety concerns have so far delayed the
introduction of such autonomous machine operations. The underlying technologies are
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FIGURE 1.14: Block diagram controlled power flow in a construction equipment. Power flow

in automotive applications is similar. Notice that modern construction equipment has

electronic control modules (ECMs) for most major sub-systems such as engine, transmission,

brake, steering, implement sub-systems.

relatively mature for autonomous construction equipment and farm equipment operation
(Figure 1.15).

The chemical process industry involves many large scale computer controlled plants.
The early application of computer controlled plants was based on a large central computer
controlling most of the activities. This is called the centralized control model. In recent
years, as microcontrollers became more powerful and low cost, the control systems for large
plants have been designed using many layers of hierarchy of controllers. In other words,
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FIGURE 1.15: Semi-autonomous construction equipment operation using global positioning

system (GPS), local sensors and on-vehicle sensors for closed loop sub-system control.

the control logic is distributed physically to many microcomputers. Each microcomputer
is physically closer to the sensors and actuators it is responsible for. Distributed controllers
communicate with each other and higher level controllers over a standard communication
network. There may be a separate communication network at each layer of the hierarchical
control system. The typical variables of control in process industry are fluid flow rate,
temperature, pressure, mixture ratio, fluid level in tank, and humidity.

Energy management and control of large buildings is a growing field of application
of optimized computer control. Home appliances are more and more microprocessor con-
trolled, instead of being just an electromechanical appliances. For instance, old ovens used
relays and analog temperature controllers to control the electric heater in the oven. The new
ovens use a microcontroller to control the temperature and timing of the oven operation.
Similar changes have occurred in many other appliances used in homes, such as washers
and driers.
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Micro electromechanical systems (MEMS) and MEMS devices incorporate all of the
computer control, electrical and mechanical aspects of the design directly on the silicon
substrate in such a way that it is impossible to discretely identify each functional component.
Finally, the application of mechatronic design in medical devices, such as surgery assistive
devices, robotic surgery, and intelligent drills, is perhaps one of the most promising field in
this century.

Computer controlled medical devices (implant and external assistive, rehabilitation
equipment) have been experiencing exponential growth as the physical size of sensing and
computing devices becomes very tiny such that they can be integrated with small actuators
as implant devices for human body. The basic principle of the sensing-decision-actuation
is being put to many uses in embedded computer controlled medical devices (also called
bio-mechatronic devices, Figure 1.16). In time these devices will be able to integrate a
growing set of tiny sensors, and make more sophisticated real-time decisions about what (if
any) intervention action to take to assist the functioning of the human body. For instance,
implant defibrillators and pace-makers for heart patients are examples of such devices. A
pace-maker is a heart implant device that provides electrical pulses to the heart muscules
to regulate its rate when it senses that the heart rate has fallen below a critical level. The
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FIGURE 1.16: Example of an embedded computer controlled medical device: a

bio-mechatronic device. The pulse generator houses the battery (electrical power source) and a

tiny embedded computer. The electrical wires between the heart and the pulse generator

(pace-maker) are for both sensing the heart condition (sensor cables) and actuating the heart

beat by electrical pulse signal shocks to the heart muscle. The sensing-decision-actuation

functions are integrated via the pulse generator and electrical signal leads. Wapcaplet, Yaddah
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http://www.gnu.org/copyleft/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/


JWST499-c01 JWST499-Cetinkunt Printer: Yet to Come October 9, 2014 7:39 254mm×178mm

16 MECHATRONICS

pace-maker senses the heart rate, and if the heart rate is below a critical rate, it sends
electrical pulses to the heart in order to increase the heart rate. The sensing and actuation
components are interfaced to the heart through electrical wires. The embedded computer,
battery (electrical power source for the pulse power) and pulse generator circuit is one
integrated unit which is implanted under the skin somewhere close to the heart.

In addition, many computer controlled orthopeadic devices are in the process of
development as implanted aid devices as well as rehabilitative devices. For example, in
artificial hand devices, the embedded computer senses the desired motion signals in the
remaining muscles which are sent from the brain, then interprets them to actuate the
mechanical hand like it would function in a natural hand. The compact electromechanical
design of the hand mechanism, its integrated actuation and sensing (position and force
sensors) devices are electromechanical design problems. Measurement and interpretation
of the desired motion signals from human brain to the residual muscles and, based on that
information, determining the desired motion of the hand is an intelligent signal processing
and control problem (see National Geographic Magazine, …. issue).

1.1 CASE STUDY: MODELING AND CONTROL
OF COMBUSTION ENGINES

The internal combustion engine is the power source for most of the mobile equipment
applications including automotive, construction, and agricultural machinery. As a result,
it is an essential component in most mobile equipment applications. Here, we discuss the
modeling and basic control concepts of internal combustion engines from a mechatronics
engineering point of view. This case study may serve as an example of how a dynamic model
and a control system should be developed for a computer controlled electromechanical
system. Basic modeling and control of any dynamic system invariably involves use of
Laplace transforms. As a result, detailed analysis using Laplace transforms is minimized
here in this introductory chapter.

We will discuss the basic characteristics of a diesel engine from a mechatronics
engineer’s point of view. Any modeling and control study should start with a good physical
understanding of how a system works. We identify the main components and sub-systems.
Then each component is considered in terms of its input and output relationship in modeling.
For control system design purposes, we identify the necessary sensors and controlled
actuators. With this guidance, we study

1. engine components – basic mechanical components of the engine,

2. operating principles and performance – how energy is produced (converted from
chemical energy to mechanical energy) through the combustion process,

3. electronic control system components: actuators, sensors, and electronic control mod-
ule (ECM),

4. dynamic models of the engine from a mechatronics engineer’s point of view,

5. control algorithms – basic control algorithms and various extensions in order to meet
fuel efficiency and emission requirements.

An engine converts the chemical energy of fuel to mechanical energy through the
combustion process. In a mobile equipment, sub-systems derive their power from the
engine. There are two major categories of internal combustion engines: (i) Clerk (two-
stroke) cycle engine; (ii) Otto (four-stroke) cycle engine. In a two-stroke cycle engine,
there is a combustion in each cylinder once per revolution of the crankshaft. In a four-
stroke cycle engine, there is a combustion in each cylinder once every two revolutions of
the crankshaft. Only four-stroke cycle engines are discussed below.
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Four-stroke cycle internal combustion engines are also divided into two major cate-
gories: (i) gasoline engines; (ii) diesel engines. The fundamental difference between them
is in the way the combustion is ignited every cycle in each cylinder. Gasoline engines use a
spark plug to start the combustion, whereas the combustion is self-ignited in diesel engines
as a result of the high temperature rise (typical temperature levels in the cylinder towards
the end of the compression cylce is around 700–900 ◦C range) due to the large compression
ratio. If the ambient air temperature is very low (i.e., extremely cold conditions), the tem-
perature rise in the cylinder of a diesel engine due to the compression of air–fuel mixture
may not be high enough for self-ignition. Therefore, diesel engines have electric heaters to
pre-heat the engine block before starting the engine in a very cold environment.

The basic mechanical design and size of the engine defines an envelope of maximum
performance (speed, torque, power, and fuel consumption). The specific performance of
an engine within the envelope of maximum performance is customized by the engine con-
troller. The decision block between the sensory data and fuel injection defines a particular
performance within the bounds defined by the mechanical size of the engine. This decision
block includes considerations of speed regulation, fuel efficiency, and emission control.

1.1.1 Diesel Engine Components

The main mechanical components of a diesel engine are located on the engine block
(Figure 1.17). The engine block provides the frame for the combustion chambers where
each combustion chamber is made of a cylinder, a piston, one or more intake valves and
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FIGURE 1.17: Mechanical components of an engine block: 1. engine block, 2. cylinder, 3.

piston, 4. connecting rod, 5. crankshaft, 6. cam-shaft, 7. intake valve, 8. exhaust valve, 9. fuel

injector.
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exhaust valves, and a fuel injector. The power obtained from the combustion process is
converted to the reciprocating linear motion of the piston. The linear motion of the piston is
converted to a unidirectional continuous rotation of the crankshaft through the connecting
rod. In the case of a spark ignited engine (gasoline engine), there would also be a spark
plug to generate ignition. The compression ratio of diesel engines is in the range of 1:14 to
1:24, while gasoline engine compression ratio range is about half of that.

Normally, there are multiple cylinders (i.e., 4, 6, 8, 12) where each cylinder operates
with a different crankshaft phase angle from each other in order to provide non-pulsating
power. An engine’s power capacity is determined primarily by the number of cylinders,
volume of each cylinder (piston diameter and stroke length), and compression ratio. Fig-
ure 1.18 shows the engine block and its surrounding sub-systems: throttle, intake manifold,
exhaust manifold, turbo charger, charge cooler. In most diesel engines there is not a physical
throttle valve. A typical diesel engine does not control the inlet air, it takes the available air
and controls the injected fuel rate, while some diesel engines control both the inlet air (via
the throttle valve) and the injected fuel rate.

The surrounding sub-systems support the preparation of the air and fuel mixture
before the combustion and exhausting of it. Timing of the intake valve, exhaust valve, and
injector is controlled either by mechanical means or by electrical means. In completely
mechanically controlled engines, a mechanical camshaft coupled to the crankshaft by
a timing belt with a 2:1 gear ratio is used to control the timing of these components
which is periodic with two revolutions of the crankshaft. Variable valve control systems
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incorporate a mechanically controlled lever which adjusts the phase of the camshaft sections
in order to vary the timing of the valves. Similar phase adjustment mechanisms are designed
into individual fuel injectors as well. In electronically controlled engines some or all
of these components (fuel injectors, intake and exhaust valves) are each controlled by
electrical actuators (i.e. solenoid actuated valves). In today’s diesel engines, the injectors
are electronically controlled, while the intake valves and exhaust valves are controlled by
the mechanical camshaft. In fully electronically controlled engines, also called camless
engines, the intake and exhaust valves are also electronically controlled.

Turbo chargers (also called super chargers) and charge coolers (also called inter
coolers, or after coolers) are passive mechanical devices that assist in the efficiency and
maximum power output of the engine. The turbo charger increases the amount of air
pumped (“charged”) into the cylinders. It gets the necessary energy to perform the pumping
function from the exhaust gas. The turbo charger has two main components: a turbine and
compressor, which are connected to the same shaft. Exhaust gas rotates the turbine, and it
in turn rotates the compressor which performs the pumping action. By making partial use
of the otherwise wasted energy in the exhaust gas, the turbo charger pumps more air, which
in turn means more fuel can be injected for a given cylinder size. Therefore, an engine can
generate more power from a given cylinder size using a turbo charger. An engine without
turbo charger is called a naturally aspirated engine. The turbo charger gain is a function
of the turbine speed, which is related to the engine speed. Therefore, some turbo chargers
have variable blade orientation or a moving nozzle (called variable geometry turbochargers
(VGT)) to increase the turbine gain at low speed and reduce it at high speed (Figure 1.18).

While the main purpose of the turbo charger is to increase the amount of inlet air
pumped into the cylinders, it is not desirable to increase the inlet boost pressure beyond
a maximum value. Some turbo charger designs incorporate a waste-gate valve for that
purpose. When the boost pressure sensor indicates that the pressure is above a certain level,
the electronic control unit opens a solenoid actuated butterfly type valve at the waste-gate.
This routes the exhaust gas to bypass the turbine to the exhaust line. Hence the name
“waste-gate” since it wastes the exhaust gas energy. This reduces the speed of the turbine
and the compressor. When the boost pressure drops below a certain value, the waste-gate
valve is closed again and the turbo charger operates in its normal mode.

Another feature of some turbo chargers is the exhaust back pressure device. Using a
butterfly type valve, the exhaust gas flow is restricted and hence the exhaust back pressure
is increased. As a result, the engine experiences larger exhaust pressure resistance. This
leads to faster heating of the engine block. This is used for rapid warming of the engine
under cold starting conditions.

In some designs of turbo chargers, in order to reduce the cylinder temperature, a
charge cooler (also called inter cooler) is used between the turbo charger’s compressor
output and the intake manifold. The turbo charger’s compressor outputs air with temper-
atures as high as 150 ◦C. The ideal temperature for inlet air for a diesel engine is around
35–40 ◦C. The charge cooler performs the cooling function of the intake air so that air
density can be increased. A high air temperature reduces the density of the air (hence the
air–fuel ratio) as well as increases the wear in the combustion chamber components.

The exhaust gas recirculation (EGR) mixes the intake air with a controlled amount
of exhaust gas for combustion. The main advantage of the EGR is the reduction of NOx
content in the emission. However, EGR results in more engine wear, and increases smoke
and particulate content in the emission.

Fuel is injected in to the cylinder by cam-actuated (mechanically controlled) or
solenoid actuated (electrically controlled) injectors. The solenoid actuation force is ampli-
fied by hydraulic means in order to provide the necessary force for the injectors. Figure 1.19
shows an electrically controlled fuel injector system where a hydraulic oil pressure line is
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FIGURE 1.19: An example of an electronically controlled fuel injection system used in diesel

engines: HEUI fuel injection system by Caterpillar Inc and Navistar Inc.

used as the amplifier stage between the solenoid signal and injection force. Notice that the
main components of the fuel delivery system are

1. fuel tank,

2. fuel filter,

3. fuel pump,

4. pressure regulator valve,

5. high pressure oil pump,

6. fuel injectors.

The fuel pump maintains a constant fuel pressure line for the injectors. In common-
rail (CR) and electronic unit injector (EUI) type fuel injection systems (such as the hydraulic
electronic unit injector (HEUI) by Caterpillar and Navistar Inc), a high pressure oil pump
in conjunction with a pressure regulating valve is used to provide the high pressure oil line
to act as an amplifier line for the injectors. Hydraulic oil is the same oil used for engine
lubrication. The injectors are controlled by the low power solenoid signals coming from
the electronic control module (ECM). The motion of the solenoid plunger is amplified by
the high pressure oil line to provide the higher power levels needed for the fuel injector.

There are four different fluids involved in any internal combustion engine:

1. fuel for combustion,

2. air for combustion and cooling,

3. oil for lubrication,

4. water–coolant mixture for cooling.
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Each fluid (liquid or gas) circuit has a component to store, condition (filter, heat or cool),
move (pump), and direct (valve) it within the engine.

The cooling and lubrication systems are closed circuit systems which derive their
power from the crankshaft via a gearing arrangement to the coolant pump and the oil pump.
Reservoir, filter, pump, valve, and circulation lines are very similar to other fluid circuits.
The main component of the cooling system is the radiator. It is a heat exchanger where
the heat from the coolant is removed to the air through the a series of convective tubes
or cores. The coolant is used not only to remove heat from the engine block, but also to
remove heat from the intake air at after-cooler (inter-cooler) as well as to remove heat from
the lubrication oil. Finally the heat is dissipated out to the environment at the radiator. The
radiator fan provides forced air for higher heat exhange capacity. Typically, the cooling
system includes a temperature regulator valve which directs the coolant flow path when the
engine is cold in order to help it warm up quickly.

The purpose of lubrication is to reduce the mechanical friction between two surfaces.
As the friction is reduced, the friction related heat is reduced. The lubrication oil forms a
thin film between any two moving surfaces (i.e., bearings). The oil is sucked from the oil
pan by the oil pump, passed through an oil filter and cooler, then guided to the cylinder
block, piston, connecting rod, and crankshaft bearings. The lubrication oil temperature must
be kept around 105–115 ◦C. Too high a temperature reduces the load handling capacity,
whereas too low a temperature increases viscosity and reduces lubrication capability. A
pressure regulator keeps the lube oil pressure around a nominal value (40 to 50 psi range).

The fuel pump, lubrication oil pump, cooling fan, and coolant pump all derive their
power from the crank with gear and belt couplings. The current trend in engine design is
to use electric generators to transfer power from the engine to the electric motor-driven
pumps for the sub-systems. That is, instead of using mechanical gears and belts to transmit
and distribute power, the new designs use electrical generators and motors.

Diesel Engine Operating Principles Let us consider one of the cylinders in a
four-stroke cycle diesel engine (Figure 1.20). Other cylinders go through the same sequence
of cycles except offset by a crankshaft phase angle. In a four-cylinder diesel engine, each
cylinder goes through the same sequence of four-stroke cycles offset by 180◦ of crankshaft
angle. Similarly, this phase angle is 120◦ for a six-cylinder engine, and 90◦ for an eight-
cylinder engine. The phase angle between cylinders is (720◦)/(number of cylinders). During
the intake stroke, the intake valve opens and the exhaust valve closes. As the piston moves
down, the air is sucked into the cylinder until the piston reaches the bottom dead center
(BDC). The next stroke is the compression stroke during which the intake valve closes and,
as the piston moves up, the air is compressed. The fuel injection (and spark ignition in the
SI engine) is started at some position before the piston reaches the top dead center (TDC).

The combustion, and the resulting energy conversion to mechanical energy, are
accomplished during the expansion stroke. During that stroke, the intake valve and exhaust
valve are closed. Finally, when the piston reaches the BDC position and starts to move up,
the exhaust valve opens to evacuate the burned gas. This is called the exhaust stroke. The
cycle ends when the piston reaches the TDC position.

This four-stroke cycle repeats for each cylinder. Note that each cylinder is in one of
these strokes at any given time. For the purpose of illustrating the basic operating principle,
we stated above that the intake and exhaust valve open and close at the end or beginning of
each cycle. In an actual engine, the exact opening and closing position of these valves, as
well as the fuel injection timing and duration, are a little different than the BDC or TDC
positions of the piston.

It is indeed these intake and exhaust valve timings as well as the fuel injection
timing (start time, duration, and injection pulse shape) decisions that are made by the
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electronic control module (ECM) in real time. The control decisions are made relative to
the crankshaft angular position based on a number of sensory data. The timing relative
to the crankshaft position may be varied as a function of engine speed in order to opti-
mize the engine performance. The delay from the time current pulse sent to the injector
and the time that combustion is fully developed is in the order of 15 degrees of crankshaft
angle. The typical shape of the pressure in the cylinder during a four-stroke cycle are also
shown in the Figure 1.20. The maximum combustion pressure is in the range of 30 bar
(3 Mpa) to 160 bar (16 MPa). Notice that even though the pressure in the cylinder is positive,
the torque contribution of each cylinder as a result of this pressure is positive during the cycle
when the piston is moving down (the pressure is helping the motion and the net torque contri-
bution to the crankshaft is positive) and negative during the cycle when the piston if moving
up (the pressure is opposing the motion and the net torque contribution to the crankshaft
is negative). As result, the net torque generated by each cylinder oscillates as function of
crankshaft angle with a period of two revolutions. The mean value of that generated torque
by all cylinders is the value used for characterizing the performance of the engine.

In electronically controlled engines, the fuel injection timing relative to the crankshaft
position is varied as a function of engine speed in order to give enough time for the
combustion to develop. This is called the variable timing fuel injection control. As the
engine speed increases, the injection time is advanced, that is, fuel is injected earlier
relative to the TDC of the cylinder during the compression cycle. Injection timing has a
significant effect on the combustion efficiency, hence the torque produced, as well as the
emission content.

It is standard in the literature to look at the cylinder pressure versus the combustion
chamber volume during the four-stroke cycle. The so-called p-v diagram shape in general
looks like as is shown in Figure 1.20. The net energy developed by the combustion process
is proportional to the area enclosed by the p-v diagram. In order to understand the shape
of the torque generated by the engine, let us look at the pressure curve as a function of
the crankshaft (Figure 1.20) and superimpose the same pressure curve for other cylinders
with the appropriate crankshaft phase angle. The sum of the pressure contribution from
each cylinder is the total pressure curve generated by the engine (Figure 1.20). The pressure
multiplied by the piston top surface area is the net force generated. The effective moment arm
of the connecting rod multiplied by the force gives the torque generated at the crankshaft.

The net change in the acceleration is the net torque divided by the inertia. If the inertia
is large, the transient variations in the net torque will result in smaller acceleration changes,
and hence smaller speed changes. At the same time, it takes a longer time to accelerate or
decelerate the engine to a different speed. These are the advantages and disadvantages of
the flywheel used on the crankshaft.

1.1.2 Engine Control System Components

There are three groups of components of an engine control system: (1) sensors, (2) actuators,
(3) electronic control module (ECM) (Figure 1.21). The number and type of sensors used
in an electronic engine controller varies from manufacturer to manufacturer. The following
is a typical list of sensors used:

1. accelerator pedal position sensor,

2. throttle position sensor (if the engine has throttle),

3. engine speed sensor,

4. air mass flow rate sensor,

5. intake manifold (boost) absolute pressure sensor,
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FIGURE 1.21: Control system components for a modern engine controller: sensor inputs,

ECM (electronic control module), outputs to actuators. Reprinted Courtesy of Caterpillar Inc.

6. atmospheric pressure sensor,

7. manifold temperature sensor,

8. ambient air temperature sensor,

9. exhaust gas oxygen (EGO) sensor,

10. knock detector sensor (piezo-accelerometer sensor)

The controlled actuators in an engine (outputs) are:

1. fuel injector actuation: injection timing, duration (injected fuel amount, also called
fuel ratio) and pulse shape control,

2. ignition sparks: timing (only in spark-ignited gasoline engines, not used in diesel
engines),

3. exhaust gas recirculation (EGR) valve,

4. idle air control (IAC) valve, which may not be present in all engine designs,

5. waste-gate valve,

6. exhaust back pressure valve, and

7. turbo charger.

ECM is the digital computer hardware which has the interface circuitry for the sensors
and actuators and runs the engine control algorithm (engine control software) in real-time.
The engine control algorithm implements the control logic that defines the relationship
between the sensor signals and actuator control signals. The main objectives of engine
control are

1. engine speed control,

2. fuel efficiency, and

3. emission concerns.
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In its simplest form, the engine control algorithm controls the fuel injector in order to
maintain a desired speed set by the accelerator pedal position sensor.

The actively controlled variables by ECM are the injectors (when and how much fuel
to inject – an analog signal per injector), and the RPCV valve which is used to regulate the
pressure of the amplification oil line. As a result, for a six-cylinder, four-stroke cycle diesel
engine, the engine controller has seven control outputs: six outputs (one for each injector
solenoid) and one output for the RPCV valve (Figure 1.19). Notice that at 3000 rpm engine
speed, 36◦ of crankshaft rotation takes only about 2.0 ms, which is about the window
of opportunity to complete the fuel injection. Controlling the injection start time with an
accuracy of 1◦ of crankshaft position requires about 55.5 microsecond repeatability in the
fuel-injection control system timing. Therefore, accuracy in controlling the injection start
time and duration at different engine speeds is clearly very important. Since we know that
the combustion and injection processes have their own inherent delay due to natural physics,
we can anticipate these delays in a real-time control algorithm, and advance or retard the
injection timing as a function of the engine speed. This is called variable injection timing
in engine control.

Solenoid actuated fuel injectors are digitally controlled, thereby making the injection
start-time and duration changeable in real-time based on various sensory and command data.
The injection start-time and duration are controlled by the signal sent to the solenoid. The
solenoid motion is amplified to high pressure injection levels via high pressure hydraulic
lines (i.e., in the case of HEUI injectors by Caterpillar Inc.) or by cam-driven push rod arms
(i.e., in the case of EUI injectors by Caterpillar Inc.).

The intake manifold absolute pressure is closely related to the load on the engine –
as the load increases, this pressure increases. The engine control algorithm uses this sensor
to estimate the load. Some engines also include a high bandwidth acceleration sensor (i.e.,
piezoelectric accelerometer) on the engine cylinder head to detect the “knock” condition in
the engine. Knock condition is the result of excessive combustion pressures in the cylinders
(usually under loaded conditions of engine) as a result of premature and unusually fast
propagation of ignition of the air–fuel mixture. The higher the compression ratio is, the more
likely the knock condition is. The accelerometer signal is digitally filtered and evaluated
for knock condition by the control algorithm. Once the control algorithm has determined
which cylinders have knock condition, the fuel injection timing is retarded until the knock
is eliminated in the cyclinders in which it has been detected.

In diesel engines with electronic governors, the operator sets the desired speed with
the pedal which defines the desired speed as a percentage of maximum speed. Then the
electronic controller modulates the fuel rate up to the maximum rate in order to maintain
that speed. The engine operates along the vertical line between the desired speed and the
lug curve (Figure 1.22). If the load at that speed happens to be larger than the maximum
torque the engine can provide at that speed, the engine speed drops and torque increases
until the balance between load torque and engine torque is achieved. In most gasoline
engines, the operator pedal command is a desired engine torque. The driver closes the loop
on the engine speed by observing and reacting to the vehicle speed. When “cruise control”
is activated, than the electronic controller regulates the engine fuel rate in order to maintain
the desired vehicle speed.

1.1.3 Engine Modeling with Lug Curve

If we neglect the transient response delays in the engine performance and the oscillations
of engine torque within one cycle (two revolutions of crank angle), the steady-state per-
formance of an engine can be described in terms of its mean (average) torque per cycle,
power, and fuel efficiency as a function of engine speed (Figure 1.22). The most important
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of these three curves that defines the capabilities of an engine is the torque-speed curve.
This curve is also called the “lug curve” due to its shape. As the speed is reduced down
from the rated speed, the mean torque generated by the engine increases under constant fuel
rate conditions. Hence, if the load increases to slow down the engine, the engine inherently
increases torque to overcome the load. In order to define the lug curve model for an engine,
we need a table of torque versus the engine speed for maximum fuel rate. A linear inter-
polation between intermediate points is satisfactory for initial analysis. The table should
have, at minimum, the low idle, high idle, peak torque, and rated speed points (four data
points). The points under that curve are achieved by lower fuel rates. As the fuel injection
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rate decreases from its maximum value, the lug curve does not necessarily scale linearly
with it. At very low fuel rates, the combustion process works in such a way that the shape
of the lug curve becomes quite different (Figure 1.22). The best fuel rate is accomplished
when the engine speed is around the middle of low and high idle speeds.

The torque defined by the lug curve is the mean effective steady-state torque capacity
of the engine as a function of speed at maximum fuel rate. This curve does not consider
the cyclic oscillations of net torque as a result of the combustion process. The actual torque
output of the engine is oscillatory as a function of the crankshaft angle within each four-
stoke (intake-compression-combustion-exhaust) per two-revolution cycle. The role of the
flywheel is to reduce the oscillations of engine speed. Each cylinder has one cycle of net
torque contribution (which has both positive and negative portions) per two revolutions,
and the torque functions of each cyclinder are phase shifted from each other.

A given mechanical engine size defines the boundaries of this curve:

1. maximum engine speed (high idle speed) determined by the friction in the bearings
and combustion time needed,

2. lug portion of the curve corresponding to torque-speed relation when the maximum
fuel rate is injected to the engine. This is determined by the heat capacity of the
engine as well as the injector size.

T lug
eng = f lug

o (weng) for ufuel = umax
fuel (1.2)

Once the limits of the engine capacity are defined by mechanical design and sizing of the
components, we can operate the engine at any point under that curve with the governor –
the engine controller. Any point under the engine lug curve corresponds to a fuel rate and
engine speed. Notice that the left side of the lug curve (speeds below the peak torque) is
unstable since the engine torque capacity decreases. At speeds below this point, if the load
increases as the speed decreases, the engine will stall. The slope of the high idle speed
setting can be 3–7% of speed change in mechanically controlled engines, or it can be
made perpendicular (almost zero speed change) in electronically controlled engines. The
governor (engine controller) cuts down the fuel rate in order to limit the maximum speed
of the engine. The sharp, almost vertical, line on the lug curve (steady-state torque-speed
curve) is the result of the governor action to limit the engine speed by changing the fuel rate
from its maximum value at the rated speed down to smaller values. Hence, electronically
controlled engines can maintain the same speed as the load conditions vary from zero to
maximum torque capacity of the engine.

The parameterized version of the lug curve (torque versus engine speed), where there
is a curve defined for each value of fuel rate, is called the torque map. The engine is modeled
as a torque source (output: torque) as function of two input variables: fuel rate and engine
speed. Such a model assumes that the necessary air flow is provided in order to satisfy the
fuel rate to torque transfer function (Figures 1.23, 1.22).

Teng = f0(ufuel, weng) (1.3)

Notice that, when ufuel = umax
fuel , the function f0(⋅, ⋅) represents the lug curve. In order to

define the points below the lug curve, data points need to be specified for different values of
fuel rate (Figure 1.22). An analytical representation of such a model can be expressed as

Teng =
(

ufuel

umax
fuel

)
⋅ f0

(
umax

fuel , weng

)
(1.4)

Clearly, if the engine capacity limits are to be imposed on the model, the lug curve
limits can be added as a nonlinear block in this model. The standard “lug curve” defines the
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between the fuel rate and generated torque. The time delay and filtering effects due to
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constant of 𝜏eng. Torque pulsation due to individual cylinder combustion is also neglected,

however it can be included by using such a model for individual cylinders. This model assumes

that the lug curve scales linearly with the fuel injection rate. (b) This model assumes that the

torque can be expressed as the difference of two functions where one function output depends

on engine speed and the other on the fuel rate.

steady-state torque-speed relationship for an engine when the maximum fuel rate is injected.
This is also called the rack stop limit of the torque-speed curve. Under the governor control
(mechanical or electronic engine controller), any point (speed, torque) under that curve can
be accomplished by a fuel rate that is less than the maximum fuel rate. In order to impose
the engine lug curve limits, the following must be defined

1. torque-speed (the lug curve) for maximum fuel rate (Teng(weng) when ufuel = umax
fuel ),

2. the parameterized torque-speed curves for different fuel rates less than the maximum
fuel rate.

This model and the lug curve model do not include the transient behavior due to the
combustion process. The simplest transient (dynamic) model to account for the delay
between the fuel rate and generated torque can be included in the form of a first-order filter.
In other words, there is a filtering type delay between the torque obtained from the lug
curve and the actual torque developed by the engine for a given fuel rate and engine speed,

𝜏e

dTeng(t)

dt
+ Teng(t) = T lug

eng(t) (1.5)
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and its Laplace transform (readers who are not familiar with Laplace transforms can skip
related material in the rest of this section without loss of continuity),

Teng(s) = 1
(𝜏eng ⋅ s + 1)

⋅ T lug
eng(s) (1.6)

where 𝜏eng represents the time constant of the combustion to torque generation process,

T lug
eng is the torque prediction based on lug-curve, and Teng is the torque produced including

the filtering delay.

Special Case: Simple Engine Model Simpler versions of this model can be
used to represent engine steady-state dynamics as follows,

Teng = f1(ufuel) − f2(weng) (1.7)

where Teng is the torque generated by the engine, ufuel is the injected fuel rate, weng is engine
speed, f0(⋅, ⋅) represents the nonlinear mapping function between the two independent
variables (fuel rate and engine speed) and the generated torque. The function f1(⋅) represent
the fuel rate to torque generation through the combustion process, f2(⋅) represents the load
torque due to friction in the engine as a function of engine speed (Figure 1.23).

1.1.4 Engine Control Algorithms: Engine Speed
Regulation using Fuel Map and a Proportional
Control Algorithm

A very simple engine control algorithm may decide on the fuel rate based on the accelerator
pedal position and engine speed sensors as follows (Figure 1.23),

ufuel = g1(weng) ⋅ Kp ⋅ (wcmd − weng) (1.8)

where g1(⋅) is fuel rate look-up table as a function of engine speed and Kp is a gain
multiplying the speed error.

An actual engine control algorithm is more complicated, uses more sensory data and
embedded engine data in the form of look-up tables, estimators, and various logic functions
such as cruise control mode and cold start mode. In addition, the control algorithm decides
not only on the fuel rate (ufuel) but also on the injection timing relative to the crank shaft
position. Other controlled variables include the exhaust gas recirculation (EGR) and idle
air control valves. However, simple engine control algorithms like this are useful in various
stages of control system development in vehicle applications.

Example: Electronic Governor for Engine Control The word “electronic
governor” is an industry standard name used to define the digital closed-loop controller
(or the embedded control module or electronic control module (ECM)) which is used
to control (“regulate”, “govern”) the engine speed (Figure 1.24). It is simply the digital
implementation of the mechanical governor, except that in addition to controlling speed,
the digital controller can take many other factors into consideration when deciding on “how
much” and “when” and “how” (injection pulse pattern) to inject fuel to control the engine
speed.

Let us consider the steady-state torque-speed relationship for an engine, that is the
lug curve (Fig. 1.19). Under a properly designed electronic governor, we can have the
engine operate at any point under the lug curve. At low idle speed, which is the minimum
speed allowed, the torque-speed curve is generally maintained to be a straight vertical
line. If the throttle pedal sensor output is zero, which means the throttle pedal is not
pressed at all, the desired engine speed is interpreted as the low idle speed, and the engine
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FIGURE 1.24: Electronic governors: steady-state operation and performance description on

lug curve.

controller is suppose to control the fuel rate from zero to maximum fuel rate range in
order to maintain the engine speed equal to the low idle speed. As the load torque on the
engine changes (i.e., due to friction, temperature condition, or other parasitic loads such as
heating and air-conditioner load), the controller will increase or decrease the fuel rate along
a vertical line on the low idle side, from zero (or minimum) fuel rate to maximum fuel
rate range.

On the high idle speed, that is when throttle pedal is pressed to maximum position,
the electronic governor again tries to maintain the maximum desired high idle speed by
selecting the proper fuel rate from zero to maximum fuel rate. Let us consider that the engine
is at the high idle speed (throttle is pressed to maximum position) and the load torque is
zero. After some time, let us assume the engine load torque increases to a value that is less
than the maximum torque capacity of the engine at the high idle speed. This will result in
a drop in engine speed in transient response. But, in steady-state the engine speed should
recover to the high idle speed. In other words, engine speed is regulated along a vertical
line at high idle speed. Mechanical governors are able to operate along a line that has a
finite slope instead of being vertical line. If we desired to emulate mechanical governor
behavior in our electronic governor, then the control algorithm for the electronic governor
may be modified as follows. The commanded (desired) speed (wcmd) is determined first
from the throttle position sensor, then it is modified (w∗

cmd) based on the estimated load
torque. Let us assume that we have estimated load torque (Tl) information or measurement
in real-time.

wcmd = f (𝜃throttle); throttle or accelerator pedal sensor position (1.9)

= wmax; for high idle condition (1.10)

w∗
cmd = wcmd −

1
Ktw

⋅ Tl (1.11)

With this modified command signal to the closed loop control algorithm, the net result of
the high idle speed regulation turns into a line with slope of −Ktw instead of being a vertical
line.

Likewise, at any intermediate speed between low idle and high idle, the engine can be
controlled to maintain a desired speed exactly, regardless of the load torque amount as long
as it is less than the maximum torque the engine can provide at that speed using maximum
fuel rate. This torque is defined by the lug curve for each speed. If we want to achieve a
vertical line of speed regulation (ability to maintain speed despite load torque as long as
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FIGURE 1.25: A modern commercial airplane (Boeing 777) and its flight control surfaces.

load torque is less than maximum available), the commanded speed will be only a function
of the pedal position.

wcmd = f (𝜃throttle); throttle or accelerator pedal sensor position (1.12)

Emission Issues One of the fundamental challenges in engine control comes from
emission requirements. There are five major emission concerns in the exhaust smoke:

1. CO2 content due to global warming effects,

2. CO – health concerns (colorless, odorless, tasteless, but when inhaled in 0.3% of air
can result in death within 30 minutes),

3. NOx content (NO and NO2),

4. HC when combined with NO2 becomes harmful to health,

5. PM (particulate matter) solid and liquids present in the exhaust gas.

The fuel injection timing has a major influence on the quality of combustion and hence
the exhaust gas composition. The challenge is to design engine and controllers which will
create efficient combustion while reducing all of the undesirable emission components in
the exhaust gas.

1.2 EXAMPLE: ELECTRO-HYDRAULIC FLIGHT CONTROL
SYSTEMS FOR COMMERCIAL AIRPLANES

Figure 1.25 shows an example of a modern commercial airplane widely used in passenger
and cargo transportation, the Boeing 777, and its the flight control surfaces.1 The forward

1 This section was written with significant assistance from Dr. Olaf Cochoy.
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propulsion force for the airplane is provided by jet engines (or propeller engines in smaller
planes). There are four major groups of forces acting on an airplane (Figure 1.26):

1. Gravity force (Fg).

2. Thrust force generated by the engines (Ft).

3. Lift force generated by the movable wings (flight control surfaces) (Fl).

4. Drag force due to friction between the air and aircraft body (Fd).

When the thrust force is in the horizontal direction, the vertical acceleration of the
airplane is determined by the difference between lift force and gravitational force, whereas
the horizontal acceleration is determined by the difference between the thrust force and
drag force. Gravitational force is always in the z-direction of the global coordinate system.
Thrust force direction is a function of the attitude (pitch angle) of the airplane. The lift
and drag forces are aerodynamic forces and are strongly dependent on the relative speed
between the airplane body and air flow, as well as the aerodynamic shape of the airplane,
that is the configuration of the movable wing sections.

There are six coordinate variables to be controlled in an airplane motion: xG, yG, zG
position coordinates of the center of mass of the airplane relative to a reference on earth,
the orientation orientation 𝜃, 𝛽,𝜙 (yaw, roll, pitch) of the airplane relative to a reference
frame.

By convention, airplane motion can be described in two groups:

1. longitudinal motion that includes the motion along axial direction x and vertical
direction z as well as pitch rotation motion about the y axis,

2. lateral motion that includes the rotational motions of roll and yaw.

The longitudinal and lateral motion variables are lightly coupled to each other, that is,
motions in the lateral plane result in small motions in the longitudinal plane, and vice versa.
The position coordinates are obtained by the integral of the speed vector of the airplane
along its flight path. The linear speed vector of the airplane is determined by the integral of
the acceleration vector which is determined by the net force vector acting on the center of
mass of the airplane.

For simplicity, if we assume the thrust force and the drag force are in the x-direction,
and lift and gravitational forces are in the z-direction, the dynamic relationship for motion
of the airplane in the x and z directions can be expressed as (Figure 1.26),

m ⋅ ẍG(t) = Ft(t) − Fd(t) (1.13)

m ⋅ z̈G(t) = Fl(t) − Fg(t) (1.14)

where xG(t), yG(t), zG(t) are the coordinates of the center of mass of the airplane with
respect to a fixed reference frame, Ft, Fd, Fl, Fg are thrust, drag, lift and gravity forces. For
simplicity we show them as if they act as center of mass of the airplane as single vectors.
In reality, they are distributed over the whole plane and depend on the current position of
the control surface. The motion in y-direction is negligable since the accelerations in the
y-direction are due to the small aerodynamic drag forces resulting from the relative speed
of the airplane and air in the y-direction.

m ⋅ ÿG(t) = −Fdy(t) (1.15)

where Fdy(t) is the drag force in the y-direction. However, there are finite drag forces in the
y-direction, and hence the resulting motion in y-direction. The airplane path and orientation
is modified to correct for the unintended motion in the y-direction. Reference [4] gives a
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more accurate dynamic relationship between aerodynamic forces generated by the control
surfaces, thrust force, and aircraft motion.

Orientation speeds are similarly obtained by integral of the angular accelerations
which are determined by the net moments about the respective axes by all of the above
referenced forces.

d
dt

(H⃗G(t)) = T⃗G(t) (1.16)

I3x3 ⋅ ⃗𝛼(t) + ⃗𝜔(t) × H⃗G(t) = T⃗G(t) (1.17)

where

H⃗G(t) = HGx(t) ⋅ i⃗ + HGy(t) ⋅ j⃗ + HGz(t) ⋅ k⃗ (1.18)

= I3x3 ⋅ w⃗(t) (1.19)

T⃗G(t) = TGx(t) ⋅ i⃗ + TGy(t) ⋅ j⃗ + TGz(t) ⋅ k⃗ (1.20)

w⃗(t) = wx(t) ⋅ i⃗ + wy(t) ⋅ j⃗ + wz(t) ⋅ k⃗ (1.21)

�⃗�(t) =
dwx(t)

dt
⋅ i⃗ +

dwy(t)

dt
⋅ j⃗ +

dwz(t)

dt
⋅ k⃗ (1.22)

= 𝛼x(t) ⋅ i⃗ + 𝛼y(t) ⋅ j⃗ + 𝛼k(t) ⋅ k⃗ (1.23)

I3x3 =
⎡⎢⎢⎣

Ixx
−Iyx
−Izx

||||||
−Ixy
Iyy
−Izy

||||||
−Ixz
−Iyz
Izz

⎤⎥⎥⎦ (1.24)

HGx(t) = Ixx ⋅ wx(t) − Ixy ⋅ wy(t) − Ixz ⋅ wz(t) (1.25)

HGy(t) = −Iyx ⋅ wx(t) + Iyy ⋅ wy(t) − Iyz ⋅ wz(t) (1.26)

HGz(t) = −Izx ⋅ wx(t) − Izy ⋅ wy(t) + Izz ⋅ wz(t) (1.27)

where H⃗G(t) is the angular momentum vector of the airplane with respect to a coordinate
frame fixed to the center of mass of the airplane.

T⃗G(t) is the net moment vector about the axes of the coordinate frame due to all
the forces acting on the airplane (gravity, thrust, lift (forces generated by flight control
surfaces), drag forces).

I3x3 is the moment of inertia matrix which is symmetric (Ixy = Iyx, Ixz = Izx, Iyz = Izy),
and w⃗(t) is the angular velocity vector, �⃗�(t) is the angular acceleration vector, of the airplane,
with respect to the same coordinate frame. The coordinate frame xyz is fixed to the airplane
center of mass and moves with it. Hence if the weight distribution of the airplane does
not change, the I3x3 matrix is constant. However, due to consumed fuel and movement of
passengers during the flight, the inertia matrix (I3x3) changes slowly. In addition, the center
of mass coordinates of the airplane also change during flight due to the same reasons. Fuel
stored in the wings and other parts of the airplane body is pumped to the engines in such a
way that the change in the center of mass location is smooth and slow as a function of time.

The movable surfaces on the two wings and on the tail of the airplane are used to
effect the aerodynamic forces, hence the lift and the orientation of the airplane (Figures 1.25
and 1.26). Aerodynamic forces (lift and drag forces) acting on the airplane are functions of

1. relative speed between the airplane and the air (hence the speed of the airplane, as
well as the air speed (direction and magnitude) and turbulance conditions),

2. shape of the airplane, where some of the shapes are adjustable during flight, such as
the control surfaces on the wings and the tail.
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FIGURE 1.26: Motion variables of an airplane: three position coordinate variables x, y , z of a

coordinate frame origin attached to the airplane, and the orientation coordinate variables roll,

yaw, and pitch (𝜃, 𝛽, 𝛼) of a coordinate frame attached to the airplane relative to a reference

frame. Three main sources of force on the airplane: 1. trust force generated by the engines, 2.

gravitational force, 3. aerodynamic force (drag and lift) which are functions of the relative speed

of the airplane with respect to surrounding air, shape of the plane geometry (i.e., changing

shape via control surfaces), and air density.

The propulsion force vector is generated by the jet engines. The direction of this force
relative to the aircraft body is fixed, whereas the magnitude of it is controlled by the throttle
level of the engine. When the airplane has non-zero velocity, the orientation of the airplane
about three coordinate axes can be affected by moving a set of control surfaces.

It is important to recognize that the airplane must be moving at a relatively high speed
in order to generate sufficient aerodynamic lift forces with the aid of control surfaces. For
a given airplane frame and speed, the net direction and magnitude of aerodynamic forces
are controlled by the movable flight control surfaces. These aerodynamic forces affect the
orientation and lift of the airplane. As the orientation of the airplane changes, the direction
of the propulsion forces also change since they are generated by the engines connected
to the airplane frame. For instance, when the pitch of the airplane is positive, the thrust
force generated by the engines helps the airplane gain altitude in the z-direction. In modern
fighter jets, the engine trust vector is controllable. That is, not only the magnitude of the
trust force, but also its vector direction relative to the aircraft frame is controllable. In such
airplanes, the trust force is controlled as a vector quantity (both magnitude and direction).
Hence, the trust force can be actively used to aid the lift force for the airplane.

The flight control surfaces deal with controlling the orientation angles of the airplane
(yaw, roll, and pitch) during take-off and landing, as well as during flight. The flight control
surfaces and their control systems are grouped into two categories:

1. primary flight control systems,

2. secondary flight control systems (also called high-lift flight control systems).
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The secondary (high-lift) flight control surfaces are used only during the take-off and
landing phases of the flight. As the name implies, these surfaces are designed to provide
increased lift for the airplane while it is at a relatively low speed. Secondary flight control
surfaces include the left and right flaps, left and right slats, and spoilers. The flaps and slats
are positioned to predefined positions during take-off and landing. Spoilers are primarily
used to reduce the lift and are generally used during landing, hence the name “spoilers”
which “spoil” the lift. Slats and flaps increase the lift coefficient of the airplane by providing
a larger lift surface area and by providing a guided airflow path for larger lift coefficient.
They are typically moved to a desired position and held at that position during the take-off
and landing phase of the flight until that phase is completed. Then these surfaces are moved
back to their original fold positions during flight. The secondary surfaces require a relatively
low bandwidth control system since they move to a predefined position and stay there. Slats
and flaps typically contribute to the lift by increasing the effective angle of attack and lift
surface area for a given airplane (Figure 1.25a). During take-off, the highest possible angle
of attack is desired, hence slats are fully deployed and flaps might be partially deployed
at a certain position. During landing, the lowest possible speed is desired, as opposed to
maximum attack angle during take-off, hence the flaps are fully deployed while slats might
only be partially deployed.

Primary flight control surfaces are used during the flight to maintain the orientation
of the airplane. The primary flight control surfaces include the left and right ailerons, right
and left elevators, and rudder. At any given time, the airplane has a commanded orientation
in terms of pitch, yaw, and roll angles. An on-board orientation measurement sensor (an
electromechanical gyroscope with a rotor spinning at a constant high speed by an electric
motor or laser based ring-laser gyroscope) is used to measure the actual orientation of
the airplane relative a fixed coordinate frame. Then the primary flight control surfaces
are actuated based on closed-loop controls in order to maintain the desired orientation.
The bandwidth of the closed loop control system for primary flight control surfaces must
be fast and well damped in order to maintain a very smooth flight condition. Whereas
the bandwidth requirements of the secondary flight control systems is much smaller. An
auto-pilot generates the desired orientation and engine thrust signals during the flight. A
pilot can over-ride these command signals from the auto-pilot and command them manually
with a joystick.

Although the motion of the primary control surfaces affects multiple orientation
variables, they are mainly related in a one-to-one relationship as follows:

1. Left and right ailerons are always actuated asymmetrically (in the opposite direction
and equal amount) to generate opposite aerodynamic forces, hence torque, for roll
motion. In some conditions, the roll motion is augmented by the motion of spoilers
if decreasing the lift, hence reducing the altitude of the plane, is desired during the
roll motion. This is typically needed during the approach for landing.

2. Left and right elevators are always operated symmetrically (in the same direction and
equal amount) to generate aerodynamic forces, hence torque about center of mass, for
the pitch motion. During flight, the center of mass of the airplane shifts as fuel is used
and passengers move around. In order to balance the forces and maintain the pitch
angle of the plane, trimmable horizontal stabilizer (THS) is used. The trimmable
horizontal stabilizer pivots up and down, hence moving the whole tail section up and
down. For instance, if during flight a change in cruise altitude is desired, the elevators
are used to induce a pitch moment and change the angle of attack of the airplane. On
the other hand, during a constant altitude cruising flight condition, the pitch moment
about the center of gravity of the airplane has to be balanced. As the fuel is used during
the flight and passengers move around, the center of gravity changes. This balancing
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is done by the trimmable horizontal stabilizer which changes the angle of attack
slightly, while allowing elevators to remain in their neutral position. Technically, the
role of trimmable horizontal stabilizer can be performed by the elevators. However,
that would result in increased drag.

3. The rudder is used to generate aerodynamic forces, hence torque about center of
mass, for the yaw motion.

Quite often, the orientation motions happen simultaneously, that is the airplane makes a
roll motion while at the same time making a change in its yaw and/or pitch orientation.

In modern large civilian aircrafts, the flight control surfaces are actuated by hydraulic
power, where the delivered hydraulic power is controlled by electrical signals. The total
hydraulic power generated by the hydraulic pumps, driven by the jet engines, on a Boeing
747, is about 300 kW, on a Boeing 777 it is about 400 kW, and on an Airbus 380 it is about
800 kW. The electrical control signals are delivered to hydraulic components by-wire, that
is an electrical current signal delivered to a servo valve. As a result, the name “fly-by-wire”
is used to describe flight control systems based on electro-hydraulic systems. Hydraulic
power is the most widely used power type for motion on large aircraft flight control surfaces.
In order to take advantage of digital computer control, the control of hydraulic power is
carried out electrically by digital computers. A closed loop fly-by-wire system means that
the control signal to the actuator is generated by the flight control computer based on the
error between a command signal (generated either by auto-pilot software or by the pilot
via the joystick) and the on-board sensors, just like any other closed loop control system.
If the control signal to the actuators is generated only based on the command signal, and
no feedback sensor is used, then it is an open loop fly-by-wire system.

The design of a fly-by-wire electrohydraulic flight control system is dictated by
requirements in

1. safety and reliability,

2. power,

3. weight,

4. operational and functional performance.

Safety and reliability are the utmost considerations in flight control systems. Failure
modes, such as loss of hydraulic pressure or control surface runaway, are classified in
different categories (minor, major, hazardous, catastrophic) by their effect on the function
of the plane. The highest requirement is for catastrophic failures, leading to possible loss
of the aircraft, for which it has to be proven that the catastrophic failure condition has a
probability to occur in less than one in 109 per flight hour. Redundant systems are the key
for improved safety. That means designing double or triple redundancy for a given function
so that there are two or three more alternatives in actuating and controlling a surface if one
or two of them fails. The redundancy must be provided at the level of

1. the power source (i.e., engine driven pump, electric generator driven pump where
generator is driven by engine, ram air driven generator in case of all engine failure),

2. the power distribution and metering elements (redundant hydraulic pipe lines and
valves),

3. the power delivery (redundant hydraulic cylinders and motors),

4. the sensing (redundant position, orientation, pressure sensors), and

5. the control computer (redundant control signal lines to actuators as well as redundant
flight control computers).
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For redundancy purposes, all hydraulic actuators (electro-hydraulic servo actuators
(EHSA) and motors) are powered by one of three independent hydraulic power supply
systems. A typical hydraulic power supply system is of constant pressure type in aerospace
applications. The constant pressure may be supplied by a fixed displacement pump with a
pressure limiting unload-valve or a output pressure regulated variable displacement pump.
The second option is more energy efficient in converting mechanical engine power to
desired hydraulic power.

These hydraulic power supply systems are named Blue, Green, and Yellow. In order
to meet reliability requirements for the supply systems, several independent power sources
are used. The main power sources for aircrafts are the engines. They not only create the
necessary thrust for flight, but also supply power to drive generators (integrated drive gen-
erator, IDG) and hydraulic pumps (engine driven pump (EDP)). An additional electrically
driven pump is connected to the yellow system. A backup for the blue system is the ram air
turbine (RAT), which is activated (roughly located below the cockpit) in case both engines
fail. The green and the yellow hydraulic systems are connected by a so-called power transfer
unit (PTU), comprising of two hydraulic machines (one fixed, one variable displacement),
both of which can operate as hydraulic pumps or motors. Thus, energy can be transferred
between both supply systems. The PTU might be used during normal operation in case
the power demand from one of the two hydraulic systems is too high (e.g., during deploy-
ment of slats and flaps). The “hydraulic power consumers” (actuators) are connected to the
hydraulic supply systems with different priorities controlled by a priority valve, with the
primary flight control actuators at highest priority (Figure 1.27).

Every actuator in flight control surfaces uses one of the constant supply pressure
lines as a hydraulic power source, and meters (controls) the flow to the rotary hydraulic

Control surface

Wing
rear spar

Hydraulic
system 1

(e.g. blue)

Hydraulic
system 2

(e.g. yellow)

Servo valve

Mode selector valve

FIGURE 1.27: Two redundant hydraulic actuators for a flight control surface. In addition to

redundant cylinder actuators, there are redundant flow control valves as well as redundant

hydraulic power source (blue and yellow supply). As shown in this example, redundancy for all

three main components of a hydraulic control system is designed into the hardware in the

design: redundant pumps, redundant valves, and redundant actuators (hydraulic cylinders or

motors).
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motor or a hydraulic cylinder using a servo valve. The actuator output shaft drives a linkage
connected to the moveable control surface. The nominal hydraulic supply line pressure
in commercial airplanes today is in the range of 3000–5000 psi. In order to increase the
hydraulic power density (hydraulic power delivered/mass of the hydraulic components),
the future operating pressures are expected to get higher.

The current trend in the aerospace industry is towards the so-called “more-electric
aircraft” (or ultimately, the “all-electric aircraft“). As this name suggests, it is desired to
replace hydraulic powered systems by electrically powered ones. Historically, flight control
systems have evolved through four different stages (Figure 1.28) in terms of the way the
aerodynamic surfaces are controlled and powered,

1. mechanically control signaled (via mechanical linkages and cables), hydraulically
powered flight control systems of the past (Figure 1.28a),

2. pilot-hydraulically control signaled, hydraulically powered flight control systems of
the past (Figure 1.28b),

3. electrically control signaled, hydraulically powered flight control systems of the
present (Figure 1.28c),

4. electrically (or optically) control signaled, electrically powered flight control systems
of the future (Figure 1.28d).

In the so called hydro-mechanical control systems (Figure 1.28b), there are no electronic
components. All of the control decisions and sensing are accomplished via mechanical and
hydraulic means (Figure 1.6).

The main reasons for the push for more electric aircraft lies in:

1. easier installation and maintainability of electric wiring compared to hydraulic piping,

2. improved efficiency of power usage (at generation, transmission, and actuation stages)
due to on-going improvement in electric motor and power electronics technology.

1.3 EMBEDDED CONTROL SOFTWARE DEVELOPMENT
FOR MECHATRONIC SYSTEMS

The trend in industrial practice is that the embedded control software development part of
modern mechatronics engineering is done involving three phases (Figures 1.29, 1.30, 1.31):

� Phase 1: Control software development and simulation in non-real-time environment.
� Phase 2: Hardware in-the-loop (HIL) simulation and testing in real-time environment.
� Phase 3: Testing and validation on actual machine.

In phase 1, the control software is developed by using graphical software tools,
such as Simulink® and Stateflow, simulated and analyzed on a non-real-time computer
environment (Figure 1.29). The “plant model,” which is the computer model of the machine
to be controlled, is a non-real-time detailed dynamic model. Simulations and analysis are
done in this non-real-time environment.

In phase 2, the “same control software” is tested on a target embedded control mod-
ule (ECM). That “same control software” is a C-code which is auto-generated from the
graphical diagrams of Simulink® and Stateflow using auto-code generation tools such as
Simulink® Coder, Embedded Coder, and MATLAB® Coder. That real-time controller soft-
ware is run on the target embedded controller module (ECM) hardware in real-time, which
can be connected to another computer which simulates the controlled process dynamics
in real-time. This case is called the hardware in-the-loop (HIL) simulation (Figure 1.30).
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FIGURE 1.28: Four different flight control concepts in historical order of development: (a)

mechanically signaled, hydraulically powered, (b) pilot-hydraulically signaled, hydraulically

powered, (c) electrically signaled, hydraulically powered, (d) electrically signaled, electrically

actuated.

This process allows the engineer to test the control software on the actual ECM hardware
in real-time. The computer which simulates the plant model in real-time provides the sim-
ulated I/O connections to the ECM. The fundamental challenge in HIL simulations is the
need to find a balance between the model accuracy (hence more complex and detailed
models) and the need for real-time simulation. As real-time modeling capabilities improve,
virtual dynamic testing and validation of complete machines using HIL tools will become a
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FIGURE 1.29: Embedded control software development phase 1: modeling and simulation in

non-real-time.
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FIGURE 1.30: Embedded control software development phase 2: hardware-in-the-loop (HIL)

real-time simulation and testing.
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Simulink®/Stateflow:
  Control logic

FIGURE 1.31: Embedded control software development phase 3: on a target embedded

control module (ECM, also called electronic control module) and testing on actual machine.

reality (Figures 1.29, 1.30) in engineering design and development processes for embedded
control systems.

In phase 3, the ECM with the control code is tested on the actual prototype machine
(Figure 1.31). First, all of the I/O hardware is verified for proper operation. The sensors
and actuators (i.e., solenoid drives, amplifiers) are calibrated. The software logic is tested
to make sure all contingencies for fault conditions are taken into account. Then, the control
algorithm parameters are tuned to obtain the best possible dynamic performance based on
expert operator and end-user comments. The performance and reliability of the machine
is tested, compared to benchmark results, and documented in preparation for production
release.

HIL is the testing and validation engineering process between pure software sim-
ulation (100% software, Figure 1.29) and pure hardware testing (100% actual machine
with all its hardware and embedded software, Figure 1.31), where some of the compo-
nents are actual hardware and some are simulated in real-time software. The pure software
based simulation cannot capture sufficiently the real-time conditions to provide sufficient
confidence in the overall system functionality and reliability (Figure 1.29). Whereas pure
hardware testing is quite often too expensive due to the cost of actual hardware, its custom
instrumentation for testing purposes, and the team of engineers and operators involved in
the testing (Figure 1.31). Furthermore, some tests (especially failure modes) can not be
tested (or are very difficult to test, i.e., flight control systems) on the actual hardware. HIL
simulation testing is an engineering process that is in the middle between pure software
and pure hardware testing (Figure 1.30).

HIL tools have been developed rapidly in recent years in that some of the hardware
components of the control system are included as actual hardware (such as electronic control
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Dynamometer

PC

USB/CAN
ECM

Machine sub-system hardware 
      Engine                    Transmission

Machine model: 
    dynamic, real-time
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FIGURE 1.32: Hardware-in-the-loop (HIL) simulation and testing using ECM and some of the

actual hardware in a powertrain control application and some of the hardware simulated in

real-time: engine and transmission physically exist, the lower powertrain and load conditions

are simulated via the dynomameter based on the real-time dynamic model.

unit (ECU), engine, transmission, dynamometer), and some of the components are present
in software form running in real-time and its results are reflected on the control system by
a generic simulator (i.e., a dynamometer which represents the load on the powertrain based
on the machine dynamics and operating conditions, (Figure 1.32). Early versions of HIL
simulations were used to test only the static input output behavior of the ECM running the
intended real-time control code, where I/O behavior is tested with a static I/O simulator.
Modern HIL simulation and testing are performed for dynamic testing, as well as static
testing, where the I/O to ECM is driven by dynamic and detailed models of the actual
machine.
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1.4 PROBLEMS

1. Consider the mechanical closed loop control system for the liquid level shown in Figure 1.4. a)
draw the block diagram of the whole system showing how it works to maintain a desired liquid level,
b) modify this system with an electromechanical control system involving a digital controller. Show
the components in the modified system and explain how they would function. c) Draw the block
diagram of the digital control system version.

2. Consider the mechanical governor used in regulating the engine speed in Figure 1.5. a) Draw
the block diagram of the system and explain how it works. b) Assume you have a speed sensor on
the crank shaft, an electrically actuated valve in place of the valve which is actuated by the fly-ball
mechanism, and a microcontroller. Modify the system components for digital control version and
draw the new block diagram.

3. Consider the web tension control system shown in Figure 1.7. a) Draw the block diagram of the
system and explain how it works. b) Assume the analog electronic circuit of the op-amp and command
signal source is replaced by a microcontroller. Draw the new components and block diagram of the
system. Explain how the new digital control system would work. c) Discuss what would be different
in the real-time control algorithm if the microcontroller was to control the speed of the wind-off roll’s
motor instead of the wind-up roll’s motor. Assume wind-up motor speed is constant.

4. Consider the room temperature control system show in Figure 1.8. The electric heater and fan
motor is turned ON or OFF depending on the actual room temperature and desired room temperature.
a) Draw the block diagram of the control system and explain how it works. b) Replace the op-amp,
command signal source, and timer components with a microcontroller. Explain using pseudo-code
the main logic of the real-time software that must run on the microcontroller.

1. Control box:
    drives

2. Electric motor

     3. Hoist pulley 
     with drum brakes 
     (Primary and emergency),
      flywheel

4. Car

5. Sliding guide rails

6. Counter weights

FIGURE 1.33: Elevator control system and its components (Source: http://www.

smartelevatorsco.com/ropedelevators.html).

http://www.smartelevatorsco.com/ropedelevators.html
http://www.smartelevatorsco.com/ropedelevators.html
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5. The ASIMO humanoid robot, developed by Honda Motor Co., is capable of autonomous walking,
navigation, and performing various service tasks such as carrying a tray of objects (Google.com,
Asimo Images). It can run at 6 km/hr speed. ASIMO’s weight is about 54 kg and its height is 130 cm.
The robot is equipped with digital vision cameras, voice recognition sensors, ultra sonic range finding
sensors, as well as joint sensors at its legs and arms which are colocated with the motion actuators.
Assume that each leg has four motorized joints (2 × 4 = 8 degrees of freedom (DOF) for two legs),
each arm has four motorized joints (2 × 4 = 8 DOF for arms), and each finger has three motorized
joints (3x10 = 30 DOF for fingers). In addition, the robot has three rotational degrees of freedom at the
waist (3 DOF) as well as at its head (3 DOF). This results in a total of 8 + 8 + 30 + 3 + 3 = 52 DOF
motion. Design a block diagram representation of a conceptual control system for this robot. The
control system should include a block for actuators (motors), sensors, microcontrollers, and power
sources for the robot motion. Dedicate a separate microcontroller for the vision system, for the voice
recognition system, and the individual closed loop motion control of each leg and arm. Note that the
problem has many possible solutions. It is intended to give the student an idea about the number of
I/O and distributed embedded controllers involved in such a robotic device.

6. Typical high rise buildings have in the range of 60 to 80 floors. Moving people and loads in
high rise buildings safely and efficiently is increasingly important. Since the elevators are used by
general public, safety is very important. In addition, for efficient operation of society, the operation
must be as fast as possible (i.e., 30 km/h) while maintaining the comfort of the passengers. Electric
motor driven elevators are the norm in the modern high rise buildings. Figure 1.33 shows the basic
configuration of an electric motor driven elevator.

Here, we ask the student to do a little research to determine the following aspects of the modern
elevator control systems,

1. The mechanism or the basic mechanical or electromechanical system, analogous to skeleton
of human body.

2. The actuators (similar to muscles in human body analogy), including its power supply and
amplification component which is used to control how much power is allowed to flow into the
actuator from the power supply.

3. The sensors (similar to eyes in human body analogy) used to measure various variables such
as position, velocity, weight, and so on.

4. The controller (similar to the brain in the human body) used to make control decisions.
5. The control logic and simulation: closed loop control model and simulation: model the

dynamics of the elevator, and a PID position loop controller. Simulate a motion from one level
to another under a gravity load disturbance, focusing on the effect of “I” (integral) action of
the PID controller to eliminate the positioning error.



CHAPTER 2
CLOSED LOOP CONTROL

THIS CHAPTER contains the fundamental material on closed loop control systems.
Before one uses feedback, that is closed loop control, one should explore the option of open
loop control. We will address the following questions:

� What are the advantages and disadvantages of closed loop control versus open loop
control?

� Why should we use feedback control instead of open loop control?
� In what cases may open loop control be better than closed loop control?

A control system is designed to make a system do what we want it to do. Therefore,
a control system designer needs to know the desired behavior or performance expected
from the system. The performance specifications of a control system must cover certain
fundamental characteristics, such as stability, quality of response, and robustness. Despite
the great variety and richness of control theory, more than 90% of the feedback controllers
in practice are of the proportional-integral-derivative (PID) type. Due to its wide usage in
practice, PID control is considered a fundamental controller type. PID control is discussed
in the last section of this chapter.

The control decisions can be made either by an analog control circuit, in which case the
controller is called an analog controller, or by a digital computer, in which case the controller
is called a digital controller. In analog control, the control decision rules are designed
into the analog circuit hardware. In digital control, the control decision rules are coded
in software. This software code implementing the control decisions is called the digital
control algorithm.

The main advantages of digital control over analog control are as follows:

1. Increased flexibility: changing the control algorithm is a matter of changing the
software. Making software changes in digital control is much easier than changing
analog circuit design in analog control.

2. Increased level of decision making capability: implementing nonlinear control func-
tions, logical decision functions, conditional actions to be taken, and learning from
experience can all be programmed in software. Building analog controllers with these
capabilities would be a prohibitive task, if not impossible.

It is important to identify the place of the control of dynamic systems in the big picture
of control systems. Real-world control systems involve many discrete event controls using
sequencing and logic decisions. Discrete event control refers to the control logic based
on sensors and uses actuators which have only two level states, ON/OFF, (i.e., pneumatic
cylinders controlled by an ON/OFF solenoid, relays). The sequence controllers use sensors
and actuators which have only an ON/OFF state, and the control algorithm is a logic
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© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/cetinkunt/mechatronics

45

http://www.wiley.com/go/cetinkunt/mechatronics


46 MECHATRONICS

between the sensors and ON/OFF actuators. Such controls are generally implemented
using programmable logic controllers (PLC) in the automation industry. Servo control
loops may be part of such a control system. Closed loop servo control is often a sub-system
of the logic control systems where servo and logic control are hierarchically organized.

A control system is called closed loop if the control decisions are made based on
some sensor signals. If the control decisions do not take any sensor signal of the controlled
variables into account and decisions are made based on some pre-defined sequence or
operator commands, such a control system is called open loop. It has been long recognized
that using feedback information (sensor signals) about the controlled variable in determining
the control action provides robustness against changing conditions and disturbances.

2.1 COMPONENTS OF A DIGITAL CONTROL SYSTEM

Let us consider the control of a process using (i) analog control (Figure 2.1), and (ii) digital
control (Figure 2.2). The only difference is the controller box. In analog control, all of the
signals are continuous, whereas in digital control the sensor signals must be converted to
digital form, and the digital control decisions must be converted to analog signals to send
to the actuation system.

The basic components of a digital controller are shown in Figure 2.2:

1. a central processing unit (CPU) for implementing the logic and mathematical control
algorithms (decision making process)

2. discrete state input and output devices (i.e., for interfacing switches and lamps),

3. an analog to digital converter (A/D or PWM input) to convert the sensor signals from
analog to digital signals,

Analog
controller

Analog controller

Actuator Process

Sensors

Command Response(output)

u(t)

y(t)

r(t) e(t)+

-

t t t

r(t) u(t) y(t)

FIGURE 2.1: Analog closed loop control system and the nature of the signals involved.
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u(t)
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t t t t
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0T2T............ 0T2T............

Picture of an embedded
controller

FIGURE 2.2: Digital closed loop control system and the nature of the signals involved.

4. a digital to analog converter (D/A or PWM output) to convert the control decisions
made by the control algorithm in the central processing unit (CPU) to the analog
signal form so that it can be commanded to the actuation system for amplification,

5. a clock for controlling the operation of the digital computer. The digital computer is
a discrete device and its speed of operations are controlled by the clock cycle. The
clock is to the computer what the heart is to a body.

In Figure 2.2, it is shown that the signals travel from sensors to the control computer in
analog form. Similarly, the control signals from the controller to the amplifier/actuator travel
in analog form. The conversion of the signal from analog to digital form (A/D converter)
occurs at the control computer end. Likewise, the conversion of the digital signal to analog
signal occurs at the control computer end (D/A converter) and travels to the actuators
in analog form. Recent trends in computer controlled systems are such that the analog to
digital, and digital to analog, conversion occurs at the sensor and actuator point. Such sensors
and actuators are marketed as “smart sensors” and “smart actuators.” In this approach, the
signal travels from sensor point to control computer, and from control computer to the
actuator point, in digital form. Especially, the use of a fiber optic transmission medium
provides very high signal transmission speed with high noise immunity. It also simplifies
the interface problems between the computers, the sensors, and the amplifiers. In either
case, digital input and output (DI/DO), A/D, and D/A operations are needed in a computer
control system as an interface between the digital world of computers and the analog world
of real systems. The exact location of the digital and analog interface functions can vary
from application to application.

Let us consider the operations performed by the components of a digital control
computer and their implications compared to analog control:

1. time delay associated with signal conversion (at A/D and D/A) and processing
(at CPU),

2. sampling,

3. quantization,

4. reconstruction.
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A digital computer is a discrete-event device. It can work with finite samples of signals. The
sampling rate can be programmed based on the clock frequency. Every sampling period, the
sensor signals are converted to digital form by the A/D converter (the sampling operation).
If the command signals are generated from an external analog device, this also must be
sampled. During the same sampling period, control calculations must be performed, and
the results must be sent out through the D/A converter. The A/D and D/A conversions are
finite precision operations. Therefore there is always a quantization error.

2.2 THE SAMPLING OPERATION AND SIGNAL
RECONSTRUCTION

Due to the fact that the controller is a digital computer, the following problems are introduced
in a closed loop control system: time delay associated with signal conversion and processing,
sampling, quantization error due to finite precision, and reconstruction of signals.

2.2.1 Sampling: A/D Operation

In this section, we will focus on the sampling only and its implications. We will consider
the sampling operation in the following order:

1. physical circuit of the sampler,

2. mathematical model of sampling,

3. implications of sampling.

2.2.2 Sampling Circuit

Consider the sample and hold circuit shown in Figure 2.3. When the switch is turned ON,
the output will track the input signal. This is the sampling operation. When the switch is
turned OFF, the output will stay constant at the last value. This is the hold operation.

While the switch is ON, the output voltage is

y(t) = 1
C ∫

t

0
i(𝜏)d𝜏 (2.1)

where

i(t) =
y(t) − y(t)

R
(2.2)

Taking the Laplace transforms of the differential equations, and substituting the value of i
from the second equation gives the input–output transfer function of the sample and hold
circuit.

y(s) = 1
(RCs + 1)

y(s) (2.3)

While the switch is OFF i(t) = 0; y remains constant (hold operation).
Let T be sampling period, T0 is the portion of T for which the switch stays ON,

T1 is the remaining portion of the sampling period during which the switch stays OFF
(Figure 2.4). If the input signal y(t) changes as a step function, the output signal will track
it according to the solution of the transfer function in response to the step input. Figure 2.4
shows the typical response of a realistic sample and hold circuit of an A/D converter.
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y(t) = (1 - e )y0
RC

t1

(a)

(b)

-

FIGURE 2.3: (a) Sample and hold circuit model and (b) response of the sampled voltage

output.
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FIGURE 2.4: Typical response of a sample and hold circuit.
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2.2.3 Mathematical Idealization of the Sampling Circuit

Let us consider the limiting case of the sampling circuit as a mathematical idealization for
further analysis. Let us consider that the RC value goes to zero.

RC → 0;
1

RC
→ ∞

This means that as soon as the switch is turned ON, y(t) will reach the value of the y(t).
Therefore, there is no need to keep the switch ON any more than an infinitesimally small
period of time. The ON time of the switch can go to zero, T0 → 0+ (Figure 2.4).

y(t) ≃ y(kT) (2.4)

With this idealization in mind, the sampling operation can be viewed as a sequence of
periodic impulse functions.

+∞∑
k=−∞

𝛿(t − kT)

This also says that the sampling operation acts as a “comb” function (Figure 2.5). If we
represent the sequence of samples of the signal with {y(kT)}, the following relationship
holds,

{y(kT)} =
∞∑

k=−∞
𝛿(t − kT)]y(t) (2.5)

Now, we will consider the following three questions concerning a continuous time
signal, y(t), and its samples, y(kT) that is sampled at a sampling frequency ws = 2𝜋∕T by
an A/D converter (Figure 2.6).

� Question 1: what is the relationship between the Laplace transform of the samples
and the Laplace transform of the original continuous signal?

L{y(kT)} ? L{y(t)}

� Question 2: what is the relationship between the Fourier transform of the samples and
the Fourier transform of the original continuous signal? Shannon’s sampling theorem
provides the answer to this question.

F{y(kT)} ? F{y(t)}

–3T –2T –T T0 2T 3T

1.0

Switch(t)

Time

FIGURE 2.5: Idealized mathematical model of the sampling operation via a “comb” function.
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FIGURE 2.6: Sampling of a continuous signal, and the frequency domain relationship

between the original signal and the sampled signal.

� Question 3: Point out a least three implications of the sampling theorem that come
out of the relationship derived in question 2.

Let us address each one of these questions in order.

Question 1 Notice that since the sampling “comb” function is periodic, it can be
expressed as a sum of Fourier series,

∞∑
k=−∞

𝛿(t − kT) =
∞∑

n=−∞
Cnej 2𝜋

T
nt (2.6)

where,

Cn = 1
T ∫

T
2

− T
2

∑
𝛿(t − kT)e−j 2π

T
⋅n⋅tdt = 1

T
(2.7)
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Therefore,

∞∑
k=−∞

𝛿(t − kT) = 1
T

∞∑
n=−∞

ej( 2𝜋
T

)n⋅t (2.8)

The Laplace transform of the sampled signal is a two-sided Laplace transform, see [5]

L{y(kT)} = ∫
∞

−∞
y(t)

∞∑
n=−∞

𝛿(t − kt)e−stdt

= ∫
∞

−∞
y(t)

1
T

∞∑
n=−∞

ej 2𝜋
T

nte−stdt

= 1
T

∞∑
n=−∞∫

∞

−∞
y(t)e−(s−j 2𝜋

T
n)tdt (2.9)

The relationship between the Laplace transform of the sampled signal and the Laplace
transform of the original continuous signal is

Y∗(s) = 1
T

∞∑
n=−∞

Y(s − jwsn) (2.10)

where ws =
2𝜋
T

is the sampling frequency and T is the sampling period.

Question 2 The Fourier transform of a signal can be obtained from the Laplace
transform by substituting jw in place of s in the Laplace transform of the function. Therefore,
we obtain the following relationship between the Fourier transforms of the sampled and
continuous signal (Figure 2.6),

Y∗(jw) = 1
T

∞∑
n=−∞

Y(jw − jwsn) (2.11)

where Y∗(jw) is the Fourier transform of sampled signal, and Y(jw) is the Fourier transform
of the original signal.

The frequency content of the sampled signal is the frequency content of the original
signal plus the same content shifted in the frequency axis by integer multiples of the
sampling frequency. In addition, the magnitude of the frequency content is scaled by the
sampling period. The physical interpretation of the above relation is the famous sampling
theorem, also called the Shannon’s sampling theorem.

Sampling Theorem In order to recover the original signal from its samples, the
sampling frequency, ws, must be at least two times the highest frequency content, wmax, of
the signal,

ws ≥ 2 ⋅ wmax (2.12)

Question 3 We now consider various implications of the sampling operation.

(i) Aliasing: Aliasing is the result of violating the sampling theorem, that is

ws < 2 ⋅ wmax (2.13)

The high frequency components of the original signal show up in the sampled signal
as if they are low frequency components (Figure 2.12). This is called the aliasing. The
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aliasing frequency that shows up on the samples of the signal is

w∗ =
||||
(

w1 +
ws

2

)
mod (ws) −

(ws

2

)|||| (2.14)

where w1 is the frequency content of the original signal. For simplicity, we consider a
specific frequency content for the original signal. If the sampling theorem is violated (the
sampling frequency is less than twice the highest frequency content of the original signal),

1. reconstruction of the original signal from its samples is impossible,

2. high frequency components look like low frequency components.

Let us consider two sinusoidal signals with frequencies 0.1 Hz and 0.9 Hz. If we sample
both of the signals at ws = 1 Hz, the sampling theorem is not violated in sampling the first
signal, but it is violated in sampling the second signal. Due to the aliasing, the samples of
the 0.9 Hz sinusoidal signal will look like the samples of the 0.1 Hz signal (Figure 2.6).
Figure 2.12 shows the two cases,

1. continuous signal sin(2𝜋(0.9)t) and sampling frequency ws = 1.0 Hz,

2. continuous signal sin(2𝜋(0.1)t) and sampling frequency ws = 1.0 Hz.

The high frequency signal 0.9 Hz looks like a 0.1 Hz signal when sampled at the 1.0 Hz
rate as a result of the aliasing,

w∗ =
||||
(

w1 +
ws

2

)
mod(ws) −

(ws

2

)||||
w∗ = |(0.9 + 0.5)mod(1.) − 0.5| = |0.4 − 0.5|
w∗ = 0.1 Hz (2.15)

Another example is a sinusoidal signal with w1 = 3 Hz, and sampled values of it at ws =
4 Hz. The sampling theorem is violated. The samples will show a 1 Hz oscillation which
does not exist in the original signal.

In summary, if the sampling theorem is violated, high frequency content of a signal
shows up as low frequency (aliasing frequency) content in the sampled signal as a result of
aliasing. The aliasing frequency is given by Eqn. 2.14.

(ii) Hidden oscillations: If the original signal has a frequency content which is an
exact integer multiple of the sampling frequency (sampling theorem is violated), then there
could be hidden oscillations. In other words, the original signal would have high frequency
oscillations, whereas the sampled signal would not show them at all (Figure 2.13). If
wsignal = n ⋅ ws; n = 1, 2,….

When n = 1
2

; with correct phase of the sampling time to the oscillation frequency,
hidden oscillations are also possible.

(iii) Beat Phenomenon: The beat phenomenon is observed when two signals with
very close frequency content with very close magnitudes are added. The result looks like
two signals (one slowly varying, the other fast varying) are multiplied.

This phenomenon occurs as a result of the sampling operation when the sampling
frequency is just a little larger than twice the highest frequency content of the signal
(Figure 2.14). Notice that the sampling theorem is not violated. Consider the following
signal,

u(t) = A ⋅ (cos(w1t) + cos(w2t)) (2.16)

= 2 A ⋅ cos
(w2 − w1

2
t
)
⋅ cos

(
w1 + w2

2
t

)
(2.17)

u(t) = 2 A ⋅ cos(wbeatt) ⋅ cos(wavet) (2.18)
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where wave = (w1 + w2)∕2, wbeat = (w2 − w1)∕2. Let us show the above equality directly
using trigonometric relations. The following trigonometric relations are used in the
derivation,

cos(𝛼 + 𝛽) = cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽) (2.19)

sin2 𝜃 + cos2 𝜃 = 1 (2.20)

cos2 𝜃 = 1 + cos 2𝜃
2

(2.21)

Then,
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)
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= 2 A ⋅
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2
+
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(2.31)

= A ⋅ (cosw2t + cosw1t) (2.32)

which shows that the addition of two cosine functions of two discrete frequencies can also
be expressed as multiplication of two cosine functions with two frequencies that are the
average and difference of the original two frequencies. When the two frequencies are close
to each other, then this results in the beat phenomenon.

If w1 is very close to w2, that is w1 = 5, w2 = 5.2, then the so called beat phenomenon
occurs,

u(t) = A cos(wbeatt) ⋅ cos(wavet) (2.33)

where wbeat = (w2 − w1)∕2, wave = (w2 + w1)∕2. The same effect occurs when we sample a
signal with a frequency which is very closed to the minimum sampling frequency required,
yet the sampling theorem is not violated.

Let us consider a sinusoidal signal,

y(t) = sin(2𝜋0.9t) (2.34)

and sample it with a sampling frequency of ws = 1.9 Hz, which satisfies the sampling
theorem requirements. However, since sampling a signal effectively shifts the original signal
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frequency content in the frequency domain in integer multiples of sampling frequency, it
results in adding two very close frequency contents. The result is that the sampled signal
shows the beat phenomenon (Figure 2.14). Another example of the same phenomenon is

y(t) = sin(2𝜋4.9t) (2.35)

and sample it with a sampling frequency of ws = 10.0 Hz.
In Figure 2.14, the top-left figure shows the frequency content of the original sig-

nal, and the top-right figure shows the frequency content of the sampled signal. If we
approximate the sampled signal with the lowest two frequency contents,

y∗(t) ≈ 1
T

(sin(2𝜋 0.9t) + sin(2𝜋 1.0t)) (2.36)

which is the addition of two sinusoidal signals with very close frequencies, as discussed
above. Therefore, the sampling is expected to have (and the above equation explains) the
beat phenomenon observed in the time domain plots of the sampled signal.

2.2.4 Signal Reconstruction: D/A Operation

A D/A converter is used to convert a digital number to an analog voltage signal. It is also
referred to as the signal reconstruction device. Let us consider that we sample a continuous
signal through an A/D converter, then send that signal out without any modification through
a D/A converter. The difference between the original analog signal (input to the A/D
converter) and the analog signal output from the D/A converter is an undesired distortion due
to sampling, quantization, time delay, and reconstruction errors (Figure 2.1). For instance,
in communication systems, the analog voice signal is sampled, transmitted digitally over
the phone lines, and converted back to the analog voice signal at the other end of the phone
line. The goal there is to be able to reconstruct the original signal as accurately as possible.

We know that the sampled signal frequency content is the original frequency content
plus the same content shifted in the frequency axis by integer multiples of the sampling
frequency. In order to recover the frequency content of the original signal, we need an ideal
filter which has a square gain and zero phase transfer function (Figure 2.7). Clearly, if there
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FIGURE 2.7: Signal reconstruction with an ideal D/A converter.
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is aliasing, it is impossible to recover the original signal even with an ideal re-construction
filter. Here we will consider the following two rescontruction D/A converters:

1. Ideal reconstruction filter (Shannon’s Reconstruction).

2. ZOH (Zero-Order-Hold).

In order to focus on D/A functionality and its ability to reconstruct the original signal from
its samples, let us assume that the time delay and quantization errors are negligable and
that the sampled signal is sent out to the D/A converter without any modification.

(i) Ideal Reconstruction Filter D/A Converter
In order to recover the original signal from the sampled signal, we need to recover the
original frequency content of the signal from the frequency content of the sampled
signal (Figure 2.7). Therefore, we need an ideal filter, an ideal reconstruction filter,
which has the following frequency response,

⎧⎪⎨⎪⎩
|H(j𝜔)| = {

T; w ∈
[
−𝜔s

2
, 𝜔s

2

]
0; otherwise

∠H(j𝜔) = 0; ∀ 𝜔
(2.37)

Let us take the inverse Fourier transform of this filter transfer function to determine
what kind of impulse response such a filter would have.

F−1(H(jw)) = 1
2𝜋 ∫

𝜋

T

− 𝜋

T

T .ejwt.dw

= T
2𝜋 ∫

𝜋

T

− 𝜋

T

ejωt.dw (2.38)

h(t) = 2
wst

⋅ sin
(

wst

2

)
(2.39)

This is the impulse response of an ideal reconstruction filter. Notice that the impulse
response of the ideal reconstruction filter is non-causal (Figure 2.8).

In order to practically implement it, one must introduce a time delay into the
system that is large enough compared to sampling period. It cannot be implemented in
closed loop control systems due to the stability problem the time delay would cause.
The original signal could, in theory if not in practical applications, be reconstructed
from its samples as follows,

y(t) =
∞∑

k=−∞
y(kT) ⋅ sin c

𝜋(t − kT)
T

(2.40)

(ii) D/A: Zero-Order-Hold (ZOH)
The great majority of D/A converters operate as zero-order-hold functions. The signal
is kept at the last value until a new value comes. The change between the two values
is a step change. Let us try to obtain a transfer function for a zero-order-hold (ZOH)
D/A converter. To this end, consider that a single unit pulse is sent to the ZOH D/A
(Figure 2.9). The output of the ZOH D/A would be a single pulse with unit magnitude
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and duration of a single sampling period. The transfer function of it is an integrator
response to an impulse minus the same response delayed by a sampling period,

ZOH(s) =
(

1 − e−sT

s

)
(2.41)

The frequency response (filter transfer function) of the ZOH D/A can be obtained
from the above equation by substituting jw for the s variable, and after some algebraic
manipulations it can be shown that the frequency response of a ZOH D/A is

ZOH(j𝜔) =
(

1 − e−jωT

j𝜔

)

= e−
jωT

2

(
e

jωT
2 − e−

jωT
2

jw

)

= T ⋅ e−
jωT

2

sin 𝜔T
2

𝜔T
2

= e−
jωT

2 ⋅ T ⋅
(
sin c

𝜔T
2

)
(2.42)

Clearly, compared to Equation 2.37 which represents the ideal reconstruction filter
transfer function, the transfer function of the ZOH type D/A converter is different
than the ideal case, but it is a practical one.

2.2.5 Real-time Control Update Methods and Time Delay

Time delay is an important issue in control systems. Time delay in the feedback loop can
cause instability since it introduces phase lag. There is inherent time delay in digital control.
The A/D and D/A conversion takes a finite amount of time to complete. The execution of
the control calculations takes a finite amount of time. The sampling period is determined
by the sum of the time periods that these operations take. The sampling period is a good
indication of the time delay introduced into the loop due to the digital implementation. If
the sampling frequency is much higher than the bandwidth of the closed loop system (i.e.,
50 times faster), the influence of time delay due to the digital sampling period will not be
significant. As the sampling frequency gets closer to the control system bandwidth (i.e.,
2 times), the time delay associated with sampling rate can create very serious stability and
performance problems. Figure 2.10 shows two different implementations of a closed loop
system in terms of sampling and control update timing.

A control system will have periodic sampling intervals. The sampling period can be
programmed using a clock. After every sampling period is passed, an interrupt is generated.
The real-time control software can be divided into two groups,

1. foreground program,

2. background program.

Normally, the CPU runs the background program handling operator input/output operations,
checks error and alarm conditions, and checks other process inputs and outputs (I/O) not
used in closing the control loop but used for other logic and sequencing functions. The
foreground program is the one that is executed every time the sampling clock generates
an interrupt. When a new interrupt is generated every sampling period, the CPU saves the
status of what it is doing in the background program, and jumps to the foreground program
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FIGURE 2.10: Effective time delay due to signal conversion, processing, and update methods

in a digital control system.

as soon as possible. In the foreground program, it handles the closed loop control update
for the current sampling period. This involves the following tasks,

1. determine the desired response (sample from A/D if necessary),

2. A/D sample of the sensor signal,

3. calculate the control action,

4. send the control action to D/A,

5. return to the background program.

This implementation and timing of the sequence of operations are shown in Figure 2.10 on
the left-hand side. Note that A/D conversion is an iterative process and the conversion times
may vary from one cycle to the next. As a result, the effective update period for control
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signals can be a little different from one cycle to the next due to the variations in the A/D
conversion. The period for which the control signal is held constant is

Tu = T − Tck
+ Tck+1

(2.43)

where Tck
= (t1 + t2 + t3 + t4)k and Tck+1

= (t1 + t2 + t3 + t4)k+1 are the total time spent in
the foreground program execution during sampling interval k, and k + 1, respectively. Due
to the variations in the A/D conversion time, t2, the effective update period Tu for control
action may vary from one sample to the next. Hence, the control system may not have
a truly constant sampling period. This is a potential problem which may or may not be
significant depending on the application. However, this implementation minimizes the time
delay between the measured sensor signal and the corresponding control action since the
control action is updated as soon as it is available. If minimizing the time delay associated
with the digital controller is more important than maintaining a truly constant sampling
frequency, this implementation is appropriate to use. Another implementation is shown on
the right side of Figure 2.10. The sequence of operations in the foreground program is a
little different:

1. send the control action calculated from the previous period to D/A,

2. determine the desired response (sample from A/D if necessary),

3. A/D sample of the sensor signal,

4. calculate the control action and keep it for the next sampling period,

5. return to the background program.

The difference is that sending out the control signal to the D/A converter is the first
thing done every sampling period. The control signal sent out is the signal calculated
during the previous sampling period. The signal calculated during this period is sent
to the D/A converter at the beginning of the next sampling period. The advantage of this
implementation is that the control signal is updated in a truly fixed sampling period. As long
as the sampling period is long enough to complete the foreground program every sampling
period, the update of the control signal is done at a fixed frequency. The disadvantage is that
the effective time delay associated with digital processing of the control signal is longer
than the previous implementation. The time delay is at most one sampling period long. If
the sampling frequency is much larger than the bandwidth of the closed loop system, that
should not be a serious problem. As the sampling frequency gets closer to the bandwidth
of the closed loop system, the larger time delay in the second implementation compared to
the first implementation may have serious performance degrading consequences.

2.2.6 Filtering and Bandwidth Issues

The sampling theorem requires that the sampling frequency must be at least twice the
highest frequency content of the signal being sampled. However, real-world signals always
have some level of noise in them. The frequency of the noise component of the signal is
generally very high. Therefore, it would not be practical to use very fast sampling rates in
order to handle the noise and avoid the aliasing problem. Furthermore, the noise content
of the signal is not something we would like to capture. It is an unwanted component.
Therefore, signals are generally passed through anti-aliasing filters before sampling at the
A/D circuit. This is called pre-filtering. The purpose of anti-aliasing filters is to attenuate
the high frequency noise components, and pass the low frequency components of the signal
(Figure 2.11). The bandwidth of the anti-aliasing filter (also called the noise filter) should
be such that it should not pass much of the signal beyond 1∕2 of the sampling frequency. An
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FIGURE 2.11: Filtering and bandwidth issues in a digital closed loop control system.

ideal filter would have frequency response characteristics similar to the ideal reconstruction
filter. It would pass identically all the frequency components up to 1∕2 of the sampling
frequency, and cancel the rest. However, it is not practical to use such filters in control and
data acqusition systems.

Generally, a second order or higher order filter is used as a noise filter. Typically the
filter transfer function for a second-order filter is

GF(s) =
w2

n

s2 + 2𝜉nwns + w2
n

If a higher order filter is desired, multiple second-order filters can be cascaded in series. The
exact parameters of the noise filter (𝜉n, wn) are selected based on the class of the filter. The
Butterworth, ITAE, and Bessel filter are popular filter parameters used for that purpose.

Similarly, since the output of the D/A converter is a sequence of step changes, it may
be useful to smooth the control signal before it is applied to the amplification stage. The
same type of noise filters can be used as a post-filtering device to reduce the high frequency
content of the control signal.

The pre-filters and post-filters add time delay into the closed loop system due to
their finite bandwidth. In order to use the pre- and post-filters for noise cancellation and
smoothing purposes without significantly affecting the closed loop system bandwidth, the
following general guidelines should be followed. We have four frequencies of interest:

1. closed loop system bandwidth, wcls,

2. sampling frequency, ws,

3. pre- and post-filter bandwidth, wfilter,

4. the maximum frequency content of the signal presented to the sampling and hold
circuit of A/D converter, wsignal.

In order to make sure that the pre- and post-filtering does not affect the closed loop system
bandwidth, the filters must have about 10 times or more higher bandwidth than the closed
loop system bandwidth. The filter bandwidth is also a good estimate of the highest frequency
content allowed to enter the sampling circuit.

wfilter ≈ wsignal ≈ 5 to 10 ∗ wcls
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From the sampling theorem,

ws ≥ 2 ∗ wsignal

In practice, the sampling frequency should be much larger than the minimum requirement
imposed by the sampling theorem, that is

ws ≈ 5 to 20 ∗ wsignal

Therefore, the magnitude relation between the four frequencies of interest is

ws ≈ 5 to 20 ∗ wsignal ≈ 5 to 20 ∗ wfilter ≈ 25 to 200 ∗ wcls (2.44)

0
0

0.2

0.4

0.6

0.8

1

1+ 0.1 sin(2pi*3*t) sampled at 1.0 Hz

1 2 3 4 5 6 7 8 9 10

FIGURE 2.13: Hidden oscillations in the samples of a signal when the sampling rate is an

integer multiple of a frequency content in the continuous signal.
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Notice that the sampling theorem is not violated. The sampling frequency is very close to the

minimum requirement.

2.3 OPEN LOOP CONTROL VERSUS CLOSED
LOOP CONTROL

Open loop control means control decisions are made without making use of any measure-
ment of the actual response of the system. An open loop control decision does not need a
sensor. Closed loop control means control decisions are made based on the measurements
of the actual system response. The actual response is fed back to the controller, and the
control decision is made based on this feedback signal and the desired response. In compar-
ison, we will take the real-world issues into consideration, namely, disturbances, changes
in process dynamics, and sensor noise. These are common real-world problems faced to
different degrees of significance in every control system. Consider a general dynamic pro-
cess nominally modeled by G(s), controlled by an open loop and a closed loop controller
(Figure 2.15).
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FIGURE 2.15: Open loop versus closed loop control system comparison.
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The response for the open loop control case is

y(s) = D(s)G(s) r(s) + G(s) w(s)

and for the closed loop control case is

y(s) = D(s)G(s)
1 + D(s)G(s)

r(s) + G(s)
1 + D(s)G(s)

w(s) − D(s)G(s)
1 + D(s)G(s)

v(s)

In real-world systems, the following issues exist and must be addressed:

1. Disturbances (w(s)): there are always disturbances which are not under our control.
They exist and cause error in the system response. For instance, the wind acts as a
disturbance on an airplane changing its flight direction. Low outside temperature and
the heat loss due to it from the walls of a heated house acts as a disturbance on the
control system since the outside temperature is not under our control, yet it affects
the temperature of the house.

2. Variations in process dynamics (ΔG(s)): the dynamics of the process may change
structurally or parametrically. Structural changes in the dynamics imply drastic sig-
nificant changes, such as the change in the dynamics of an aircraft due to loss of an
engine or a wing. Whereas parametric changes imply less significant, more smooth,
non-drastic changes, such as the change in the weight of an aircraft as the fuel is
being consumed, or due to opening of the wing control surfaces.

3. Sensor noise (v(s)): closed loop control requires the measurement of the actual
response (the controlled variable). The sensor signals always have some noise in the
measurement. The noise is included in the control decisions and hence affects the
overall performance of the system.

Let us consider the effect of these three groups of real-world problems in system perfor-
mance under open loop and closed loop control (Figure 2.14a). In open loop control, the
effect of disturbance is,

yw(s) = G(s) w(s)

the effect of process dynamic variations is,

y(s) = (G0(s) + ΔG(s)) r(s)

= G0(s)r(s) + ΔG(s) r(s)

Since no feedback sensors are needed in open loop control, there is no sensor noise problem.
The responses due to disturbance G(s) ⋅ w(s) and due to process dynamic variations

ΔG(s) ⋅ r(s) are not wanted and are considered errors. Open loop control has no mechanism
to correct for these errors. The error is proportional to the disturbance magnitude and
the changes in the process dynamics. On the one hand, if the process dynamics is well
known and no variations occur, and there is no disturbance or the nature of disturbance
is well known, the open loop control can provide excellent performance. On the other
hand, if process dynamics vary or there are disturbances whose nature is not known or not
repeatable, open loop control has no mechanism to reduce their effect.

In closed loop control, there is an added component, the sensor, to provide feedback
measurement about the actual output of the process. By definition, feedback control action
is generated based on the error between desired and actual output. Hence, error is inherent
part of such a design.



CLOSED LOOP CONTROL 65

Let us consider the output of the system shown in Figure 2.14b.

y(s) = D(s)G(s)
1 + D(s)G(s)

r(s) + G(s)
1 + D(s)G(s)

w(s) − D(s)G(s)
1 + D(s)G(s)

v(s)

Ideally we would like y(s) = r(s) and no output be caused as a result of w(s), variations in
G(s), and v(s). Let us consider the effects of disturbance, dynamic process variations, and
sensor noise.

1. Disturbance effect: w(s)

yw(s) = G(s)
1 + D(s)G(s)

w(s)

The response due to the disturbance, yw(s), is desired to be small or zero if possible. If
we can make D(s)G(s) ≫ G(s) and D(s)G(s) ≫ 1 for the frequency range where w(s) is
significant, then the response due to disturbances in that frequency range would be small.
If the response due to disturbances is small or zero, the control system is said to have good
disturbance rejection or to be insensitive to the disturbances. Another way of stating this
result is that it is desirable to have a controller with large gain.

2. Variation of process dynamics: G(s) = G0(s) + ΔG(s). Consider only the com-
mand signal and process dynamic variations, and let us analyze the effect of the variations
in the process dynamics on the response.

yr(s) =
D(s)(G0(s) + ΔG(s))

1 + D(s)(G0(s) + ΔG(s))
r(s)

=
D(s)G0(s)

1 + D(s)(G0(s) + ΔG(s))
r(s) + D(s)ΔG(s)

1 + D(s)(G0(s) + ΔG(s))
r(s)

The second term is the main contribution of process dynamic variations to the output. In
order to make the effect of this on the system response small, the following condition must
hold,

D(s)G(s) ≫ D(s), and D(s)G(s) ≫ 1

If the response due to changes in the process dynamics is small, the control system is called
insensitive to the variations in process dynamics which is a desired property.

So far disturbance rejection capability requires,

D(s)G(s) ≫ G(s), and D(s)G(s) ≫ 1

and insensitivity to process dynamic variations requires,

D(s)G(s) ≫ D(s), and D(s)G(s) ≫ 1

Therefore, the conditions {D(s)G(s) ≫ G(s), D(s)G(s) ≫ D(s), and D(s)G(s) ≫ 1} mean
that the loop gain must be well balanced between the controller and the process in order to
have good disturbance rejection and be insensitive to process dynamics variations.

3. Sensor noise effect: sensor noise is a problem for closed loop control systems
only. The open loop control does not need feedback sensors and therefore it does not have
a sensor noise problem. Let us consider the response, yv(s), of a closed loop system due to
sensor noise, v(s),

yv(s) = − D(s)G(s
1 + D(s)G(s)

v(s)

In order to make yv(s) small, D(s)G(s) ≪ 1 must be, which is contradictory to the loop
gain requirements for the previous two properties: disturbance rejection and insensitivity to
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variations in process dynamics. This is the fundamental design conflict of feedback control
systems. Robustness against disturbances and variations in process dynamics require large
loop gain balanced between controller and process, D(s)G(s) ≫ 1, while robustness against
sensor noise requires D(s)G(s) ≪ 1. These are conflicting requirements and both cannot be
satisfied at the same time for all frequencies.

In practice, the control engineering problems are generally such that disturbances and
variations in process dynamics are slowly varying and have low frequency content. Whereas
sensor noise has high frequency content. If a given control problem has this frequency
separation property between various uncertainties, then a controller can be designed such
that D(s)G(s) ≫ 1, D(s), G(s) for a low frequency range so that the system has good
robustness against disturbances and variations in process dynamics, and D(s)G(s) ≪ 1 for
a high frequency range so that sensor noise is also rejected. This is the basic feedback control
system design compromise. If there is no such frequency separation between disturbance,
variations in process dynamics, and sensor noise, no feedback controller can be designed
to provide robustness against all of these real-world problems.

In summary, the loop transfer function of a typical well designed control system has
the following desired shape as a function of frequency: it should be as large as possible
at low frequencies to provide robustness against disturbance and variations in process
dynamics, and it should be as small as possible at high frequencies to reject sensor noise
(Figure 2.16). Furthermore, it should cross the 0 db magnitude by about −20 db/decade
slope in 20 log10 |D(jw)G(jw)| versus log10 w plot in order to have a good stability margin.

So far, we have compared the advantages and disadvantages of closed loop control
versus open loop control. The main advantage of feedback control over open loop control
is that it increases the robustness of the system against the disturbances and variations in
the process dynamics. The general characteristics of control systems are discussed in terms
of the shape of the loop transfer function in order to provide good robustness against these
undesirable real-world problems of control systems. However, sensor noise or sensor failure
can make a closed loop system unstable. If the process dynamics does not vary much and
the disturbances are well known, open loop control may be a better choice than closed loop
control. Open loop control does not suffer from the potential stability problems associated
with sensor failures.

|DG|

Constraints by
disturbance
and variation in
process dynamics

Constraints 
by 
sensor 
noise

ω

FIGURE 2.16: Desired performance specification for control systems in frequency domain.
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2.4 PERFORMANCE SPECIFICATIONS FOR
CONTROL SYSTEMS

The performance desired from a control system can be described under three groups:

1. response quality:
(a) transient response,
(b) steady-state response,

2. stability,

3. robustness of the system stability and response quality against various uncertainties
such as disturbances, process dynamic variations, sensor noise.

The main advantage of feedback control over open loop control is its ability to reduce the
effect of disturbances and process dynamic variations on the quality of system response. In
other words, the main advantage of feedback control is the robustness it provides against
various uncertainties.

A basic feedback control system and typical uncertainties associated with it are shown
in Figure 2.14b. As we discussed in the previous section, the total response of the system
due to command, disturbance, and sensor noise (for H = 1 case) is

y = DG
1 + DG

r + G
1 + DG

w − DG
1 + DG

v

The goal of the control is to make y(t) equal to r(t). Therefore DG ≫ 1 should be in general.
If DG ≫ G, the effect of disturbance, w, is reduced. However, the sensor noise directly
contributes to the output, y. In order to track r and reject disturbance, w, we want DG ≫ 1
(large), but in order to reject sensor noise we want DG ≪ 1 (small). This is the basic
dillema of feedback control design. A compromise is reached by the following engineering
judgment: disturbance, w(t) is generally of low frequency content, whereas sensor noise
v(t) is high frequency content. Therefore, if we design a controller such that DG ≫ 1
around the low frequency region to reject disturbances, and DG ≪ 1 around the high
frequency region to reject sensor noise, the closed loop system has good robustness against
uncertainties.

The robustness of the closed loop system (CLS) is closely related to the gain of
loop transfer function as a function of frequency (Figure 2.16). Therefore the robustness
properties are best conveyed in the frequency domain. In general, a loop transfer function
should have a large gain at low frequency in order to reject low frequency disturbances
and slow variations in process dynamics, and low loop gain at high frequency in order to
reject sensor noise. The s-plane pole-zero representation of a transfer function does not
convey gain information. Hence, robustness properties are not well conveyed by the s-plane
pole-zero structure of the transfer function.

Stability requirements are equally well described in the s-plane as well as frequency
domain. In the s-plane, all the CLS poles must be on the left-hand plane. In the frequency
domain, the gain margin and phase margin must be large enough to provide a sufficient
stability margin. The desired relative stability margin from a CLS can be expressed either
in terms of gain and phase margin in frequency domain, or in terms of the distance of CLS
poles from the imaginary axis in the s-plane.

Finally, the response quality must be specified. The response of a dynamic system
can be divided into two parts: (i) transient response part, (ii) steady-state response part.

Transient response is the immediate response of the system when it is commanded
for new desired output. The steady-state response is the response of the system after a
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FIGURE 2.17: A typical closed loop control system step response shape. Quantification of

transient response characteristics to step input can done using percent overshoot and settling

time.

sufficient amount of time has passed. The steady-state response quality is quantified by the
error between the desired and actual output after a long enough time has passed for the
system to respond. Clearly, the response of a dynamic system depends on its input. The
standard input signal used in defining the transient response characteristics of a dynamic
system is the step input. By using a standard test signal, various competing controller and
process designs can be compared in terms of their performances (Figure 2.17).

In general a CLS step response looks like the response shown in (Figure 2.17). The
transient response to the step command can be characterized by a few quantitative measures
of the response, such as the maximum percent overshoot or the time it takes for the response
to settle down within certain percentage of the final value.

The transient response to a step input is typically described by maximum percent
overshoot, PO%, and settling time, ts, the time it takes for the output to settle down to
within ±2% or ±1% of the desired output.

For a second-order system, there is a one to one relationship between (PO%, ts) and
the damping ratio, and natural frequency (𝜉,𝜔n) of the second order system (Figures 2.17
and 2.18). It can be shown that

PO% = e
−𝜋𝜉√
1−𝜉2

ts =
⎧⎪⎨⎪⎩

4
𝜉𝜔n

, ±2%
4.6
𝜉𝜔n

, ±1%

r(t) wn
2 y

ξ

ξs2 + 2  wn + wn

FIGURE 2.18: A standard second-order system model and its step response. The step

response is determined by the damping ratio (𝜉) and natural frequency (wn).
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Therefore, if it is desired that the closed loop system (CLS) step response should not have
more than a certain amount of PO%, and should settle down within ±2% of the final value
within ts (seconds), the designer must seek a controller which will make the closed loop
system behave like (or similar to) a second-order system whose two poles are given by the
above relationships.

2.5 TIME DOMAIN AND S-DOMAIN
CORRELATION OF SIGNALS

The response of a linear time invariant dynamic system, y(t), as a result of an input signal,
r(t) can be calculated using the Laplace transforms

y(s) = G(s) r(s)

The impulse response y(s) can be expanded to its partial fraction expansion (PFE) which
has the general form as follows,

y(s) = 1
s
+

m∑
i=1

Ai

s + 𝜎i
+

m∑
j=1

Bj

s2 + 2𝛼js +
(
𝛼2

j + 𝜔2
i

)
Ai, Bj − residue of PFE of G(s) r(s)

The time domain response, y(t) can be obtained by taking the inverse Laplace transform of
each term of the PFE,

y(t) = 1(t) +
m∑

i=1

Aie
−𝜎it +

m∑
j=1

Bje
−𝛼jt

(
1
𝜔j

sin𝜔jt

)

The correlation between the time domain response (impulse response) and the poles
of the transfer function is shown in Figure 2.19.

1111

1111

1111

FIGURE 2.19: Impulse response for various root locations in the s-plane.
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2.6 TRANSIENT RESPONSE SPECIFICATIONS: SELECTION
OF POLE LOCATIONS

The feedback control changes the dynamics of the open loop system to the desired form
by closed loop control action. For linear systems, closed loop control changes the locations
of the poles. The control effort required is proportional to the amount of movement of the
pole locations (the difference between the open loop and closed loop pole locations). Large
pole movements will require unnecessarily large actuators. The desired pole locations can
be selected to approximate the step response behavior of a dominant second-order model
or the pole locations of some standard filters such as Bessel and Butterworth filters. The
second-order system parameters (𝜔n, 𝜉) can be selected fairly accurately to satisfy tsettling,
and PO% specifications by designing the CLS such that it has a dominant second-order
system poles and the rest of poles are further to the left in the s-plane (Figure 2.20).

2.6.1 Step Response of a Second-Order System

Step response is the standard signal used in evaluating the transient response characteristics
of a control system. Specifically, the step response behavior is summarized by the maximum
percent overshoot (PO%), and the amount of time it takes for the output to settle to within
1 or 2% of the commanded step output (settling time, ts), the time it takes for the output
to reach 90% of command rise time tr, and to reach maximum value (peak time, tp). The
(PO%, ts, tr, tp) all are related to the pole locations of a second-order system. We will
consider the step response of a second-order system of the form

𝜔2
n

s2 + 2𝜉𝜔ns + 𝜔2
n

s-plane s-plane s-plane

s-plane

XX

XX
ts

rt
XX

P.O.%

s-plane region
satisfying P.O % tr, ts

transient response
specs

FIGURE 2.20: Desired response performance specifications at s-domain pole locations.
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FIGURE 2.21: Mass-spring system dynamics and its position control.

Further, we will consider the step response when there is an additional pole and zero( s
a
+ 1

)
( s

b
+ 1

) 𝜔2
n

s2 + 𝜉𝜔ns + 𝜔2
n

The utility of this is that given transient response specifications for a control system
(PO%, ts) we can determine where the dominant poles should be in order to meet the
specifications. Even though our system may not be second order, second-order system
pole-zero locations can provide a good starting point in design, especially if the higher
order system can be made to have a dominant second-order dynamics.

Consider the step response of a second-order system (Figure 2.21);

mẍ + cẋ + kx = f

let f (t) = kr(t)

ẍ + c
m

ẋ + k
m

x = k
m

r

Let c
m
= 2𝜉𝜔n, k

m
= 𝜔2

n and take the Laplace transform of the differential equation with
zero initial conditions,

x(s)
r(s)

=
𝜔2

n

s2 + 2𝜉𝜔ns + 𝜔2
n

If r(t) is a step input, r(s) = 1
s
, the response x(s) is given by

x(s) =
𝜔2

n

s2 + 2𝜉𝜔ns + 𝜔2
n

⋅
1
s

Using the partial fraction expansions and taking the inverse Laplace transform, the response
can be found as

x(t) = 1 − e−𝜉𝜔nt

(
cos

√
1 − 𝜉2𝜔nt + 𝜉√

1 − 𝜉2
sin

√
1 − 𝜉2𝜔nt

)
for 0 ≤ 𝜉 < 1 range
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The maximum overshoot occurs at the first time instant, tp, where the derivative of x is
zero. Once tp is found, then the maximum value of response at that time can be evaluated
and the percent overshoot can be determined.

dx(t)
dt

= 0 ⇒ find tp : tp = 2.5
𝜔n

Then

PO% =
x(tp) − 1

1
× 100 = e

−𝜋𝜉√
1−𝜉2

The settling time is the time it takes for the response to settle within ±1 or ±2% of the final
value, and it can be shown that

ts =
⎧⎪⎨⎪⎩

4.6
𝜉𝜔n

; ±1%
4.0
𝜉𝜔n

; ±2%

Therefore, given a (PO%, ts) specification, the corresponding second-order system pole
locations (−𝜉wn ±

√
(1 − 𝜉2)wn can be directly obtained.

Effect of an additional zero Let us consider a second-order system with a real
zero (Figure 2.22). The system is the same as a standard second-order system with two
complex conjugate poles and d.c. gain of 1, with an additional zero on the real axis.

G(s) =
( s

a
+ 1

) 𝜔2
n

s2 + 2𝜉𝜔ns + 𝜔2
n

Let 𝜔n = 1; a = 𝛼 𝜉𝜔n, the transfer function can be expressed as

G(s) =

( s
𝛼𝜉

+ 1
)

s2 + 2𝜉s + 1
= 1

s2 + 2𝜉s + 1
+ 1
𝛼𝜉

s
s2 + 2𝜉s + 1

Notice that the effect of zero is to add the derivative of the step response to the second-order
system response by an amount proportional to 1

𝛼𝜉
. Clearly if 𝛼 is large, a is to the left of

𝜉𝜔n, and the influence of the addition of zero is not much. As 𝛼 gets smaller, a gets closer
to 𝜉𝜔n area, and (1∕𝛼𝜉) grows. Hence, the influence of zero on the response increases. The
main effect of zero as it gets close to the 𝜉𝜔n value is to increase the percent overshoot. If
the zero is on the right half s-plane (non-mininum phase transfer function) the initial value
of step response goes in the opposite direction. This is illustrated in Figures 2.23 and 2.24.

–a ωn

j n1
2− ω

−

ξ

−ξ

j n1
2− ωξ

FIGURE 2.22: Second-order system with

two complex conjugate poles and a real

zero.
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Second order system step response
xs(t)

dxs(t)

dt

t

FIGURE 2.23: Step response of a second-order system and the derivative of its response.

The step response of a second-order system with a zero on the left half plane has the
form

xstep(t) + 1
𝛼𝜉

ẋstep(t)

and response with a zero on the right half s-plane (make the (s∕a + 1) term (s∕a − 1) in
the above equation and the result that follows (Figure 2.24) has the form

xstep(t) − 1
𝛼𝜉

ẋstep(t)

The Effect of an Additional Pole The system becomes third order when an
additional pole exists in addition to the two complex conjugate poles.

(
1

s
b
+ 1

)⎛⎜⎜⎝
1

s2

𝜔2
n
+ 2𝜉

𝜔n
s + 1

⎞⎟⎟⎠
If the b = 𝛼 𝜉𝜔n is 3 to 5 times to the left of 𝜉𝜔n, the effect of an additional pole on the
step response is negligable. As b gets close to 𝜉𝜔n, the effect is to increase the rise time
and hence slow the response of the system (Figure 2.24).

t

xs(t)(b)

(c)

FIGURE 2.24: Step response of a second-order system and the effect of a zero: (a) without

zero, (b) zero on the left hand plane, (c) zero on the right hand plane.
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FIGURE 2.25: Second-order filters.

2.6.2 Standard Filters

Most dynamic systems are higher order than second order. However, a higher order system
behaves very similar to a standard second-order system if the poles are distributed on the
s-plane such that there are two dominant poles and the rest of the poles and zeros are far (3 to
5 times) to the left of these dominant poles. Instead of choosing a dominant second-order
system model as a design goal, we can choose other higher-order system models. Among
the popular standard filters, which can be used as the goal for a control system performance,
are Bessel, Butterworth, and ITAE filters Figure 2.25.

The step response and frequency response characteristics of these filters are well
tabulated in standard textbooks on control systems and digital signal processing fields.
They may be used as a reference to describe the desired performance (hence desired pole-
zero locations) for a closed loop control design problem. Note that the more the open loop
poles must be moved to desired closed loop pole locations, the larger the control action
requirements. This may quickly saturate existing actuators and result in poor transient
performance or require unnecessarily large actuators on the system. The dominant closed
loop system poles (also called the bandwidth) should be as large as possible with sufficient
damping on the s-plane, but it should be a balanced choice between desired speed of
response and required actuator size and control effort.

2.7 STEADY-STATE RESPONSE SPECIFICATIONS

Steady-state response is usually characterized by the steady-state error between a desired
output and the actual output.

y(⋅) = D(⋅)G(⋅)
1 + D(⋅)G(⋅)

r(⋅)

The error between the desired and actual response is

e(⋅) = r(⋅) − y(⋅)

=
(

1 − D(⋅)G(⋅)
1 + D(⋅)G(⋅)

)
r(⋅)

e(⋅) = 1
1 + D(⋅)G(⋅)

r(⋅)

In the s-domain the steady-state error (for continuous time systems)

e(s) = 1
1 + D(s)G(s)

r(s)

The steady-state value of the error as time goes to infinity can be determined using the final
value theorem of Laplace transforms, provided that the e(s) has stable poles and at most
have one pole at the origin, s = 0,

lim
t→∞

e(t) = lim
s→0

s e(s) = lim
s→0

s ⋅
1

1 + D(s)G(s)
r(s)
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FIGURE 2.26: Block diagram of a standard feedback

control system.

Let us consider the following cases:

1. the loop transfer function, D(s)G(s), has N number of poles at the origin s = 0,

D(s) G(s) =
∏m

i=1(s + zi)

sN
∏n

i=1(s + pi)
; N = 0, 1, 2, ....

2. the commanded signal is a step, ramp, or parabolic signal (Figure 2.26),

r(s) = 1
s

,
A
s2

,
2B
s3

Now we will consider the steady-state error of a closed loop system in response to a
step, ramp, and parabolic command signal where the loop transfer function D(s)G(s) has
N(N = 0, 1, 2) poles at the origin (Figure 2.27).

1. N = 0;

(a) limt→∞ estep(t) = lims→0 s
1

1 +
∏

(s + zi)∏
(s + pi)

1
s
= 1

1 + D(0)G(0)
= 1

1 + Kp

(b) limt→∞ eramp(t) = lims→0 s
1

1 +
∏

(s + zi)∏
(s + pi)

A
s2

= A
0
⇒ ∞

(c) limt→∞ eparab(t) = lims→0 s
1

1 +
∏

(s + zi)∏
(s + pi)

2B
s3

= 1
0
⇒ ∞

1

Bt 2

1
A

r(t)
N 10 2

00

0

1

A
Kv

1 + Kp

Ka

2 B

∞

∞ ∞

FIGURE 2.27: The steady-state error of a feedback control system in response to various

command signals depends on the number of poles at the origin of the loop transfer function.
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2. N = 1
(a) limt→∞ estep(t) = lims→0 s

1

1 + 1
s

∏
(s + zi)∏
(s + pi)

1
s
= 0

(b) limt→∞ eramp(t) = lims→0 s
1

1 + 1
s

∏
(s + zi)∏
(s + pi)

A
s2

= lims→0
A

sD(s)G(s)
= A

Kv

(c) limt→∞ eparab(t) = lims→0 s
1

1 + 1
s

∏
(s + zi)∏
(s + pi)

2B
s3

= 1
0
⇒ ∞

3. N = 2
(a) limt→∞ estep(t) = lims→0 s

1

1 + 1
s2

∏
(s + zi)∏
(s + pi)

1
s
= 0

(b) limt→∞ eramp(t) = lims→0 s
1

1 + 1
s2

∏
(s + zi)∏
(s + pi)

A
s2

= 0

(c) limt→∞ eparab(t) = lims→0 s
1

1 + 1
s2

∏
(s + zi)∏
(s + pi)

2B
s3

lims→0
2B

s2D(s)G(s)
= 2B

Ka

Notice that the DC gain (D(0)G(0)) and the number of poles that the loop transfer function
has at the origin are important factors in determining the steady-state error. It is convenient
to define three constants to describe the steady-state error behavior of a closed loop system:
Kp the position error constant, Kv velocity error constant, and Ka acceleration error constant.

Kp = lim
s→0

D(s) G(s)

Kv = lim
s→0

s D(s) G(s)

Ka = lim
s→0

s2 D(s) G(s)

2.8 STABILITY OF DYNAMIC SYSTEMS

Stability of a control system is always a fundamental requirement. In fact, not only is
it required that the system be stable, but it must also be stable against uncertainties and
reasonable variations in the system dynamics. In other words, it must have a good sta-
bility robustness. The stability of a dynamic system can be defined by two general terms
(Figure 2.28):

1. in terms of input–output magnitudes,

2. in terms of the stability around an equilibrium point.

A dynamic system is said to be bounded input–bounded output (BIBO) stable if the
response of the system stays bounded for every bounded input. This definition is referred
to as input–output stability or BIBO stability. The stability of a dynamic system can also be
defined just in terms of its equilibrium points and initial conditions without any reference to
input. This definition is called the stability in the sense of Lyapunov or Lyapunov stability.
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FIGURE 2.28: Definition of two different stability notions.

2.8.1 Bounded Input–Bounded Output Stability

Definition: a dynamic system (linear or nonlinear) is said to be bounded input–bounded
output (BIBO) stable if for every bounded input, the output is bounded.

For a linear time invariant (LTI) system, the output to any input can be calculated as,

y(t) = ∫
t

−∞
h(𝜏)u(t − 𝜏)d𝜏

where h(t) is the impulse response of the LTI system. If the input is bounded, there must
exist a constant M such that

|u(t)| ≤ M < ∞

Hence

|y(t)| = |||||∫
t

−∞
h(𝜏)u(t − 𝜏)d𝜏

|||||
≤ ∫

t

−∞
|h(𝜏)||u(t − 𝜏)|d𝜏

≤ M ∫
t

−∞
|h(𝜏)|d𝜏

For the LTI system to be BIBO stable, y(t) must be bounded for all t as t → ∞. Therefore,
for y(t)

lim
t→∞

|y(t)| ≤ M ∫
∞

−∞
|h(z)|dz

to be bounded, the following expression must be bounded,

∫
∞

−∞
|h(z)|dz

This requires that
h(t) → 0 as t → ∞

In conclusion, if a LTI system is BIBO stable, this means that its impulse response goes
to zero as time goes to infinity. The opposite is also true. If the impulse response of a LTI
system goes to zero as time goes to infinity, the LTI system is BIBO stable (Figure 2.29).
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FIGURE 2.29: Bounded input–bounded output stability of linear time invariant systems.

Remark The impulse response going to zero as time goes to infinity means that all
the poles of the dynamic system are on the left half of the s-plane. Therefore, for LTI
systems, BIBO stability means that all the poles have a negative real part on the s-plane.
The following expression summarizes the BIBO stability for LTI systems.

{BIBO stable} ⇔ {h(t) → 0 as t → ∞} ⇔ {∀Re(pi) < 0}

2.9 EXPERIMENTAL DETERMINATION
OF FREQUENCY RESPONSE

Consider the dynamics system shown in Figure 2.16. It is excited by an input signal in
the range such that the dynamic system behaves as an LTI system. Let us assume that we
can set the magnitude and phase of the input signal, and that we can measure the response
magnitude and phase.

The experimental procedure to determine the frequency response is:

1. Select A, and w = w0 (i.e., w0 = 0.001).

2. Apply input signal: u(t) = A sin (wt).

3. Wait long enough so that the output reaches the steady-state response and the tran-
sients die out.

4. Measure B and 𝜓 of the response in y(t) = B ⋅ sin(wt + 𝜓).

5. Record w, B∕A,𝜓 .
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6. Repeat until w = wmax where wmax is the maximum frequency of interest, by incre-
menting w = w + Δw. Δw is the increment of frequency as the experiment sweeps
the frequency range from w0 to wmax.

7. Plot B∕A,𝜓 versus w.

8. Curve fit to B∕A and 𝜓 as function of w and obtain a mathematical expression for the
frequency response as a rational function.

2.9.1 Graphical Representation of Frequency Response

The frequency response of a dynamic system is conveniently represented by a complex
function of frequency. The complex function can be graphically represented in many
different ways. In control systems studies, the three most commonly known representations
are:

1. Bode Plots: plot 20 log10 |G(jw)| v.s. log10(w) and Phase(G(jw)) v.s. log10(w).

2. Nyquist Plots (polar plots): plot Re(G(jw)) v.s. Im(G(jw)) on the complex G(jw) plane
where w-frequency is parameterized along the curve.

3. Log Magnitude versus Phase Plot: plot the 20 log10(G(jw)) (y-axis) versus
Phase(G(jw) (x-axis) and w-frequency is parameterized along the curve.

One can choose to graphically plot the complex frequency response function in many
other ways. The above three representations are the most common ones. With the aid of
CAD-tools, it is a very simple task to plot a given frequency response in any one of the
above forms. However, the ability to plot basic building blocks of transfer functions by
hand sketches still remains a powerful tool in design.

Therefore, we will discuss the manual plotting of various transfer functions next. Let
us consider a general transfer function which has

1. DC gain,

2. zeros and poles at the origin,

3. first-order zeros and poles,

4. second-order zeros and poles.

G(s) = K0
Π(s∕zi + 1)Π((s∕wzi)

2 + 2𝜉zi(s∕wzi) + 1)

s±NΠ(s∕pi + 1)Π((s∕wpi)2 + 2𝜉pi(s∕wpi) + 1)
(2.45)

The rest of the graphical plotting discussions will consider this general form of the transfer
function.

Bode Plots Given a frequency response data either in explicit mathematical form as
G(jw) or as raw experimental data as magnitude and phase information B∕A = |G(jw)| and
𝜓(w), one possible graphical represenation is as two plots:

� Plot 1, y-axis: 20 log10 |G(jw)|, x-axis: log10 w,
� Plot 2, y-axis: Phase(G(jw)), x-axis: log10 w.

Such graphical representation is called a Bode plot. The Bode plot is the most commonly
used graphical representation of frequency response information. Let us consider

G(s)|s=jw = G(jw) = |G(jw)|ejψ(w) (2.46)
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The most general form of a transfer function and its frequency domain representation,

G(s) = K0
Π(s∕zi + 1)Π[(s∕wzi)

2 + 2𝜉zi(s∕wzi) + 1]

s±NΠ(s∕pi + 1)Π[(s∕wpi)2 + 2𝜉pi(s∕wpi) + 1]
(2.47)

G(jw) = K0
Π(jw∕zi + 1)Π[(jw∕wzi)

2 + 2𝜉zi(jw∕wzi) + 1]

jw±NΠ(jw∕pi + 1)Π[(jw∕wpi)2 + 2𝜉pi(jw∕wpi) + 1]
(2.48)

G(jw) = K0

Π[1 + (w∕zi)
2]1∕2ej tan−1(w∕zi)Π[(1 − w2∕w2

zi
)2

+ (2𝜉zi
w∕wzi

)2]1∕2e
j tan−1( (2𝜉ziw∕wzi)

(1−w2∕w2
zi)

)

w±Ne±jN90Π[1 + (w∕pi)
2]1∕2ej tan−1(w∕pi)Π[(1 − w2∕w2

pi)
2

+ (2𝜉piw∕wpi)
2]1∕2e

j tan−1(
(2𝜉piw∕wpi)

(1−w2∕w2
pi)

)

(2.49)

= |G(jw)|ejψ(w) (2.50)

Now, let us express the magnitude and phase information separately, and take the logarithm
of the magnitude information. Further, let us multiply the logarithm of the magnitude by
20 in order to express the magnitude information in dB (decibel) units.

20 log10 |G(jw)| = 20 log10 K0 +
∑

20 log10[1 + (w∕zi)
2]1∕2 (2.51)

+
∑

20 log10[(1 − w2∕w2
zi)

2 + (2𝜉ziw∕wzi)
2]1∕2 (2.52)

− 20 (±N) log10 w −
∑

log10[1 + (w∕pi)
2]1∕2 (2.53)

−
∑

log10[(1 − w2∕w2
pi)

2 + (2𝜉piw∕wpi)
2]1∕2 (2.54)

𝜓(w) = ∠G(jw) =
∑

tan−1(w∕zi) +
∑

tan−1 (2𝜉ziw∕wzi)

(1 − w2∕w2
zi)

(2.55)

−
∑

±N90 −
∑

tan−1(w∕pi) −
∑

tan−1
(2𝜉piw∕wpi)

(1 − w2∕w2
pi)

(2.56)

A Bode plot of the frequency response G(jw) is the two plots of the above two equations
versus the log10 w.

The implication of taking the logarithm of the magnitude information is that the
contribution of gain, zeros, and poles to the overall gain plot becomes additive. The phase
information is already additive. When designing compensators, the additive nature of
frequency response in Bode plots is very helpful. As we try different controllers, we do not
have to replot the open loop system frequency response. Logarithmic scale in frequency
allows us to capture the behavior of the system at very low frequencies as well as very high
frequencies while using a reasonable size for the x-axis.

A Bode plot of any frequency response which can be expressed as a rational polyno-
mial can be drawn as a linear summation of magnitude and phase contribution of (i) gain,
(ii) zero/pole at origin, (iii) first-order zero/pole, (iv) second-order zero/pole. Quite often,
the asymptotic sketches of the contribution of each of these dynamic components are more
useful than their exact plots due to the fact that the asymptotic approximate sketches can
be plotted rather quickly by hand.
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Bode Plots of Standard Elements of a Transfer Function

1. Constant Gain, K0 : A constant gain will have a constant logarithmic magnitude as a
function of frequency, and a zero phase. If the sign of the gain is negative, the phase
will be −180◦,

20 log10 | ⋅ | = 20 log10 K0 (2.57)

∠(.) = tan−1 Im(K0)

Re(K0)
= tan−1 0

Re(K0)
= 0 (2.58)

= tan−1 Im(K0)

Re(K0)
= tan−1 0

Re(K0)
= −180◦; for K0 < 0 (2.59)

2. Pole/zero at the origin: Pole at the origin

1
sN

|s=jw = 1
(jw)N

= 1
wNejN90

= 1
wN

⋅ e−jN90 (2.60)

The magnitude and phase in Bode plots is given by

20 log10

|||| 1
(jw)N

|||| = 20 log10
1

wN
= −20 N log10 w (2.61)

∠
(

1
(jw)N

)
= −N ⋅ 90◦ (2.62)

Similarly, for zero(s) at the origin, the Bode plot is

sN|s=jw = (jw)N = wNejN90 = wNejN90 (2.63)

and

20 log10 |(jw)N| = 20 log10 wN = 20 N log10 w (2.64)

∠(jw)N = N ⋅ 90◦ (2.65)

The Bode plots of gain, pole(s), and zero(s) at the origin are shown in Figure 2.30.

3. First-order pole and zero: Let us consider a pole on a real axis,

1
(s∕pi + 1)

|s=jw = 1
(jw∕pi + 1)

(2.66)

= 1

[1 + (w∕pi)2]1∕2ej tan−1(w∕pi)
(2.67)

= 1
[1 + (w∕pi)2]1∕2

e−j tan−1(w∕pi) (2.68)

The magnitude and phase as a function of frequency are given by

20 log10

|||| 1
jw∕pi + 1

|||| = 20 log 1
[1 + (w∕pi)2]1∕2

= −20 log [1 + (w∕pi)
2]1∕2 (2.69)

≈ −20 log 1 = 0; for w∕pi ≪ 1 (2.70)

≈ −20 log(w∕pi); for w∕pi ≫ 1 (2.71)

∠ 1
(jw∕pi + 1)

= − tan−1(w∕pi) (2.72)

Similiar algebraic calculations can be carried out for a zero on the real axis, and the
Bode plots are as follows,
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(s∕zi + 1)|s=jw = (jw∕zi + 1) = [1 + (w∕zi)
2]1∕2ej tan−1(w∕zi) (2.73)

20 log |jw∕zi + 1| = 20 log [1 + (w∕zi)
2]1∕2 = 20 log [1 + (w∕zi)

2]1∕2 (2.74)

= ≈ 20 log 1 = 0; for w∕zi ≪ 1 (2.75)

= ≈ 20 log(w∕zi); for w∕zi ≫ 1 (2.76)

∠(jw∕zi + 1) = tan−1(w∕zi) (2.77)

The Bode plots of first-order (real) poles and zeros are also shown in Figure 2.30.

4. Second-order (complex conjugate) poles and zeros: Consider a complex conjugate
pole pair, and its frequency response

1
(s∕wi)2 + 2𝜉(s∕wi) + 1

|s=jw = 1

[(1 − w2∕w2
i )2 + (2𝜉w∕wi)2]1∕2e

j tan−1
(

2𝜉w∕wi
1−(w2∕w2

i )

)

(2.78)

The magnitude and phase as function of frequency are given by

20 log | ⋅ | = −20 log[(1 − w2∕w2
i )2 + (2𝜉w∕wi)

2]1∕2 (2.79)

≈ 0; w∕wi ≪ 1 (2.80)

≈ −40 log(w∕wi); w∕wi ≫ 1 (2.81)

∠(⋅) = − tan−1
(

2𝜉(w∕wi)

(1 − w2∕w2
i )

)
(2.82)

Similarly, the Bode plot of a complex conjugate zero and its asymptotic plot can be
found as (Figure 2.30).

(s∕wi)
2 + 2𝜉(s∕wi) + 1|s=jw = [(1 − (w2∕w2

i ))2 + (2𝜉w∕wi)
2]1∕2e

j tan−1
(

2𝜉w∕wi
1−(w2∕w2

i )

)

(2.83)

20 log | ⋅ | = 20 log[(1 − (w2∕w2
i ))2 + (2𝜉w∕wi)

2]1∕2 (2.84)

≈ 0; w∕wi ≪ 1 (2.85)

≈ 40 log(w∕wi); w∕wi ≫ 1 (2.86)

∠(.) = tan−1
(

2𝜉(w∕wi)

1 − (w2∕w2
i )

)
(2.87)

Nyquist (Polar) Plots of Standard Elements of a Transfer Function
Nyquist plots (also called polar plots) are the graphical representation of the frequency
response data on a complex plane where the y-axis is the imaginary part, and the x-axis is
the real part of the frequency response. The frequency is parameterized along the curve.

G(jw) = G(s)|s=jw = Re(G(jw)) + jIm(G(jw)) = X(w) + jY(w) (2.88)

For every point along the imaginary axis of the s-plane, s = jw, there is a point on the
curve plotted on the (G(jw))-plane. Nyquist plots of various standard elements are shown
in Figure 2.31.

Log Magnitude versus Phase Plots of Standard Elements of a Trans-
fer Function Frequency response is conveniently represented by a complex function.
Graphical representation of a complex function must convey the real and imaginary part or
magnitude and phase information. Another possible way of plotting the frequency response
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data is to plot the 20 log10 |G(jw)| as y-axis versus ∠(G(jw)) as the x-axis, where w is
parameterized along the plot. A frequency response can be expressed as

G(jw) = |G(jw)|∠(G(jw)) (2.89)

Log magnitude (20 log10 |G(jw)|)versus phase angle (∠(G(jw))) plots of various elements
are shown in Figure 2.32. A MATLAB® program to generate the plot for Figures 2.30–2.32
is shown below.

K0 = 10.0 ;

z1 = 1.0 ;

p1 = 1.0 ;

num1 = [K0] ; den1 = [1] ; sys1=tf(num1,den1) ; % Ko

num2 = [1] ; den2 = [1 0] ; sys2=tf(num2,den2) ; % 1/s

num3 = [1 0] ; den3 = [1] ; sys3=tf(num3,den3) ; % s

num4= [1] ; den4 = [1/p1 1]; sys4=tf(num4,den4) ; % 1/(s/p1+1)

num5= [1/z1 1] ; den5 = [1] ; sys5=tf(num5,den5) ; % (s/z1+1)

psi = 0.25; w_n = 1.0 ;

num6=[w_nˆ2] ; den6=[1 2*psi*w_n w_nˆ2]; sys6=tf(num6,den6) ;

psi = 0.5; w_n = 1.0 ;

num7=[w_nˆ2] ; den7=[1 2*psi*w_n w_nˆ2]; sys7=tf(num7,den7) ;

psi = 0.75; w_n = 1.0 ;

num8=[w_nˆ2] ; den8=[1 2*psi*w_n w_nˆ2]; sys8=tf(num8,den8) ;

psi = 0.25; w_n = 1.0 ;

num9=[1 2*psi*w_n w_nˆ2]; den9=[w_nˆ2] ; sys9=tf(num9,den9) ;

psi = 0.5; w_n = 1.0 ;

num10=[1 2*psi*w_n w_nˆ2]; den10=[w_nˆ2] ; sys10=tf(num10,den10) ;

psi = 0.75; w_n = 1.0 ;

num11=[1 2*psi*w_n w_nˆ2]; den11=[w_nˆ2] ; sys11=tf(num11,den11) ;

figure(1) ; grid on; % Bode Plots

subplot(3,3,1) ; bode(sys1); grid on;

subplot(3,3,2) ; bode(sys2); grid on;

subplot(3,3,3) ; bode(sys3); grid on;

subplot(3,3,4) ; bode(sys4); grid on;

subplot(3,3,5) ; bode(sys5); grid on;

subplot(3,3,7) ; bode(sys6); hold on; bode(sys7); hold on;

bode(sys8); hold on;grid on;

subplot(3,3,8) ; bode(sys9); hold on; bode(sys10); hold on;

bode(sys11); hold on;grid on;

figure(2) ; grid off; % Nyquist (Polar) plots

subplot(3,3,1) ; nyquist(sys1); grid off;

subplot(3,3,2) ; nyquist(sys2); grid off;

subplot(3,3,3) ; nyquist(sys3); grid off;

subplot(3,3,4) ; nyquist(sys4); grid off;

subplot(3,3,5) ; nyquist(sys5); grid off;

subplot(3,3,7) ; nyquist(sys6); hold on; nyquist(sys7); hold on;

nyquist(sys8); hold on; grid off;

subplot(3,3,8) ; nyquist(sys9); hold on; nyquist(sys10); hold on;

nyquist(sys11); hold on; grid off;

figure(3) ; grid off; % Log Magnitude versus Phase plots

subplot(3,3,1) ; nichols(sys1); grid off;

subplot(3,3,2) ; nichols(sys2); grid off;

subplot(3,3,3) ; nichols(sys3); grid off;

subplot(3,3,4) ; nichols(sys4); grid off;

subplot(3,3,5) ; nichols(sys5); grid off;
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subplot(3,3,7) ; nichols(sys6); hold on; nichols(sys7); hold on;

nichols(sys8); hold on; grid off;

subplot(3,3,8) ; nichols(sys9); hold on; nichols(sys10); hold on;

nichols(sys11); hold on; grid off;

2.9.2 Stability Analysis in the Frequency Domain:
Nyquist Stability Criteria

Frequency domain methods are the most commonly used control system design methods in
practice. Therefore, it is important to be able to evaluate the stability of a dynamic system
in the frequency domain.

The stability of a linear time invariant dynamic system can be determined in the
frequency domain using the Nyquist stability criteria. Furthermore, relative stability can
be quantified (if stable, how far is the system from being unstable, or if unstable how far is
the system from being stable) using the gain margin and phase margin measures.

Consider the feedback control system shown in the Figure 2.17. The question is “how
can we determine if the closed loop system is stable” using frequency domain methods.

CLS poles : 1 + G(s)H(s) = 0 (2.90)

Are there any roots of this equation on the right-half of the s-plane?
The Nyquist stability criteria answers that question by using the frequency response

data of the loop transfer function, G(s)H(s) or G(s) if the sensor dynamics is included
in the loop transfer function. In the s-domain, we can find the roots of this equation. If
any roots are on the right-half s-plane, then the CLS is unstable. However, we would like
to determine if the CLS has poles on the RHP using frequency domain methods without
explicitly solving for the roots of the closed loop characteristic equation.

The Nyquist stability criteria is derived as a special case of the mapping theorem of
complex variables. Consider the mapping shown in Figure 2.33a. A contour C1 from the
s-plane is mapped to F(s)-plane by the function F(s). The closed contour C1 will be mapped
to another closed contour C′

1 on the F(s)-plane. The important point to note in this mapping
is the number of poles and zeros of the mapping function F(s) inside the C1 contour and
its relationship to the number of encirclements of the origin in the F(s)-plane by the C′

1
contour. Notice that as a phasor from a zero inside C1 traverses clockwise (CW) over the
C1, the C′

1 will encircle the origin in the CW direction (Figure 2.33b). Similarly, as a phasor
from a pole inside C1 traverses clockwise (CW) over the C1, the C′

1 will encircle the origin
in the counter clockwise (CCW) direction (Figure 2.33c). If there are no poles or zeros of
F(s) inside the contour C1, then the mapped contour C′

1 does not encircle the origin in the
F(s)-plane. If there are two poles inside the contour C1, then the C′

1 contour encircles the
origin CCW two times (Figure 2.33d). If there are two zeros inside the contour C1, then
the C′

1 contour encircles the origin CW two times.
In summary, as the mapping F(s) traverses for s variable values over the C1 contour

in CW direction, the corresponding contour in F(s)-plane, C′
1, will encircle the origin in

the CW direction based on the following relationship:

N = Z − P (2.91)
where,

N is the number of CW encirclements of the origin by C′
1,

Z is the number of zeros of F(s) inside C1,

P is the number of poles of F(s) inside C1.

Notice that encirclements of origin in CW direction are counted as positive, and the
encirclements of the origin in the CCW direction are counted as negative (Figure 2.33a–d).
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FIGURE 2.33: Stability analysis in the frequency domain using Nyquist Stability criteria: (a)

mapping of a closed contour C1 from s-plane to F (s)-plane, where F (s) has no pole nor zero

inside the contour C1 in the s-plane, (b) same as (a) except F (s) has a pole inside C1, (c) same as

(a) except F (s) a zero inside the C1 contour, (d) mapping of right-hand s-plane as a special

choice of C1 contour in s-plane and F (s) = 1 + GH(s), typical selection of C1 contour to exclude

poles and zeros on jw axis. If C1 is chosen to include them, Nyquist stability criteria would still

give us the correct answer about the number of unstable poles, Nyquist stability criteria and

Nyquist (polar) plot where only s = jw for w = 0 ⟶ ∞ is mapped. Use of Nyquist stability

criteria to determine relative stability: does the closed loop system have poles inside this

contour C1, if so, how many?

The Nyquist stability criteria is an application of the mapping theorem to determine
the stability of a closed loop LTI dynamic system. Let us consider that the C1 contour is a
contour containing the RHP in s-plane, and that F(s) = 1 + G(s) (Figure 2.33d). Then, the
number of CW encirclements of the origin in (1 + G(s)) plane by the C′

1 contour is equal
to the number of zeros of (1 + G(s)) in the RHP (which is the number of unstable closed
loop poles) minus the number of poles of (1 + G(s)) in the RHP (which is the number of
unstable open loop poles). Finally, instead of (1 + G(s)) mapping, we can consider the G(s)
mapping alone, and revise the above conclusion for (−1, 0) point encirclement instead of
the origin (0, 0).

Nyquist Stability Criteria: The number of unstable closed loop poles (Z) of the
system shown in Figure 2.33, is equal to the number of CW encirclements of the (−1, 0)
point plus the number of unstable poles of the open loop system,

Z = N + P (2.92)

Notice that if the open loop system is stable, P = 0, then Z = N.
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In most engineering systems, the transfer function has more poles than zeros. There-
fore, as we map the C1 contour with G(s),

� The half circle arc (as s goes to infinity) will map to zero magnitude for deg(d(s)) >
deg(n(s)) or a finite value is deg(d(s)) = deg(n(s)) (Figure 2.33d).

� The mapping of the lower half of the imaginary axis will be symmetric to the mapping
of the upper half of the imaginary axis (Figure 2.33d).

Hence, the Nyquist plot can be determined only from the mapping of the positive jw axis.
If there are poles or zeros on the imaginary axis, the contour C1 should either include

them or exclude them from being inside the C1 contour. Either approach would give the
same final conclusion regarding closed loop stability. It is customary to exclude the poles
and zeros on the imaginary axis from the C1 contour’s inside.

Relative Stability The relative stability of a CLS is quantified by the use of the
distance of the Nyquist plot from the (−1, 0) point. That is “how far is the closed loop
system from the stability boundary.”

There are two quantities defined for relative stability (Figure 2.34): the gain margin
(GM) and the phase margin (PM). The gain margin is the inverse of the magnitude of the
loop transfer function when the phase is 180◦. It indicates how much the loop gain can be
increased before the system reaches the stability boundary. The phase margin is the phase
angle difference between the loop transfer function and −180◦ when the magnitude of the
loop transfer function is 1. The PM indicates the amount of phase lag that can be introduced
into the loop transfer function before it reaches the stability boundary. The measurement
of GM and PM on Bode and Nyquist plots is shown in Figure 2.34.

2.10 THE ROOT LOCUS METHOD

The root locus method is a graphical method for plotting the roots of an algebraic equation
as one or more parameters vary. It is used primarily in studying the effect of variations in
one parameter of a control system on the locations of closed loop system poles. In the next
section, we will use the root locus method in order to understand the characteristics of PID
type closed loop controllers. The basic mathematical functionality is to find and plot the
roots of an algebraic equation for various values of a parameter. The solution of algebraic
equations can be easily done by numerical means using a digital computer. Solving it for
various values of one or more parameters is nothing more than implementing the numerical
procedure in an iteration loop, that is FOR or DO loop in a high level programming language.
This is certainly a tool which became more and more effective with the availablity of CAD
tools for control system design. A control engineer must, however, always keep in mind
that the basic principle about computers is garbage in – garbage out. Therefore, it is very
important that a designer should be able to quickly verify in general terms a computer
calculation with hand calculations or analysis. The graphical hand sketching rules of the
root locus method provides such a tool. Understanding the graphical root locus method not
only provides a way of quickly checking the results of a computer calculations, but also
develops very valuable insights into the control system design.

Let us consider an algebraic equation, that is a polynomial of degree n,

a0sn + a1sn−1 + ..... + an−1s + an = 0 (2.93)

which has n roots {s1, s2, ...., sn}. If the value of any of ai changes, there will be a new set
of n roots {s1, s2, ...., sn}. If a particular parameter ai varies from one minimum value to
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FIGURE 2.34: Gain margin and phase margin measures in Nyquist plots (a and b) and Bode

plots (c and d).

another value, an n set of roots can be solved for every value of the parameter ai. If we plot
the roots on the complex s-plane, we end up with the graphical representation of the locus
of the roots of the algebraic equation as one of the parameters in the equation varies. This
is the basic functionality of the root locus method. Clearly, this can be done numerically
by a computer algorithm.

Let us consider the feedback control system shown in Figure 2.35. The closed loop
system transfer function is

y(s)
r(s)

= KG(s)
1 + KG(s)

(2.94)
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FIGURE 2.35: Basic root locus problem.

where the poles of the closed loop system are given by the roots of the denominator,

Δcls(s) = 1 + KG(s) (2.95)

The standard root locus analysis problem involves the sketch of the locus of the roots of
this equation as K varies from zero to infinity. From the above general discussion, it is clear
that the root locus method is not limited to that type of problem. It can address any problem
which involves finding roots of an algebraic equation as any one or more parameters vary.
Consider another example as shown in Figure 2.36, where a is a parameter. We would like
to study the locations of closed loop system poles as the parameter a varies from zero to
infinity.

y(s)
r(s)

= 1
1 + s(s + a)

= 1
s2 + as + 1

(2.96)

The characteristic equation is

Δcls(s) = s2 + as + 1 = 0 (2.97)

which can be expressed in standard root locus formulation form suitable for graphical
sketching as

1 + a ⋅
s

s2 + 1
= 0 (2.98)

The graphical root locus method rules are developed for sketching the roots of a polyno-
mial equation as one parameter varies (Figure 2.37). The polynomial equation is always
expressed in the form of

1 + (parameter) ⋅
numerator

denominator
= 0 (2.99)

Therefore, the locus of roots can be studied as a function of any parameter in the closed loop
system, not just the gain of the loop transfer function. Let us assume that we are interested
in studying the locus of the roots of the folowing equation as parameter b varies from zero
to infinity,

s3 + 6s2 + bs + 8 = 0 (2.100)

This problem can be expressed in a form suitable for the application of the root locus
sketching rules as follows,

1 + b ⋅
s

s3 + 6s2 + 8
= 0 (2.101)

MATLAB® provides the rlocus(...) function for root locus. The rlocus() function
is overloaded and can accept different parameters. In principle, it takes the loop transfer

r y

–

1

s (s + a)

+

FIGURE 2.36: An example:

closed loop transfer function

poles as parameter a varies.
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FIGURE 2.37: Value of gain is

parameterized along the root locus

curves. The particular value of the

gain can be calculated in order to be

at a selected point on the root locus.

function and assumes that a parameter K is in the feedback loop. Therefore, in order to
use the rlocus() function to analyze the roots of a transfer function or algebraic equation as
one parameter varies, the equivalent root locus problem must be formed before calling the
rlocus() function. Below are some samples of calls to rlocus() function.

sys = tf(num,den) ; /* sys can be formed by tf, ss, zpk function calls */

sys = zpk(z,p,k) ; /* sys= (K (s-z1)(s-z2).../)(s-p1).(s-p2)....) */

sys = ss(A,B,C,D) ; /* G(s) = C (sI-A)ˆ-1 B + D */

rlocus(sys) ; /* given LTI system, plot closed loop poles as K varies

from 0 to infinity

rlocus(sys, K); /*..............for the values of the parameter given

in the vector K*/

[R]=rlocus(sys,K); /* Stores the closed loop roots in the R for numerical

reference. */

rltool(sys) ; /* Interactive graphical tools for plotting root locus */

Root Locus Sketching Rules In this section we list the rules used in approximate
hand sketching of the root locus. The derivation of the rules is given in many classic
textbooks on control systems.

1. Put the problem in the 1 + KG(s) = 0 form, where K is the varying parameter. Mark
the poles of G(s) = n(s)∕d(s) by x and the zeros by o on the s-plane. Notice that root
locus begins at x’s for K = 0 and ends at o’s as K ⟶ ∞. The x’s and o’s represent
the asymptotic location of closed loop pole locations. If K is indeed the loop transfer
function gain, the o’s are also the zeros of the open and closed loop system. Otherwise,
they only represent the asymptotic location of closed loop system poles.

2. Mark the part of the real axis to the left of odd number of poles and zeros as part
of the root locus. All the points on the real axis to the left of odd number of poles
and zeros satisfy the angle criteria, hence are part of the root locus. Notice that the
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root locus is the collection of points on the s-plane that makes the phase angle of the
transfer function equal to 180◦, since

K = − 1
G(s)

; (2.102)

Since, K is a positive real number, the G(s) complex function will have negative real
values at the collection of s-points that makes up the root locus. In other words, the
phase angle of G(s) at all points that are part of the root locus is 180◦.

G(s) = − 1
K

=
|||| 1
K

|||| ⋅ ej180◦ (2.103)

3. If there are n poles, and m zeros, m of the poles end up at the m zero locations
as parameter K goes to infinity. The remaining n − m poles go to infinity along
asymptotes. If n − m = 1, then the one extra pole goes to infinity along the negative
real axis. If n − m ≥ 2, then they go to infinity along the asymptotes defined by the
asymptote center and angles as follows:

𝜎 =
∑

pi −
∑

zi

n − m
(2.104)

𝜓l =
180 + l ⋅ 360

n − m
; l = 0, 1, 2,… , n − m − 1. (2.105)

where pi’s are the pole locations zi’s are the zero locations of the G(s),

G(s) =
Πm

i=1(s − zi)

Πn
i=1(s − pi)

(2.106)

The quick hand sketches of the root locus allow the designer to quickly check the computer
analysis results for correctness and provide valuable insight in controller design. Note
that when the excessive number of poles than zeros is n − m = 0, 1, 2, 3, 4, the angles of
asymptotes are none, 180, {90, 270}, {60, 180, 300}, {45, 135, 225, 315}, respectively.

2.11 CORRELATION BETWEEN TIME DOMAIN AND
FREQUENCY DOMAIN INFORMATION

Three major groups of events which are not under our control and affect the system
performance are:

1. variations in the process parameters and dynamics,

2. disturbances,

3. sensor noise.

A desired performance specification for any CLS includes specifications regarding

1. stability,

2. response quality (transient and steady state),

3. robustness of stability and response quality despite real-world imperfections, that is
variations in the process dynamics, disturbances, and sensor noise.

The stability of CLS requires that all of the CLS poles be in the left half of the
s-plane (LHP). If a certain degree of relative stability is required, then we can further
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impose conditions that CLS poles must have a real part smaller than a negative real value

Re(pi) < 0 or − a (2.107)

or in the frequency domain it can be specified in terms of gain and phase margins,

GM > GMmin, PM > PMmin (2.108)

The response quality is generally divided into two groups: transient response and
steady-state response. The transient response is generally specified as the step response.
The step response is quantified using percent overshoot, settling time, and rise time spec-
ifications: (PO%, ts, tr). For a second-order closed loop system, the PO% and ts uniquely
determine the closed loop system poles with damping ratio (𝜉) and natural frequency (wn):

p1,2 = −𝜉wn ± j
√

1 − 𝜉2wn (2.109)

ts =
4.0
𝜉wn

; (2.110)

PO = e−𝜉𝜋∕
√

1−𝜉2
; for 0 ≤ 𝜉 < 1.0 (2.111)

In the frequency domain, the cross-over frequency (wcr) of the loop transfer function and
bandwidth (wbw) of the closed loop transfer function, along with the phase margin of the
loop transfer function, correlate well with the transient response. Cross-over frequency is
defined for the loop transfer function where the magnitude of the loop transfer function
is 1 (or 0 dB). Bandwidth frequency is defined for the closed loop transfer function where
the magnitude is 0.707 or (−3 dB). Bandwidth closely relates to the speed of response (ts),
and phase margin (PM) is closely related to the damping ratio. For a second-order closed
loop system as shown in Figure 2.38, it can be shown [6] that

PM = tan−1 2𝜉√√
1 + 4𝜉2 − 2𝜉2

(2.112)

≈ 100 𝜉 for 𝜉 ≤ 0.6 (2.113)

wcr =
√

−2𝜉2 +
√

4𝜉2 + 1 ⋅ wn; w = wcr at |G(jw)| = 1.0 (2.114)

; 20 log10 |G(jw)| = 0.0 dB (2.115)

wbw = wn ⋅
√

(1 − 2𝜉2) +
√

(2𝜉2 − 1)2 + 1 (2.116)

; w = wbw at |G(jw)∕(1 + G(jw))| = 0.707 (2.117)

; 20 log10 |G(jw)∕(1 + G(jw))| = −3 dB (2.118)

wp = wn

√
1 − 2 ⋅ 𝜉2; where |G(jw)∕(1 + G(jw))| is maximum (2.119)

; w = wp at
d

dw
(|G(jw)∕(1 + G(jw))|) = 0.0 (2.120)

; for 0 ≤ 𝜉 ≤ 0.707 (2.121)

Mp = max |G(jw)∕(1 + G(jw))| (2.122)

= 1

2𝜉
√

1 − 𝜉2
; for 0 ≤ 𝜉 ≤ 0.707 (2.123)
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FIGURE 2.38: Second-order linear system: Bode plot of the loop transfer function and the

Bode plot of the closed loop transfer function, along with some transient response related

performance measures.

where settling time ts is defined as the time it takes for the step response to settle within
2% of the commanded signal, PO is the maximum percent overshoot of the step response.
In general, it can be shown that wcr ≤ wp ≤ 2 ⋅ wcr.

A Bode plot of the loop transfer function and closed loop transfer function of a
second-order system can be generated for specific values of the parameters 𝜉 and wn as
shown in Figure 2.38.

psi = 0.25 ;
wn = 10.0 ;
s=tf(’s’) ;
G1 = wnˆ2/(sˆ2+2*psi*wn*s) ; % Loop tranfer function
G2 = G1/(1+G1) ; % Closed loop transfer function
figure(1) ; grid on ;
subplot(1,2,1) ; bode(G1,’r’) ; grid on ;
subplot(1,2,2) ; bode(G2,’r’) ; grid on ;

The typical desired gain margin and phase margins are; GM ≥ 6 dB and PM around
30◦ to 60◦. For any stable minimum phase system, G(s), (a dynamic system whose zeros
and poles are on the LHP), the phase of G(jw) is uniquely related to the magnitude of G(jw).
The approximate phase is the slope of the magnitude curve (n, slope of magnitude curve)
times 90◦ at any frequency,

∠G(jw) ≈ ± n × 90◦ (2.124)

Therefore, around cross-over frequency, w ≈ wcr, |G(jw)| ≈ 1, if n = −1, that is the slope
of the magnitude curve is −20 dB/decade, then ∠G(jwcr) ≈ −90◦, and hence the PM ≈ 90◦.
If n = −2, ∠G(jwcr) ≈ 180◦ and the PM ≈ 0. Therefore, the slope of the magnitude curve
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FIGURE 2.39: Correlation between the time domain steady-state response and frequency

response (Bode plot) characteristics.

on the Bode plot should have about −20 dB/decade slope around the cross-over frequency
so that the the system has about 90◦ phase margin.

The steady-state response is specified in terms of the steady-state error of the CLS
in response to three standard test command signals: step, ramp, and parabolic signals. It
can be shown that the steady-state error in response to step, ramp, and parabolic command
signals are defined as

estep(∞) = 1
1 + Kp

; Kp = lim
s⟶0

D(s)G(s) (2.125)

eramp(∞) = 1
Kv

; Kv = lim
s⟶0

sD(s)G(s) (2.126)

eparabolic(∞) = 1
Ka

; Ka = lim
s⟶0

s2D(s)G(s) (2.127)

The error constants Kp, Kv, Ka can be directly determined from the asymptotic behav-
ior of the frequency response plots using Bode or Nyquist plots (Figure 2.39). Let us consider
a frequency response equation in the following form

G(jw) = K
(1 + jw∕z1)(1 + jw∕z2)...

(jw)N(1 + jw∕p1)(1 + jw∕p2)...
(2.128)

Clearly, if we would like to estimate the low frequency gain in order to get the error
constants, let w ⟶ 0 and the frequency response can be approximated as

G(jw) ≈ K
(jw)N

(2.129)

� If N = 0, then Kp = K.
� If N = 1, then |G(jw)| = K∕|jw| = 1 or Kv = w1 where 20 log |G(jw)|w=w1

= 0 dB.

� Similarly, If N = 2, then |G(jw)| = 1, then, Ka = w2
2 where w2 is such that

20 log |G(jw)|w=w2
= 0.
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The type of the loop transfer function can also be immediately determined from the slope
of the magnitude curve as frequency goes to zero or from the phase plot at low frequencies.

The robustness specification deals with the sensitivity of the system. The most impor-
tant advantage of feedback control over open loop control is that the feedback improves
the robustness of the system performance against the variations in process dynamics and
disturbances. The closed loop system should not only be stable and have good response
quality for the nominal parameters of the operating conditions, but also should stay stable
and have good response quality despite the real-world imperfections.

In summary, the correlation between the time-domain specifications and frequency
domain behavior is as follows

� Good stability means a large gain margin and phase margin. In order to have a rea-
sonably good P.M., the slope of the magnitude curve should be about −20 dB/decade
around the cross-over frequency.

� Larger loop gain at low frequencies results in lower steady-state errors, and good
disturbance rejection against low frequency disturbances.

� Low loop gain and a fast decaying rate at the high frequency region increase the
ability to reject the effect of high frequency noise.

Overall, the stability, steady-state error, and robustness characteristics of a CLS is well
represented in the frequency response of the loop transfer function, whereas the transient
response is not represented with the same accuracy. The s-domain pole-zero representation
of a CLS correlates to the transient response behavior well, but does not give information
about disturbance and sensor noise rejection ability. Therefore, frequency response (i.e.,
Bode plots) and s-domain methods (i.e., root locus method) complement each other in
the graphical information they display regarding the control system characteristics (i.e.,
transient and steady-state response).

2.12 BASIC FEEDBACK CONTROL TYPES

Figure 2.40 shows the three basic feedback control actions: proportional, integral, and
derivative control actions. Figure 2.41 shows the input–output behavior of these control
types. In practical terms, proportional control action is generated based on the current
error, the integral control action is generated based on the past error, and the derivative
control action is generated based on the anticipated future error. The integral of the error
can be interpreted as the past information about it. The derivative of the error can be
interpreted as as a measure of future error to come. Assume that the error signal entering
the control blocks has a trapeziodal form. The control actions generated by the proportional,
integral, and derivative actions are shown in Figure 2.41. Proportional - integral - derivative
(PID) control has control decision blocks which take into account the past, current, and
future error. In a way, it covers all the history of error. Therefore, most practical feedback
controllers are either a form of the PID controller or have the properties of a PID controller.

The block diagram of a textbook standard PID controller is shown in Figure 2.42. The
control algorithm can be expressed in both the continuous (analog) time domain (which
can be implemented using op-amps) and in the discrete (digital) time domain (which can be
implemented using a digital computer in software). At any given time t, the control signal
u(t) is determined as function,

u(t) = Kpe(t) + KI ∫
t

0
e(𝜏)d𝜏 + KDė(t) (2.130)
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FIGURE 2.42: Block diagram of the standard PID controller.

which shows that the control signal is function of the error between the commanded and
measured output signals, e(t) at time t, as well as the derivative of the error signal ė(t) and
the integral of the error signal since the control loop is enabled (t = 0), ∫ t

0 e(𝜏)d𝜏.
The discrete time approximation of the PID control algorithm can be implemented by

finite difference approximation to the derivative and integral functions. In digital implemen-
tation, the control signal can be updated at periodic intervals, T , also called the sampling
period. The control is updated at integer multiples of the sampling period. The value of the
signal is kept constant between each update period. At any update instant k, time is t = kT ,
and the previous update instant is t − T = kT − T , the next update instant is t = kT + T and
so on, the control signal can be expressed as u(t) = u(kT),

u(kT) = Kp ⋅ e(kT) + KI ⋅ uI(kT) + KD
(e(kT) − e(kT − T))

T
) (2.131)

where

uI(kT) = uI(kT − T) + e(kT) ⋅ T (2.132)

uI(0) = 0.0; at the initialization (2.133)

Let us take the Laplace transform of the continuous time domain (analog) version of
the PID control and analyze its effect on a controlled system. Basically, the same results
apply for the discrete time version (digital implementation) provided the sampling period is
short enough (high sampling frequency) relative to the bandwidth of the closed loop system.

u(s) =
(

kp + KI
1
s
+ KDs

)
e(s) (2.134)

D(s) = Kp + KI
1
s
+ KDs (2.135)

= Kp

(
1 + 1

TIs
+ TDs

)
(2.136)

KI =
Kp

TI
, KD = KpTD

Consider a second order mass-force system to study its behavior under various forms of
PID control (Figure 2.43).

mẍ(t) = f (t) − fd(t)

ẍ(t) = 1
m

f (t) − 1
m

fd(t)
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FIGURE 2.43: Mass-force system model (a) model components, (b) block diagram.

ẍ(t) = u(t) − wd(t)

s2x(s) = u(s) − wd(s)

x(s) = 1
s2

u(s) − 1
s2

wd(s)

2.12.1 Proportional Control

Let us consider the input and output relationship, and do not consider disturbance for the
purpose of studying proportional control properties only (Figure 2.44),

x(s)
u(s)

= 1
s2

m  
xd

x

K p m
fu Kp

x

xK
dpm=1

-

2. 0

1. 01. 0

x(t)

2 p

Kp

tt

Kp

xd(t)

FIGURE 2.44: Mass–force system with position feedback control and its step response.
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If the control action u(t) is decided upon by a proportional control based on the error
between the desired position, xd(t) and the actual measured position, x(t),

u(t) = Kp(xd(t) − x(t))

u(s) = Kp(xd(s) − x(s))

CLS transfer function from the commanded position to the actual position under the
proportional control is

x(s) =
Kp

s2 + Kp
xd(s)

The proportional control alone on a mass-force system is equivalent to adding a spring
to the system where the spring constant is equal to the proportional feedback gain, Kp
(Figure 2.44). The response of this system to a commanded step change in position is
shown in Figure 2.44. Figure 2.46a shows the CLS root locus as Kp varies from zero to
infinity. The steady-state error due to constant disturbance is

X(s) = − 1
m

1
s2 + Kp

⋅ Fd(s) (2.144)

lim
t→∞

x(t) = lim
s→0

sX(s) = − 1
m

1
Kp

(2.145)

2.12.2 Derivative Control

Let us consider only the derivative control on the same mass-force system. Assume that
the control is proportional to the derivative of position which means proportional to the
velocity,

u(t) = −KDẋ

u(s) = −KDsx(s)

s2x(s) = −KDsx(s)

s(s + KD)x(s) = 0

If we consider disturbance in the model, the transfer function from the disturbance (i.e.,
wind force) to the position of the mass can be determined as

mẍ = f (t) − fd(t)

ẍ = u(t) − wd(t)

s(s + KD)x(s) = −wd(s)

x(s) = 1
s(s + KD)

(−wd(s))

Let us consider the case that the disturbance is a constant step function, wd = 1
s

and the
resultant response is

x(s) = −1
s

1
s(s + KD)

=
a1

s2
+

a2

s
+

a3

(s + KD)
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where

a1 = lim
s→0

s2x(s) = − 1
KD

(2.146)

a2 = lim
s→0

d
ds

[s2x(s)] = 1

K2
D

(2.147)

a3 = lim
s→−KD

(s + KD) x(s) = − 1

K2
D

(2.148)

x(t) = − 1
KD

⋅ t + 1

K2
D

⋅ 1(t) − 1

K2
D

⋅ e−KDt (2.149)

The position of mass under the derivative control due to a constant disturbance force is

x(t) = 1
KD

t − 1

K2
D

1(t) + 1

K2
D

e−KDt

In steady state,

ẋ(t) = − 1
KD

(2.150)

Since ẋd(t) = 0.0 (desired velocity is zero), the error in steady-state

ė(t) = ẋd(t) − ẋ(t) = 1
KD

(2.151)

which means that in steady state, the velocity error due to a step input constant force
disturbance will result in constant velocity of the mass, even though the desired velocity is
zero. The velocity error is inversely proportional to the velocity feedback gain.

This example shows that the derivative feedback control alone would not be able
to reject a constant disturbance acting on a second-order mass–force system. Derivative
feedback introduces damping into the closed loop system poles (Figure 2.45) and increases
the stability margin.

2.12.3 Integral Control

Now let’s consider the case where the control action is based on the integral of position
error,

u(t) = KI ∫
t

0
[xd(𝜏) − x(𝜏)]d𝜏

u(s) =
KI

s
[xd(s) − x(s)]

Substituting this into mass-force model

s2x(s) = u(s) =
KI

s
[xd(s) − x(s)]

s3x(s) + KIx(s) = KIxd(s)

(s3 + KI)x(s) = KIxd(s)

The closed loop system poles are given by (Figure 2.46);

Δcl(s) = 1 + KI
1
s3

Figure 2.46b shows the locus of CLS poles for various values of KI as it takes on
values from 0 to ∞. The integral control alone would result in an unstable mass-force
system. It tends to destabilize the system. However, the main purpose of integral control
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FIGURE 2.45: Mass force system under velocity feedback control, and response to a constant

disturbance.

is to reject the disturbances and reduce the steady-state error, as will be shown in the next
section.

2.12.4 PI Control

Let us consider the mass-force system under a proportional plus integral (PI) control. The
control algorithm is

u(t) = Kp(xd(t) − x(t)) + KI ∫
t

0
(xd(𝜏) − x(𝜏))d𝜏

and its Laplace transform is

u(s) = Kp(xd(s) − x(s)) + KI
1
s

(xd(s) − x(s))

=
(

Kp +
KI

s

)
(xd(s) − x(s))

Let’s take the Laplace transform of the mass-force system and substitute the PI controller
for u(s)

ẍ = u(t) − wd(t)

s2x(s) = u(s) − wd(s) =
(

Kp +
KI

s

)
(xd(s) − x(s)) − wd(s)
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After a few algebraic manipulations, the transfer function between position, desired posi-
tion, and disturbance force is found as

x(s) =
Kps + KI

s3 + Kps + KI
xd(s) − s

s3 + Kps + KI
wd(s)

Consider the case that the commanded position is zero, xd(t) = 0 and there is a constant
step disturbance, wd(s) = 1

s
. Any non-zero response due to the disturbance would be an

error.

x(s) = − s
s3 + Kps + KI

1
s

x(s) = − 1
s3 + Kps + KI

If Δcls(s) = s3 + Kps + KI has stable roots, the response of the system will be zero despite
a constant disturbance.

Using the final value theorem,

lim
t→∞

e(t) = ess(∞) = lim
s→0

se(s)

= lim
s→0

s
1

s3 + Kps + KI

ess(∞) = 0

The steady-state error due to a constant disturbance is zero under the PI type control. If
there is no integral control action, KI = 0, the steady-state error would have been

e(s) = s
s(s2 + Kp)

1
s

lim
s→0

se(s) = 1
s2 + Kp

= 1
Kp

→ ≠ 0

Therefore it is clear that it is the integral of position error used in feedback control which
enables the control system to reject the constant disturbance and keep x(t) = xd(t) in steady
state. The transient response to a step command change in desired position under no
disturbance condition,

wd(t) = 0

xd(t) = 1(t)

x(s) =
Kps + KI

s3 + Kps + KI
xd(s)

The closed loop system has a zero at

−
KI

Kp
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and three poles at the roots of the following equation,

s3 + Kps + KI = 0

1 +
Kp

s3

(
s +

KI

Kp

)
= 0

1 + Kp

s + KI
Kp

s3
= 0

Let us study the locus of the roots of this equation for various values of Kp, KI
(Figure 2.46c). Closed loop system dominant poles are such that one of them is on the
negative real axis, but the other two have positive real parts, limited to 1

2
KI
Kp

, and are

unstable. If we want to stabilize the system, we must introduce more damping using
derivative (D) control, which is considered next. The pure mass-force system is unstable
under a PI controller for any positive values of the PI gains (Kp, KI). Many real systems
have some inherent damping in open loop. In other words, the loop force-position transfer
function is 1

s(s+c)
instead of 1

s2 . If the open loop damping is large enough, the closed loop
system under PI control would be stable for a finite range of Kp, KI gains. That is the reason
why many physical second-order systems are stable and well controlled by a PI controller
alone, without the derivative control action.

2.12.5 PD Control

Now, we will consider the characteristics of the mass-force of a system under proportional
plus derivative (PD) control. The PD control algorithm is given by,

u(t) = Kp(xd(t) − x(t)) − KDẋ(t)

u(s) = Kp(xd(s) − x(s)) − KDẋ(s)

Substituting this into the mass-force model,

s2x(s) = u(s) − wd(s)

(s2 + KDs + Kp)x(s) = Kpxd(s) − wd(s)

We will consider the dominant response to a step command in the desired position, and the
steady-state response to a constant disturbance.

(i) Transient response in the s-domain

x(s) =
Kp

s2 + KDs + Kp
(1∕s)

and the time domain response is found by taking the inverse Laplace transform,

x(t) = 1 − e−𝜉𝜔nt 1√
1 − 𝜉2

sin(
√

1 − 𝜉2𝜔nt + 𝜙)

where

Kp = 𝜔2
n

KD = 2𝜉𝜔n

𝜙 = tan−1

(√
1 − 𝜉2

𝜉

)
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Since PD control gains determine the natural frequency and the damping ratio of the closed
loop system, PD control can be efficient in shaping transient response.

Figures 2.46d and 2.46e show the closed loop system pole locations as Kp varies
from zero to infinity. The poles of the closed loop transfer function can be expressed as

Δcls(s) = s2 + KDs + Kp = 0 (2.152)

= 1 + Kp

(KD∕Kp) s + 1

s2
= 0 (2.153)

= 1 + Kp
1

s(s + KD)
= 0 (2.154)

If we sketch the root locus, it is clear that the closed loop poles will always be stable for any
positive values of Kp, KD (Figure 2.46d). If we plot the root locus for a constant value of
KD∕Kp as Kp varies from zero to infinity, we have the root locus as shown in Figure 2.46d.
If we plot the root locus of the last form of the equation for a given constant value of KD
as Kp varies from zero to infinity, we have the root locus shown in Figure 2.46e. Although
the shape of the root locuses are different for the same closed loop system in question, the
Figure 2.46d is a root locus as both Kp and KD vary such that KD∕Kp is constant, whereas
Figure 2.46e is a root locus as KD varies for a constant Kp. For a given value of Kp, KD,
both root locuses predict the same closed loop root locations, as they should.

(ii) Zero command, constant step disturbance case - xd = 0; wd ≠ 0; wd(s) = 1
s
. The

response due to step disturbance is given by

x(s) = − 1
s2 + KDs + Kp

1
s

x(s) = e(s) = − 1
s2 + KDs + Kp

1
s

Any non-zero response due to the disturbance is indeed an error. The magnitude of the error
under PD control is

lim
t→∞

e(t) = lim
s→0

s(s)

= lim
s→0

(−s)
1

s2 + KDs + Kp

1
s

= 1
Kp

Therefore, the PD control alone cannot provide zero steady-state error in the presence of
constant disturbance.

2.12.6 PID Control

PID control is basically a PD control plus PI control. It combines the capabilities of PD
and PI control. PD control is primarily used to shape transient response and stabilize the
system. The D (derivative) action introduces damping into the closed loop system. If the
steady-state error is constant, hence its derivative is zero, the derivative action has no
influence on the steady-state response. PI control is used to reduce the steady state error
and improve disturbance rejection capability. Almost all practical controllers exhibit the
features of PID control. They have control action components which deal with the present
error (proportional – P control), past error using the integral of error (integral – I control),
and the future error using the anticipatory nature of derivative (D-control). There are many
different implementations of PID control. One possible implementation of PID control is
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shown below. In this implementation, the derivative action is only applied to the feedback
signal, not on the error. Sometimes, this may be preferable if the command signal has jump
discontiniuties such as step changes.

u(t) = Kp(xd(t) − x(t)) + KI(∫
t

0
(xd(𝜏) − x(𝜏))d𝜏 − KDẋ(t)

u(s) = Kp(xd(s) − x(s)) +
KI

s
(xd(s) − x(s)) − KDsx(s)

= −
(

Kp +
KI

s
+ KDs

)
x(s) +

(
Kp +

KI

s

)
xd(s)

If we use the PID controller for position control of the mass-force system,

s2x(s) = u(s) − wd(s){
s2 +

(
Kp +

KI

s
+ KDs

)}
x(s) =

(
Kp +

KI

s

)
xd(s) − wd(s)

(s3 + KDs2 + Kps + KI)x(s) = (Kps + KI)xd(s) − swd(s)

The closed loop system transfer function for the mass-force system under the PID control
is

x(s) =
(Kps + KI)

(s3 + KDs2 + Kps + KI)
xd(s) − s

(s3 + KDs2 + Kps + KI)
wd(s)

Let us consider the behavior of this system for two different conditions: (i) commanded
input is zero, but there is a constant unit magnitude disturbance, xd(t) = 0; wd(t) = 1(t),
(ii) there is a unit magnitude step command, but no disturbance, xd(t) = 1(t); wd(t) = 0.

(i) xd(t) = 0.0; wd(t) = 1(t): The non-zero response due to disturbance is an unwanted
response and can be considered an error,

x(t) = e(t)

x(s) = e(s)

= − s
(s3 + KDs2 + Kps + KI)

1
s

In steady state, the position of the mass-force system under the PID control

lim
t→∞

x(t) = lim
s→0

x(s) = − s
(s3 + KDs2 + Kps + KI)

= 0

is zero as commanded despite the constant magnitude disturbance force, If there is no
integral action, KI = 0, the response is

e(∞) = 1
Kp

finite and inversely proportional to the proportional feedback gain. Notice the importance
of the integral (I) action in rejecting the disturbance. The integral action makes the system
type I with respect to the disturbance entering the system after the controller block.

(ii), xd(t) = 1(t); wd(t) = 0: Let us study the step response of the system when there
is no disturbance,

xd(t) = 1(t); step function

x(s) =
Kps + KI

(s3 + KDs2 + Kps + KI)
1
s
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The PID controller can be designed as a cascade of PD and PI controllers. Design PD
control first to set the shape of the transient response, then design the PI control to shape the
steady-state response. The PD control introduces a zero to the open and closed loop transfer
function. Therefore, it has a tendency to pull the root locus to the left side of s-plane, and
hence has a stabilizing effect on the closed loop system. PI control introduces a zero close
to the origin and a pole at the origin. Generally, the PI controller zero is placed closer to the
origin relative to the other poles and zeros of the system. The result of placing the zero of
PI control closer to the pole at the origin is that it will not influence the transient response
much, which was shaped by the PD control, but will still increase the type of the loop
transfer function by one. Therefore, the PI controller primarily influences the steady-state
error. The resultant PID control parameters as a function of PI and PD controller parameters
can be found as follows,

D(s) = Kp

(
1 + 1

TIs
+ TDs

)

= K∗
p

(
1 + 1

T∗
I s

)
(1 + T∗

Ds)

where

Kp = K∗
p (1 + T∗

D∕T∗
I )

TI = T∗
I + T∗

D

TD = (T∗
I T∗

D)∕(T∗
I + T∗

D)

Understanding the PID control components in terms of their frequency domain rep-
resentation is useful. Figure 2.47 shows the Bode plots of the P, D, I, PD, PI, and PID
controllers. The Bode plot is obtained by replacing s = jw in the transfer function, and
plotting the magnitude and the phase of the transfer function as a function of frequency in
logarithmic scale.

D(jw) = D(s)|s=jw (2.155)

= |D(jw)| ⋅ ejψ (2.156)

= [(Re(D(jw)))2 + (Im(D(jw)))2]1∕2 (2.157)

⋅ ej tan−1(Im(D(jw))∕Re(D(jw))) (2.158)|D(jw)| = [(Re(D(jw)))2 + (Im(D(jw)))2]1∕2 (2.159)

20 log10 |D(jw)| = 20 log10([(Re(D(jw)))2 + (Im(D(jw)))2]1∕2) (2.160)

𝜓 = tan−1 Im(D(jw))
Re(D(jw))

(2.161)

The following MATLAB® code generates the Bode plots of various PID controllers versions
for the gains Kp = 10.0, Kd = 1.0, Ki = 1.0,

Kp = 10.0 ;
Kd = 1.0 ;
Ki = 1.0 ;

num1=[Kp] ; den1=[1] ; % P- control
num2=[Kd 0]; den2 = [1]; % D-control
num3=[Ki]; den3=[1 0]; % I - control
num4=[Kd Kp]; den4 = [1]; % PD - control
num5=[Kp Ki]; den5=[1 0]; % PI - control
num6=[(Kp*Kd) (Kp*Kp+Ki*Kd) Ki*Kp]; den6=[1 0]; % PID =

PD * PI - control
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figure(1); bode(num1,den1); title(’P control:
D(s) = Kp = 10.0’); grid on;

figure(2); bode(num2,den2); title(’D control:
D(s) = Kd s = 1.0 s’); grid on;

figure(3); bode(num3,den3); title(’I control:
D(s) = Ki/s = 1.0/s’);grid on;

figure(4); bode(num4,den4); title(’PD control:
D(s) = Kp+Kd s = 10.0+1.0 s’);grid on;

figure(5); bode(num5,den5); title(’PI control:
D(s) = Kp+Ki/s = 10.0+1.0/s’); grid on;

figure(6); bode(num6,den6); title(’PID :D(s)=(Kp+Kds)
(Kp+Ki/s)=(10.0+1.0s)(10+1.0/s)’);grid on;

Using frequency domain methods, the PID controller gains can be selected to shape
the Bode plots (frequency response) of the controller in order to give the desired shape
to the combined Bode plot of the controlled process and the controller. The desired shape
of the combined Bode plot, that is the frequency response of the loop transfer function
including the controller and the process, is primarily characterized by

1. stability: the gain margin (the magnitude of the plot at the frequency when the phase
is −180◦), the phase margin (the difference of the phase of the frequency response
from the −180◦ at the frequency that the magnitude crosses 0 dB), i.e., if the phase
of the frequency response at that frequency is −150◦, the phase margin is +30◦),

2. speed of response (bandwidth): cross-over frequency (the frequency at which the
magnitude plot crosses 0 dB) which determines the speed of response (bandwidth)
of the closed loop system,

3. steady-state response and disturbance rejection: gain of the loop transfer function
at the low frequency range (the higher the low frequency gain is, the smaller the
steady-state error and the better the disturbance rejection against low frequency
disturbances),

4. noise rejection: gain of the loop transfer function at the high frequency range should
be low in order to reject high frequency noise.

2.12.7 Practical Implementation Issues of PID Control

Anti-Windup Integral Control When integral control is used in a control system
which has actuator saturation, the integral control can very adversely affect the transient
response and the stability of the closed loop system. Almost all practical control systems
have actuators with saturation. All physical actuation components have limits on the output
they can provide, that is a valve can be fully open, an electric motor can provide a known
maximum torque or force, an amplifier output voltage would be limited to a maximum
supply voltage. When an actuator saturates, the control output no longer changes, effectively
rendering an open loop control system. During that time, if the error sign does not change,
the output of the integrator continues to increase even though the actuator is saturated.
When the error sign changes, and the control signal sign should change, the integral control
component may prevent that due to its large contribution to the control signal that is a
result of the “accumulation” (integral) of the past errors. This is called integrator windup. It
results in poor transient response and possibly in stability problems. The solution is then to
add a component that will have an anti-windup function on the integrator. In digital control,
the easiest and most common method of implementing the integrator anti-windup is to stop
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FIGURE 2.48: PID controller with integrator anti-windup.

executing the integral term whenever the actuator saturates. The following code segment
shows an example of a digital PID control with integrator anti-windup.

% PID Control with Intergator Anti-windup: Version 1
% T is sampling period.
% K_p, K_d, K_i are PID gains,
% e and edot are error signal and its time derivative
...
...
if abs(u_c) < u_max

u_i = u_i + (K_i * e) * T ;
elseif abs(u_c) >= u_max

u_i = u_i ;
endif
u_c = K_p * e + K_d * edot + u_i ;
...

This means that during the actuator saturation, the integration function of the controller is
turned off.

Let the parameters of the control system shown in Figure 2.48 be as follows:

G(s) = 1∕s2 (2.162)

umax = ±2 (2.163)

Kp = 10.0, KD = 3.0, KI = 2.0 (2.164)

and the commanded position is a unit step change function starting at time t = 0.5 s. The
simulation results for commanded position, actual position, total control signal, and integral
action control signal are shown for PID control alone and PID control with integrator anti-
windup. It is clear that the anti-windup implementation of stopping the integral operation
as soon as the actuator saturates improves the transient response (Figure 2.49).

Derivative Control The derivative control takes the derivative of the input signal
(i.e., error signal) and multiplies it with a gain. The derivative control has the advantage of
adding damping to the system, hence increasing its stability. However, it also amplifies the
high frequency noise content in the signal. Therefore, if the signal has high frequency noise
content, instead of pure derivative control an approximation to it with a low pass filter in
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series should be implemented. In other words, the derivative control may be modified as

ud(s) = KD s e(s) (2.165)

ud(t) = KD ⋅
de(t)

dt
(2.166)

which should be modified to reduce its high frequency gain, and hence reduce the noise
amplification of it,

ud(s) = KD s
1

(KD∕N)s + 1
e(s) (2.167)

(KD∕N) ⋅
dud(t)

dt
= −ud(t) + KD ⋅

de(t)
dt

(2.168)

The modified derivative gain implementation basically adds a low pass filter to the pure
derivative control. The cross-over frequency of the low pass filter should be selected as high
as possible so as not to significantly change the derivative function, but also low enough
not to amplify high frequency noise. The two versions of the derivative control can be
compared in terms of their effect on the loop transfer function by considering their added
pole-zero on the s-plane and their Bode plots in the frequency domain (Figure 2.50). The
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frequency noise amplification: (a) pole-zero structure in s-plane, (b) Bode plots.
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pure derivative control adds a zero at the origin, whereas the modified derivative control
adds a zero at the origin and a pole on the negative real axis to the loop transfer function.
Similarly, the Bode plot of pure derivative control has a gain that increases to infinity as
the frequency increases to infinity. Whereas, the gain of the modified derivative control has
a finite gain as frequency goes to infinity (Figure 2.49). The MATLAB® code segment to
obtain the Bode plots of the pure derivative control and derivative with a first-order pole
control is given below.

Kd= 1.0 ;
N = 10.0 ;
num1 = [Kd 0] ; den1 = [1] ; sys1=tf(num1,den1) ; % Kds
num2 = [Kd 0] ; den2 = [Kd/N 1] ; sys2=tf(num2,den2) ; % 1/s
figure(1) ; grid on; % Bode Plots
subplot(1,2,1) ; bode(sys1); grid on;
subplot(1,2,2) ; bode(sys2); grid on;

The high frequency gain of the modified derivative control can be made almost zero
by adding a second first-order low pass filter in series with the first one.

ud(s) = KD s ⋅
1

(KD∕N1)s + 1
⋅

1
(KD∕N1)s + 1

⋅ e(s) (2.169)

Another way to implement a practical PD (proportional and derivative) control is to
implement it as a phase-lead compensator, that is

u(s) = (KDs + Kp) ⋅ e(s) (2.170)

u(s) =
(KDs + Kp)

(Tfs + 1)
⋅ e(s) (2.171)

where the last equation is an approximation to a PD control. This type of filter is called a
phase-lead filter since for Tf < (KD∕Kp), that is Tf = 0.1 ⋅ (KD∕Kp), the phase of the filter
is positive, which is why it is called a phase-lead filter.

Another common modification to derivative control is to use it only on the feedback
signal (output sensor signal) instead of the error signal if the command signal has disconti-
nuities, that is step changes in the command signal where the derivative at the discontinuity
is infinite. With this modification, the transient response of the system is improved due to
avoided discontinuous and large variations in the control signal, such as

e(s) = r(s) − y(s) (2.172)

ud(s) = KD s ⋅
1

(KD∕N)s + 1
⋅ (−y(s)) (2.173)

Other Practical Variations of PID Control Figure 2.51 shows variations of
the PID control algorithm in real-world applications. However, it should be noted that all of
these variations are not necessarily implemented in one given application. So far, we have
discussed the P-I-D (proportional, integral, and derivative) gains of the PID controller. In
addition we also discussed the integral anti-windup to deal with actuator saturation, and a
more practical application of derivative control to reduce effects of noise in the error signal.
In this figure we illustrate the following practical modifications to the PID controller.

1. Velocity and acceleration feedforward terms are used to improve the transient
response. The velocity feedforward term (Kvf) helps improve the overshoot and
raise time by effectively commanding a larger control signal before the velocity error
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FIGURE 2.51: Practical implementation and various modifications of PID control algorithm:

(i) velocity and acceleration feedforward, (ii) deadband and limit on error passed on to the

servo loop, (iii) enable/disable integral action, (iv) friction compensation, (v) gravity

compensation, (vi) notch filters, (vii) control signal limit.

gets large. The acceleration feedforward (Kaf) term approximately tries to cancel or
reduce the inertial effects on the dynamic response.

2. Deadband, applied on the error that is allowed to enter into the servo control loop, is
sometimes useful in some applications, when a certain amount of error is acceptable
and it is more important to hold the output steady instead of trying to achieve perfect
zero error. Similarly, limiting the maximum value of the error passed on to the servo
loop that is multiplied with the PID gains further might improve transient response
and reduce overshoot.

3. In some cases, integral control maybe completely enabled or disabled. For instance,
we may disable the integral control while in transient response phase, that is derivative
of the command signal is not zero, and then enable it in steady-state condition when
derivative of command signal is zero. In motion control applications, if the closed
loop control variable is the position, then the derivative of the command signal is the
commanded velocity.

...

if ( (dot_theta_cmd) != 0)
Ki = 0.0

else
Ki = Ki_original

end

u_i = u_i + K_i * e * T_sampling

...

4. Friction is a common problem in motion control systems. If the friction force/torque is
known approximately as a function of speed and/or position, it can be compensated for
in the feedforward or feedback path. Compensating in feedforward is more reliable
in terms of stability. Compensating in the feedback block may lead to instability
due to the stick-slip type discontinuous nature and variations in the actual friction
conditions.
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5. Gravitational load can be compensated for as a function of the measured position
and inertia of the of the controlled axis. In nonlinear mechanisms and varying load
conditions, a conservative value of effective inertia may be used or a more detailed
inertia estimation algorithm may be used to support this control function.

6. Notch filters are used to reduce the likelihood of exciting the structural resonance
frequencies of the controlled sytem by minimizing the frequency content of the
control signal in the vicinity of the resonant frequencies. If there is only one resonant
frequency, then only a single second-order digital Notch filter would be sufficient.
If there are multiple resonant frequencies of concern, then multiple Notch filters in
series should be used.

7. Finally, the output magnitude of the control signal to the amplifier may be limited
at the controller level by a saturation function. In some cases, the maximum and
minimum values of the control signal may need to be different, that is the absolute
value of maximum and minimum values do not have to be same (i.e., umax = 10.0
and umin = −5.0).

8. Other practical aspects of PID control implementation are at the higher (supervisory)
level where an algorithm would set the maximum and minimum allowed limits on
the commanded position, commanded velocity, commanded acceleration, following
error to send a warning message to the user, following error to stop the closed loop
control (fatal error). The command signals would not be allowed to exceed these
limits. In addition, the maximum output control signal (umax) and root-mean-square
value (uRMS) value of the output signal can be monitored to protect the amplifier and
actuator from overheating. If these values are exceeded, the control logic may reduce
the control signal and/or send a warning signal to the user or shut-down the closed
loop control algorithm as a fault condition (i.e., when the maximum control signal
level is exceeded or the RMS control signal level is exceeded).

2.12.8 Time Delay in Control Systems

Time delay is a common problem in control systems. It typically occurs due to transport
delay or actuator response delay. A pure time delay example is in a fluid or thermal control
system. Consider a system where fluid moves with speed V , an actuator (heater) adds heat
at some location, and the measurement of the temperature is taken at some downstream
location at a distance l from where the actuator is located. Clearly, any effect of the actuator
action will be measured only after a time delay of td = l

V
.

Pure time delay can be represented mathematically as follows (Figure 2.52),

u2(t) = u1(t − td) (2.174)

t
d

t
0

t tt
0

u
2
(s)

u
2
(t)

u
1
(s)

u
1
(t)

e-tds

FIGURE 2.52: Time delay in control

systems: pure time delay.
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FIGURE 2.53: A closed loop control system with a process which has pure time delay.

which states that the u2(t) is simply td time period delayed version of u1(t). Let the Laplace
transform of u1(t) be U1(s), and the Laplace transform of u2(t) be U2(s); it can be easily
shown from the application of Laplace transform equation that

L{u2(t)} = L{u1(t − td)} (2.175)

= e−tds ⋅ U1(s) (2.176)
U2(s)

U1(s)
= e−tds (2.177)

which shows that the transfer function of pure time delay is e−tds where td is the magnitude
of the time delay.

Consider the closed loop control system shown in Figure 2.53. When td = 0.0, there
is no time delay in the loop. The closed loop transfer function is

Y(s)
R(s)

= Ke−tds

(s + a) + Ke−tds (2.178)

and the closed loop system characteristic equation which determines the closed loop pole
locations is

Δcls(s) = (s + a) + Ke−tds = 0 (2.179)

= 1 + K
e−tds

s + a
= 0 (2.180)

Figure 2.54 shows the root locus of the closed loop system poles for td = 0.0, and two
different approximations to the pure time delay: one with a first-order filter and one with a
second-order filter,

e−tds ≈ 1
tds + 1

; Approximation 1 (2.181)

e−tds ≈ 1
(tds + 1)2

; Approximation 2 (2.182)

Clearly, the time delay approximations show that it has destabilizing effect on the closed
loop pole locations. When the time delay does not exist (td = 0.0), the closed loop system
is stable for all values of K : 0 ⟶ ∞. When a two-pole filter approximation is made to
a non-zero time delay, the closed loop system is stable only for the range K : 0 ⟶ K∗,
where

K∗ : 1 + K∗ 1
(tds + 1)2

1
s + a

|s=jw = 0.0 (2.183)

and unstable for K > K∗.
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FIGURE 2.54: Root locus of the closed loop system poles for (a) no time delay (td = 0.0), and

(b) and (c) two different approximations to the pure time delay (td ≠ 0.0): one with a first-order

filter and one with a second-order filter, and (d) pure time delay accurately taken into account

without approximation.

A more detailed analysis of the root locus without approximation to the time delay
shows that the closed loop root locus would have infinite number of branches and all of
them would eventually go to the right hand plane for large values of K. The nature of the
infinite number of branches of the root locus can be observed from the fact that

1 + K ⋅ e−tds ⋅
1

(s + a)
= 0 (2.184)
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where

e−tds = e−tdRe(s) ⋅ e−jtdIm(s) (2.185)

= (Real Number) ⋅ e−jtdw (2.186)

e−jtdw = cos(tdw) − j sin(tdw) (2.187)

where the cos(tdw) and sin(tdw) terms have an infinite number of roots for w. Each solution
for w corresponds to a point on a separate branch of the root locus. The most significant
branch of the infinite number of root locus branches is the one closest to the origin. It is
that branch that goes unstable before the other branches, and hence dominates the transient
response and stability of the closed loop system.

While accurate analysis of a pure time delay in the root locus is rather difficult due
to the infinite number of branches, the analysis in the frequency domain is rather easy.
The Bode plot of a pure time delay is simply a unit magnitude and linear phase angle as a
function of frequency. However, when we plot the phase angle in logarithmic scale of the
frequency, it looks nonlinear (Figure 2.55a).

G1(jw) = e−tds|s=jw (2.188)

= e−tdjw (2.189)

= 1.0 ⋅ e−j(tdw)) (2.190)|G1(jw)| = 1.0 (2.191)

𝜓[rad] = −td s ⋅ w [rad∕s] (2.192)

𝜓[deg] = −57.3 deg∕s td s ⋅ w [rad∕s] (2.193)

The Bode plot of the pure time delay is shown in Figure 2.55a.

s=tf(’s’);
G1 = exp(-1.0*s) ; % Time delay

G2 = 1/(s+1) ;

G3 = G1 * G2;

figure(1) ; grid on;

subplot(2,1,1) ; bode(G1,’b’); grid on; % Bode plot of time delay only: eˆ(-td s)

subplot(2,1,2) ; bode(G1,’b’,G2,’g’,G3,’r’); grid on;

% Bode plot of, eˆ(-td s), 1/(s+1) and eˆ(-td s) / (s+1)

Notice that the effect of the time delay on the stability (through phase margin and
gain margin measures) of the closed loop system is obvious: it adds phase lag to the loop
transfer function and reduces its stability margins. Eventually, it will make the closed loop
system unstable as the closed loop gain gets larger. Figure 2.55b shows the Bode plot of a
closed loop system (Figure 2.53), with and without time delay in the loop transfer function,
for the following parameters a = 1.0, td = 1.0 s. Clearly, the closed loop system is stable
for all values of the gain K when there is no time delay, as was confirmed by the root
locus as well. However, when the time delay is taken into account, the closed loop system
eventually goes unstable due to added phase lag by the time delay (the same result was also
confirmed by the root locus analysis above). The closed loop system becomes unstable at a
value of gain K where the phase margin becomes zero. This gain value can be determined
from the Bode plot as follows:

1. Read the value of frequency when the total phase of the loop transfer function
(including the time delay) is −180◦: w = w∗.

2. At that frequency, read the value of the loop transfer function gain, |G(jw∗)|.
3. The closed loop gain which defines the stability margin is: K∗ = 1|G(jw∗)| .
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FIGURE 2.55: (a) Bode plot of pure time delay. Magnitude is constant

(0 dB = 1.0 Output Unit∕Input Unit) as a function of frequency. The phase angle is linear as

function of frequency, but looks nonlinear in logarithmic scaled x-axis. (b) Effect of pure time

delay on the stability and performance of a closed loop control system, as displayed by the

Bode plot comparisons.

Notice that these calculations can be directly read from the Bode diagram due to the additive
nature of logarithmic scale, since

20 log10 K∗ = 20 log10
1|G(jw∗)| (2.194)

20 log10 K∗ = 20 log10 1 − 20 log10 |G(jw∗)| (2.195)

20 log10 K∗ = 0 − 20 log10 |G(jw∗)| (2.196)

20 log10 K∗ = −20 log10 |G(jw∗)| (2.197)

K∗ = 1|G(jw∗)| (2.198)

which means that, in dB scale, the gain value that defines the stability limit is the negative
value of the loop transfer function’s magnitude in logarithmic scale (the inverse of the loop
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transfer function gain in linear scale) at the frequency where the loop transfer function has
a phase angle of −180◦.

Time delay is a serious problem in closed loop control systems in that it can make
an otherwise stable system unstable. In order to keep the system stable, loop gain must be
limited. Therefore, the overall price paid (to keep the system stable despite the time delay)
is lower bandwidth due to lower loop gain. If the time delay is known in advance accurately,
one way to deal with its destabilizing effects is to use the Otto-Smith regulator type controller
(Figure 2.56a). The Otto-Smith regulator accomplishes closed loop stability behavior as if
there is no time delay, while maintaining the same time delay in the closed loop system as
the open loop system time delay. In other words, the Otto-Smith regulator does not try to
get rid of or change the time delay. It keeps the time delay, plus adds the desired closed
loop poles as if there was no time delay. It can be shown that Figure 2.56a is equivalent to
Figure 2.56b. However, the Otto-Smith regulator can be successfully implemented only if
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FIGURE 2.56: (a) Otto-Smith regulator implemented as analog controller, (b) equivalent

implementation as analog controller, (c) digital implementation.



CLOSED LOOP CONTROL 123

the time delay is known in advance accurately. Digital implementation of the time delay
logic in the control loop (Figure 2.56c) requires Nd = td∕Tsample number of sampling time
delays in the processed signal, where Tsample is the sampling period of the digital controller,
that is

e−tds ≈ z−Nd (2.199)

that is, td = 2.0, Tsample = 0.1, then Nd = 20. In order to implement this time delay in a
digital Otto-Smith regular controller, we would have to keep track of the past 20 samples
of the control signals.

Example: PID Control of a Motion System with Friction Many mechan-
ical motion systems have friction opposing the motion. When two surfaces move against
each other, the resistance force (or torque) before the relative motion starts is larger than the
resistance force once the motion has started. This friction resists motion. For the relative
motion to start, the applied external force must be larger than the friction force. Further-
more, that initial friction force, so called “stiction” (Coulomb) friction, is not constant
and varies for the same system due to the condition of the surfaces and lubrication levels.
The dynamic model of such a basic motion system is a mass-force system with friction as
follows,

m ẍ(t) = fcontrol(t) − ffriction(t) (2.200)

where ffriction(t) represents the friction in the system. If the mass is at rest, the only way
for the motion to start is for the control force to be larger than the friction force. Once the
motion starts, the net force (difference between control force and friction force) determines
the acceleration and deceleration of the mass. Again, once it stops, the motion can start
again only if the control force is larger than the friction force.

Without the integral control action, that is the PD controller, a closed loop position
control system which has stiction friction will result in a finite steady-state positioning
error. The reason is that when the control force, determined by the PD controller, is less
than the friction force, the motion of the mass will start to decelerate and come to zero
velocity. At that point, if the actual position is a finite value (the likelihood of the actual
position being exactly the desired position is a random possibility) the control signal from
the PD controller will be only due to the proportional controller since the mass speed is
zero, and that control signal value would be smaller than friction force. As a result, the
mass cannot move and will be stuck at that position with the finite steady-state position
error. The following equations describe this condition,

fcontrol(t) = Kpe(t) + Kdė(t) (2.201)

fcontrol(t) < ffriction(t) ⟶ ẍ(t) < 0.0 (2.202)

⟶ ẋ(t) = 0.0 eventually (2.203)

fcontrol(t) = Kpe(t) when ẋ(t) = 0.0 (2.204)

fcontrol(t) < ffriction(t) ⟶ ẍ(t) = 0.0 and ẋ(t) = 0.0 no motion. (2.205)

With integral control action, that is a PID controller, a closed loop position system will
tend to oscillate about the target position which is referred to as limit cycle oscillations. This
is a fundamental condition that is common in many closed loop motion control systems.
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This behavior can be explained by simply adding the effect of the integral control action
to the PD control behavior above. When the position of the inertia stops at a finite error,
integral control will eventually build the control signal to be larger than the friction and
will be able to start the motion again.

fcontrol(t) = Kpe(t) + Kd ė(t) + ∫ e(𝜏)d𝜏 (2.206)

But, in the process of doing so, it will result in back and forth overshoot behavior, and
hence result in oscillations about the desired position.

The remedy is either to design and maintain the system to minimize the stiction
friction such that the resulting position error is acceptably small, or to predict it and
compensate for it in the control algorithm explicitly based on the friction prediction.
For a given stiction friction level, the positioning error cannot be guaranteed to be
zero by any PID type controller unless there is a way to eliminate the source of the
stiction friction. Friction prediction and compensation in real-time to achieve zero
positioning error is not practically realistic due to the random and highly varying nature of
friction physics.

The simulation results and physical explanations are shown in Figure 2.57.
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FIGURE 2.57: Open loop system which has stiction friction and a PID closed loop controller.

Due to the stiction friction, the integral action of the PID controller causes a cycle of oscillation,

as seen on the simulation results for the PID controller on the right. Without the integral

control, there will be a finite steady-state error, as seen on the simulation results for the PD

controller on the left.



CLOSED LOOP CONTROL 125

2.13 TRANSLATION OF ANALOG CONTROL TO
DIGITAL CONTROL

A controller can be completely analyzed and designed using continuous time methods. The
resultant controller is an analog controller which can also be implemented in hardware
using op-amps. The controller can be approximated with a digital controller which would
be implemented using a digital computer. The fundamental tool is the approximation of
differentiation by finite differences.

The basic problem is the following: given Gc(s) (analog controller transfer function)
find Hc(z) (digital controller transfer function) such that the closed loop system (CLS) under
a digital controller performs as close as possible to the CLS under an analog controller
(Figure 2.58).

The finite-difference approximations considered are

� forward difference approximation,
� backward difference approximation,
� trapezoidal approximation.
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There are other methods such as trapezoidal approximation with frequency pre-warping,
zero order hold (ZOH) equivalent approximation, pole-zero mapping, and first-order equiv-
alence which are not discussed here.

It should be quickly noted that as the sampling rate gets very large relative to the
bandwidth of the controller (i.e., 20 to 50 times larger), the differences between different
approximation methods becomes insignificant. Likewise, if the sampling frequency is not
very large relative to the bandwidth of the controller (i.e., 2 to 4 times larger than the con-
troller bandwidth), the differences between different approximations become significant.

2.13.1 Finite Difference Approximations

The basic concept in approximation of analog filters by digital filters is the finite dif-
ference approximation of differentiation and integration. Let us consider an error sig-
nal, e(t) and its differentiation and integration, and the samples of the error signal
{… , e(kT − T), e(kT), e(kT + T),…},

d
dt

[e(t)],

(
∫

t

to

e(𝜏)d𝜏

)
⟺ (e(kT), e(kT − T),…) (2.207)

Consider a first-order transfer function example,

u(s)
e(s)

= G(s) = a
s + a

(2.208)

u̇(t) + au(t) = ae(t) (2.209)

u(t)|t=kT = ∫
kT

0
[−au(𝜏) + ae(𝜏)]d𝜏 (2.210)

Discretize the integration

u(kT) = ∫
kT−T

0
[−au(𝜏) + ae(𝜏)]d𝜏 + ∫

kT

kT−T
[−au(𝜏) + ae(𝜏)]d𝜏 (2.211)

u(kT) = u(kT − T) + ∫
kT

kT−T
[−au(𝜏) + ae(𝜏)]d𝜏 (2.212)

Now, we consider three different finite difference approximations where each one
makes a different approximation to the integration term in the above equation.

(i) Forward difference approximation:

u(kT) = u(kT − T) + T[−au(kT − T) + ae(kT − T)] (2.213)

u(kT) = (1 − aT) u(kT − T) + a Te(kT − T) (2.214)

Notice that this equation can be easily implemented in software on a digital computer.
At every control sampling period, all that is needed is the value of the output at the
previous cycle and the error. The algorithm involves two multiplication and one
addition operation.

In order to develop a more generic relationship between the analog and digital
controller approximate conversion, we take the Z-transform of the above difference
equation,

[1 − (1 − aT)z−1]u(z) = aTz−1e(z) (2.215)

Notice that a single sampling period of delay in a signal adds a z−1 to the transform
of the signal. Likewise, an advance of a single sampling period in a signal adds a z
to the transform of a signal. Using that principle, it is easy to take the Z-transform
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of difference equations and inverse Z-transform of z-domain transfer functions to
obtain difference equations. For real-time algorithmic implementation, we need the
difference equation form of the controller.

u(z)
e(z)

= aTz−1

1 − (1 − aT)z−1

= a.T
z − (1 − aT)

= a
((z − 1)∕T) + a

(2.216)

Notice the substitution relationship between s and z using this approximation

a
s + a

⟶ a
z−1
T

+ a
(2.217)

s ⟶ z − 1
T

; z = sT + 1 (2.218)

(ii) Backward difference approximation:
Another possible approximation is to use the backward difference rule

u(kT) = u(kT − T) + T [−a u(kT) + a e(kT)] (2.219)

Again, the above equation is in a form suitable for real-time implementation in
software. In order to obtain a more generic relationship for this type of approximation,
let us take the Z-transform of the above equation,

u(z) = z−1u(z) − T a u(z) + T a e(z) (2.220)

(1 + Ta − z−1)u(z) = T a e(z) (2.221)

u(z)
e(z)

= Ta
1 + Ta − z−1

= zTa
z − 1 + Taz

= a
z−1
zT

+ a
(2.222)

The backward approximation is equivalent to the following substitution between s
and z,

a
s + a

⟶ a
z−1
Tz

+ a
(2.223)

s ⟶ z − 1
Tz

(2.224)

(iii) Trapezoidal approximation (Tustin’s method, bilinear transformation)
Finally, we will consider the trapezoidal rule approximation among the finite differ-
ence approximations to the integration,

u(kT) = u(kT − T) + T
2

[−a[u(kT − T) + u(kT)] + [a(e(kT − T) + e(kT)]] (2.225)

Similarly, we take the Z-transform of the above equation,

zu(z) = u(z) + T
2

[−a(1 + z)u(z) + a(1 + z)e(z)] (2.226)

[
z + Ta

2
(1 + z) − 1

]
u(z) = T ⋅ a

2
(1 + z)e(z) (2.227)
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u(z)
e(z)

=
T
2
.a(1 + z)

(z − 1) + T .a
2

(1 + z)

= a
2
T

z−1
z+1

+ a
(2.228)

The equivalent substitution relationship between s and z is
a

s + a
⟷ a

2
T

z−1
z+1

+ a
(2.229)

s ⟷ 2
T

z − 1
z + 1

(2.230)

A summary of finite difference based digital appoximation of analog filters is given
below.

method approximation

FWD − rule s ⟵ z − 1
T

BWD − rule s ⟵ z − 1
Tz

Trapezoidal − rule s ⟵ 2
T

z − 1
z + 1

(2.231)

2.14 PROBLEMS

1. Consider a time domain signal y(t) = 1.0 ⋅ sin(2𝜋 ⋅ 10t) which is periodic. Select proper sampling
frequencies to illustrate the following sampling effects.

1. A sampling period that is fast enough for accurate sampling and does not violate the sampling
theorem.

2. A sampling period that illustrates aliasing problem as a result of sampling.
3. A sampling period that illustrates the beat phenomenon as a result of sampling.
4. A sampling period that illustrates the hidden oscillations problem as a result of sampling.

Explain your time domain results with the frequency content of the sampled signals. Plot the original
signal and sample signals in the time domain. Plot the magnitude component of the Fourier series of
the original signal and the Fourier transform of the sampled signals as a function of frequency.

2. Consider a mass-force system. Let m = 5 kg. A controller decides on the force using a PD
controller on position error. Select the PD controller gains such that the step response of the closed
loop system has no more than 5% overshoot, and the settling time is less than 2.0 s. Confirm your
results with a Simulink® or MATLAB® simulation.

3. What is the effect of switching the sign on the controller, that is u(s) = (Kp + Kds)(x(s) − xcmd(s))
(this can easily happen in practice by swapping the signal input lines to the analog PD controller
between the command signal and the sensor signal) or by switching the polarity of the controller
output (sign change once in the controller)? What happens if we switch the polarity of both the
command signal and sensor signal as well as the output polarity of the controller (sign change twice
in the controller)? Use a simple mass-force system model under a PD control algorithm to simulate
your analysis and present results.

4. Consider a mass-force system. Let m = 5 kg. A controller decides on the force using a PID type
controller on velocity error. Let velocity commands be r(t) = 10 ⋅ t. It is assumed that the feedback
sensor provides the velocity measurement of the mass. The controller acts on the velocity error.

1. What is the steady-state error when a P-type controller is used?
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2. What is the steady-state error when a PD-type controller is used?
3. What is the steady-state error when a PI-type controller is used?

Confirm your results with a Simulink® or MATLAB® simulation.

5. Consider the dynamics of a DC motor speed control system and its current mode amplifier.
Consider the the motor torque–speed transfer function is a first-order filter and the current mode
amplifier input–output dynamics is also a first-order filter.

w(s)
T(s)

= 100
0.02s + 1

(2.232)

T(s) = 10 ⋅ i(s) (2.233)
i(s)

icmd(s)
= 10

0.005s + 1
(2.234)

Consider that the current command is generated by an analog controller (PID type) using motor speed
as feedback signal and commanded velocity signals.

(a) Ignore the filtering effect of the current amplifier, and determine the locus of closed loop poles
(root locus) of the closed loop control system under three different controllers: P, PD, PI. In each
case vary proportional gain as the root locus parameter and select different values of derivative
and integral gains.

icmd(s) = Kp ⋅ (wcmd(s) − w(s); P control (2.235)

= (Kp + Kds) ⋅ (wcmd(s) − w(s); PD control (2.236)

=
(

Kp +
Ki

s

)
⋅ (wcmd(s) − w(s); PI control (2.237)

(b) Repeat the same root locus analysis by including the amplifier dynamics in the analysis. Discuss
your results in terms of the effect of selecting different controller types (P, PD, PI), their gains,
and the effect of additional filter type dynamics in the control loop.

(c) Consider the same DC motor control problem, except this time consider the closed loop position
control problem. All other components are same, except that the commanded signal is the desired
position signal and the feedback signal is the position signal. As a result, the only difference
in the model is the torque–position transfer function, which has one additional integrator term
compared to the speed control problem,

𝜃(s)
T(s)

= 100
s(0.02s + 1)

(2.238)

Repeat the analysis for part (a) and (b) for the closed loop position control of a DC motor problem.

6. Consider the dynamics of a DC motor speed control system and its current mode amplifier.
Consider the the motor torque–speed transfer function is a first-order filter and the current mode
amplifier input–output dynamics is also a first-order filter.

w(s)
T(s)

=
Km

𝜏ms + 1
(2.239)

T(s) = KT ⋅ i(s) (2.240)

i(s)
icmd(s)

=
Ka

𝜏as + 1
(2.241)

Assume that there is a load torque acting as a disturbance on the motor and that it is in the form of
(i) step function, (ii) a ramp function. If we want to make sure that the steady-state speed error due
to the load torque is zero, what kind of controller is required in order to deal with each type of
disturbance (load) torque? Why can’t a PD type controller do the job?
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7. Given an analog PD controller,

Gc(s) = Kp + Kd ⋅ s (2.242)

(a) obtain its digital PD controller equivalent for sampling period T using all of the digital approxi-
mation methods discussed above.

(b) Let Kp = 1.0, Kd = 0.7. Plot the Bode diagrams of the analog and the digital approximations for
three different values of T = 1∕5 s, 1∕50 s, 1∕500 s.

8. Given an analog PI controller,

Gc(s) = Kp + Ki ⋅ (1∕s) (2.243)

(a) obtain its digital PI controller equivalent for sampling period T using all of the digital approxi-
mation methods discussed above.

(b) Let Kp = 1.0, Ki = 0.1. Plot the Bode diagrams of the analog and the digital approximations for
three different values of T = 1∕5 s, 1∕50 s, 1∕500 s.

9. Given an analog PID controller,

Gc(s) = Kp + Ki ⋅ (1∕s) + Kd ⋅ s (2.244)

(a) obtain its digital PID controller equivalent for sampling period T using all of the digital approxi-
mation methods discussed above.

(b) Let Kp = 1.0, Ki = 0.1, Kd = 0.7. Plot the Bode diagrams of the analog and the digital approxi-
mations for three different values of T = 1∕5 s, 1∕50 s, 1∕500 s.

10. Consider a DC motor, its amplifier, a closed loop position controller, and load which is connected
to the motor via a gear reducer (Figure 2.59). Consider an analog controller of type PI,

D(s) = u(s)
e(s)

= Kp + Ki
1
s

(2.245)

e(s) = 𝜃d(s) − 𝜃(s) (2.246)

the amplifier model,

i(s) = Ka ⋅ u(s) (2.247)
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the DC motor model,

Tm(s) = Kt ⋅ i(s) (2.248)

𝜃(s) = 1
(Jts2 + cs)

⋅ (Tm(s) − Tl(s)) (2.249)

Let the parameters of the components be as follows: Ka = 1.0, Kt = 1.0, c = 10.0, Jt = J1 +
1

N2 J2.
J1 = 0.1, N = 5, J2 = 1.0.

1. Find the closed loop system transfer function between the commanded position signal, load
torque, and actual position signal. Select the gains of the PI controller Kp and Ki so that the
step response setting time is about 100 ms with overshoot of about no more than 5%, and that
the steady state error in response to a step disturbance load, Tl(t) = 1.0 Step(t), should be zero
(assuming no actuator saturation).

2. Implement the PI controller digitally. Use the trapezoidal rule for the digital approximation.
Neglect the effect of quantization errors due to finite resolution of ADC and DAC. Let sampling
period to be Tsample = 1.0 ms = 0.001 s. Obtain the digital version of the PI controller in the
z-domain as a transfer function, and in the time domain as a difference equation expression.

3. Simulate in the time domain the response of the closed loop system to a step input command
and disturbance torque condition,

𝜃d(t) = 1.0 for t > 1.0 s (2.250)

Tl(t) = 1.0 for t > 2.0 s (2.251)

for both analog controller implementation and digital controller implementation.





CHAPTER 3
MECHANISMS FOR MOTION
TRANSMISSION

3.1 INTRODUCTION

Every computer controlled mechanical system that involves motion is built around a basic
frame of a mechanism which is used to transmit the motion generated by the actuators to
the tool. The actuators provide purely rotary or purely linear motion. For instance, a rotary
electric motor can be viewed as a rotary motion source while a hydraulic or pneumatic
cylinder can be viewed as a linear motion source. In general, it is not practical to place the
actuator exactly at the location where the motion of a tool is needed. Therefore, a motion
transmision mechanism is needed between the actuator and the tool. Motion transmission
mechanisms perform two different roles,

1. they transmit motion from actuator to tool when the actuator cannot be designed into
the same location as the tool with the desired motion type,

2. they increase or reduce torque and speed between input and output shafts while
maintaining the power conservation between input and output (output power is input
power minus the power losses).

The most common motion transmission mechanisms fit into one of three major categories:

1. rotary to rotary motion transmission mechanisms (gears, belts, and pulleys),

2. rotary to translational motion transmission mechanisms (lead-screw, rack-pinion,
belt-pulley),

3. cyclic motion transmission mechanisms (linkages and cams).

Common to all of these mechanisms is that an input shaft displacement is related to the
output shaft displacement with a fixed mechanical relationship. During the conversion,
there is inevitable loss of power due to friction. However, for analysis purposes here, we
will assume ideal motion transmission mechanisms with 100% efficiency.

The efficiency of a motion transmission mechanism is defined as the ratio between
the output power and input power,

𝜂 =
Pout

Pin
(3.1)

Mechatronics with Experiments, Second Edition. Sabri Cetinkunt.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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FIGURE 3.1: Rotary to rotary motion conversion mechanisms: gear mechanism.

The efficiency can vary from 75 to 95% for different types of motion transmission mecha-
nisms. If we assume perfect efficiency, then

Pin = Pout (3.2)

which is a convenient relationship in determining the input–output relationships.
The mechanical construction of the mechanism determines the ratio of input dis-

placement to output displacement, which is called the effective gear ratio. The effective
gear ratio is not influenced by efficiency. If a mechanism is not 100% efficient, the loss is a
percentage of the torque or force transmitted. In other words, let us consider a simple gear
arrangement (Figure 3.1) with a gear ratio of N = Δ𝜃in∕Δ𝜃out,

Pout = 𝜂 ⋅Pin (3.3)

Tout ⋅ �̇�out = 𝜂 ⋅ Tin ⋅ �̇�in (3.4)

and regardless of the efficiency,

N =
�̇�in

�̇�out

(3.5)

Hence,

Tout = 𝜂 ⋅N ⋅ Tin (3.6)

where the torque output is reduced by the efficiency of the mechanism.
The effective gear ratio of a mechanism is determined using the energy equations.

The kinetic energy of the tool on the output is expressed in terms of output speed. Then, the
output speed is expressed as a function of the input speed. Since both expressions represent
the same kinetic energy, the effective gear ratio is obtained. For the following discussion,
we refer to the load inertia (Jl) and load torque (Tl) as being applied on the output shaft.
In other words, Jl = Jout , Tl = Tout. The reflected values of these on the input shaft side
are referred to as Jin,eff = Jin, Tin,eff = Tin. For instance, for a rotary gear reducer, let KEl
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be the kinetic energy of the load with inertia Jl and output speed �̇�out. In order to provide
such an energy, the actuator must provide a kinetic energy plus the losses. Hence,

KEl = 𝜂 ⋅KEin (3.7)

KEl =
1
2
⋅ Jl ⋅ �̇�

2
out (3.8)

= 𝜂 ⋅
1
2
⋅ Jin,eff ⋅ �̇�

2
in (3.9)

= 1
2
⋅ Jl ⋅ (�̇�in∕N)2 (3.10)

Hence, the effective reflected inertia is

Jin,eff =
1

𝜂 ⋅N2
⋅ Jl (3.11)

In summary, an ideal motion transmission mechanism (efficiency is 100%, 𝜂 = 1.0)
has the following reflection properties between its input and output shafts

�̇�in = N ⋅ �̇�out (3.12)

Jin,eff =
1

N2
⋅ Jl (3.13)

Tin,eff =
1
N

⋅ Tl (3.14)

where N is the effective gear ratio. The efficiency factor of the motion transmission mech-
anism is often taken into account by a relatively large safety factor. If the efficiency factor
is to be explicitly included in the actuator sizing calculations, then the following relations
hold,

�̇�in = N ⋅ �̇�out (3.15)

Jin,eff =
1

N2 ⋅ 𝜂
⋅ Jl (3.16)

Tin,eff =
1

N ⋅ 𝜂
⋅ Tl (3.17)

It is important to note that in either direction of power transmission, the efficiency fac-
tor is in the denominator of the equations which indicates loss of power due to transmission
efficiency in either direction.

A motion transmission mechanism is characterized by the following parameters:

1. The main characteristic of a motion transmission mechanism is its gear ratio. This
is sometimes called the effective gear ratio since the motion conversion may not
necessarily be performed by gears.

2. Efficiency: efficiency of a real gear ratio is always less than 100%. For most gear
mechanisms, forward and back drive efficiencies are same except for the lead-screw
and ball-screw type mechanisms. In such mechanisms, it is appropriate to talk about
rotary to linear motion conversion efficiency, 𝜂f , and linear to rotary motion conversion
efficiency, 𝜂b. For ball-screw, the typical values of the efficiency coefficients are
𝜂f = 0.9 , 𝜂b = 0.8, and for lead-screws they vary as a function of the lead angle. The
lead angle is defined as the angle the lead helix makes with a line perpendicular to
the axis of rotation. As the lead (linear distance traveled per rotation) increases, so
does the lead angle, hence the efficiency.
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3. Backlash: there is always an effective backlash in motion transmission mechanisms.
The backlash is given in units of arc minutes = 1∕60 degrees in rotary mechanisms,
and in inches or mm units in translational mechanisms. Notice that backlash directly
affects the positioning accuracy. If the position sensor is connected to the motor,
not to the load, it will not be able to measure the positioning error accurately due
to backlash. Therefore, if backlash is large enough to be a concern for positioning
accuracy, there has to be a position sensor connected to the load in order to measure
the true position, including the effect of backlash. In such systems, it is generally
necessary to use two position sensors (dual sensor feedback, or dual loop control):
one position sensor connected to the motor and the other position sensor connected
to the load. The motor-connected sensor is primarily used in the velocity control
loop to maintain closed loop stability, whereas the load-connected sensor is primarily
used for accurate position sensing and control. Without the motor-connected sensor,
the closed loop system may be unstable. Without the load-connected sensor, desired
positioning accuracy cannot be achieved. In systems where the backlash is much
smaller than the positioning accuracy required, the backlash can be ignored.

4. Stiffness: the transmission components are not perfectly rigid. They have finite stiff-
ness. The stiffness of the transmission box between input and output shaft is rated
with a torsional or translational stiffness parameter.

5. Break-away friction: This friction torque (or force) is an estimated value and highly
dependent function of the lubrication condition of the moving components. This is
the minimum torque or force needed at the input shaft to move the mechanism.

6. Back driveability: Motion conversion mechanisms involve two shafts, the input shaft
and output shaft. In the normal mode of operation, the motion and torque in the
input shaft are transmitted to the output shaft with a finite efficiency. Back driveablity
refers to the transmission of power in the opposite direction, that is the motion source
is provided at the output shaft and transmitted to the input shaft. Most spur gear,
belt and pulley type mechanisms are back driveable with the same efficiency in
both directions. Rotary-to-linear motion conversion mechanisms such as lead-screw
and ball-screws have different efficiencies and are not necessarily back driveable.
Ball-screws are considered back driveable for all cases. The back driveability of a
lead-screw depends on the lead angle. If the lead angle is below a certain value (i.e.,
30◦), the back driveability may be in question. Furthermore, it also highly depends on
the lubrication condition of the mechanism since it affects the friction force that must
be overcome in order to back drive the mechanism. Worm-gear mechanisms are not
back driveable. There are applications which benefit from that, such as raising a very
heavy load and in the case of power failure in the input shaft motor, the mechanism is
not supposed to back drive under gravitational force and is suppose to hold the load
in position. In short, when back driveability is required, two variables are of interest:
(i) 𝜂b efficiency in the back drive direction, and (ii) Ffric friction force to overcome
in order to initiate motion, which is highly dependent on the lubrication conditions.

3.2 ROTARY TO ROTARY MOTION
TRANSMISSION MECHANISMS

3.2.1 Gears

Gears are used to increase or decrease the speed ratio between the input and output shaft.
The effective gear ratio is obvious (Figure 3.1). Assuming that the gears do not slip, the
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linear distance traveled by each gear at the contact point is same,

s1 = s2 (3.18)

Δ𝜃1 ⋅ r1 = Δ𝜃2 ⋅ r2 (3.19)

N =
Δ𝜃1

Δ𝜃2
(3.20)

N =
r2

r1
(3.21)

Since the pitch of each gear must be same, the number of teeth on each gear is proportional
to their radius,

N =
�̇�1

�̇�2

=
N2

N1
=

r2

r1
(3.22)

where N1 and N2 are the number of gear teeth on each gear. It can be shown that for an
ideal gear box (100% power transmission efficiency),

Pout = Pin (3.23)

Tout ⋅ �̇�out = Tin ⋅ �̇�in (3.24)

Hence,

N =
N2

N1
=
�̇�in

�̇�out

=
Tout

Tin
(3.25)

The reflection of inertia and torque from the output shaft to the input shaft can be determined
by using the energy and work relationships. Let the rotary inertia of the load on the output
shaft be Jl and the load torque be Tl. Let us express the kinetic energy of the load

KE = 1
2
⋅ Jl ⋅ �̇�

2
out (3.26)

= 1
2
⋅ Jl ⋅ (�̇�in∕N)2 (3.27)

= 1
2
⋅ Jl ⋅

1
N2

⋅ (�̇�in)2 (3.28)

= 1
2
⋅ Jin,eff ⋅ (�̇�in)2 (3.29)

where the reflected inertia (inertia of the load seen by the input shaft) is

Jin,eff =
Jl

N2
(3.30)

Similarly, let us determine the effective load torque seen by the input shaft. The work done
by a load torque Tl over an output shaft displacement Δ𝜃out is

W = Tl ⋅Δ𝜃out (3.31)

= Tl ⋅
Δ𝜃in

N
(3.32)

= Tin,eff ⋅Δ𝜃in (3.33)

The effective reflective torque on the input shaft as a result of the load torque on the output
shaft is

Tin,eff =
Tl

N
(3.34)
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FIGURE 3.2: Rotary to rotary motion conversion mechanisms: timing belt and toothed pulley.

The same concept of kinetic energy and work of the tool is used in all of the other
mechanisms to determine the reflected inertia and torque between output and input shafts.

3.2.2 Belt and Pulley

The gear ratio of a belt-pulley mechanism is the ratio between the input and output diameters.
Assuming no slip between the belt and pulleys on both shafts, the linear displacement along
the belt and both pulleys should be equal (Figure 3.2),

x = Δ𝜃1 ⋅ r1 = Δ𝜃2 ⋅ r2 (3.35)

The effective gear ratio is by definition,

N =
Δ𝜃1

Δ𝜃2
(3.36)

=
r2

r1
(3.37)

=
d2

d1
(3.38)

The inertia and torque reflection between the input and output shaft has the same relationship
as the gear mechanisms.

Example Consider a spur-gear mechanism with a gear ratio of N = 10. Assume that the
load inertia connected to the output shaft is a solid steel material with diameter d = 3.0 in,
length l = 2.0 in. The friction related torque at the load is Tl = 200 lb ⋅ in. The desired
speed of the load is 300 rev∕min. Determine the necessary speed at the input shaft as well
as reflected inertia and torque.

The necessary speed at the input shaft is related to the output shaft speed by a
kinematic relationship defined by the gear ratio,

�̇�in = N ⋅ �̇�out = 10 ⋅ 300 rpm = 3000 rpm (3.39)

The inertia and torque experienced at the input shaft due to the load alone (which we call
the reflected inertia and the reflected torque) are

Jin,eff =
1

N2
⋅ Jl (3.40)

Tin,eff =
1
N

⋅ Tl (3.41)
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The mass moment of inertia of the cylindrical load,

Jl =
1
2
⋅m ⋅ (d∕2)2 (3.42)

= 1
2
⋅ 𝜌 ⋅𝜋 ⋅ (d∕2)2 ⋅ l ⋅ (d∕2)2 (3.43)

= 1
2
⋅ 𝜌 ⋅𝜋 ⋅ l ⋅ (d∕2)4 (3.44)

= 1
2
⋅ (0.286∕386) ⋅ 𝜋 ⋅ 2.0 ⋅ (3∕2)4 lb ⋅ in ⋅ s2 (3.45)

= 0.0118 lb ⋅ in ⋅ s2 (3.46)

where g = 386 in∕s2, the gravitational acceleration, is used to convert the weight density
to mass density. Hence, the reflected inertia and torque are

Jin,eff =
1

102
⋅ 0.0118 = 0.118 × 10−3 lb ⋅ in ⋅ s2 (3.47)

Tin,eff =
1

10
⋅ 200 = 20.0 lb ⋅ in (3.48)

3.3 ROTARY TO TRANSLATIONAL MOTION
TRANSMISSION MECHANISMS

The rotary to translational motion transmission mechanisms convert rotary motion to linear
translational motion. Translational motion is also refered as linear motion. Both terms will
be used interchangeably in the following discussions. In addition, torque input is converted
to force at the output. It should be noted that all of the rotary to translational motion
transmission mechanisms discussed here are back drivable, meaning that they also make
the conversion in the reverse direction.

3.3.1 Lead-Screw and Ball-Screw Mechanisms

Lead-screw and ball-screw mechanisms are the most widely used precision motion conver-
sion mechanisms which transfer rotary motion to linear motion (Figure 3.3). The lead-screw

FIGURE 3.3: Rotary to translational motion conversion mechanism: lead-screw or ball-screw

with linear guide bearings.
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is basically a precision threaded screw and nut. In a screw and nut pair, typically we turn
the nut and it advances linearly on the stationary screw. In the lead-screw, used as a motion
conversion mechanism, the nut is not allowed to make rotation around the screw, but is
supported by linear (translational) bearings to move. The screw is rotated (i.e., by an electric
motor). Since the screw is not allowed to travel, but only rotate, the nut moves translation-
ally along the screw. The tool is connected to the nut. Hence, the rotary motion of the motor
connected to the screw is converted to the translational motion of the nut and the tool.

Ball-screw design uses precision ground spherical balls in the groove between the
screw and nut threads to reduce backlash and friction in the motion transmission mechanism.
Any lead-screw has a finite backlash typically in the order of micrometer range. By using
preloaded springs, a set of spherical bearing-type balls are used to reduce the backlash.
Hence, they are called ball-screws. Most XYZ table-type positioning devices use ball-
screws instead of lead-screws. However, the load carrying capacity of ball-screws is less
than that of the lead-screws since the contact between the moving parts (lead and nut) is
provided by point contacts of balls. On the other hand, a ball-screw has less friction than
lead-screw.

The kinematic motion conversion factor, or effective gear ratio, of a lead-screw is
characterized by its pitch, p rev∕in or rev∕mm. Therefore, for a lead-screw having a pitch
of p, which is the inverse of the distance traveled for one turn of the thread called lead,
l = 1∕p in∕rev or rev∕mm, the rotational displacement (Δ𝜃 in units of rad) at the lead shaft
and the translational displacement (Δx) of the nut is related by

Δ𝜃 = 2𝜋 ⋅ p ⋅Δx (3.49)

Δx = 1
2𝜋 ⋅ p

⋅Δ𝜃 (3.50)

The effective gear ratio may be stated as

Nls = 2𝜋 ⋅ p (3.51)

Let us determine the inertia and torque seen by the input end of the lead-screw due to a load
mass and load force on the nut. We follow the same method as before and use energy–work
relations. The kinetic energy of the mass ml at a certain speed ẋ is

KE = 1
2

ml ⋅ ẋ2 (3.52)

Noting the above motion conversion relationship,

ẋ = 1
2𝜋 ⋅ p

⋅ �̇� (3.53)

Then

KE = 1
2

ml ⋅
1

(2𝜋 ⋅ p)2
⋅ �̇�2 (3.54)

= 1
2

Jeff ⋅ �̇�
2 (3.55)

Then, the effective rotary inertia seen at the input shaft (Jeff) due to a translational mass on
the nut (ml) is

Jeff =
1

(2𝜋 ⋅ p)2
⋅ml (3.56)

= 1

N2
ls

⋅ml (3.57)



MECHANISMS FOR MOTION TRANSMISSION 141

It should be noted that ml is in units of mass (not weight, weight = mass ⋅ g), and the Jeff is
the mass moment of inertia. Therefore if the weight of the load is given, Wl,

Jeff =
1

(2𝜋 ⋅ p)2
⋅ (Wl∕g) (3.58)

= 1

N2
ls

⋅ (Wl∕g) (3.59)

The lead-screw has a very large effective gear ratio effect. Notice that for p = 2, 5, 10, the
net gear ratio is N = 4𝜋, 10𝜋, 20𝜋, respectively, and the inertial reflection of a translational
mass is a factor determined by the square of the effective gear ratio.

Let us determine the reflected torque at the input shaft due to a load force, Fl. The
work done by a load force during a incremental displacement is

Work = Fl ⋅Δx (3.60)

The corresponding rotational displacement is

Δx = 1
2𝜋 ⋅ p

⋅Δ𝜃 (3.61)

Hence,

Work = Fl ⋅Δx (3.62)

= Fl ⋅
1

2𝜋 ⋅ p
⋅Δ𝜃 (3.63)

= Teff ⋅Δ𝜃 (3.64)

The equivalent torque seen at the input shaft (Teff) of the lead-screw due to the load force
Fl at the nut is

Teff =
1

2𝜋 ⋅ p
⋅Fl (3.65)

= 1
N

⋅Fl (3.66)

Example Consider a ball-screw motion conversion mechanism with a pitch of p =
10 rev∕in. The mass of the table and workpiece is Wl = 1000 lb and the resistance force of
the load is Fl = 1000 lb. Determine the reflected rotary inertia and torque seen by a motor
at the input shaft of the ball-screw.

Jeff =
1

(2𝜋 ⋅ 10)2 rad2∕in2
⋅ (1000∕386) lb∕(in∕s2) (3.67)

= 6.56 × 10−3 lb ⋅ in ⋅ s2 (3.68)

The torque that is reflected on the input shaft due to the load force Fl is

Teff =
1

2𝜋 ⋅ p
⋅Fl (3.69)

= 1
2𝜋 rad∕rev ⋅ 10 rev∕in

⋅ 1000 lb (3.70)

= 100
2𝜋

lb ⋅ in (3.71)

= 15.91 lb ⋅ in (3.72)



142 MECHATRONICS

Load

Rack

Pinion

r

M

FIGURE 3.4: Rotary to translational motion conversion mechanism: rack and pinion

mechanism. The advantage of the rack and pinion mechanism over the lead-screw mechanism

is that the translational motion range can be very long. The lead-screw length is limited by the

torsional stiffness. In rack and pinion mechanisms, since the translational part does not rotate,

it does not have the reduced torsional stiffness problem due to the long length.

3.3.2 Rack and Pinion Mechanism

The rack and pinion mechanism is an alternative rotary to linear conversion mechanism
(Figure 3.4). The pinion is the small gear. The rack is the translational (linear) component.
It is similar to a gear mechanism where one of the gears is a linear gear. The effective gear
ratio is calculated or measured from the assumption that there is no slip between the gears,

Δx = r ⋅Δ𝜃 (3.73)

Δẋ = r ⋅Δ�̇� (3.74)

V = r ⋅w (3.75)

where Δ𝜃 is in radian units. Hence, the effective gear ratio is

N = 1
r

; if Δ 𝜃 is in rad units or w is in rad∕s units (3.76)

= 1
2𝜋 ⋅ r

; if Δ𝜃 is in rev units or w is in rev∕s units (3.77)

The same mass and force reflection relations we developed for lead-screws apply for the
rack and pinion mechanisms. The only difference is the effective gear ratio.

3.3.3 Belt and Pulley

Belt and pulley mechanisms are used both as rotary to rotary and rotary to linear motion
conversion mechanisms depending on the output point of interest. If the load (tool) is
connected to the belt and used to obtain linear motion, then it acts as a rotary to linear
motion conversion device (Figure 3.5). The relations we developed for the rack and pinion

F, x

T,

r r

FIGURE 3.5: Rotary to translational motion conversion mechanism: Belt and pulley

mechanism where both pulleys have the same diameter. The output motion is taken from the

belt as the translational motion.
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mechanism identically apply here. This mechanism is widely used in low inertia, low load
force, and high bandwidth applications such as coil winding machines.

3.4 CYCLIC MOTION TRANSMISSION MECHANISMS

3.4.1 Linkages

One degree of freedom linkages define a nonlinear relationship between input and output
motion variables as

𝜃out = f (𝜃in) (3.78)

where 𝜃in is the input motion variable, 𝜃out output motion variable, and f ( ⋅ ) is the non-
linear geometric function. The position, velocity, and acceleration of the output variable
(𝜃out(t), �̇�out(t), �̈�out(t)) are directly determined by the input variable (𝜃in(t)) and its time
derivatives (�̇�in(t), �̈�in(t)) and the partial derivatives of the nonlinear function with respect
to the input variable (𝜕f (𝜃in)∕𝜕𝜃in, 𝜕2f (𝜃in)∕𝜕𝜃2

in).
Linkages are generally one degree of freedom, kinematically closed chain, robotic

manipulators. The motion of one member (output link) of the linkage is a periodic function
of the motion of another linkage member (input link). The most common linkages include

1. slider-crank mechanism (i.e., used in internal combustion engines (Figure 3.6)),

2. four-bar mechanism (Figure 3.7).

The slider-crank mechanism is the most widely recognized since it is used in every
internal combustion engine. It can be used to convert the translational displacement of the
slider to the rotary motion of the crank or vice versa. The length of the crank arm and
the connecting link determine the geometric relationship between the slider translational
displacement and crank angular rotation.

Four-bar linkage can convert the cyclic motion of the input arm (i.e., rotation of the
input arm shaft) to the limited range cyclic rotation of the output shaft. By selectively
choosing the input and output shaft, as well as the lengths of the linkages, different motion
conversion functions are obtained. The motion control of such linkages is rather simple,
since they are mostly used with a constant speed input shaft motion, and the resultant
motion is obtained at the output shaft.

l

1

3
r

2

Connecting link
Crank

Piston

ϕ
x

θ
θ

θ

θ

FIGURE 3.6: Rotary to translational motion conversion mechanism: slider-crank mechanism.

In an internal combustion engine, the mechanism is used as translational (piston motion is

input) to rotary motion (crank shaft rotation) conversion mechanism.
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FIGURE 3.7: Four bar mechanism.

From the kinematics of the slider-crank mechanism, the following relations can be
derived,

x = r cos𝜃 + l cos𝜙 (3.79)

l sin𝜙 = r sin𝜃 (3.80)

cos𝜙 = [1 − sin2𝜙]1∕2 (3.81)

=
[

1 −
( r

l
sin𝜃

)2
]1∕2

(3.82)

x = r cos𝜃 + l

[
1 −

( r
l

sin𝜃
)2

]1∕2

(3.83)

ẋ = − r �̇�

⎡⎢⎢⎢⎢⎣
sin𝜃 + r

2l
sin(2𝜃)[

1 −
(

r
l
sin𝜃

)2
]1∕2

⎤⎥⎥⎥⎥⎦
(3.84)

where r is the radius of the crank (length of the crank link), l is the length of the connecting
arm, x is the displacement of the slider, 𝜃 is the angular displacement of the crank, 𝜙 is the
angle between the connecting arm and displacement axis. The position and speed of piston
motion and crank motion are related by the above geometric relations. The acceleration
relation can be obtained by taking the time derivative of the speed relation [7].

Example Consider a crank-slider mechanism with the following geometric parameters:
r = 0.30 m, l = 1.0 m. Consider the simulation of a condition that the crank shaft rotates at
a constant speed �̇�(t) = 1200 rpm. Plot the displacement of the slider as a function of crank
shaft angle from 0 to 360 degrees of rotation (for one revolution) and the linear speed of
the slider.

Since we have the geometric relationship between the crank shaft angle and speed
versus the slider position and speed (Eqn. 3.83, 3.84), we simply substitute for r and l the
above values, and calculate the x and ẋ for 𝜃 = 0 to 2𝜋 rad and �̇� = 1200 ⋅ (1∕60) ⋅ 2𝜋 rad∕s.
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FIGURE 3.8: Simulation result of slider crank mechanisms: r = 0.3 m, l = 1.0 m, speed of crank

shaft is constant at �̇� = 1200 rpm. The resulting slider position and speed functions are shown

in the figure.

The MATLAB® or Simulink® environment can be conveniently used to generate the results
(Figure 3.8).

3.4.2 Cams

Cams convert the rotary motion of a shaft into translational motion of a follower (Figure 3.9).
The relationship between the translational motion and rotary motion is not a fixed gear ratio,
but a nonlinear function. The nonlinear cam function is determined by the machined cam
profile. A cam mechanism has three major components:

1. the input shaft,

2. the cam,

3. the follower.

If the input shaft axis of the cam is parallel to the follower axis of motion, such cams are
called axial cams. In this case, cam function is machined into the cylindrical surface along
the axis of input shaft rotation. If they are perpendicular to each other, such cams are called
radial cams and the cam function may be machined either along the outside diameter or face
diameter. All cam profiles can be divided into periods called rise, dwell, and fall in various
combinations. For instance, a cam profile can be designed such that for one revolution of
the input shaft, the follower makes a cyclic motion that is various combinations of rise, fall,
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FIGURE 3.9: Rotary to translational motion conversion mechanism: cam mechanism.

dwell; that is, rise, dwell, fall, dwell, or rise, fall, dwell. In addition, a cam function may
be designed such that the follower makes single or multiple cycles per revolution of the
input shaft, that is one, two, three, or four follower cycles per input shaft revolution. It is
common to design rise and fall periods of the cam as symmetric. During the dwell periods,
the follower is stationary. Therefore, during dwell period the follower position is constant,
and speed and acceleration are zero. If symmetric cam functions are used for rise and fall
periods, then we are only concerned with the cam function design for the rise period.

A cam profile is defined by the following relationship,

x = f (𝜃); 0 < 𝜃 < 2𝜋 (3.85)

where x is the displacement of the follower, and 𝜃 is the rotation of the input shaft. The
cam function is periodic. The cam follower motion repeats for every revolution of the input
shaft.

In addition to selecting an appropriate cam function, there are three other important
parameters to consider in cam design (Figure 3.7):

1. Pressure angle: measured as the angle between the follower motion axis and the
axis perpendicular to the common tangent line at the contact point between cam and
follower (Figure 3.7). A cam should be machined such that the pressure angle stays
less than about 30◦ in order to make sure the side loading force on the follower is not
too high.

2. Eccentricity: the offset distance between the follower axis and cam rotation axis in
the direction perpendicular to the cam motion. By increasing eccentricity, we can
reduce the effective pressure angle, and hence the side loading forces on the follower.
However, as the eccentricity increases, the cam gets larger and less compact.

3. Radius of curvature: the radius of the cam function curvature along its periphery. The
radius of curvature should be a continuous function of the angular position of the
cam input shaft. Any discontinuity in the radius of curvature is essentially reflected
as a non-smooth cam surface. In general, the radius of curvature should be at least
2 to 3 times larger than the radius of the follower. The main considerations are the
continuity and ability of the follower to maintain contact on the cam at all times.
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The displacement, velocity, acceleration, and jerk (time derivative of acceleration) are
important since they directly affect the forces experienced in the mechanism. In cam design,
quite often we focus on the first, second, and third derivatives of the cam function with
respect to 𝜃 instead of t, time. In the final analysis, we are interested in the time derivative
values, since they determine the actual speed, acceleration, and jerk. The relationships
between the derivatives of cam function with respect to 𝜃 and t are as follows.

dx
d𝜃

=
df (𝜃)

d𝜃
;

dx
dt

= dx
d𝜃

�̇� (3.86)

d2x
d𝜃2

=
d2f (𝜃)

d𝜃2
;

d2x
dt2

= d2x
d𝜃2

�̇�2 + dx
d𝜃

�̈� (3.87)

d3x
d𝜃3

=
d3f (𝜃)

d𝜃3
;

d3x
dt3

= d3x
d𝜃3

�̇�3 + d2x
d𝜃2

(3 ⋅ �̇� ⋅ �̈�) + dx
d𝜃

d�̈�
dt

(3.88)

Notice that when �̇� = constant, then �̈� = 0, and d�̈�∕dt = 0. When the input shaft of the cam
speed is constant, which is the case in most applications, then the relationship between the
time derivatives and derivatives with respect to 𝜃 of the cam function simplify as follows,

dx
d𝜃

=
df (𝜃)

d𝜃
;

dx
dt

= dx
d𝜃

�̇� (3.89)

d2x
d𝜃2

=
d2f (𝜃)

d𝜃2
;

d2x
dt2

= d2x
d𝜃2

�̇�2 (3.90)

d3x
d𝜃3

=
d3f (𝜃)

d𝜃3
;

d3x
dt3

= d3x
d𝜃3

�̇�3 (3.91)

Significant effort is made in selecting the f (𝜃) cam function in order to shape the first,
second, and even the third derivative of it so that desired results (i.e., minimize vibrations)
are obtained from the cam motion. As a general rule in cam design, the cam function
should be chosen so that the cam function, first, and second derivatives (displacement,
speed, and acceleration functions) are continuous and the third derivative (jerk function)
discontinuities (if any) are finite. In general these continuity conditions are applied to
cam function derivatives with respect to 𝜃. If the input cam speed is constant, the same
continuity conditions are then satisfied by the time derivatives as well. For instance, a cam
function with trapezoidal shape results in discontinuous velocity and infinite accelerations.
Therefore, pure trapezoidal cam profiles are almost never used. The alternatives for the
selection of functions that meet the continuity requirements in the cam function are many.
Some functions are defined in analytical form (parts of the cam function are portions of the
sinusoidal functions joined to form a continuous function) and some are custom developed
by experimentation and stored in numerical form, that is two column data of 𝜃i versus xi.
The four types of basic cam functions are discussed below (Figure 3.10).

1. Cycloidal displacement cam function has an acceleration curve for the rise portion
that is sinusoidal with single frequency,

d2x(𝜃)

d𝜃2
= C1 ⋅ sin( f1𝜃) (3.92)

where C1 is constant related to the displacement range of x and f1 is determined by
the portion of input shaft rotation to complete the rise portion of cam motion. For
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FIGURE 3.10: Commonly used
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trapezoidal functions are common

cam profiles.

instance, if rise motion is completed in 𝜃rise = 1∕2 rev = 𝜋 rad,

f1𝜃rise = 2𝜋 (3.93)

f1 = 2𝜋
𝜃rise

(3.94)

= 2𝜋
𝜋

(3.95)

= 2 (3.96)

Similarly, if rise motion is completed in 1∕3 rev = 2𝜋∕3 rad, then f1 = 3. Both dis-
placement and velocity functions are also sinusoidal functions. The speed and dis-
placement functions can be readily obtained by integrating the acceleration curve,

dx(𝜃)
d𝜃

= −C1
1
f1
⋅ cos( f1𝜃)|𝜃0 (3.97)

=
C1

f1
− C1

1
f1
⋅ cos( f1𝜃) (3.98)

x(𝜃) =

[
C1

f1
𝜃 − C1

1

f 2
1

⋅ sin( f1𝜃)

] |||||
𝜃

0

(3.99)

=
C1

f1
𝜃 − C1

1

f 2
1

⋅ sin( f1𝜃); for 0 ≤ 𝜃 ≤ 𝜃rise (3.100)

Let us assume that the rise portion is to occur in 1∕2 revolution of the cam input
shaft. Then, f1 = 2. Let the rise distance be xrise = 0.2 m. Then the constant C1 can be
determined by evaluating the displacement cam function at the end of the rise cycle
for 𝜃 = 𝜋,

0.2 =
C1

2
𝜋 (3.101)

C1 = 2 ⋅ 0.2
𝜋

(3.102)

Assuming that the cam has symmetric rise and down portions without any dwell
portion, the complete period of motion for the cam is 𝜃 = 0 to 2 × 𝜃rise. Acceleration,
speed, and displacement curves for the down portion of the cam are all mirror images
of the rise portion. Mirror image and original function relationship is as follows. The
original function for rise motion is xrise,

xrise(𝜃) = f (𝜃); 0 ≤ 𝜃 ≤ 𝜃rise (3.103)
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FIGURE 3.11: Sinusoidal acceleration cam profile: acceleration, speed, and displacement

function for a cam design where half of the shaft revolution is used for the rise motion and the

other half is used for the down motion symmetrically.

then, the mirror image (let us call that xdown)

xdown(𝜃) = f (2𝜃rise − 𝜃); 𝜃rise ≤ 𝜃 ≤ 2𝜃rise (3.104)

Hence the mirror image of the displacement cam function x(𝜃) is x(2𝜃rise − 𝜃),

x(𝜃) =
C1

f1
(2𝜃rise − 𝜃) − C1

1

f 2
1

⋅ sin( f1(2𝜃rise − 𝜃)); 𝜃rise ≤ 𝜃 ≤ 2𝜃rise (3.105)

Figure 3.11 shows the acceleration, speed, and displacement curves for one cycle
of the cam motion. If there is a dwell portion for the input shaft rotation range
of 𝜃rise, 𝜃rise + 𝜃dwell, then the dwell portion of the cam function following the rise
portion would be as follows,

x(𝜃) = xrise(𝜃rise) ; 𝜃rise ≤ 𝜃 ≤ 𝜃rise + 𝜃dwell (3.106)

dx(𝜃)
d𝜃

= 0 (3.107)

d2x(𝜃)

d𝜃2
= 0 (3.108)

and for the down portion of the cam,

x(𝜃) =
C1

f1
(2𝜃rise + 𝜃dwell − 𝜃) − C1

1

f 2
1

⋅ sin( f1(2𝜃rise + 𝜃dwell − 𝜃)); (3.109)

𝜃rise + 𝜃dwell ≤ 𝜃 ≤ 2𝜃rise + 𝜃dwell (3.110)
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dx(𝜃)
d𝜃

= −
C1

f1
+ C1

1
f1
⋅ cos( f1(2𝜃rise + 𝜃dwell − 𝜃)) (3.111)

d2x(𝜃)

d𝜃2
= C1 ⋅ sin( f1(2𝜃rise + 𝜃dwell − 𝜃)) (3.112)

2. Modified sine function is a modified version of the first function, cycloidal displace-
ment function. Compared to the original version, this version results in lower peak
acceleration and speed values while maintaining a similar cam displacement function.
This cam function uses at least two frequencies of the sinusoidal profile. Pieces of
the two sine functions are combined to form a smooth cam function.

d2x(𝜃)

d𝜃2
= C1 ⋅ sin( f1𝜃) + C2 ⋅ sin( f2𝜃) (3.113)

where C1, C2 constants would have non-zero values in some segments and zero values
in other segments of the cam. In other words, in some segments of the cam function
one of the sections of the sinusoidal function is used, in other segments the other
sinusoidal function is used with its appropriate segment connecting to the preceeding
and the following curve. Let 𝜃rise be the period of input shaft rotation for the rise
period. f1, f2 are two constant frequencies.

f1 = 2𝜋
𝜃rise∕2

= 4𝜋
𝜃rise

(3.114)

f2 = 2𝜋
3𝜃rise∕2

= 4𝜋
3𝜃rise

(3.115)

The acceleration function is constructed from the segments of two sinusoidal func-
tions as follows,

d2x(𝜃)

d𝜃2
= Ao ⋅ sin

(
2𝜋

(𝜃rise∕2)
𝜃

)
; for 0 ≤ 𝜃 ≤ 1

8
𝜃rise (3.116)

d2x(𝜃)

d𝜃2
= Ao ⋅ sin

(
2𝜋

(3𝜃rise∕2)
𝜃 + (𝜋∕3)

)
; for

1
8
𝜃rise ≤ 𝜃 ≤ 7

8
𝜃rise (3.117)

d2x(𝜃)

d𝜃2
= Ao ⋅ sin

(
2𝜋

(𝜃rise∕2)
𝜃 − 2𝜋

)
; for

7
8
𝜃rise ≤ 𝜃 ≤ 𝜃rise (3.118)

The acceleration function like this describes the movement of the follower for the rise
period. If the follower cycle is made of rise and fall without any dwell periods, the
complete displacement cycle is performed over an input shaft rotation of 𝜃 = 2𝜃rise.
Displacement and speed curves are determined by directly integrating the acceleration
curve with zero initial condition for speed and zero initial condition for displacement
at the beginning of integration.

The fall motion curves are simply obtained using a mirror image of the rise motion
curves. During the dwell portion (if used in the cam design), the cam follower
displacement stays constant, and speed and acceleration are zero.

3. Modified trapezoidal acceleration function modifies the standard trapezoidal acceler-
ation function around the points where the acceleration changes slope. The accelera-
tion function is smoothed out with a smooth function, such as a sinusoidal function,
hence eliminating the jerk discontinuity. If purely trapezoidal acceleration profiles
are used, there would be discontinuity in the jerk function when the acceleration
function slope changes from a finite value to zero value (constant acceleration).
In order to reduce the effect of this in terms of vibrations in the mechanism, the
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acceleration profile function includes sinusoidal functions at the corners of the curve
and constant acceleration functions in other segments of the cam. Let 𝜃rise be the
period of input shaft rotation for the rise period. The modified trapezoidal accelera-
tion profile is formed by constructing a function where the pieces of it are obtained
from a sinusoidal function with period 𝜃rise∕2 and constant acceleration function.

Let us consider a modified trapezoidal acceleration function. The acceleration
function has positive and negative (symmetric to the positive) portions. The variable
portions of the acceleration function are implemented with portions of the sinu-
soidal, and constant acceleration portions are implemented with a constant value
(Figure 3.16),

d2x
d𝜃2

= Ao ⋅ sin(2𝜋𝜃∕(𝜃rise∕2)); for 0 ≤ 𝜃 ≤ 𝜃rise∕8 (3.119)

d2x
d𝜃2

= Ao; for
1
8
𝜃rise ≤ 𝜃 ≤ 3

8
𝜃rise (3.120)

d2x
d𝜃2

= Ao ⋅ sin(2𝜋𝜃∕(𝜃rise∕2) − 𝜋); for
3
8
𝜃rise ≤ 𝜃 ≤ 5

8
𝜃rise (3.121)

d2x
d𝜃2

= −Ao; for
5
8
𝜃rise ≤ 𝜃 ≤ 7

8
𝜃rise (3.122)

d2x
d𝜃2

= Ao ⋅ sin(2𝜋𝜃∕(𝜃rise∕2) − 2𝜋); for
7
8
𝜃rise ≤ 𝜃 ≤ 𝜃rise (3.123)

Again, the acceleration functions describe half of the displacement cycle of the
follower. For a symmetric return function, the mirror image of the same acceleration
function is implemented in the cam profile.

4. Polynominal functions of many different types, that is including third, fourth, fifth,
sixth, or seventh order polynomials, are used for cam functions.

x(𝜃) = C0 + C1𝜃 + C2𝜃
2 + C3𝜃

3 + ... + Cn𝜃
n (3.124)

Typically, the input shaft is driven at a constant speed, and output follower motion is
obtained as a cyclic function of input shaft rotation. Before the development of computer
controlled programmable machines, almost all of the automated machines had one large
power source driving a shaft. Many different cams generated desired motion profiles at
individual stations from the same shaft. Hence, all the stations are synchronized to a master
shaft. The synchronization is fixed as a result of the machined profiles of cams. If a different
automated control is needed, cam profiles had to be physically changed. As programmable
computer controlled machines replace the fixed automation machines, the use of mechanical
cams has decreased. Instead, cam functions are implemented in software to synchronize
independently controlled motion axes. If a different type of synchronization is required, all
we need to do is to change the cam software. In mechanical cam synchronized systems, we
would have to physically change the cam.

Example Consider a cam with its follower as shown in Figure 3.9. Let us consider
the displacement, speed, acceleration, and jerk profiles for modified sine cam functions.
Assume that the input shaft of the cam runs at a constant speed, hence �̈� = 0, d

dt
�̈� = 0.0.

Assume that nominal operating speed of input shaft of the cam is �̇� = 2𝜋 ⋅ 10 rad∕s (�̇� =
10 rev∕s = 600 rev∕min ), the total displacement of the cam follower is 2.0 in, and the period
of cam motion for a complete up–down cycle is once per revolution of the input shaft. Since
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the input shaft speed is constant, the time derivatives and derivatives with respect to input
shaft angle are related to each other as

ẋ = dx
d𝜃
�̇�; ẍ = d2x

d𝜃2
(�̇�)2;

d
dt

ẍ = d3x
d𝜃3

(�̇�)3 (3.125)

We will assume that the cam has rise and fall periods without any dwell period in between
them. For one half of a cycle (rise period), the cam profile is defined in three sections
as a function of input shaft displacement which are regions 0 ≤ 𝜃 ≤ 1

8
𝜃rise, 1

8
𝜃rise ≤ 𝜃 ≤

7
8
𝜃rise, 7

8
𝜃rise ≤ 𝜃 ≤ 𝜃rise.

It can be shown that the modified sine cam function in the rise region is as follows
(Cam1(𝜃)),

d2x(𝜃)

d𝜃2
= Ao ⋅ sin

(
4𝜋
𝜃rise

𝜃

)
; 0 ≤ 𝜃 ≤ 1

8
𝜃rise (3.126)

dx(𝜃)
d𝜃

=
(

Ao𝜃rise

4𝜋

)
⋅
(

1 − cos

(
4𝜋
𝜃rise

𝜃

))
(3.127)

x(𝜃) =
Ao𝜃rise

4𝜋
⋅
(
𝜃 −

𝜃rise

4𝜋
sin

(
4𝜋
𝜃rise

𝜃

))
(3.128)

Likewise, the cam functions for the other period of motion are defined as follows (Cam2(𝜃)),

d2x(𝜃)

d𝜃2
= Ao ⋅ sin

(
4𝜋

3𝜃rise
𝜃 + 𝜋

3

)
;

1
8
𝜃rise ≤ 𝜃 ≤ 7

8
𝜃rise (3.129)

dx(𝜃)
d𝜃

= Vs1 − Ao ⋅
(

3𝜃rise

4𝜋

)(
cos

(
4𝜋

3𝜃rise
𝜃 + 𝜋

3

))
(3.130)

x(𝜃) = Xs1 + Vs1 ⋅ 𝜃 − Ao ⋅ (3𝜃rise)2 ⋅
(

sin

(
4𝜋

3𝜃rise
𝜃 + 𝜋

3

))
(3.131)

and similarly, for the period of 7
8
𝜃rise ≤ 𝜃 ≤ 𝜃rise, (Cam3(𝜃))

d2x(𝜃)

d𝜃2
= Ao ⋅ sin(4𝜋𝜃∕𝜃rise − 2𝜋);

7
8
𝜃rise ≤ 𝜃 < 𝜃rise (3.132)

dx(𝜃)
d𝜃

= Vs2 − Ao ⋅
(
𝜃rise

4𝜋

)(
cos

(
4𝜋
𝜃rise

𝜃 − 2𝜋

))
(3.133)

x(𝜃) = Xs2 + Vs2 ⋅ 𝜃 − Ao ⋅
(
𝜃rise

4𝜋

)2

⋅
(

sin

(
4𝜋
𝜃rise

𝜃 − 2𝜋

))
(3.134)

where the constants Xs1, Xs2, Vs1, Vs2 are determined to meet the continuity requirements
at the boundaries of the cam function sections. Using the total travel range of the follower,
we can determine the constant Ao as a function of the total travel range specified. Below
are the five equations from which the above five constants can be calculated.

Cam1

(1
8
𝜃rise

)
= Cam2

(1
8
𝜃rise

)
(3.135)

Cam2

(7
8
𝜃rise

)
= Cam3

(7
8
𝜃rise

)
(3.136)

d
dt

(
Cam1

(1
8
𝜃rise

))
= d

dt

(
Cam2

(1
8
𝜃rise

))
(3.137)

d
dt

(
Cam2

(7
8
𝜃rise

))
= d

dt

(
Cam3

(7
8
𝜃rise

))
(3.138)

Cam3(𝜃rise) = xrise (3.139)
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The cam function is the combination of Equations 3.128, 3.131, 3.134 and their mirror
images, ordered in reverse, and 𝜃 substituted by 2𝜃rise − 𝜃 as an independent variable in the
cam functions. The cam function then,

Cam1(𝜃) =
Ao𝜃rise

4𝜋
⋅
(
𝜃 −

𝜃rise

4𝜋
sin

(
4𝜋
𝜃rise

𝜃

))
; 0 ≤ 𝜃 ≤ 1

8
𝜃rise (3.140)

Cam2(𝜃) = Xs1 + Vs1 ⋅ 𝜃 − Ao

(
3𝜃rise

4𝜋

)2

⋅
(

sin

(
4𝜋

3𝜃rise
𝜃 + 𝜋

3

))
;

1
8
𝜃rise ≤ 𝜃 ≤ 7

8
𝜃rise

(3.141)

Cam3(𝜃) = Xs2 + Vs2 ⋅ 𝜃 − Ao

(
𝜃rise

4𝜋

)2

⋅
(

sin

(
4𝜋
𝜃rise

𝜃 − 2𝜋

))
;

7
8
𝜃rise ≤ 𝜃 ≤ 𝜃rise

(3.142)

Cam4(𝜃) = Cam3(2𝜃rise − 𝜃); 𝜃rise ≤ 𝜃 ≤ 9
8
𝜃rise (3.143)

Cam5(𝜃) = Cam2(2𝜃rise − 𝜃);
9
8
𝜃rise ≤ 𝜃 ≤ 15

8
𝜃rise (3.144)

Cam6(𝜃) = Cam1(2𝜃rise − 𝜃);
15
8
𝜃rise ≤ 𝜃 ≤ 2𝜃rise (3.145)

For the purpose of manufacturing a cam, we only need the displacement functions for a
complete revolution of the input shaft.

3.5 SHAFT MISALIGNMENTS AND FLEXIBLE COUPLINGS

Mechanical systems always involve two or more shafts to transfer motion. There is always
a finite accuracy with which the two shafts can be aligned in the axial direction. Any shaft
misalignments will result in loads on the bearings and cause vibration, and hence reduce
the life of the machinery. In order to reduce the vibration and life reducing effects of shaft
misalignment, flexible couplings are used between shafts (Figure 3.12).

There are two main categories of flexible shaft couplings:

1. couplings for large power transfer between shafts and motors,

2. couplings for precision motion transfer at low powers between shafts and motors.

High precision motion systems include motors with very low friction and yet very delicate
bearings. Such motors are very sensitive to shaft misalignments. The bearing failure of
the motor as a result of excessive shaft misignment is a very common reliablity problem.
Therefore, in most high performance servo motor applications, the motor shaft is coupled
to the load via a flexible coupling. The flexible couplings provide the ability to make the
system more tolerant to shaft misalignments. However, it comes at the cost of reduced
stiffness of the mechanical system. Therefore, designers must make sure that the stiffness
of the coupling does not interfere with the desired motion bandwidth (especially in variable
speed and cyclic positioning applications).

Couplings are rated by the following parameters:

1. maximum and rated torque capacity,

2. torsional stiffness,

3. maximum allowed axial misalignment,

4. rotary inertia and mass of the coupling,
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FIGURE 3.12: Flexible couplings used between connecting shafts in motion transmission

mechanisms to compensate for the shaft misalignments and to protect bearings.

5. input and output shaft diameters,

6. input/output shaft connection method (set screw, clamped with keyway),

7. design type (bellow or helical coupling).

3.6 ACTUATOR SIZING

Every motion axis is powered by an actuator. The actuator may be electric, hydraulic or
pneumatic power based. The size of the actuator refers to its power capacity and must be
large enough to be able to move the axis under the given inertial and load force/torque
conditions. If the actuator is undersized, the axis will not be able to deliver the desired
motion, that is cannot deliver desired acceleration or speed levels. If the actuator is oversized,
it will cost more and the motion axis will have slower bandwidth since, as the actuator size
gets larger (larger power levels), the bandwidth gets slower as a general rule. Therefore, it
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is important to properly size the actuators for a motion axis with a reasonable margin of
safety. Along with determining the proper actuator size for an application, the size of the
gear mechanism needs to be determined unless the actuator is directly coupled to the load
(Figure 3.14). The focus of this section is on sizing a rotary electric motor type actuator.
The same concepts can be used for other types of actuators.

The question of actuator sizing is a question of determining the following require-
ments for an axis under worst operating conditions (i.e., largest expected inertia and resistive
load),

1. maximum torque (also called peak torque) required, Tmax,

2. rated (continuous or root mean squared, RMS) torque required, Tr,

3. maximum speed required, �̇�max,

4. positioning accuracy required, (Δ𝜃),

5. gear mechanism parameters: gear ratio, its inertial and resistive load (force/torque),
stiffness, backlash characteristics.

Once the torque requirements are determined, then the amplifier current and power supply
requirements are directly determined from them.

In general, accuracy and maximum speed requirements of the load dictate the gear
ratio. Below, we will assume that a gear mechanism with an appropriate gear ratio is
selected and focus on determining the actuator size. For a given application, the load
motion requirements specify the desired positioning accuracy and maximum speed. Let us
call that Δx and ẋmax. The desired positioning accuracy and maximum speed at the actuator
(i.e., rotary motor) are determined by,

Δ𝜃 = N ⋅Δx (3.146)

�̇� = N ⋅ ẋmax (3.147)

A gear ratio range is defined by the minimum accuracy and the maximum speed requirement,
that is in order to provide the desired accuracy (Δx) for a motor with a given actuator
positioning accuracy (Δ𝜃), the gear ratio must be

N ≥ Δ𝜃
Δx

(3.148)

In order to provide the desired maximum speed for a given maximum speed capacity of the
motor (not to exceed the maximum speed capability of the motor), the gear ratio must be
smaller than or equal to

N ≤ �̇�max

ẋmax
(3.149)

Hence, the acceptable gear ratio range is defined by the accuracy and maximum speed
requirement,

Δ𝜃
Δx

≤ N ≤ �̇�max

ẋmax
(3.150)

Some of the most commonly used motion conversion mechanisms (also called gear mecha-
nisms) are shown in Figure 3.15. Notice that the gear mechanism adds inertia and possible
load torque to the motion axis in addition to performing the gear reduction role and coupling
the actuator to the load. In precision positioning applications, the first requirement that must
be satisfied is accuracy.
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The actuator needs to generate torque/force in order to move two different categories
of inertia and load (Figure 3.14):

1. load inertia and force/torque (including the gear mechanism),

2. inertia (and any resistive force) of the actuator itself. For instance, an electric motor
has a rotor with finite inertia and that inertia is important for how fast the motor
can accelerate and decelerate in high cycle rate automated machine applications.
Similarly, a hydraulic cylinder has a piston and large rod which has mass.

The torque/force and motion relationship for each axis is determined by New-
ton’s Second Law. Let us consider it for a rotary actuator. The same relationships fol-
low for translational actuators by replacing the rotary inertia with mass, torque with
force, and angular acceleration with translational acceleration ({JT, �̈�, TT} replace with
{mT, ẍ, FT}),

JT ⋅ �̈� = TT (3.151)

where JT is the total inertia reflected on the motor axis, TT is the total net torque acting
on the motor axis, and �̈� is angular acceleration. The reflected inertia or torque means the
equivalent inertia or torque seen at the motor shaft after the gear reduction effect is taken
into account.

There are three issues to determine for the actuator sizing (Figure 3.14),

1. the net inertia (it may be a function of the position of the motion conversion mecha-
nism, Figure 3.15),

2. determine the net load torque (it may be a function of the position of the motion
conversion mechanism and speed),

3. the desired motion profile (Figure 3.10).

Let us discuss the first item, detemination of inertia. Total inertia is the inertia of the rotary
actuator and the reflected inertia,

JT = Jm + Jl,eff (3.152)

where Jl,eff includes all the load inertias reflected on the motor shaft. For instance, in
the case of a ball-screw mechanism, this includes the inertia of the flexible coupling (Jc)
between the motor shaft and ball-screw, ball-screw inertia (Jbs), and load mass inertia (due
to Wl),

Jl,eff = Jc + Jbs +
1

(2𝜋p)2
(Wl∕g) (3.153)

Notice that the total inertia that the actuator has to move is the sum of the load (including
motion transmission mechanism) and the inertia of the moving part of the actuator itself.

The total torque is the difference between the torque generated by the motor (Tm)
minus the resistive load torques on the axis (Tl),

TT = Tm − Tl,eff (3.154)

where Tl represents the sum of all external torques. If the load torque is in the direction of
assisting the motion, it will be negative, and the net result will be the addition of two torques.
The Tl may include friction (Tf ), gravity (Tg), and process related torque and forces (i.e.,
an assembly application may require the mechanism to provide a desired force pressure,
Ta), nonlinear motion related forces/torques if any (i.e., Corriolis forces and torques, Tnl),

Tl = Tf + Tg + Ta + Tnl (3.155)

Tl,eff =
1
N

⋅ Tl (3.156)
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FIGURE 3.13: A typical desired velocity profile of a motion axis in programmable motion

control applications such as automated assembly machines, robotic manipulators.

Notice that the friction torque may have a constant and speed dependent component to
represent the Coulomb and viscous friction, Tf (�̇�).

For actuator sizing purposes, these torques should be considered for the worst possible
case. However, care should be exercised as too much safety margin in the worst case assump-
tions can lead to unnecessarily large actuator sizing. Once the friction, gravitational loading,
task related forces, and other nonlinear force coupling effects in articulated mechanisms
are estimated, the mechanism kinematics is used to determine the reflected forces on the
actuator axis. This reflection is a constant ratio for simple motion conversion mechanisms
such as gear reducers, belt-pulleys, and lead-screws. For more complicated mechanisms
such as linkages, cams, and multi degrees of freedom mechanisms, the kinematic reflection
relations for the inertias and forces are not constant. Again, these relationships can be
handled using worst case assumptions in simpler forms, or using more detailed nonlinear
kinematic model of the mechanism.

Finally, we need to know the desired motion profile of the axis as a function of time.
Generally, we assume a worst case cyclic motion. The most common motion profile used is a
trapezoidal velocity profile as a function of time (Figure 3.13). The typical motion includes
a constant acceleration period, then a constant speed period, then a constant deceleration
period, and a dwell (zero speed) period.

�̇� = �̇�(t); 0 ≤ t ≤ tcyc (3.157)

Once the inertias, load torques, and desired motion profile are known, the required torque
as a function of time during a cycle of the motion can be determined from

Tm(t) = JT ⋅ �̈�(t) + Tl,eff (3.158)

= JT(𝜃) ⋅ �̈�(t) + Tf,eff (�̇�) + Tg,eff(𝜃) + Ta,eff (t) + Tnl,eff(𝜃, �̇�) (3.159)

Notice that before we calculate the torque requirements, we need to guess the inertia of the
actuator itself, which is not known yet. Therefore, this calculation may need to be iterated
few times.

Once the required torque profile is known as a function of time, two sizing values are
determined from it: the maximum and root-mean square (RMS) value of the torque,

Tmax = max(Tm(t)); (3.160)

Tr = Trms =
(

1
tcyc ∫

tcyc

0
Tm(t)2 dt

)1∕2

(3.161)
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From the desired motion profile specification, we determine the maximum speed the
actuator must deliver using the kinematic relations. In order to design an optimal motion
control axis, the actuator sizing and the motion conversion mechanism (effective gear ratio)
should be considered together. It is possible that a very small gear ratio may require a motor
with very large torque requirement, and yet run at very low speeds, hence making use of a
small part of the power capacity of the motor. An increased gear ratio would then require a
smaller torque motor and that the motor would operate at higher speeds on average, hence
making more use of the available power of the motor.

Once the torque requirements are known, the drive current and power supply voltage
requirements can be directly determined for a given electric motor-drive system. Similarly,
for hydraulic actuators, once the force requirements are determined, we would pick the
supply pressure and determine the diameter of the linear cylinder. The speed requirement
would determine the flow rate. Once these are known, then the size of the valve and pump
can be determined.

Actuator Sizing Algorithm (Figure 3.14, 3.15):

1. Define the geometric relationship between the actuator and load. In other words,
select the type of motion transmission mechanism between the motor and the
load (N).

2. Define the inertia and torque/force characteristics of the load and the transmission
mechanism, that is define the inertia of the tool as well as the inertia of the gear
reducer mechanisms (Jl, Tl).

3. Define the desired cyclic motion profile in the form of load speed versus time (�̇�l(t)).

LoadGear mechanismMotor

J1  T1  N1 η1 Ji  Ti  Ni ηιSL
JL
TL

Si
Ji
Ti

Si-1
J i-1
Ti-1

(a)

1, L,  Δ L
JL
TL

x1,  xL,  ΔxL
JL
TL

max, req m

(b)

Tp

Tp, req

Trms, req

RMS

Peak
L = m

Desired motion

L
x1

Desired motion

Time

(c)

Equivalent load

, m,  Δ m

θm

Jm

Tm

Motor

Tm

Time
tcyc

ta tr td dwt

θ θ θm

Jm

Tm

θ θ θ

θ θ

θ θ θ

FIGURE 3.14: Actuator sizing: load (inertia, torque/force), gear mechanism, and desired

motion must be specified.
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FIGURE 3.15: Commonly used motion conversion (gear) mechanisms and their input–output

relationships.

4. Using the reflection equations developed above, calculate the reflected load inertia
and torque/forces (Jl,eff , Tl,eff ) that will effectively act on the actuator shaft as well as
the desired motion at the actuator shaft (�̇�m(t) = �̇�in(t)).

5. Guess an actuator/motor inertia from an available list (or make the first calculation
with zero motor inertia assumption), and calculate the torque history, Tm(t), for the
desired motion cycle. Then calculate the peak torque and RMS torque from Tm(t).

6. Check if the actuator meets the required performance in terms of peak and RMS
torque, and maximum speed capacity (Tp, Trms, �̇�max). If the above selected actua-
tor/motor from the available list does not meet the requirements (i.e., too small or too
large), repeat the previous step by selecting a different motor.

7. The continuous torque rating of most electric servo motors is given for 25 ◦C ambient
temperature and an aluminum face mount for heat dissipation considerations. If the
nominal ambient temperature is different form 25 ◦C, the continuous (RMS) torque
capacity of the electric motor should be derated using the following equation for a
temperature,

Trms = Trms(25 ◦C)
√

(155 − Temp◦C)∕130 (3.162)
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If the Trms rating is exceeded, the temperature of the motor winding will increase
proportionally. If the temperature rise is above the rated temperature for the winding
insulation of the motor, the motor will be damaged permanently.

3.6.1 Inertia Match Between Motor and Load

The ratio of the motor’s rotor inertia and the reflected load inertia is always a concern in
high performance motion control applications. It is a rule of thumb that the ratio of motor
inertia to load inertia should be between one-to-one and up to one-to-ten,

Jm

Jl∕N2
= 1

1
∼ 1

10
(3.163)

The one-to-one match is considered the optimal match. Below, we show that the one-to-one
inertial match is optimal only in the ideal case where the motor drives a purely inertial load
and that this inertia ratio results in minimum heating of the motor.

Let us consider the case that the motor is coupled to a purely inertial load through an
effective gear ratio. The torque and motion relationship is

Tm(t) =
(

Jm + 1
N2

Jl

)
⋅ �̈�m (3.164)

=
(

Jm + 1
N2

Jl

)
⋅N ⋅ �̈�l (3.165)

Minimal heating occurs when the required torque is minimized, since torque is proportional
to current and heat generation is related to current (Pelec = R ⋅ i2, where Pelec is the electric
power dissipated at the motor windings due to its electrical resistance R and current i). The
minimum torque occurs at the gear ratio where the derivative of Tm with respect to N is
equal to zero,

d
dN

(Tm) =
(

Jm + 1
N2

Jl

)
�̈�l +

(−2N
N4

Jl

)
⋅N�̈�l (3.166)

= �̈�l ⋅
(

Jm − 1
N2

Jl

)
(3.167)

= 0 (3.168)

Therefore, the optimal gear ratio between the motor and a purely inertial load which
minimizes the torque requirements (hence, the heating), is

Jm = 1
N2

Jl (3.169)

= Jl,reflected (3.170)

It is important to note that this ideal inertia match (1:1) between the motor’s rotor inertia
and reflected load inertia is optimal only for purely inertial loads. In applications where the
load may be dominated by friction or other application related load torque or forces, the
ideal inertia match may not be a good design.

Example Consider a rotary motion axis driven by an electric servo motor. The rotary
load is directly connected to the motor shaft without any gear reducer. The rotary load
is a solid cylindrical shape made of steel material, d = 3.0 in, l = 2.0 in, 𝜌 = 0.286 lb∕in3.
The desired motion of the load is a periodic motion (Figure 3.14). The total distance to be
traveled is 1∕4 of a revolution. The period of motion is tcyc = 250 ms, and the dwell portion
of it is tdw = 100 ms, and the remaining part of the cycle time is equally divided between
acceleration, constant speed, and deceleration periods, ta = tr = td = 50 ms. Determine the
required motor size for this application.
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This example matches the ideal model shown in Figure 3.14. The load inertia is

Jl =
1
2
⋅m ⋅ (d∕2)2 (3.171)

= 1
2
⋅ 𝜌 ⋅𝜋 ⋅ (d∕2)2 ⋅ l ⋅ (d∕2)2 (3.172)

= 1
2
⋅ 𝜌 ⋅𝜋 ⋅ l ⋅ (d∕2)4 (3.173)

= 1
2
⋅ (0.286∕386) ⋅ 𝜋 ⋅ 2.0 ⋅ (3∕2)4 lb ⋅ in ⋅ s2 (3.174)

= 0.0118 lb ⋅ in ⋅ s2 (3.175)

Let us assume that we will pick a motor which has a rotor inertia the same as the load so
that there is an ideal load and motor inertia match, Jm = 0.0118 lb ⋅ in ⋅ s2. The acceleration,
top speed, and deceleration rates are calculated from the kinematic relationships,

𝜃a = 1
2
�̇� ⋅ ta =

1
4
⋅
𝜋

2
(3.176)

�̇� = 2 ⋅ 𝜃a∕ta = 2 ⋅ (1∕4) ⋅ (𝜋∕2) rad∕(0.05 s) (3.177)

= 80𝜋∕16 rad∕s = 40∕16 rev∕s = 2400∕16 rev∕min = 150 rev∕min (3.178)

�̈�a = �̇�a∕ta = (80𝜋∕16)(1∕0.05) = 1600𝜋∕16 rad∕s2 = 100𝜋 rad∕s2 (3.179)

�̈�r = 0.0 (3.180)

�̈�d = −100𝜋 rad∕s2 (3.181)

�̈�dw = 0.0 (3.182)

The required torque to move the load through the desired cyclic motion can be calculated
as follows,

Ta = (Jm + Jl) ⋅ �̈� = (0.0118 + 0.0118) ⋅ (100𝜋) = 7.414 lb ⋅ in (3.183)

Tr = 0.0 (3.184)

Td = (Jm + Jl) ⋅ �̈� = (0.0118 + 0.0118) ⋅ (−100𝜋) = −7.414 lb ⋅ in (3.185)

Tdw = 0.0 (3.186)

Hence, the peak torque requirement is

Tmax = 7.414 lb ⋅ in (3.187)

and the RMS torque requirement is

Trms =
( 1

0.250

(
T2

a ⋅ ta + T2
r ⋅ tr + T2

d ⋅ td + T2
dw ⋅ tdw

))1∕2
(3.188)

=
( 1

0.250
(7.4142 ⋅ 0.05 + 0.0 ⋅ 0.05 + (−7.414)2 ⋅ 0.05 + 0.0 ⋅ 0.1)

)1∕2
(3.189)

= 4.689 lb ⋅ in (3.190)

Therefore, a motor which has rotor inertia of about 0.0118 lb ⋅ in ⋅ s2, maximum speed
capability of 150 rev∕min or better, peak and RMS torque rating in the range of 8.0 lb ⋅ in
and 5.0 lb ⋅ in range would be sufficient for the task.

This design may be improved further by the following consideration. The top speed
of the motor is only 150 rpm. Most electric servo motors run in the 1500 rpm to 5000 rpm
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range where they deliver most of their power capacity, while maintaining a constant torque
capacity up to these speeds. As a result, it is reasonable to consider a gear reducer between
the motor shaft and the load in the range of 10 : 1 to 20 : 1 and repeat the sizing calculations.
This will result in a motor that will run at a higher speed and will have lower torque
requirements.

3.7 HOMOGENEOUS TRANSFORMATION MATRICES

The geometric relationships in simple one degree of freedom mechanisms can be derived
using basic vector algebra. The derivation of geometric relations for multi degrees of free-
dom mechanisms, such as robotic mechanisms, is rather difficult using three-dimensional
vector algebra. The so called 4×4 homogeneous transformation matrices are very power-
ful matrix methods to describe the geometric relations [8]. They are used to describe the
geometric relations of a mechanism between the absolute values of

1. displacement variables,

2. the relations between the incremental changes in displacements, and

3. force and torque transmission through the mechanism.

The position and orientation of a three-dimensional object with respect to a reference frame
can be uniquely described by the position coordinates of a point on it (three-components
of position information in three-dimensional space) and the orientation of it (described
by three angles). The position coordinates are associated with a point and are unique for
a given point with respect to a reference coordinate frame. Orientation is associated with
an object, not a point. The best way to describe the position and orientation of an object
is to attach a coordinate frame to the object, and describe the orientation and the origin
coordinates of the attached coordinate frame with respect to a reference frame. For instance,
the position and orientation of a tool held by the gripper of a robotic manipulator can be
described by a coordinate frame attached to the tool (Figure 3.16). The position coordinates
of the origin of the attached coordinate frame and its orientation with respect to another
reference frame also describe the position and orientation of the tool on which the frame is
attached.

The transformation of an object between any two different orientations can be accom-
plished by a sequence of three independent rotations. However, the number and sequence
of rotation angles to go from one orientation to another is not unique. There are many
possible rotation combinations to make a desired orientation change. For instance, an ori-
entation change between any two different orientation of two coordinate frames can be
accomplished by a sequence of three angles such as

1. roll, pitch, and yaw angles,

2. Z,Y,X Euler angles,

3. X,Y,Z Euler angles.

There are 24 different possible combinations of a sequence of three angles to go from
one orientation to another. Finite rotations are not commutative. Infinitesimal rotations are
commutative. That means, the order of a sequence of finite rotations makes a difference
in the final orientation. For instance, making a 90◦ rotation about the x-axis followed by
another 90◦ rotation about the y-axis results in a different orientation than that of making a
90◦ rotation about the y-axis followed by another 90◦ rotation about the x-axis. However,
if the rotations are infinitesimal, the order does not matter.
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FIGURE 3.16: Multi degree of freedom mechanisms: a robotic manipulator with three joints.

We use this example to illustrate how to describe the position and orientation of one coordinate

frame with respect to another. If we attach a coordinate frame to a workpiece, we can describe

the position and orientation of it with respect to other coordinate frames through the

coordinate frame attached to it.

The 4x4 homogeneous transformation matrices describe the position of a point on an
object and the orientation of the object in three-dimensional space using a 4x4 matrix. The
first 3x3 portion of the matrix is used to define the orientation of a coordinate frame fixed to
the object with respect to another reference coordinate frame. The last column of the matrix
is used to describe the position of the origin of the coordinate frame fixed to the object
with respect to the origin of the reference coordinate frame. The last row of the matrix is
[0 0 0 1]. A general 4x4 homogeneous transformation matrix T has the following form
(Figure 3.17),

T =

⎡⎢⎢⎢⎢⎣

e11 e12 e13 xA

e21 e22 e23 yA

e31 e32 e33 zA

0 0 0 1

⎤⎥⎥⎥⎥⎦
(3.191)

For instance, the second column [e12 e22 e32]T is the cosines of the angles between
the unit vector e⃗2 of the coordinate frame A and the unit vectors i⃗, j⃗, k⃗ of the reference frame
O (Figure 3.17). Column vectors are the cosine angles for the second coordinate frame unit
vectors when they are expressed in terms of the unit vectors of the first coordinate frame.
Row vectors are the cosine angles for the first coordinate frame unit vectors when they are
expressed in terms of the unit vectors of the second coordinate frame.

They describe the position and orientation of the coordinate frame A with respect to
the coordinate frame 0. The columns of the (3x3) portion of the matrix which contain the
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FIGURE 3.17: Use of (4x4) coordinate transformation matrices to describe the kinematic

(geometric) relationships between different objects in three-dimensional space. A point is

described with respect to a reference coordinate frame by its three position coordinates. An

object is described by a coordinate frame fixed to it: the position of its origin and its orientation

with respect to the reference coordinate frame.

orientation information are the cosine angles between the unit vectors of the coordinate
frames. Notice that, even though we know that the orientation of one coordinate frame
with respect to another can be described by three angles, the general form of the rotation
portion of the (4x4) transformation matrix (the (3x3) portion) requires nine parameters.
However, they are not all independent. There are six constraints between them, leaving
three independent variables (Figure 3.17). The six constraints are

e⃗1 ⋅ e⃗1 = 1.0 (3.192)

e⃗2 ⋅ e⃗2 = 1.0 (3.193)

e⃗3 ⋅ e⃗3 = 1.0 (3.194)

e⃗1 ⋅ e⃗2 = 0 (3.195)

e⃗1 ⋅ e⃗3 = 0 (3.196)

e⃗2 ⋅ e⃗3 = 0 (3.197)

where

e⃗i = e1i i⃗ + e2i j⃗ + e3ik⃗; i = 1, 2, 3 (3.198)

are the unit vectors along each of the axes of the attached coordinate frame expressed in
terms of its components in the unit vectors of the other coordinate frame. The use of cosine
angles in describing the orientation of one coordinate frame with respect to another one is
a very convenient way to determine the elements of the matrix.

The 4x4 homogeneous transformation matrices are the most widely accepted and
powerful (if not the computationally most efficient) method to describe kinematic rela-
tions. The algebra of transformation matrices follows basic matrix algebra. Let us consider
the coordinate frames numbered 1, 2, 3, 4 and a point A on the object where the position
coordinates of the point with respect to the third coordinate frame are described by r4A (Fig-
ure 3.17). The description of the coordinate frame 4 (position of its origin and orientation)
with respect to coordinate frame 0 can be expressed as,

T04 = T01 ⋅ T12 ⋅ T23 ⋅ T34 (3.199)

where T01, T12, T23, and T34 are the description of the origin position coordinates and
orientations of the axes of coordinate frames 1 with respect to 0, 2 with respect to 1, and
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that of 3 with respect to 2. The position coordinate vector of point A can be expressed with
respect to coordinates 2 and 3 as follows (Figure 3.17),

r3A = T34 ⋅ r4A (3.200)

r2A = T23 ⋅ r3A = T23 ⋅ T34 ⋅ r4A (3.201)

r1A = T12 ⋅ r2A = T12 ⋅ T23 ⋅ T34 ⋅ r4A (3.202)

r0A = T01 ⋅ r1A = T01 ⋅ T12 ⋅ T23 ⋅ T34 ⋅ r4A (3.203)

where, r4A = [ x4A y4A z4A 1 ]T. The r3A, r2A, r1A, r0A are similarly defined. Notice that
T12 is the description (position coordinates of the origin and the orientation of the axes
of coordinate system 2 with respect to coordinate system 1) of coordinate system 2 with
respect to coordinate system 1. Then the reverse description, that is the description of
coordinate system 1 with respect to coordinate system 2, is the inverse of the previous
transformation matrix,

T21 = T−1
12 (3.204)

The (4x4) transformation matrix has a special form and the inversion of the matrix also has
a special result. Let

T12 =
⎡⎢⎢⎢⎣

R12 pA

− − − − −−
0 0 0 1

⎤⎥⎥⎥⎦
(3.205)

Then, the inverse of this matrix can be shown as

T−1
12 =

⎡⎢⎢⎢⎣
RT

12 −RT
12 ⋅ pA

− − − − −−
0 0 0 1

⎤⎥⎥⎥⎦
(3.206)

Also notice that the order of transformations is important (multiplication of matrices are
dependent on the order),

T12 ⋅ T23 ≠ T23 ⋅ T12 (3.207)

For a general purpose multi degrees of freedom mechanism, such as a robotic manipulator,
the relationship between a coordinate frame attached to the tool (the coordinates of its
origin and orientation) with respect to a fixed reference frame at the base can be expressed
as a sequence of transformation matrices where each transformation matrix is a function
of one of the axis position variables. For instance, for a four degrees of freedom robotic
manipulator, the coordinate system at the wrist joint can be described with respect to base
as (Figure 3.17)

T04 = T01(𝜃1) ⋅ T12(𝜃2) ⋅ T23(𝜃3) ⋅ T34(𝜃4) (3.208)

where 𝜃1, 𝜃2, 𝜃3, 𝜃4 are the positions of axes driven by motors. Any given position vector
relative to the fourth coordinate frame (r4A) can be expressed with respect to the base as
follows,

r0A = T04 ⋅ r4A (3.209)

= T01(𝜃1) ⋅ T12(𝜃2) ⋅ T23(𝜃3) ⋅ T34(𝜃4) ⋅ r4A (3.210)

where r4A = [ x4A, y4A, z4A, 1 ]T the three coordinates of the point A with respect to the
coordinate frame 4.



166 MECHATRONICS

The Denavit-Hartenberg method [7] defines a standard way of attaching coordinate
frames to a robotic manipulator such that only four numbers (one variable, three con-
stant parameters) are needed per one degree of freedom joint to represent the kinematic
relationships.

Given the 4x4 transformation matrix description of a coordinate frame attached to the
tool, T0T, with respect to a reference coordinate frame 22, we can determine the position
coordinates of the tool-coordinate frame (xT, yT, zT) as well as orientation angles (i.e., roll,
yaw, pitch) of the tool-coordinate frame with respect to the reference coordinate frame and
form the corresponding x vector.

In generic terms, the relationship between the coordinates of the tool and the joint
displacement variables can be expressed as,

x = f (𝜃) (3.211)

The vector variable x represents the Cartesian coordinates of the tool (i.e., position coor-
dinates xP, yP, zP in a given coordinate frame and oriention angles where three angles can
be used to describe the orientation). The description of the position coordinates of a point
with respect to a given reference frame is unique. However, the orientation of an object
with respect to a reference coordinate frame can be described by many different possible
combinations of angles. Hence, the orientation description is not unique. The vector vari-
able 𝜃 represents the joint variables of the robotic manipulator, that is for a six joint robot
𝜃 = [ 𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6 ]T.

The f (𝜃) is called the forward kinematics of the mechanism, which is a vector
nonlinear function of joint variables,

f (𝜃) = [f1(𝜃), f2(𝜃), f3(𝜃), f4(𝜃), f5(𝜃), f6(𝜃)]T (3.212)

The inverse relationship, that is the geometric function which defines the axis posi-
tions as functions of tool position and orientation, is called the inverse kinematics of the
mechanism,

𝜃 = f−1(x) (3.213)

The inverse kinematics function may not be possible to express in one analytical closed
form for every mechanism. It must be determined for each special mechanism on a case by
case basis. For a six revolution joint manipulator, a sufficient condition for the existence of
the inverse kinematic solution in analytical form is that three consecutive joint axes must
intersect at a point. Forward and inverse kinematic functions of a mechanism relate the
joint positions to the tool positions.

If a robotic manipulator is always taught (i.e., by using a “teach mode”) the points
the tool tip must go through in three-dimensional space, the controller can record the
corresponding joint angles at each point. Then, some form of interpolation can be used
to define intermediate points to generate the desired motion path. In this type of robotic
manipulator, where the desired motion of the manipulator is defined by a teach mode, inverse
kinematics are never needed. However, in applications where not all of the target points
are taught, inverse kinematics are needed. For instance, target tool tip position may need to
be determined in real-time based on a vision sensor measurement of the target workpiece
position and orientation. Then, the corresponding joint angles must be calculated using
inverse kinematic relations.

The differential relationships between joint axis variables and tool variables are
obtained by taking the differential of the forward kinematic function. The resultant matrix
that relates the differential values of joint and tool position variables (in other words, it
relates the velocities of joint axes and tool velocity) is called the Jacobian matrix of the
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mechanism (Figure 3.17).

ẋ =
df (𝜃)

d𝜃
⋅ �̇� (3.214)

= J�̇� (3.215)

where the J matrix is called the Jacobian of the mechanism. Each element of the Jacobian
matrix is defined as

Jij =
𝜕fi(𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6)

𝜕𝜃j
(3.216)

where i = 1, 2, ..., m and j = 1, 2, .., n, where n is the number of joint variables. For a six
degrees of freedom mechanism, n = m = 6. If the mechanism has less than six degrees of
freedom, the Jacobian matrix is not a square matrix. Likewise, the inverse of the Jacobian,
J−1 relates the changes in the tool position to the changes in the axis displacements,

�̇� = J−1 ⋅ ẋ (3.217)

If the Jacobian is not invertible in certain positions, these positions are called the geometric
singularities of the mechanism. It means that at these locations, there are some directions
that the tool cannot move no matter what the change is in the joint variables. In other
words, no joint axis variable combination can generate a motion in certain directions at a
singularity point. A robotic manipulator may have many singularity points in its workspace.
The geometric singularity is directly a function of the mechanical configuration of the
manipulator. There are two groups of singularities,

1. Workspace boundary: a given manipulator has a finite span in three-dimensional
space. The locations that the manipulator can reach are called the workspace. At the
boundary of workspace, the manipulator tip cannot move out, because it has reached
its limits of reach. Hence, all points in the workspace boundary are singularity points
since at these points there are directions along which the manipulator tip cannot
move.

2. Workspace interior points: these singularity points are inside the workspace of the
manipulator. Such singularity points depend on the manipulator geometry and gen-
erally occur when two or more joints line up.

The same Jacobian matrix also describes the relationship between the torques/forces
at the controlled axes and the force/torque experienced at the tool. Let the tool force be
Force and the corresponding tool position differential displacement be 𝛿x. The differential
work done is

Work = 𝛿xT ⋅Force (3.218)

Note that the Jacobian relationship

𝛿x = J ⋅ 𝛿𝜃 (3.219)

and the equivalent work done by the corresponding torques at the controlled axes can be
expressed as

Work = 𝛿𝜃T ⋅ Torque (3.220)

= 𝛿xT ⋅Force (3.221)

= (J ⋅ 𝛿𝜃)T ⋅Force (3.222)
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Hence, the force–torque relationship between the tool and joint variables is

Torque = JT ⋅Force (3.223)

and the inverse relationship is

Force = (JT)−1 ⋅ Torque (3.224)

Notice that at the singular configurations (geometric singularities) of the mechanism, those
configuration of the mechanism at which the inverse of the Jacobian matrix does not exist,
there are some force directions at the tool which do not result in any change in the axes,
torques. They only result in reaction forces in the linkage structure, but not in the actuation
axes. Another interpretation of this result is that there are some directions of tool motion
where we cannot generate force no matter what combination of torques are applied at the
joints.

There are different methods for the calculation of the Jacobian matrix for a mechanism
[9,10]. The inverse Jacobian matrix can be either obtained analytically in symbolic form
or calculated numerically off-line or on-line (in real-time). However, real-time numerical
inverse calculations present a problem both in terms of the computational load and also
the possible numerical stability problems around the singularities of the mechanism. The
decision regarding the Jacobian matrix and its inverse computations in real-time should be
made on a mechanism by mechanism basis.

Example Consider two coordinate frames numbered 1 and 2 as shown in Figure 3.18.
Let the origin coordinates of the second coordinate frame have the following coordinates,
r1A = [ x1A y1A z1A 1]T = [−0.5 0.5 0.0 1]T. Orientations of axes are such that X2 is
parallel to Y1, Y2 is parallel but in opposite direction to X1, and Z2 has the same direction
as Z1. Determine the vector description of point P whose coordinates are given in second
frame as r2P = [ x2P y2P z2P 1]T = [ 1.0 1.0 0.0 1]T.

Using the homogeneous transformation matrix relationship between coordinate
frames 1 and 2,

r1P = T12 ⋅ r2P (3.225)
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FIGURE 3.18: Describing the position and orientation of one coordinate frame with respect to

an other.
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where T12 is described by the orientation of the second coordinate frame and position
coordinates of its origin with respect to the first coordinate frame.

T12 =

⎡⎢⎢⎢⎢⎣

e11 e12 e13 x1A

e21 e22 e23 y1A

e31 e32 e33 z1A

0 0 0 1

⎤⎥⎥⎥⎥⎦
(3.226)

=

⎡⎢⎢⎢⎢⎣

0.0 −1.0 0.0 −0.5

1.0 0.0 0.0 0.5

0.0 0.0 1.0 0.0

0 0 0 1

⎤⎥⎥⎥⎥⎦
(3.227)

Notice that the orientation portion of the matrix is the coefficients of the relationships
between the unit vectors,

i⃗ = cos𝜃11 ⋅ e⃗1 + cos𝜃12 ⋅ e⃗2 + cos𝜃13 ⋅ e⃗3 (3.228)

= e11 ⋅ e⃗1 + e12 ⋅ e⃗2 + e13 ⋅ e⃗3 (3.229)

= 0.0 ⋅ e⃗1 + (−1.0) ⋅ e⃗2 + 0.0 ⋅ e⃗3 (3.230)

j⃗ = cos𝜃21 ⋅ e⃗1 + cos𝜃22 ⋅ e⃗2 + cos𝜃23 ⋅ e⃗3 (3.231)

= e21 ⋅ e⃗1 + e22 ⋅ e⃗2 + e23 ⋅ e⃗3 (3.232)

= 1.0 ⋅ e⃗1 + (0.0) ⋅ e⃗2 + (0.0) ⋅ e⃗3 (3.233)

k⃗ = cos𝜃31 ⋅ e⃗1 + cos𝜃32 ⋅ e⃗2 + cos𝜃33 ⋅ e⃗3 (3.234)

= e31 ⋅ e⃗1 + e32 ⋅ e⃗2 + e33 ⋅ e⃗3 (3.235)

= (0.0) ⋅ e⃗1 + (0.0) ⋅ e⃗2 + (1.0) ⋅ e⃗3 (3.236)

Hence,

r1P = T12 ⋅ r2P (3.237)

= [−1.5 1.5 0.0 1 ]T (3.238)

Example The purpose of this example is to illustrate graphically that the order of a
sequence of finite rotations is important. If we change the order of rotations, the final
orientation is different (Figure 3.19). In other words, T1 ⋅ T2 ≠ T2 ⋅ T1. Let T1 represent a
rotation about the x-axis by 90◦, and T2 represent a rotation about the y-axis by 90◦. Figure
3.19 shows the sequence of both T1 followed by T2 and T2 followed by T1. The resulting
final orientations are different since the order of rotations are different. Finite rotations are
not commutative. We can show this algebraically for this case.

T1 =

⎡⎢⎢⎢⎢⎣

1.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 −1.0 0.0 0.0

0 0 0 1

⎤⎥⎥⎥⎥⎦
(3.239)

T2 =

⎡⎢⎢⎢⎢⎣

0.0 0.0 −1.0 0.0

0.0 1.0 0.0 0.0

1.0 0.0 0.0 0.0

0 0 0 1

⎤⎥⎥⎥⎥⎦
(3.240)

Clearly, T1 ⋅ T2 ≠ T2 ⋅ T1.
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FIGURE 3.19: Two finite rotation sequence performed in reverse order. The final orientations

are different. Finite rotations are not commutative.

Example Consider the geometry of a two-link robotic manipulator (Figure 3.20). The
geometric parameters (link lengths l1 and l2) and joint variables are shown in the figure.

1. Derive the tip position P coordinates as a function of joint variables (forward kine-
matic relations).

2. Derive the Jacobian matrix that relates the joint velocities to the tip position coordinate
velocities.

y
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1 x
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θ
2

θ1

l 1

x
0

FIGURE 3.20: Kinematic description of a

two joint planar robotic manipulator.
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3. If there is a load with weight W at the tip, determine the necessary torques at joints
1 and 2 in order to balance the load.

In this example, we are asked to determine the following relations,

x = f (𝜃) (3.241)

ẋ = J(𝜃)(�̇�) (3.242)

Torque = JT(𝜃)(Force) (3.243)

Let us attach three coordinate frames to the manipulator. Coordinate frame 0 is attached to
the base and fixed, coordinate frame 1 is attached at joint 1 to link 1 (moves with link 1),
coordinate frame 2 is attached at joint 2 to link 2 (moves with link 2). The position vector of
the tip with respect to coordinate frame 2 is simple, r2P = [ l2 0 0 1]T. The transformation
matrices between the three coordinate frames are functions of 𝜃1 and 𝜃2 as follows,

T01 =

⎡⎢⎢⎢⎢⎣

cos(𝜃1) −sin(𝜃1) 0.0 0.0

sin(𝜃1) cos(𝜃1) 0.0 0.0

0.0 0.0 1.0 0.0

0 0 0 1

⎤⎥⎥⎥⎥⎦
(3.244)

T12 =

⎡⎢⎢⎢⎢⎣

cos(𝜃2) −sin(𝜃2) 0.0 l1
sin(𝜃2) cos(𝜃2) 0.0 0.0

0.0 0.0 1.0 0.0

0 0 0 1

⎤⎥⎥⎥⎥⎦
(3.245)

Hence, the tip vector description in base coordinates,

r0P = [ x0P y0P 0 1]T = T01 ⋅ T12 ⋅ r2P (3.246)

The vector components of r0P can be expressed as individual functions for more clarity,

x0P = x0P(𝜃1, 𝜃2; l1, l2) = l1 ⋅ cos(𝜃1) + l2 ⋅ cos(𝜃1 + 𝜃2) (3.247)

y0P = y0P(𝜃1, 𝜃2; l1, l2) = l1 ⋅ sin(𝜃1) + l2 ⋅ sin(𝜃1 + 𝜃2) (3.248)

z0P = 0.0 (3.249)

The Jacobian matrix for this case can simply be determined by taking the derivative
of the forward kinematic relations with respect to time and expressing the equation in the
matrix form to find the Jacobian matrix.

ẋ0P = d
dt

(x0P(𝜃1, 𝜃2; l1, l2)) = J11�̇�1 + J12�̇�2 (3.250)

ẏ0P = d
dt

(y0P(𝜃1, 𝜃2; l1, l2)) = J21�̇�1 + J22�̇�2 (3.251)

where it is easy to show that the elements of the Jacobian matrix J

J =
[

J11 J12

J21 J22

]
(3.252)

=
[−l1 ⋅ sin(𝜃1) − l2 ⋅ sin(𝜃1 + 𝜃2) −l2 ⋅ sin(𝜃1 + 𝜃2)

l1 ⋅ cos(𝜃1) + l2 ⋅ cos(𝜃1 + 𝜃2) l2 ⋅ cos(𝜃1 + 𝜃2)

]
(3.253)
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The torque needed to balance a weight load, F = [Fx Fy]T = [0 − W]T, at the tip is
determined by [

Torque1

Torque2

]
=
[

J11 J21

J12 J22

] [
0.0

−W

]
(3.254)

which shows the necessary static torque at each joint to balance a weight at the tip for
different positions of the manipulator. Notice that since the Jacobian matrix is 2x2, it is
relatively simple to obtain the inverse Jacobian in analytical form.

J−1 = 1
l1 ⋅ l2 ⋅ sin(𝜃2)

[
l2 cos(𝜃1 + 𝜃2) l2 ⋅ sin(𝜃1 + 𝜃2)

−l1 cos(𝜃1) − l2 cos(𝜃1 + 𝜃2) l1 sin(𝜃1) − l2 ⋅ sin(𝜃1 + 𝜃2)

]
(3.255)

Notice that when 𝜃2 = 0.0, the mechanism is at a singular point, which is indicated by the
sin(𝜃2) term in the denominator of the inverse Jacobian equation above.

3.8 A CASE STUDY: AUTOMOTIVE TRANSMISSION
AS A “GEAR REDUCER”

An automotive transmission is a gear reducer. It changes the speed ratio (gear ratio) between
the input and output shaft. The input shaft is connected to the crank shaft of the engine, the
output shaft is connected to the lower powertrain which is connected to the differential (or
differentials in four wheel drive vehicles) to drive the wheels. The gear ratio is not constant,
but can be one of a finite number of gear ratios (i.e., in five speed transmission, five different
the gear ratios can be engaged). In continuously variable transmissions, the gear ratio can
be changed to any value between a minimum and a maximum value, instead of one of a
finite number of selections. The mechanism by which the gear ratio is changed from one
ratio to another determines the type of transmission. In manual shift transmissions, the
gear is changed by the operator by moving a lever. In automatic transmissions, the gear is
changed by an electronic control module (ECM) which controls a set of electrically actuated
clutch/brakes or valves. In continuously variable transmissions (CVT), i.e. toroidal CVT,
the gear ratio is changed by continuously varying a drive diameter, hence the gear ratio
can be any value between a minimum and maximum value (hence the name “continuously
varying”), instead of having a finite number of discrete gear ratio numbers, that is, 5-speed
(or 6-speed) transmission meaning there are 5 (or 6) gear ratios to select from.

3.8.1 The Need for a Gearbox “Transmission”
in Automotive Applications

A gearbox is used to change the speed and torque ratio between the input and output shafts.
If we assume that the gearbox operates with 100% efficiency, the input power and output
power are equal to each other. As the gearbox changes the speed ratio between input–output
shafts, it also changes the torque ratio in the inverse ratio.

In automotive and mobile equipment motion, the power output from engine is defined
as a function of speed using the so called “lug-curve” (see Section 1.2). At a given speed,
the maximum power capacity of an engine is known. Hence, the maximum available torque
output from the engine is known as a function of engine speed. The gearbox (better known
as the transmission in automotive applications) essentially scales that lug-curve at different
gear ratios as shown in Figure 3.24, excluding the effect of the torque converter. A typical
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FIGURE 3.21: Resistive load force (or equivalent torque) in mobile equipment and automotive

applications: aerodynamic, gradient, and rolling resistance forces.

transmission has five forward gears. Hence, there are five “the transmission” output speed–
torque curves which are scaled versions of the engine lug curve. A continuously variable
transmission (CVT) can provide any gear ratio value between a minimum and maximum
gear ratio value it is designed for, not just a finite number of discrete gear ratios. Therefore,
a CVT can achieve an infinite number of different scaled versions of the lug-curve between
the minimum and maximum scaled curves (i.e., between gear ratio 1 and gear ratio 5). The
set of lug-curves at different gear ratios shows the maximum torque the engine–transmission
combination can generate at various speed ranges at the transmission output shaft. The gear
ratio allows us to trade torque for speed, that is reduce speed and increase torque between
input and output shafts or vice versa. If the demand for torque changes due to the operating
conditions of the vehicle, we can change the gear ratio to select a different speed–torque
curve capability in order to better meet the demand.

In mobile equipment applications, there are three major categories of resistance to
motion that must be overcome by the engine–transmission output shaft. The resistance
categories are:

� Aerodynamic resistance force due to the friction between the mobile equipment
body and air. This force, and the equivalent torque that the engine must overcome,
is a function of the equipment shape and its aerodynamic properties. In general,
the aerodynamic resistance force grows almost exponentially with the speed of the
equipment (Figure 3.21),

Faero = Faero(Vvehicle) (3.256)

� Gravity resistance force (also called gradient force) is the force acting on the vehicle
due to the gravity force component in non-zero gradients. This force is equal to the
weight of the vehicle times the sinus of the gradient angle,

Fgradient = Wvehicle ⋅ sin(𝜃) (3.257)

where 𝜃 is the gradient angle. If the vehicle is moving up in the gradient, it is a
resisting force, if it is moving down, it is an assisting force.

� Rolling resistance force is due to the continuous deformation of the tires as the vehicle
moves. In general this force is a function of the tire pressure, vehicle mass, and ground
traction conditions. It does not vary much as a function of the vehicle speed.

Froll ≈ Constant (3.258)
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resistance curves to determine steady-state operating conditions.

Total resistance force for a given vehicle mass, tire pressure, ground traction condition, a
gradient, and vehicle speed can be expressed as,

Fresist = Faero(Vvehicle) + Fgradient + Froll (3.259)

The total resistance force is determined by the three components as shown in Figure 3.21.
For different gradients and traction conditions, we would have different curves (i.e. A, B,
C) as shown in Figure 3.22. As a vehicle changes gradient and ground conditions while it
is traveling, the total resistance to it changes between these curves. If the vehicle is desired
to maintain a certain speed despite these variations, the output torque (or equivalent force
delivered to the tires) must be large enough to overcome the total resistance.

Therefore, as the operating conditions change, the gear ratio must be changed in order
to meet the demand. The gear ratio decision can be made either by the driver or by a control
computer. The main principle is to overlay the torque–speed curves for different gear ratios
over the actual resistance load curves. Let us assume that the vehicle is operating in gear 4 at
full throttle along the load curve A, at steady-state speed corresponding to about 1500 rpm
at the engine output shaft (point X), where the torque output from engine–transmission is
equal to the load. Consider that the road gradient changes and that now the load curve is the
curve B. At that speed, the load is larger than the torque capacity of the engine–transmission
at the current gear. If no gear change is made, the vehicle speed (and engine speed) will
decrease until the load curve and torque curve intersects at a point (point Y). At that point
engine speed is reduced to about 1250 rpm. If the gradient further increases to load curve C,
the engine–transmission cannot maintain the vehicle speed at the current gear ratio, because
the maximum output torque capacity at the current gear (gear 4) is always smaller than the
load. If the gear is not reduced, the vehicle stops and the engine stalls. The only way to
keep the vehicle moving is to reduce the gear ratio to gear 3 (or a lower gear) so that the
torque output capacity of the engine can meet the load, hence the engine speed stabilizes
at the steady-state speed of about 950 rpm (point Z).

3.8.2 Automotive Transmission: Manual Shift Type

A typical automotive manual transmission has five gear ratios. Figure 3.23 shows a view
of a manual transmission concept. The input shaft is the crank shaft from the engine. The
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manual transmission (five forward gears, one reverse gear), (Source: How Things Work).

Automatic shift version of the manual transmission, the difference between “manual shift” and

“automatic shift” versions is in the way the synchronizers are moved. In the manual shift

version, the synchronizers are moved manually via a mechanical linkage mechanism. In the

automatic shift version, the synchronizers are moved by an electronically controlled actuation

mechanism (i.e., an electro-hydraulic circuit which controls the flow of a pressurized fluid to

move the synchronizers as well as engage/disengage clutches).

counter-shaft has seven gears: five gears for five forward gear ratios, one gear for reverse
gear, and one gear on the left to couple the counter shaft to the input shaft. The output
shaft similarly has six gears: five gears for five forward gears and one for reverse gear. The
output shaft is connected to the differential which drives the wheels. There is also a clutch
between the engine crank shaft and the input shaft to connect and disconnect the two shafts
temporarily from each other during gear shifts. The gears on the counter-shaft are rigidly
connected to it and rotate at the same speed with the counter-shaft. Whereas the gears on
the output shaft are free-spining. A gear can be rigidly coupled to the output shaft using
the “synchronizers.” The synchronizers rotate at the same speed with the output shaft, but
they are grooved on the shaft so that they can slide along the shaft while rotating. The idler
gear is used to reverse the direction of rotation in the connection between the counter-shaft
gear and the reverse gear.

The gear selector fork is operated by the driver. It has three fingers (arms) to push.
Each finger operates a fork which is connected to a synchronizer. Each synchronizer can be
connected to one of two adjacent gears, and hence can be used to select one of two gears.
As a result, this design can support six different gear ratios (five forward and one reverse)
using three synchronizers. When none of the synchronizers are engaged, the neutral gear
is selected, and no power is transmitted from counter-shaft to the output shaft.
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When the driver wants to change gear,

1. First, the clutch is disengaged so the engine does not power the counter-shaft.

2. Then the gear selector lever is moved to the desired position which then moves the
synchronizer into contact with the selected gear on the output shaft. Hence, that gear
is now connected to the output shaft rigidly, instead of free-spinning. The process
of moving the synchronizer to engage a selected gear takes some time. Before the
clutch is re-engaged, the synchronizer couples with the selected gear, and then brings
its speed to the same speed of the output shaft, and locks it to the output shaft.

3. After that, the clutch should be re-engaged. If this speed synchronization does not
happen well with proper sequence and timing (i.e., the clutch is re-engaged too early,
before the synchronizer brings the selected gear to output shaft speed and locks it in),
then there will be some slip and audible noise in the gear shift until the selected gear
is fully coupled with the output shaft. On the other hand, if the clutch is re-engaged
too late, the vehicle will lose speed due to too operating without a power source for
too long.

The automatic shift versions of this type of transmission are commonly used in
agricultural equipment and automotive applications. The difference in the design is in the
mechanism by which the gears are engaged and disengaged. In the manual version, this is
done by the driver using a shift lever mechanism which physically moves the synchronizers
with a fork mechanism to engage/disengage desired gears. In the automatic version, there
are two main components,

1. An electronic control module (ECM) makes the decisions on which gear to shift, based
on various sensor signals (i.e., operator pedal position, engine speed, transmission
output speed), and sends the corresponding command signals (i.e., current) to the
actuation devices (i.e., valve solenoids).

2. An actuation mechanism that would include an electro-hydraulic (or electro-
pneumatic or electric) solenoid actuated valves, cylinders, and hydraulic supply
pressure in order to move the selected synchronizer to the desired gear engage-
ment position. Cylinders in this type of applications are so small and have a very
short stroke, they are often referred as “pistons.”

In other words, the decision to shift the gear is made by the ECM, the actual motion to make
the shift is accomplished by a motion control system (which is controlled by the ECM)
which may be an electro-hydraulic, electro-pneumatic, or all electric circuit. A common
feature of any automatic shift transmission is that the components of the shift motion
mechanism are typically an electro-hydraulic system which has:

� hydraulic supply/return: hydraulic supply pressure line from a pump and return line
to oil reservoir,

� valves: solenoid actuated valves to control the flow or pressurized fluid into the
“actuators,”

� actuators: small pistons/cylinders which are moved by the flow from the valves and
then the pistons are used to engage/disengage the selected clutch or brakes or move
synchronizers,

� clutch/brakes or synchronizers: highly integrated compact disc clutches and brakes
are built into the transmission frame.

At any given time, the transmission is in either neutral position (none of the gears are
engaged) or in one of the six gear positions (5 forward, 1 reverse). The gear ratio at any
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gear

Ni =
wout

win
(3.260)

Ni =
Neng

N0
⋅

Ni1

Ni2
; i = 1, 2, 3, 4, 5 (3.261)

Nr = −
Neng

N0
⋅

N61

N62
; reverse gear ratio (3.262)

where Ni’s represent the number of teeth of each gear. Similarly, the torque output delivered
to the output shaft at any gear is

Pout = 𝜂eff ⋅Pin (3.263)

Tout ⋅wout = 𝜂eff ⋅ Teng ⋅weng (3.264)

wout = Ni ⋅weng (3.265)

Tout = 𝜂eff ⋅
1
Ni

⋅ Teng (3.266)

where 𝜂eff is the efficiency of the transmission, which is in the range of 85 to 97% (0.85
to 0.97) range, weng = win input speed is same as the engine crank shaft speed. Assuming
100% efficiency for the transmission,

Tout =
1
Ni

⋅ Teng (3.267)

Notice that as the gear number in automotive applications increases (i.e., gear 1, gear 2,
gear 3, gear 4, gear 5), the gear ratio value Ni increases, that is N1 = 0.3, N2 = 0.5, N3 =
0.66, N4 = 0.75, N5 = 1.0. Hence, for a given engine speed, the vehicle speed gets larger.
However, in turn the torque delivered to the output shaft gets smaller as Ni increases. For
that reason, when a vehicle is climbing a hill, we need more torque, hence gear should be
shifted down to a lower gear.

The steady-state engine power is characterized by the so-called “lug curve,” which is
torque versus speed at full throttle for a given engine as discussed in Section 1.2. Each gear
of the transmission effectively scales this curve, assuming 100% transmission efficiency at
all gears for the sake of simplicity. Plotting the scaled lug curves (that is the output torque
and speed at the transmission output shaft) on the same figure for five different gears shows
us the speed–torque ranges each gear should be used in (Figure 3.24).

As an example, consider the following simple lug curve data for an engine under full
throttle conditions, and the gear ratios in gears 1 through 5,

weng = [ 600 900 1200 1500 1800 2100 2400 ] (rev∕min) (3.268)

Teng = [ 25 50 100 95 80 75 70] (N ⋅ m) (3.269)

Ni = [ 1∕3.0 1∕2.0 1.∕1.5 1∕1.33 1∕0.9]; i = 1, 2, 3, 4, 5 (3.270)

Figure 3.24 shows the lug curve and the scaled versions of the lug curve to indicate the
torque at the transmission output shaft at different transmission output shaft speeds.

For instance, if the load torque is very large (i.e., climbing a very steep hill), the
transmission should operate in gear 1 and the maximum achievable speed is shown in the
figure. Likewise, if the load torque is very small and top speed is of importance, then
the transmission should be operated at a high gear (i.e., gear 5). Figure 3.24 shows the
maximum load torque and speed that can be supported at each gear.

Let us assume that the engine is operating at full throttle, and the transmission is in
gear 3. Then the operating curve of the vehicle is the gear 3 speed–torque curve shown. If
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FIGURE 3.24: Engine lug curve between torque–speed, and scaled versions of it at different

gear ratios of the transmission (assuming 100% transmission efficiency) which shows the

speed and torque profile that is delivered at the transmission output shaft.

the vehicle speed corresponds to 1000 rpm output shaft speed at the transmission output
shaft connecting to the differential, and the load torque is constant at about 120% of the
maximum engine torque, then the available torque delivered at that condition is larger than
the load torque (torque delivered to output shaft is about 140% of the maximum engine
torque at gear 3 at that speed), then the vehicle will accelerate until the output torque drops
and equals load torque on the curve for gear 3. Again, we assume the engine is at full
throttle, which means that the engine is operating at full capacity (maximum fuel rate,
i.e., gas pedal is pressed to its maximum displacement). In order to find the steady-state
operating condition under a constant load at a given gear, draw a horizontal line from the
current operating load condition. The point where this line crosses the lug-curve at the given
gear ratio gives us the steady-state operating condition, and hence the steady-state operating
speed where the output torque matches the load torque. In this example case, the vehicle
speed will stabilize in steady state at a speed corresponding to about 1500 rpm output shaft
speed. Similarly, if the vehicle is running at this speed and load torque increases to 140%,
perhaps due to an increase in road slope, then the vehicle speed would slow down until
the engine (and hence vehicle speed) drops to a value on gear 3 curve where the produced
torque is equal to the load torque. In this case this occurs around 1000 rpm. As a further
discussion, if the load torque is 160% of the maximum torque, the gear has to be shifted to
the lower gear, that is gear 2, in order to meet the load demand. If the gear is maintained at
gear 3 under this condition, the engine will stall (stop), since at gear 3 there is no way the
engine can output as large a torque as demanded. The only way to meet the load demand
is to reduce the gear ratio, hence increase the torque multiplication factor to deliver more
torque to the output shaft. In this case, if the gear is shifted to gear 2, the vehicle speed
would stabilize at a speed that corresponds to the output shaft speed of the transmission at
about 800 rpm under full throttle condition.

3.8.3 Planetary Gears

Figure 3.25 shows two examples of planetary gear sets. Figure 3.25a shows the most
commonly used form of planetary gears with an internal ring gear. Figure 3.25b differs
only in the fact that the ring gear is not an internal gear, but an external gear. Planetary
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FIGURE 3.25: Planetary gears: (a) ring gear is an internal gear, (b) ring gear is an external gear.

gears are also called epicyclic gears. There are four main components of a planetary
gear:

1. sun gear,

2. carrier (also called planetary carrier or arm),

3. planetary gear,

4. ring gear.

There are five possible conditions of planetary gear applications (Figure 3.26): in four of
the conditions one of the components is fixed.

1. Sun gear is fixed, (w1 = 0.0): ring gear, planetary gear, and planetary carrier all
rotate in the same direction. This is called the walking planetary gear condition
(Figure 3.26a).
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FIGURE 3.26: Four common configurations of planetary gears: (a) sun gear is fixed: directions

of rotation of planetary gear and carrier are same, (b) ring gear is fixed: directions of rotation of

planetary gear and carrier are opposite, (c) planetary carrier is fixed, non-planetary operation

(idler). (d) planetary gear is fixed to the carrier (cannot rotate about the carrier axis). Locked

condition. All components rotate as one unit, gear ratio is 1:1.

2. Ring gear is fixed (w4 = 0.0): sun gear and planetary carrier rotate in the same
directions, planetary gear rotates about its own shaft in the opposite direction (Figure
3.26b). This is also called the walking planetary gear condition.

3. Planetary carrier is fixed (w2 = 0.0): functions as a non-planetary gear. The planetary
gear acts as an idler gear. This is called the idling planetary gear condition (Figure
3.26c).

4. The planetary gear is fixed, while the sun, ring, and carrier are allowed to move
(Figure 3.26d). In this condition, all components move as one unit, as if they are
connected to each other with a one-to-one (1 : 1) gear ratio.

5. None of the planetary gear components are fixed (Figure 3.25), two of the components
are used as the input shaft and one of the component outputs is used as the output.
This results in a continuously variable transmission (CVT or also sometimes called
“split torque transmission” (STT), because the torque delivered to the output shaft is
“split” between two input shaft sources).
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If the carrier is fixed (not moving), the planetary gear reduces to a standard gear,
with the gear ratio being the ratios of each gear (Figure 3.26c),

N31 =
w3

w1
= sgn

(
w3

w1

)
N1

N3
= −

N1

N3
(3.271)

N41 =
w4

w1
= sgn

(
w4

w1

)
N1

N3
⋅

N3

N4
= sgn

(
w4

w1

)
N1

N4
= −

N1

N4
(3.272)

where the gear that is connected to both input shaft and output shaft (in this case the planetary
gear) acts as an idler gear. This is called the “idler” or “idling” mode of operation for a
planetary gear. The idler gear does not change the gear ratio, but changes the direction of
rotation only. The contribution of the idle gear to the gear ratio is multiplication by −1.
The sign of rotation in the gear ratio can also be incorporated into the definition of the gear
ratio. It is customary to consider the direction of rotation in counter-clockwise as positive,
and the rotation in clockwise direction as negative. The sgn( ⋅ ) is negative for a planetary
gear with internal ring gear (Figure 3.25a) for both equations. The sgn( ⋅ ) is negative for
the first, and positive for the second, equation for the planetary gear type with external ring
gear shown in (Figure 3.25b).

If the planetary gear is fixed about its local axis of rotation on the carrier, the relative
rotational speed of the planetary gear with respect to the carrier is zero, (w32 = 0.0), then
the gear mechanism is in locked condition, where the angular speed of the sun, carrier and
the ring gear are all same, in other words, have all gear ratio of 1:1 with respect to each
other (Figure 3.26d).

w1 = w2 = w4 (3.273)

N2,1 = N4,1 = 1 (3.274)

w3 = w2 + w32 (3.275)

w3 = w2 + 0 (3.276)

w3 = w2 (3.277)

In the planetary gear mode, the carrier is not fixed, but moving. This mode is also
referred to as the “walking” mode. In walking mode, either the sun gear or the ring gear
is held stationary. In the case of the stationary sun gear, the planetary gear always turns
in the same direction on its pin as the planet carrier rotation (Figure 3.26a). In the case of
the stationary ring gear, the planetary gear turns in the opposite direction on its pin as the
planetary carrier (Figure 3.26b).

In planetary mode, the gear ratio relationships are applicable in terms of the relative
velocities of the components with respect to the carrier. The relative gear ratio definition with
respect to the planetary carrier is the key principle in defining the gear ratio relationship
of planetary gears, analogous to the non-planetary case where the carrier is fixed. Below
are the two fundamental kinematic equations for planetary gear ratio calculations

Nr31 =
w32

w12
=

w3 − w2

w1 − w2
= sgn

(
w32

w12

)
N1

N3
= −

N1

N3
→

w3 − w2

w1 − w2
= −

N1

N3
(3.278)

Nr41 =
w42

w12
=

w4 − w2

w1 − w2

= sgn

(
w42

w12

)
N1

N3
⋅

N3

N4
= sgn

(
w42

w12

)
N1

N4
= −

N1

N4
→

w4 − w2

w1 − w2
= −

N1

N4
(3.279)

where we define the above gear ratios as relative, as indicated by the subscript “r.”
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Of the four elements of a planetary gear, two of them can be specified as inputs. In
other words, planetary gears have two degrees of freedom that can be specified by the user,
that is, the speed (absolute angular velocity) of the any two components. Then, the absolute
speeds of the other two components can be found from the above equations. Once that is
known, the gear ratios can be expressed between any two absolute angular speeds, that is

N31 =
w3

w1
, N41 =

w4

w1
.

If we take one of the components as the output shaft of interest, and consider two
input shafts as input shafts, this configuration can be used as a “continuously variable gear
ratio” or a “continuously variable transmission” (CVT). The output shaft speed is a function
of two input shaft speeds. If we consider one of the input shafts as the primary input shaft
which has a gear ratio to the output shaft, then we can consider the second input shaft to
effectively change the gear ratio between the primary input shaft speed and output shaft
speed since we know how the second input shaft speed contributes to the output shaft speed.

For instance, let us consider that the input shafts are the ring and sun gears, and the
output shaft is the carrier. The carrier speed can be calculated as (Figure 3.25a)

w4 − w2

w1 − w2
= −

N1

N4
(3.280)

w2 =
N1

N1 + N4
⋅w1 +

N4

N1 + N4
⋅w4 (3.281)

where the gear ratio between w2 and w1 is shown. But we can consider the contribution
of w4 as effectively changing that gear ratio. This method is used in continuously variable
transmissions (CVT). Similarly, for the same condition, we can derive the gear ratio rela-
tionship between the two input shafts and the planetary gear (component number 3) from
the above equations. It can be shown that the gear ratio relationship is

w3 − w2

w1 − w2
= −

N1

N3
(3.282)

w3 =
N1

N3

(
N1 + N3

N1 + N4
− 1

)
⋅w1 +

N4

N3

(
N1 + N3

N1 + N4

)
⋅w4 (3.283)

In most planetary gear applications, one of the three components other than the
carrier (typically the sun gear, planetary gear, or ring gear) is fixed, one of the remaining
two components acts as the input shaft, and the remaining two components, rotation is
kinematically determined by the appropriate gear ratio where one of the two remaining
components is the output shaft. If the carrier is fixed, the gear mechanism is in non-planetary
mode.

For the planetary gear type shown in Figure 3.26b, and for this special configuration
(ring gear is fixed) and the sun gear is input, the absolute gear ratios can be shown from
above equations as follows (set w4 = 0.0),

N21 =
w2

w1
=

N1

N1 + N4
(3.284)

N31 =
w3

w1
=

N1

N3
⋅
(

N1 + N3

(N1 + N4
− 1

)
(3.285)

It is trivial to show that N32 = N31∕N21, N41 = N42 = N43 = 0.0.
This configuration (ring gear fixed) is used in final drive gear reducers inside the wheel

in large construction equipment applications. There is a planetary gear reducer between
the output shafts of the differential and the tire-wheel assembly. The sun gear is connected
to the differential output shafts (input to the planetary gear reducer of the final drive), the
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FIGURE 3.27: Automatic transmission used in heavy equipment applications showing the use

of planetary gears, controlled clutches, and brakes to select gear ratios. The torque converter

provides a variable hydrodynamic coupling (variable gear ratio) between the engine input shaft

and gear reducer section of the transmission. The table on the right shown which clutch/brake

combination must be engaged to select a particular gear (Reproduced with permission from

Volvo Trucks).

ring gear is fixed to the vehicle frame, and the output shaft is the planetary carrier which is
connected to the tire-wheel assembly (Figure 3.34).

In transmission applications, multiple stages of such planetary gears are stacked in
series (Figure 3.27). Then, using electrically (or electro-hydraulically) controlled multi
disc clutches and brakes, we can decide in real-time which component to fix and which
component to rotate in each planetary stage. Through controlled clutches and brakes, we
can change from one gear ratio to another, for example from N21 to N31 by disconnecting
the motion of the gear 2, and then connecting the motion of gear 3 to the output shaft by dis-
engaging and engaging the clutches and brakes for the respective gears. For a good smooth
transition, the transient dynamics of this clutch/brake disengagement/engagement motion
must be carefully controlled. For instance, simple ON/OFF control of the clutch/brake
disengagement/engagement would result in very rough and unacceptable response (i.e.,
similar to a beginner driver’s gear shift on a manual shift transmission).

The multi stage planetary gear mechanism, shown in Figure 3.27, provides ten dif-
ferent gear ratios, as shown on the table on the right: six gear ratios for forward motion,
two gear ratios for reverse motion, and two gear ratios for the neutral condition. This type
of automatic transmission is used in articulated trucks and similar mobile and construction
equipment applications. A common design characteristic of multi stage planetary gears is
that adjacent stages share a component with each other. For instance, the stage 1 ring gear,
stage 2 carrier (Figure 3.28), and the stage 3 ring gear are all rigidly connected to each other
as one component. Similarly, the stage 3 planetary carrier is connected to stage 4 ring gear,
which is then rigidly connected to the stage 5 ring gear. The stage 4 carrier is connected to
the sun gear of stage 5. Notice that the sun gear of stage 5 is the output shaft of this multi
stage planetary gear mechanism (Figure 3.28).

The electro-hydraulically controlled multi disc brakes (B1 through B5) and clutches
(C1 and C2) are engaged or disengaged, as shown in the table, to select the desired gear
ratio. It is important to note that the transition of the state of a clutch or brake from engaged
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of planetary gears, controlled clutches, and brakes to select gear ratios: condition for gear

Forward 1 (F1) (Reproduced with permission from Volvo Trucks).

to disengaged or from disengaged to engaged state is important for smoothness of the
shift quality. To this end, the transition of the clutch/brake engagement/disengagement is
controlled by pressure regulating valves that control the fluid flow to the clutches/brakes.

Consider the clutch and brake engagement conditions for forward gear 1: F1 (Fig-
ure 3.28).

1. Clutch 1 (C1) locks the input shaft to the main shaft.

2. Brake 5 (B5) locks the planetary carrier of stage 5 to the transmission housing. As a
result, the planetary stage 5 is in the idling condition, which means that it is acting as
a regular gear since its planetary carrier is fixed.

3. This forces the ring gear of stage 4 (item 4,4), which is shared by stages 4 and 5, to
rotate in the opposite direction relative to the sun gear numbered (4,1) in the figure.
The output shaft (connected to sun gear of stage 5, number (5,1) in the figure) is then
driven in the opposite direction to the ring gear. The net result is that output shaft and
input shaft are in the same direction, hence the forward gear.

The gear ratio between input and output shaft speeds can be found as follows. Note that
the gear numbers of each stage are defined as follows, Ni,j, where i is the planetary stage
number (1, 2, 3, 4, 5), and j is the gear number in that stage: 1 for sun gear, 2 for planetary
carrier, 3 for planetary gear, 4 for ring gear. The speeds are also defined with the same
notation, wi,j, where i is the planetary stage number (i = 1, 2, 3, 4, 5), and j = 1, 2, 3, 4 the
component numbers of that stage, sun, carrier, planet, and ring gears, respectively. The
output shaft speed (the shaft speed of the sun gear of planetary stage 5) is determined by
the ring gear speed of stage 4 as follows. Stage 5 operates in idle condition because its
planetary carrier is fixed, and the ring gear of stage 4 and stage 5 are the same, and the
speed of the output shaft is the same as the speed of the planetary carrier of stage 4,

wout = w5,1 (3.286)

= w4,2 (3.287)
w5,1

w5,4
= −

N5,4

N5,1
(3.288)

w5,4 = w4,4 (same component) (3.289)

wout = −
N5,4

N5,1
⋅w4,4 (3.290)
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From the basic planetary gear relationship derived above, we can write the following for
planetary stage 4,

w4,2 =
N4,1

N4,1 + N4,4
⋅w4,1 +

N4,4

N4,1 + N4,4
⋅w4,4 (3.291)

wout = w5,1 (3.292)

= w4,2 (3.293)

where equations are simply modified by their subscripts to indicate the planetary stages.
Given the three relationships above, the output speed wout = w5,1 = w4,2 can be calculated
as function of input speed w4,1. In other words, we can eliminate w4,4 from the above
equations, resulting in a gear ratio relationship between w4,1 (the input shaft speed) and
w4,2 which is the same as the output shaft speed of the transmission. It can be shown that
the resuting gear ratio relationship is

w4,2 =
N4,1

N4,1 + N4,4
⋅w4,1 +

N4,4

N4,1 + N4,4
⋅w4,4 (3.294)

=
N4,1

N4,1 + N4,4
⋅w4,1 −

N4,4

N4,1 + N4,4

N5,1

N4,4
⋅w4,2 (3.295)

=
[

1 +
N4,4

N4,1 + N4,4

N5,1

N4,4

]−1 N4,1

N4,1 + N4,4
⋅w4,1 (3.296)

where the gear ratio at this gear is

GR1 =
[

1 +
N4,4

N4,1 + N4,4

N5,1

N4,4

]−1 N4,1

N4,1 + N4,4
(3.297)

=
N4,1

N4,1 + N4,4 + N5,1
(3.298)

Example: Planetary Gears Consider Figure 3.25a with the following gear param-
eters: N1 = 25, N3 = 50, N4 = 100 gears. Inputs are specified as: sun gear speed w1 =
100 rev∕min and the ring gear is stationary, w4 = 0.0 rev∕min. Find the speed of the carrier
and the planetary gear and absolute gear ratios between the sun gear and the carrier, and
the sun gear and the planetary gear.

For the direct application of the two equations we have above, first we will find the
absolute velocity of the two components, then calculate the absolute gear ratios.

Nr41 =
w42

w12
=

w4 − w2

w1 − w2
= sgn( ⋅ )

N1

N3
⋅

N3

N4
= sgn( ⋅ )

N1

N4
(3.299)

=
0 − w2

100 − w2
= − 25

100
(3.300)

w2 = 20 rev∕min same direction as w1 (3.301)

Nr31 =
w32

w12
=

w3 − w2

w1 − w2
= sgn( ⋅ )

N1

N3
(3.302)

=
w3 − 20

100 − 20
= −25

50
(3.303)

w3 = −20 rev∕min opposite direction to w1 (3.304)

Notice that w3 is the absolute angular velocity of the planetary gear. It has two components
contributing to its absolute angular velocity: angular velocity of the carrier (w2, component
2) and angular velocity of the planetary gear with respect to the carrier about it own rotation
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axis, w32. As indicated above,

w32 = w3 − w2 (3.305)

w32 = −20 − 20 rpm (3.306)

= −40 rpm (3.307)

which is the angular velocity of the planetary gear about its own rotation axis.
Then the net gear ratios between sun gear and carrier (N21), and sun gear and planetary

gear (N31)

N21 =
w2

w1
= 20

100
= 1

5
(3.308)

N31 =
w3

w1
= −20

100
= −1

5
(3.309)

The absolute gear ratios could also be calculated for this case using the equations

N21 =
N1

N1 + N4
= 25

25 + 100
= 1

5
(3.310)

N31 =
N1

N3

(
N1 + N3

N1 + N4
− 1

)
= 25

50

(
25 + 50
25 + 100

− 1

)
= −1

5
(3.311)

In transmission applications, we could obtain two different gear ratios from this single
planetary gear stage: use a brake (B1) to lock the ring gear, and clutch (C1) to engage the
carrier to the output shaft, hence obtain a gear ratio of 1

5
between the input and output

shafts. Alternatively, use a brake (B1) to lock the ring gear, and a second clutch (C2) to
engage the planetary gear to the output shaft to obtain a gear ratio of − 1

5
between input and

output shafts.

3.8.4 Torque Converter

Figure 3.27 shows an automatic transmission based on a planetary gear mechanism. The
input section of an automatic transmission has a torque converter which functions as a
hydrodynamic flexible coupling between the engine and the transmission (Figure 3.29a and
b)1 . It can also be viewed as an automatic clutch with slip capability. As a result, it provides
a damping to the power transmission line. Torque converter provides a variable gear ratio
between its input–output shafts. The main disadvantage of a torque converter is its lower
power conversion efficiency compared to direct drive. Because the power is transmitted by
the moving fluid, it creates heat, hence the losses. In addition, a cooling system may be
needed to remove the heat.

The torque converter has three main components:

1. The impeller, which is connected to the input shaft of the torque converter, which is
also the engine output shaft. The impeller converts the mechanical energy of its input
shaft to the hydrodynamic energy of the coupling fluid.

2. The turbine, which is connected to the output shaft of the torque converter, which is
connected to the input shaft of the transmission’s planetary gear set, and converts the
hydrodynamic power of the fluid back into mechanical rotational motion of its shaft.

3. The stator is a component that redirects the coupling fluid between the turbine and
the impeller, typically stationary, however in some cases it can be free-wheeling or

1 This sub-section is based on Lectures by Dr. Richard Ingram.
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FIGURE 3.29: Torque converter: (a) components: impeller, turbine, stator. There are also

impeller (neutralizer) clutch and lock-up clutch in heavy equipment applications. (b) Functional

relationship torque converter components. (c) Steady-state input–output relationship for torque

converter: torque ratio and primary torque as a function of speed ratio, and efficiency of torque

converter as a function of speed ratio.

connected to the impeller shaft with a one-way clutch which allows it to turn only in
the same direction as the impeller, not reverse.

There are two common modifications to the torque converter in heavy equipment
applications (Figure 3.29a and b):

� Neutralizer clutch (also called impeller clutch) which is used to disconnect the input
shaft of the torque converter (shaft of the impeller) from the engine shaft so that
partial power or no power is transmitted from the engine to the torque converter. It
is typically a proportionally controlled, not ON/OFF, type clutch. When it is fully
engaged (ON), the full power transmission from engine to torque converter occurs.
When it is fully disengaged (OFF, in neutralized state), there is no power transfer
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from the engine to the torque converter’s impeller shaft, hence the engine and the rest
of the powertrain is effectively disconnected. In a partially engaged state via a propor-
tional pressure control circuit on the neutralizer clutch, partial power is transmitted
between the engine and the torque converter. This proportional control capability of
the neutralizer clutch can be used to limit the torque transmitted to the transmission,
that is to limit the rimpull force (traction torque) for traction control, or to manage
how much power is allowed to go to the transmission in order to allocate the rest of
the available engine power to the other hydraulic systems. This is sometimes referred
as the power management algorithm or power management strategy in vehicle con-
trol terminology. Power management refers to the controlled distribution of available
engine power among two or more subsystems, that is transmission, steering, and
implement hydraulic systems.

� Lock-up clutch which is used to mechanically lock the impeller shaft and turbine
shaft without slip, effectively providing a rigid coupling and eliminating the torque
converter’s hydrodynamic coupling function. This also referred to as the direct drive
mode of the torque converter, where the torque converter is effectively non-functional.
This is an ON/OFF type of clutch with a controlled dynamic transition between ON
and OFF states. It is used in heavy equipment applications after the first gear to
eliminate the inefficiency of the torque converter. In such applications, the torque
converter is used (lock-up clutch is not engaged) only on the first gear. When the lock-
up clutch is engaged, the torque converter section is not transmitting power through
the hydrodynamic coupling. In order to minimize the power loss in the circulated
fluid between impeller-turbine-stator, the stator is generally of the free-wheeling type
instead of being fixed to the housing when the lock-up is engaged.

The only components of a torque converter that are subjected to wear, are the friction discs
of the neutralizer and lock-up clutches and the seals. The rest of the components are rather
highly reliable, rigid components that rarely need servicing.

The torque converter behavior is modeled by two steady-state algebraic functions
(Figure 3.29c): torque ratio and primary torque. The torque ratio (also called torque multi-
plication) is higher when there is a larger relative speed difference between the input and
output shafts. When the impeller and turbine shaft speeds are the same, there is no torque
transmitted between the two shafts. The two characteristic functions of the torque converter
are defined as follows, as a function of speed ratio Nw = wturb∕wimp

1. torque ratio, NT(Nw), between impeller and turbine shafts as a function of the speed
ratio, and

2. primary torque, Tp(Nw), as a function of the speed ratio.

For a given torque converter, these two characteristic functions can be measured as follows
(Table 3.1):

1. connect the torque converter between an engine and a dynamometer (also called a
dyno),

2. set the engine speed to the rated speed, that is wrated = 1800 rpm, via a closed loop
engine speed controller so that the engine maintains that speed,

3. control the dyno to maintain desired speeds from zero to rated speed at selected
intervals in steady state, that is again using a closed loop dyno speed controller,
wdyno = 0 rpm, 100 rpm,… , 1800 rpm,
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TABLE 3.1: Table for measurement and calculations to characterize the steady-state
input–output behavior of a torque converter: determining torque gain (NT(Nw)) and
primary torque (TP(Nw)) as a function of speed ratio (Nw = wturb∕wimp).

Controlled Controlled Measure Measure Calculate Calculate

weng = wrated wdyno Teng = Tp Tdyno Nw = wdyno

weng
NT = Tdyno

Teng

1800 rpm 0 rpm x x … …
1800 rpm 100 rpm x x … …

… … x x … …
… … x x … …

1800 rpm 1800 rpm x x … …

4. then measure the following variables in steady state: engine output shaft (impeller)
and dyno shaft (turbine) speeds as well as torques,

wimp = weng = wrated (3.312)

wturb = wdyno (3.313)

Tp = Timp = Teng (3.314)

Tturb = Tdyno (3.315)

5. then calculate and plot the following data (Figure 3.29c):

Nw = wdyno∕weng = wdyno∕wrated (3.316)

NT = Tturb∕Timp (3.317)

Plot the two variables

� Tp(Nw) versus speed ratio Nw
� NT(Nw) = Tdyno(Nw)∕Teng(Nw) versus speed ratio Nw.

These two functions characterize the steady-state input–output relation of a torque
converter.

For a given torque converter, we would have the Tp(Nw), NT(Nw) functions. In specific
steady-state operating conditions, if the input and output shaft speeds of the torque converter
are known (given: wimp, wturb), then the input and output torques can be calculated as

Timp(Nw, wimp) = Tp(Nw) ⋅
( weng

wrated

)2

(3.318)

Tturb(Nw, wimp) = NT(Nw) ⋅ Timp(Nw, wimp) (3.319)

where weng = wimp, wturb are impeller and turbine speeds, Timp, Tturb are torques at impeller
and turbine shafts. Notice that, in the above measurements to characterize a torque converter,
the impeller (engine output shaft) speed is maintained at a constant rated speed and Tp(Nw)
is obtained for a constant impeller speed as turbine speed varied from zero to the rated
speed. To obtain the impeller torque at a general operating speed of the engine, we use the
parabolic relationship as shown above. In the most general form Timp = Timp(Nw, weng).
When weng = wrated, then this relationship reduces to the Timp(Nw) = Tp(Nw).

The magnitude of these two functions depends on the physical size of the torque
converter. The exact shape of these two functions is determined by the shape of the blades
in the impeller, turbine, and stator, which are customized differently for different machine
applications. For instance, the blade shapes in a torque converter in a truck would be
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different from those in a passenger car, because these two machines require different torque
converter behavior.

In order to understand the role and dynamics of the torque converter in the vehicle
drive train dynamic simulation, consider the torque converter as a nonlinear coupling device
that is flexible or that can have different slip between input and output speeds. Consider the
beginning of a simulation, where the engine has a speed and the vehicle has a speed.

1. The impeller speed of the torque converter is determined by the engine speed,

wimp = weng (3.320)

2. Turbine speed is determined by the speed of the vehicle which is reflected to the
turbine by the lower powertrain gear ratio,

wturb = 1
Nlp

⋅wtire (3.321)

where wtire is the vehicle tire speed, and Nlp is the total gear ratio of the lower
powertrain (between turbine speed and tire speed).

3. Then, Timp and Tturb torques are determined from the steady-state characteristics of
the torque converter.

The efficiency of torque converter is defined as

𝜂tc =
Pout

Pin
(3.322)

=
Tout ⋅wout

Tin ⋅win
(3.323)

=
Tturb ⋅wturb

Timp ⋅wimp
(3.324)

= Nw ⋅NT (3.325)

The maximum efficiency of a torque converter occurs around 0.7 to 0.85 speed ratio range
and is around the 85–90% range. When the speed ratio of the torque converter is zero, the
power conversion efficiency is zero because output speed, and hence the output power, is
zero. When the speed ratio is one (both impeller and turbine shaft speeds are the same),
the power conversion efficiency is also zero because the torque output (and torque ratio)
is zero. Between these extremes, the efficiency curve is similar to a parabolic function of
speed ratio, where the maximum efficiency is achieved around the 0.7 to 0.85 speed ratio
range (Figure 3.29c).

For a specific machine application, the engine and torque converter should be sized
properly. This is called engine–torque converter matching. The basic objective is to match
the power level of the engine and the power transfer capability of the torque converter.
Different machine applications require different engine–torque converter matching in that
the maximum efficiency of the torque converter occurs at the rated speed of the engine
(full-matched case), at above the rated speed of the engine (light-matched case), and at
below the rated spedd of the engine (heavy-matched case). Roading machines typically
have heavy to full match, whereas non-roading machines (such as wheel type loaders)
typically have light to full match.

For a given torque converter, we have the torque gain (NT(Nw)) and primary torque
(Tp(Nw)) functions as functions of the speed ratio. Let us consider a load torque and
its reflection on the impeller. In other words, the impeller torque is the reflected load
torque acting on the engine output shaft. The intersection of the engine lug curve and this
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FIGURE 3.30: Steady-state operating condition of a machine with an engine and torque

converter based transmission: (a) At full throttle, the steady-state engine operating condition is

determined by the intersection of the engine lug curve and impeller torque curve for a given

torque converter speed ratio. For different speed ratios, different impeller torque curves give us

different steady-state operating conditions for the engine. (b) The calculated rimpull force as a

function of machine speed: given a gear setting, calculate equivalent force delivered at the

tire–ground interaction as a result of the torque converter output torque as a function of

different speed ratios and engine speed in steady state. (c) Rimpull power: rimpull force times

the machine travel speed. Notice that the maximum power delivered at the rimpull is about the

same for all gears, where the shape of the power curve as a function of machine speed is

simply stretched out as a function of machine speed for different gears.

Timp(weng) due to load for different speed ratio Nw = 0.0, 0.1, ..., 1.0 curves defines the
steady-state operating speed and torque of the engine when the engine is at full throttle
(Figure 3.30a). Then, at a given torque converter speed ratio (i.e., Nw = 0.0, 0.1, ..., 1.0), we
can find the stall point, hence the engine torque and engine speed (Timp = Teng and weng,
on Figure 3.30a).

Given the current gear ratio of the planetary gear set and the rest of the gear ratios
(differential and final drive) are known for a given machine, we can calculate the rimpull
force at this condition,

Vmachine = Ntotal ⋅Nw ⋅weng (3.326)

Frimpull =
1

Ntotal
⋅ 𝜂lp ⋅ Tturb (3.327)
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where Ntotal is the total gear ratio from the torque converter output shaft to the tire–ground
contact point (it includes the average radius of the tire, Rave, in the gear ratio between the
shaft rotation and linear displacement of the tire),

Ntotal = Nplanetary ⋅Ndiff ⋅Nfinal drive ⋅Rave (3.328)

where Nplanetary is the gear ratio at the currently selected gear (ratio between the speed of
the torque converter output shaft which is turbine and the speed of the planetary gear set
output shaft), Ndiff is the gear ratio at the differential, Nfinal drive is the gear ratio of the final
drive, 𝜂lp is the power transmission efficiency of the lower powertrain from turbine shaft to
the tires.

For a given gear condition (i.e., gear 1, gear 2, gear 3), if we repeat this calculation
for different speed ratios of the torque converter, Nw = 0.0, 0.1,… , 1.0, we can plot the
rimpull force developed at the tire–ground interaction at that gear as a function of machine
translational speed. If we repeat this for different gears (different Ntotal values), then we
obtain different rimpull force versus machine speed curves for different gears (Figure
3.30b). This set of rimpull force–machine speed curves for different gear ratios defines the
tractive (rimpull) force capability of a machine. In steady state, for a given gear ratio of
the transmission, each curve shows the maximum rimpull force the machine can generate
at different machine speeds. Actual measured rimpull force curves versus machine speed
would be a little different than the calculated rimpull force curves due to slip between tires
and ground as well as friction losses, hence there is some error in calculating the machine
speed based on the engine speed.

Rimpull force versus machine speed curves for a machine which has a drive train
without torque converter (a direct coupling between engine and gear reducer set, i.e.,
planetary gear set) would look like the curves shown in Figure 3.24. When a torque
converter is included in the coupling between the engine and gear set, the rimpull force
versus machine speed curves are a little smoother, and the rimpull force is a little smaller
compared to the direct drive case. This is expected since the torque converter is less efficient
than the direct coupling.

The power delivered to the rim of the machine (rimpull power) is the engine power
minus the transmission losses. Notice that the maximum rimpull power is about same for all
gears. The difference is simply due to efficiency differences in the transmission at different
gear ratios. The shape of the rimpull power curve is simply stretched for different gears
(Figure 3.30c).

One simple measurement to confirm the engine and drive-train capabilities of a
machine is to measure the stall point. That is, for a given gear ratio (i.e., gear 1), set the
engine to full throttle, and load the machine such that the machine speed is zero (Nw = 0.0),
and measure the rimpull force and the engine speed at that point (maximum rimpull at
machine stall speed). This measured data then can be compared with the specifications (i.e.,
maximum rimpull force on Figure 3.30b) to verify the accuracy of how well the machine
at hand meets the specified performance. About 3–5% variation between specifications and
actual measured values is normal as a result of manufacturing variations and measurement
errors.

3.8.5 Clutches and Brakes: Multi Disc Type

Clutches and brakes are very common components in motion transmission mechanisms
such as transmissions. They both involve two shafts. A clutch transmit torque from one
moving shaft to another moving shaft. In the case of brakes, the second shaft is stationary.
By controlling a combination of clutches and brakes, different gear ratios are obtained from
the transmission.
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FIGURE 3.31: Multi disc clutch and brake concept. (a) Two-dimensional cross-sectional view

of a multi disc clutch, (b) three-dimensional cut-away view of a multi disc brake.

Multi disc clutch and brakes are perhaps the most versatile types among others. The
basic principle of torque transmission, via clutch and brakes, is the friction between two
discs. If we press two discs against each other, the friction between them will transmit
torque from one to another. Now, we extend this idea to a set of discs, where one set is
connected to shaft one, the other set connected to shaft two. In addition they are connected
to their respective shafts through axial grooves so that they can move translationally (slide
along the shaft) along the rotation axis. The two sets of discs would be placed in alternating
order in order to maximize the friction surface. The actuation mechanism for the clutch and
brakes can be mechanical, air pressure, hydraulic, electro-hydraulic, or electromagnetic.
The role of the control mechanism is to provide the control power to simply force or release
(engage or disengage) the friction discs against each other. Figure 3.31 shows the concept
of a multi disc clutch. If either one of the shafts is fixed, it functions as a brake. If a hydraulic
mechanism controls the fluid flow to the piston chamber to regulate the pressure, then we
control the friction between the discs that connect the shafts to each other. The fluid flow,
which is controlled in such a way to as regulate the pressure, is controlled by an electro-
hydraulic proportional valve where the current applied to the valve solenoid will result in
a proportional pressure. In clutch/brakes, where the transmitted torque is proportionally



194 MECHATRONICS

controlled, the pressure at the piston control chamber is regulated proportionally to the
desired torque transmission. Such multi disc clutch/brake components are commonly used
in automotive transmissions to engage or disengage desired gear ratios.

The actuation mechanism may also be based on a direct electrical coil actuation. When
the current is applied to the coil, it acts as an electro-magnet, and is used to engage/disengage
the multi disc brake/clutch. If the coil current is proportionally controlled, then the multi
disc brake is capable of proportional operation.

The mechanical dimensions and the number of disc-plates used determines the max-
imum torque capacity of the multi disc clutch/brake. The dynamic response depends on
the type of actuation method, that is mechanical linkage, pneumatic, hydraulic, electro-
hydraulic, or direct electro-magnetic. Typical response times vary from 15 ms to 500 ms
for electro-magnetically controlled types.

3.8.6 Example: An Automatic Transmission
Control Algorithm

Figure 3.32a shows the basic logical blocks of an automatic transmission control algorithm.
In automatic transmission control, the real-time control algorithm in the electronic control
module (ECM) essentially tries to do what a good professional driver tries to do with a
manual shift transmission; accomplish a “smooth and yet fast enough” gear shift using
various sensory information about the condition of the vehicle.

The algorithm monitors three main sensory signals:

1. transmission gear selection lever, operated by the driver (i.e., P, R, N, D for park,
reverse, neutral, and direct automatic mode),

2. engine speed sensor (input speed to transmission),

3. transmission output speed sensor.

Based on the operator gear selection, the algorithm selects a desired gear ratio. If the
operator selects P or N, the corresponding gear ratio selection is directly made based on
that selection of the operator. If the operator selects R or D, the gear ratio is selected based
on the engine speed and transmission output speed sensor. The algorithm estimates the
vehicle speed based on the transmission output speed (neglecting the effects of wheel slip),
and decides on the appropriate gear. This decision is based on the principle illustrated in
Figure 3.32.

Given current gear and current engine speed, from the gear shift table we can deter-
mine up-shift speed and down-shift speed for the transmission output speed (Figure 3.32b).
If the current transmission output speed is between these two values, no gear change is
made. If it is below the down-shift speed value, the gear is shifted down one gear. If it is
larger than the up-shift speed value, the gear is shifted up one gear. In order to make sure
the gear shift does not occur due to noise in the signal, the measured transmission output
speed is verified to be out of the range defined by up-shift and down-shift speed values for
a period of time, that is 100 ms, before an actual up-shift or down-shift decision is made.

Next, using a look-up table, the algorithm determines which clutch/brake combination
should be engaged and disengaged (Figure 3.32a). An example of such a table is shown
in Figure 3.27. Once the decision of which clutch/brake combination needs to be engaged
or disengaged is made, the next block on the control algorithm implements a pressure
control algorithm to achieve the desired pressures in those clutch/brakes as a function
of time as shown in Figure 3.32c. This is to control the transient response of the gear
shift. The figure shows the typical desired pressure profile for smooth gear shifting in
automatic transmissions. In large equipment applications, typical clutch/brake engagement



MECHANISMS FOR MOTION TRANSMISSION 195

Clutch/
brake
off

Clutch/
brake
on

Fill period

200 ms

Modulation period

500 ms

Start

Grear shift

Torque

Time
(ms)

Time (ms)

25% 50% 75% 100%

Engine 
speed

25 mph

50 mph

75 mph

100 mph

3 4

12

21

32

23

34

Vehicle speed
(Transmission
output speed)

uBi

uCi

Gear selection
Algorithm

P/R/N/D

weng

wxmn

Clutch/Brake look
up table 

Clutch

Brake

Pressure control

F1, F2,......
C1......

PBi

PCi

B1......

R1, R2

N

P

(a)

(b)

(c)

FIGURE 3.32: Automatic transmission control algorithm: (a) different logical components of

an automatic transmission control algorithm, (b) gear selection logic, (c) controlled pressure as

a function of time in engaged and disengaged clutch/brakes.

and disengagement takes between 300–700 ms. Notice that a clutch/brake engagement is
performed in two phases:

1. fill phase (up to 200 ms), and

2. modulation phase (up to 500 ms).

During part of the gear shift process, engine torque is not transmitted from the transmission
input shaft to the output shaft. As a result, the lower powertrain (components between the
transmission output shaft and wheels) does not get power from the engine during part of
the gear shift time period. That is why it is important that the gear shift happens smoothly
without too much time delay so that the vehicle does not lose noticeable speed. On the
other hand, if the shift happens too fast there will be too much variation in the speed



196 MECHATRONICS

(a)

Engine

Transmission

Differential

Front axle

Center axle

Differential
Rear axle

Differential

Parking brake
Transfer 
gear

(b)

FIGURE 3.33: Powertrain of an articulated truck: Volvo Model A series, (a) picture of the

articulated truck showing the powertrain, (b) powertrain components: engine, transmission

with torque converter, differentials, (front, center, rear, inter axle (two of them)) and multi disc

brakes. Each differential has locking mechanism under operator (or ECM) control for traction

control purposes (Reproduced with permission from Volvo Trucks).

of the vehicle (too much accelleration or deceleration). Therefore, a good balance must
be found between a “smooth yet fast enough gear shift.” The clutch/brake modulation is
accomplished by controlling the solenoid operated valves that control the pressure in the
respective control cylinders of the clutches/brakes Figure 3.31. Each valve used to control
one of the clutch/brake is proportionally operated. It has at least three ports: the pump
pressure supply port, tank pressure supply port, output pressure port. By controlling the
position of the valve spool, the output pressure of the valve is proportionally controlled
between the pump supply pressure port and tank pressure port. Such valves are referred to as
electronically controlled pressure control (ECPC) valves. The logic of pressure modulation
may be open loop based on a time profile or closed loop based on measured pressure
feedback. Automatic transmission control algorithms have different names based on the
type of control logic they implement in the “gear selection algorithm” block (Figure 3.32a)
such as full throttle shift, part throttle shift, controlled throttle shift.

3.8.7 Example: Powertrain of Articulated Trucks

An articulated truck powertrain is shown in Figures 3.33 and 3.34 where a picture of
an articulated truck is shown along with the components of powertrain. The powertrain
components are
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FIGURE 3.34: Axle (front or rear) of a vehicle: differential, final drive based on a single stage

planetary gear (used in heavy equipment applications), and brakes in the final drive housing.

The sun gear is driven by the shaft coming from the differential, the ring gear is fixed to the

frame, the planetary carrier is connected to the output shaft (to the tire-wheel). Reprinted

Courtesy of Caterpillar Inc.

1. The diesel engine which is the mechanical power source for the machine.

2. The automatic transmission with torque converter. The word “automatic” transmis-
sion means that the gear shifting at the planetary stage is handled automatically by
the ECM. The torque converter provides the “flexible coupling” function between the
diesel engine and planetary gear stage. In this particular case, there is also a hydraulic
retarder in the transmission (also see Figure 3.27, component D). The role of the
hydraulic retarder is to provide the braking role by simply spinning the hydraulic fluid
in the transmission and transforming the mechanical energy into heat. As a result, the
hydraulic retarder is used as part of the braking system to decelerate the machine. In
many operating conditions it can meet the deceleration requirement of the machine
such that the disc-brakes do not need to be applied, hence improving the brake life
due to reduced usage of brakes.

3. A transfer gear is used to transmit power from transmission output to both front axle
and center/rear axels.

4. The front/center/rear axels each have a differential (Figure 3.35), left and right axle
shafts. On each axel shaft there are disc-brakes and a final gear reduction mecha-
nism. In addition, the differentials have locking mechanisms which are controlled by
operator input (or automatically by the ECM) for the purpose of traction control.

The differential gear, shown in Figure 3.35, has three shafts: one input shaft and two
output shafts. The relative motion of the planetary gear (component number 3) adds in the
opposite direction to the left and the right output shafts. The purpose of the differential
mechanism is to allow different output speeds between two output shafts driven by the
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FIGURE 3.35: Automotive differential gear as an example.

same input shaft. In mobile and automotive applications this is needed when the vehicle
travels over a path that has curvature, not a straight line. In that case, in order to avoid tire
slip, the outside wheels must rotate at a faster rate than the inside wheels.

The fundamental relationship for differential operation can be expressed under two
conditions:

1. unlocked differential,

2. locked differential.

The unlocked differential mode is the normal mode of operation of the differential.
In this case the output torques transmitted to each output shaft are the same. Output shaft
torques cannot be different, because the reaction forces on the planetary gear from the output
shafts must be the same, but the output shaft speeds can be different which is determined
by the dynamics of the whole system.

In the locked differential mode, that is the planetary gear is not allowed to rotate
about its own axis, the output speeds of the two shafts must be the same, but the transmitted
torques to output shafts can be different. In this case the differential becomes a regular gear
reducer, and its “differential” function is cancelled. In unlocked and locked differential
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conditions, the following fundamental relations hold,

Tout1 = Tout2; unlocked differential mode (3.329)

wout1 = wout2; locked differential mode (3.330)

where Tout1, Tout2 are output torques, and wout1, wout2 are output shaft speeds of the differ-
ential.

When in locked condition (or unlocked condition and the planetary gear speed around
its carrier axis is zero, hence both output shaft speeds are same), the differential’s gear ratio
is (Figure 3.35)

Ndiff =
N1

N2
(3.331)

wout1 = wout2 = Ndiff ⋅win (3.332)

When it is in unlocked condition, output speeds can be different, which is determined by
the dynamic interactions of the load and traction conditions and the type motion path the
vehicle is following (i.e., a curved path),

wout1 = Ndiff ⋅win + Δw (3.333)

wout2 = Ndiff ⋅win − Δw (3.334)

where Δw speed is added and subtracted from two output shafts due to the rotation of the
planetary gear about its carrier axis, which results in “differential” speeds between the two
output shafts.

Normally, a differential operates in the unlocked case. If the vehicle travels on curved
paths, the differential allows the outside wheel to rotate faster than the inside wheel in
order to accomodate the speed differential needed. This is provided by the rotation of the
planetary gear about its own axis. This is the main function of an unlocked differential
operation, reducing tire slip and wear in curved paths.

The drawback of the unlocked differential condition is that the torques transmitted
to each output shaft are the same. The implication of this is that if the two wheels have
different traction conditions on the ground, then one of the wheels which has less traction
will spin much faster than the other wheel. Eventually, the maximum torque that can be
delivered to each wheel is limited by the smallest of the traction torques available between
the tires and ground. Consider a case where a vehicle is on straight line path, but the left
wheel has almost no traction due to ice, while the right wheel has good ground traction.
If we start from a stopped condition, the left wheel spins at a high speed and provides not
much traction to the vehicle, and the right wheel will move very slowly or will not move at
all (or even rotate in reverse direction) depending on how small the traction torque available
between the tire and icy surfacis. The differential will not be able to direct more torque to
the wheel that has more traction. The maximum torque that the differential can transmit is
limited by the smaller of the two traction torques that can be supported by each tire–ground
interaction. Under these conditions, the differential is better to be locked to provide better
traction at the expense of giving up the differential function (different output shaft speeds)
temporarily. When the differential is locked, both output shafts must then rotate at the same
speed. This eliminates the condition that the maximum torque transmitted is limited by the
minimum traction. As a result, traction is improved. However, the penalty paid is that if
the vehicle is moving on a curved path, there will be tire slip and more wear on tires, and
steering quality will be poorer, since the wheel speeds are forced to be same by locking the
differential.
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FIGURE 3.36: Engine lug curve, machine speed versus rim pull force capacity: (a) engine lug

curve for torque and power output as a function of engine speed at full throttle, (b) rim pull

force at different gear ratios and machine speeds. In order to determine the maximum uphill

grade the machine can climb at a given speed and machine weight, draw a vertical line from

the desired machine speed to the rim pull curve, from there draw a horizontal line to the grade

curve. Read the grade value which this horizontal line crosses for the machine weight

(Reproduced with permission from Volvo Trucks).
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The traction force (rim pull force) capability and speed of the truck directly determine
its productivity capacity. The performance curve that defines the maximum traction force
(rimpull force) as a function of machine speed is determined by the engine torque–speed
curve (lug curve), transmission (torque converter and planetary gear reducer set), and the
lower powertrain gear ratios (differential, final drive). Figure 3.36 shows a manufacturer
specified performance curve for rimpull versus machine speed. A commonly used perfor-
mance criteria for such machines is their grading capability. That is the maximum up-hill
grade it can climb at a given machine speed and machine weight. In order to determine
the maximum uphill grade capability the machine can climb at a given machine speed and
machine weight (Figure 3.36),

1. draw a vertical line from the given machine speed to rim pull curve,

2. from there draw a horizontal line to the grade curve,

3. then, read the grade value which this horizontal line crosses for the machine weight.

This is the maximum uphill grade the machine can climb at the given machine speed and
machine weight. For instance, at about 15 km∕hr machine speed, and machine weight of
40 000 kg, the maximum uphill grade this machine can climb is about 10%. If the machine
weight is 20 000 kg, the machine can climb about 20% grade at the same speed.

3.9 PROBLEMS

1. Consider a gear reducer as shown in Figure 3.1. Let the diameter of the gear on the input shaft be
equal to d1 = 2.0 in and width w1 = 0.5 in. Assume that the gear is made of steel and that it is a solid
frame without any holes. The ouput gear has the same width and material, and the gear reduction
from input to output is N = 5, (d2 = 10.0 in). The length and diameters of the shafts that extend to
the sides of the gears are ds1 = 1.0 in, ds2 = 1.0 in and ls1 = 1.0 in, ls2 = 1.0 in. Let us consider that
there is a net load torque of TL2 = 50 lb in at the output shaft?

1. Determine the net rotary inertia reflected on the input shaft due to two gears and two shafts.
2. Determine the necessary torque at the input shaft to balance the load torque.
3. If the input shaft is actuated by a motor that is controlled with 1∕10 degree accuracy, what is

the angular positioning accuracy that can be provided at the output shaft.

2. Repeat the same analysis and calculations for a belt and toothed pulley mechanism. The gear
ratios and the shaft sizes are the same. The load torque in the output shaft is the same. Neglect the
inertia of the belt. Comment on the functional similarities. Also discuss practical differences between
the two mechanisms.

3. Consider a linear positioning system using a ball-screw mechanism. The ball-screw is driven
by an electric servo motor. The ball screw is made of steel, has length of lls = 40 in, and diameter
of dls = 2.5 in. The pitch of the lead is p = 4 rev∕in (or the lead is 0.25 in∕rev). Assume that the
lead-screw mechanism is in vertical direction and moving a load of 100 lbs against the gravity up and
down in z-direction.

1. Determine the net rotary inertia reflected on the input shaft of the motor.
2. Determine the necessary torque at the input shaft to balance the weight of the load due to

gravity.
3. If the input shaft is actuated by a motor that is controlled with 1∕10 degree accuracy, what is

the translational positioning accuracy that can be provided at the output shaft?

4. For problem 3, consider that the typical cyclic motion that the workpiece is to make is defined
by a trapezoidal velocity profile. The load is to be moved a distance of 1.0 in in 300 ms, to wait
there for 200 ms and then move in the reverse direction. This motion is repeated continuously.
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Assume the 300 ms motion time is equally divided between acceleration, run, and deceleration times,
ta = tr = td = 100 ms (Figure 3.13).

1. Calculate the necessary torque (maximum and continuous rated) and maximum speed required
at the motor shaft. Select an appropriate servo motor for this application.

2. If an incremental position encoder is used on the motor shaft for control purposes, what is the
required minimum resolution in order to provide a tool positioning accuracy of 40 μin.

3. Select a proper flexible coupling for this application to be used between the motor shaft and
the lead-screw. Include the inertia of the flexible coupling in the inertia calculations and motor
sizing calculations. Repeat step 1.

5. Repeat the same analysis and calculations of Problem 3 and 4, if a rack and pinion mechanism
was used to convert the rotary motion of motor to a translational motion of the tool.

1. First, determine the rack and pinion gear that gives the same gear ratio (from rotary motion to
translational motion) as the ball-screw mechanism.

2. Discuss the differences between the ball-screw, rack and pinion, and belt and pulley (transla-
tional version) mechanisms.

6. Given a four-bar linkage (Figure 3.7), derive the geometric relationship between the following
motion variables of the mechanism. Let the link lengths be l1 = 1.0 m, l2 = 2.0, l3 = 1.5 m, l4 = 1.0 m.

1. Input is the angular position (𝜃1(t)) of link 1, output is the angular position of link 3, (𝜃3(t)).
Find 𝜃3 = f (𝜃1). Plot 𝜃3 for one revolution of link 1 as function of 𝜃1.

2. Determine the x and y coordinates of the tip of the link 3 during the same motion cycle. Plot
the results on the x-y plane (path of the tip of link 3 during one revolution of link 1).

7. Consider the cam and follower mechanism shown in Figure 3.9. The follower arm is connected
to a spring. The follower is to make an up–down motion once per revolution of the cam. The travel
range of the follower is to be 2.0 in in total.

1. Select a modified trapezoidal cam profile for this task.
2. Assume the input shaft to the cam is driven at 1200 rpm constant speed. Calculate the maximum

linear speed and linear accelerations experienced at the tool tip.
3. Let the stiffness of the spring be k = 100 lb∕in and the mass of the follower and the tool it is

connected to mf = 10 lb. Assume the input shaft motion is not affected by the dynamics of
the follower and tool. The input shaft rotates at constant speed at 1200 rev∕min. Determine
the net force function at the follower and tool assembly during one cycle of the motion and
plot the result. Notice that

F(t) = mf ẍ(t) + k ⋅ x(t) (3.335)

and x(t), ẍ(t) are determined by the input shaft motion and cam function. What happens if the
net force F(t) becomes negative? One way to assume that F(t) does not become negative is to
use a preloaded spring. What is the preloading requirement to ensure F(t) is always positive
during the planned motion cycle? The preload spring force can be taken into account in the
above equation as follows,

F(t) = mf ẍ(t) + k ⋅ x(t) + Fpre (3.336)

where Fpre = k ⋅ xo is a constant force due to the preloading of the spring. This force can be
set to a constant value by selection of spring constant and initial compression.

8. Consider an electric servo motor and a load it drives through a gear reducer (Figure 3.14).

1. What is the generally recommended relationship between the motor inertia and reflected load
inertia?

2. What is the optimal relationship in terms of minimizing the heating of the motor?
3. Derive the relationship for the optimal relationship.
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9. Consider the coordinate frames x2y2z2 attached to link 2 and x3y3z3 attached to link 3 in Figure
3.16. Let the length of link 2 be l2.

1. Given that joint 2 and joint 3 axes are parallel to each other (z2 is parallel to z3), write the 4x4
transformation matrix that describes the coordinate frame 3 with respect to coordinate frame
2; that is, T23 = ?

2. Determine T32, the description of the coordinate frame 2 with respect to coordinate frame 3
(Hint: T32 = T23

−1).

10. Consider the problem in Figure 3.20. Let l1 = 0.5 m, l20.25 m, and F be the weight of a payload
mass of m = 100 kg, then F = 9.81 ⋅ 100 N, in the vertical negative direction of Y0. Determine the
joint torques necessary to hold the load in position at the following conditions. Neglect the lengths
of the links.

1. 𝜃1 = 0◦, 𝜃2 = 0◦

2. 𝜃1 = 30◦, 𝜃2 = 30◦

3. 𝜃1 = 90◦, 𝜃2 = 0◦

11. The objective of this problem is to illustrate the problem of backlash in motion control systems
and how to deal with it. Consider the closed loop position control system shown in Figure 10.4.
Assume that the gear motion transmission mechanism is a lead-screw type (Figure 3.3). Further, let
us model the components as follows:

� the motor dynamics as inertia only (Jm) with no damping, and current to torque gain is KT,
� a position sensor connected to the motor that gives Ns1 count∕rev number of counts per

revolution,
� amplifier as a voltage to current gain (Ka) with all filtering effects neglected,
� lead-screw and the load it carries is modeled with its effective gear ratio (N = 1∕(2𝜋p)) where

p(rev∕mm) is the pitch and mass m (rotary inertia of the lead screw is neglected). Assume there
is load force acting on the inertia (Fl). In addition consider that the lead screw has a backlash
of xb, which we will assume is a constant value.

� control algorithm is implemented with an analog op-amp as a form of PID controller.

Assume the following numerical values for the system components: Jm = 10−5 kg ⋅m2,
KT = 2.0 Nm∕A, Ns1 = 2000 count∕rev, Ka = 2A∕V , p = 0.5 rev∕mm, m = 100 kg, Fl = 0.0N, xb =
0.1 mm. For simplicity, use the following relationship for the total inertia acting on the motor (although
during the period of motion when backlash is in effect and the lead-screw is not moving the nut,
the load inertia is not coupled to the motor; but we will neglect this) as well as motor torque and
transmitted force to the moving mass,

Jt = Jm + 1
(2𝜋p)2

⋅m (3.337)

Tl =
1

2𝜋p
⋅Fl (3.338)

(a) If the desired positioning accuracy of the load is 0.001 mm, draw a control system block diagram
and sensors to achieve this (Hint: due to backlash, we must have a load-coupled position sensor.
Let the resolution of that sensor be called Ns2 counts∕mm. Further, we should have a measurement
accuracy that is 2 to 5 times better than desired positioning accuracy).

(b) Develop a dynamic model of the closed loop control system (i.e., using Simulink®). Simulate the
motion in response to a rectangular pulse, that is initial position and commanded position are at
zero until t = 1.0 s, then a step position command of 1.0 mm and back to zero position command
at t = 3.0 s, and continue simulations until t = 5.0 s. Use the motor-coupled position sensor for
velocity loop with a P-only gain, and a load-coupled position sensor in the position loop with a
PD-type control. Adjust the gains in order to achieve a good response.

(c) What happens if you use only the motor-coupled position sensor, not the load-coupled position
sensor? Show your claim with simulation results. Modify component parameters if necessary to
illustrate your point.
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(d) What happens if you use only the load-coupled position sensor, not the motor-coupled position
sensor? Show your claim with simulation results. Modify component parameters if necessary to
illustrate your point.

Simulate a condition as follows: the engine runs at a constant speed. The friction coefficient
at each tire–ground contact is constant and the same for all tires, and the vehicle weight is equally
distributed in all tires. The initial direction of motion and steering is a straight line motion. The
steering angle is zero at all times, which means all the wheels are aligned to move in a straight line.
Based on a different desired gear selection as a function of time (i.e., step changes in gears at specific
points in time), assume instantaneous gear shift and clutch engagement/disengagement. Assume the
clutch stays engaged at all times except when the neutral gear is selected.

12. (This problem can be assigned as a small research project for students).
Develop a mathematical model of a four wheel drive vehicle including the following compo-

nents of the powertrain (Figure 3.37):

Brakes
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converter

Planetary
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Tire & ground
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Brake
Pedal sensor

Accelerator
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Speed
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FIGURE 3.37: Automotive powertrain block diagram: engine, transmission (torque converter

and planetary gear set), lower powertrain, brake, and tire–ground interaction.

1. Engine is to be modeled as a lug curve for different throttle values (without any transient
dynamics), Teng(𝜃throttle, wend,

Jeng ⋅ ẇeng(t) = Teng(𝜃throttle, weng) − Timp(t) (3.339)

Teng(𝜃throttle, wend). This function is commonly referred as the “engine map.” The maximum
torque of the engine at full throttle is 1000 N m. Define an reasonable engine map based on
this information, that is, Teng(𝜃throttle, wend), look up table.

2. Transmission is to be modeled on a torque converter and a planetary gear set. We model the
torque converter with its steady-state torque ratio and primary torque functions, whereas the
planetary gear set is assumed to shift to the desired gear instantanously. The transient time
in the gear shifting is neglected, as well as the inertial and stiffness characteristics of the
transmission. Simply model the planetary gear set as an ideal gear ratio device.

Timp(t) = Tp(wturb∕weng) ⋅
1

w2
r

⋅w2
eng (3.340)

Tturb = Nt(wturb∕weng) ⋅ Timp(t) (3.341)

Np = Np(gear) (3.342)

Tout(t) = Np ⋅ Tturb(t) (3.343)

wout(t) =
1

Np

⋅wturb(t) (3.344)

The torque converter is to be modeled as two steady-state functions: primary torque and torque
ratio, which are defined as a function of the speed ratio. The efficiency of the torque converter
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is assumed to be 100%. Define the two steady-state curves of the torque converter

Tp(weng, wturb) = 1000 − 4000 ⋅
((

wturb

weng

)
− 0.5

)2

(3.345)

Nr(weng, wturb) = 2.5 ⋅
(

1 −
wturb

weng

)
(3.346)

where wr is the rated speed where torque converter performance is given, and Np is
the gear ratio of the planetary gear set at the selected gear = {−1, 0, 1, 2, 3, 4, 5}, Np =
{−2.5, 0, 2.5, 1.5, 1.0, 0.75, 0.5}.

3. There are two identical differentials: one for the front wheel pair, and one for the rear wheel
pair. Let us assume they are all in locked condition. The final drive gear ratio does not exist.
In other words the output shafts of the differentials drive the wheels directly.

Jlp ⋅ ẇwheel(t) = Tout(t) − Tbrake(t) −
1

Rwheel

⋅Ftraction(t) (3.347)

4. Friction between the wheel tires and ground is based on a constant friction coefficient and
assumed to be the same for all.

mvehicle ⋅ ẍ(t) = Ftraction(t) − Fload(t) (3.348)

where

Ftraction = 𝜇r ⋅
1

Rwheel

⋅ Tout(t) (3.349)

Fload = Ffriction + Fdrag + Fgravity (3.350)

The whole vehicle weight, Wv = mv ⋅ g, is equally distributed among the four tires, where
mv is the total mass of the vehicle, g = 9.81m∕s2, 𝜇t is the traction coefficient. Assume identical
traction conditions at each tire. The student is asked to specify reasonably realistic parameters and
performance for the components as follows: Given the performance curves and parameters,

Teng(𝜃throttle, weng) engine map (3.351)

wr = 2400 rpm (3.352)

Np(−1, 0, 1, 2, 3, 4, 5) = {−2.5, 0, 2.5, 1.5, 1.0, 0.75, 0.5 } (3.353)

Jlp = 1.0 kg m2 (3.354)

Rwheel = 0.5 m (3.355)

mvehicle = 1 000 kg (3.356)

𝜇r = 0.0 for case 1 (3.357)

= 0.9 for case 2 (3.358)

Ffriction(t) = 0.0 (3.359)

Fdrag(t) = 0.0 (3.360)

Fgravity(t) = mvehicle ⋅ 9.81 ⋅ sin(15◦) (3.361)

Simulate a condition as follows. The vehicle speed is zero initially at time t = 0.0 s. The engine
runs at a constant speed and at a constant throttle, 100%. The initial direction of motion and steering
is a straight line motion. The slope of the ground is 15◦ and the vehicle is climbing. The gear is shifted
from neutral to first gear at time t = 1.0 s and the throttle is at 100%. Until that time, the engine
is simply running at a steady-state speed of 2200 rpm. The friction coefficient at each tire–ground
contact is constant and the same for all tires, and the vehicle weight is equally distributed in all tires.

Note: This model can be made more accurate by including dynamics for the engine response
and its controls, dynamics of the clutch and its transient engagement/disengagement, inertia-stiffness
and gear-change transient dynamics of the transmission, inertia of the axles and differential, and a
more accurate model of friction at each tire and ground contact. Furthermore, the steering motion
can be included along with the differential dynamics in unlocked condition.





CHAPTER 4
MICROCONTROLLERS

Most of the discussions in this chapter are based on the PIC 18F452 microcontroller (or
PIC 18F4431 version which has a quadrature encoder interface). The following manuals
can be downloaded from http://www.microchip.com and should be used as a reference
and as part of this chapter:

1. PIC 18FXX2 Data Sheet or PIC 18F4431 Data Sheet

2. MPLAB IDE V6.xx Quick Start Guide

3. MPLAB C18 C Compiler Getting Started

4. MPLAB C18 C Compiler Users’ Guide

5. MPLAB C18 C Compiler Libraries

4.1 EMBEDDED COMPUTERS VERSUS
NON-EMBEDDED COMPUTERS

The digital computer is the brain of a mechatronic system. As such, it is called the controller
when used for the control function of an electro-mechanical system. Any computer with
proper I/O interface devices (digital and analog I/O) and software tools can be used as a
controller. For instance, a desktop PC can be used as a process controller by adding an I/O
expansion board and control software. Clearly, there are many hardware components on a
desktop PC (a non-embedded computer) that are not needed for process control functions.
An embedded computer uses only the necessary hardware and software components and
is much smaller than a non-embedded computer, such as a desktop PC. An embedded
computer used as the controller of a mechatronic system is referred to as the embedded
controller. A microcontroller is the main building block of an embedded computer.

Figure 4.1a shows a comparison between an embedded and non-embedded (i.e.,
desktop) computer. Figure 4.1b shows a picture of a commercially available embedded
controller used in mobile equipment applications. The main differences between embedded
and non-embedded computers are as follows:

1. Embedded computers are generally used in real-time applications. Therefore, they
have hard real-time requirements. Hard real-time requirement means that certain
tasks must be completed within a certain amount of time, or the computer must react
to an external event within a certain time. Otherwise the consequences may be very
serious. The consequences of not meeting the real-time response requirements in a
desktop application are not as serious.

2. Embedded computers are not general purpose computing machines, but have more
specialized architectures and resources. For instance, a desktop computer would have

Mechatronics with Experiments, Second Edition. Sabri Cetinkunt.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/cetinkunt/mechatronics
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FIGURE 4.1: (a) Comparison of an embedded computer and a non-embedded computer. The

embedded computer has just enough resources for the application, must operate in a harsh

environment, has a smaller physical size and has hard real-time requirements. (b) Picture of a

rugged “embedded controller” used in off-highway equipment applications.

a hard disk drive, floppy disk drive, CD/DVD drive, and tape drive for permanent
data storage, whereas an embedded computer may have battery backed RAM or flash
or ROM memory to store just the application software. Embedded microcontrollers
have limited resources in terms of power (i.e., they may be powered by a battery),
memory, and CPU speed. Embedded computers are dedicated to specific tasks. They
do not store general purpose programs such as word processors, graphics programs,
and so on.

3. Embedded controllers and I/O interfaces are more integrated at the chip design
level than general purpose computers, that is I/O interface channels such as analog to
digital (ADC) and digital to analog (DAC) converters are integrated into the microchip
hardware.

4. The physical size of the embedded computer is typically required to be very small,
which may be dictated by the application.

5. Embedded controllers operate in extreme environmental conditions (i.e., an embedded
controller for a diesel engine must operate under conditions of large temperature and
vibration variations).

6. Embedded computers invariably incorporate a watchdog timer circuit to reset the
system in case of a failure.

7. Embedded microcontrollers may have a dedicated debugging circuit on the chip so
that the timing of all the I/O signals can be checked and the application program
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debugged on the target hardware. Debugging tools (hardware and software) are
a very important part of an embedded system development suite. Unlike desktop
applications, real-time embedded applications must be debugged and I/O signals
must be checked for worst case conditions.

8. The developer must know the details of the embedded system hardware (bus archi-
tecture, registers, memory map, interrupt system), since the application software
development is influenced by the hardware resources of the embedded computer.

9. Interrupts play a very important role in almost all embedded controller applications.
It is through the interrupts that the embedded controller interacts with the controlled
process and reacts to events in real-time.

10. As the complexity increases, embedded systems require a real-time operating system
(RTOS). RTOS provides already tested I/O and resource management software tools.
For instance, Ethernet communication may be provided by RTOS functions instead
of being written by ourselves. Furthermore, RTOS can provide task scheduling,
guaranteed interrupt latency, and resource availability.

Perhaps the most significant factors that differentiate embedded computers from
desktop computers are the real-time requirement, limited resources, and smaller physical
size. The real-time performance of an embedded system is defined by how fast it responds
to interrupts and how fast it can switch tasks.

Programming for a real-time application using a microcontroller/DSP, versus pro-
gramming for a non-real time application such as using a desktop PC, has the following
differences:

1. Memory resources in a desktop PC are very large and conserving memory is not
a concern for the programmer. Whereas memory resources in microcontrollers are
limited and memory space should be used carefully in order to not exceed that avail-
able. In real-time programming, depending on the microcontroller/DSP type and the
development environment we use, the development environment at the compilation
and link time may allow us to decide how to utilize the available memory for variables
and constants, in order to best fit the application program into the available memory.

2. Computational time requirements are also not much of a concern in non-real time
PC applications. Whereas, in real-time applications, everything must run in real-time
and our program must be able to react to events in-time and in real-time. Therefore,
long delays or long loops can be a problem in real-time applications. In real-time
programming, we make use of interrupt-driven event handling to make sure the
microcontroller responds to external “interrupt” events fast.

3. In real-time applications, safety is of great importance. If something unexpected
happens, we need to define an ordered way of ending current program execution and
be able to restart in a timely and defined order. In desktop applications, the so-called
“blue screen” condition (a system failure) may simply be solved by rebooting the
system and waiting for a few minutes. In real-time systems, waiting for a few minutes,
even for a few seconds, may not be acceptable.

4. In real-time programming involving real-world hardware I/Os, the application soft-
ware deals with reading and writing of bits, that is the status of a switch or turn
ON/OFF a light. Data and registers are accessed in such a way that we refer to spe-
cific bits for read and write operations. We can think of I/O operations as read/write
operations for a table of bits which corresponds to the I/O. In other words, all of
the I/O data is simply the values of a set of registers and their bits. For instance,
configuring and reading an ADC involves writing to a set of configuration registers
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(writing their appropriate bits to “1” or “0”), and then when the conversion data is
ready (determined by reading a specific bit from a status register), reading the data
register’s first 10 bits for a 10-bit ADC converter. For example, PIC 18F452 has
about 100 special function registers (SFR) each of which is 8-bits long (B0-B7). This
means that a total of 800 bits are used to handle (configure, read, write) all of the I/O.
In non-real-time applications, we tend to work with data structures that are long and
organized in some hierarchy as opposed to dealing with specific bits.

Design Steps of an Embedded Microcontroller-Based Mechatronic
System Design of a microcontroller-based mechatronic system includes the following
steps. These steps encompass the microcontroller and its interface to the electromechanical
system. We assume the electromechanical system is already designed.

Step 1: Specifications – define the purpose and function of the device. What are the
required inputs (sensors and communication signals) and required outputs (actuators
and communication signals)? This is the hardware requirement of microcontroller.
What are the logical functions required? This is the software requirement of micro-
controller.

Step 2: Selection – select a proper microcontroller that has the necessary I/O capabilities
to meet the hardware requirements as well as the CPU and memory capabilities to
meet the software requirements.

Step 3: Selection – select a proper development tool set for the microcontroller, that is
PC-based development software tools and hardware tools for debugging.

Step 4: Selection – identify electronic components and sub-systems necessary to inter-
face the microcontroller to the mechatronic system.

Step 5: Design – complete schematics for the hardware interface circuit, including each
component identification and its connections in the interface circuit.

Step 6: Design – write the pseudo-code of the application software structure, its modules
and flow chart.

Step 7: Implement – build and test the hardware.

Step 8: Implement – write the software.

Step 9: Implement – test and debug the hardware and the software.

Microcontroller Development Tools Typical development tools used in an
embedded controller development environment are grouped into two categories: hardware
tools and software tools (Figure 4.2). The hardware tools include:

1. a desktop/laptop PC to host most of the development software tools,

2. the target processor (i.e., an evaluation board or the final target microcontroller
hardware),

3. debugging tools such as a ROM emulator, logic analyzer,

4. EEPROM/EPROM/Flash writer tools (also called the “programmer”, because it is
used to download the program to the target microcontroller).

The software tools include the target processor specific

1. assembler, compiler, linker, and debugger,

2. real-time operating system (not required).
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FIGURE 4.2: The components of a development setup for a microcontroller-based control

system: PC as host development environment including the development software tools for the

microcontroller, communication cable, microcontroller board, breadboard, test and

measurement tools, and electronic components supply kit.

The compiler includes a start-up code for the embedded system to boot-up the system
on RESET, check resource integrity, and load the application program from a known location
and start its execution. The assembly code can be mixed with the C-code. However, we will
not discuss the assembly code here.

Furthermore, the compiler generates relocatable code, which is then used by the
“linker” to specifically locate it in the physical memory based on the selections made in
the application file for the linker. This file is prepared by the developer to properly use
the target system memory resources. The linker decides where in the memory to place the
program code and the data.

In particular, the debugging tools deserve special attention. The debugging require-
ments for embedded applications are significantly more stringent that those of desktop
applications. The reason is that the consequences of a failure are a lot more serious in real-
time systems. The simplest form of debugging tool includes a debug kernel on the target
system which communicates with a more comprehensive debugging software on the host
computer. More recent embedded controllers include on-chip debugging circuitry which
improves the debugging capability. A ROM emulator allows us to use RAM in place of
ROM during the development phase so that the host can change the target code and write
to the target hardware quickly.
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Microcontroller Development Tools for PIC 18F452 The development
board for PIC 18F452 (and PIC 18F4331) is the PICDEM 2 Plus Demo board plus vari-
ous peripheral hardware devices that allow the PIC 18F452 microcontroller to effectively
interface with electro-mechanical devices. These include a proper power supply through a
9V AC/DC adapter and regulator, a 4 MHZ clock, RS-232 interface, LCD, four LEDs, and
a prototyping area.

The MPLAB ICD 3 module is a low cost debug and development tool that connects
between the PC and the PICDEM 2 Plus Demo board (or the designer’s target board) allow-
ing direct in-circuit debugging of PIC 18F452 microcontroller (Figure 4.2). It is also used
as the communication and programmer tool between PC and the PIC Development Board.
Using the MPLAB ICD 3, PC communicates with PIC Development Board, downloads
programs to it, and debugs programs while running it on the PIC microcontroller.

Programs can be executed in real-time or single step mode, watch variables estab-
lished, break points set, memory read/writes accomplished, and more. It is also used as a
development programmer for the microcontrollers to download and save the code in the
microcontroller memory.

Hardware development tools are:

1. The PC as the host for development tools.

2. The development board (PICDEM 2 Plus Demo board), which has the microcontroller
(PIC 18F452), its power supply, support circuits, and space for breadboard for custom
application specific hardware interface development.

3. The communication cable and in-circuit debugger hardware (MPLAB ICD 3) for
downloading and debugging programs.

Software development tools that run on a PC and are interfaced to the board via the
communication cable are:

1. MPLAB IDE V.6xx integrated development environment (IDE) which includes an
editor, assembler (MPASM), linker (MPLINK), debugger, and software simulator
(MPLAB SIM) for the PIC chip.

2. MPLAB C18 C-compiler (works under MPLAB IDE V.6xx).

There are two debugger tools:

1. A debugger in software MPLAB SIM, which simulates the target PIC microcontroller
on the PC, and allows debugging of the logic on the PC. This of course not a real-time
debugger.

2. A real-time hardware debugger using the ICD3. ICD3 is also used at the communi-
cation device between the PC and PIC board, and as a programmer to download the
executable code from the PC to PIC Board.

It is recommended that basic logic functionality be debugged using the MPLAB SIM
simulator (software debugger). Then, when the I/O verifications is needed, the application
program should be debugged on the target PIC board using the ICD3 hardware. Using
ICD3, we can run the application program on the target PIC microcontroller and run it in
real-time. However, during debugging we are most likely to run the program in sections,
put “break points” to stop the program, “Step by Step” execute the code, and examine
(“Watch”) variables.

The PIC microcontroller can be programmed in a number of ways, using both C-
language and assembly language. Our lab experiments require the use of the MPLAB IDE
together with the MPLAB C18 ANSI-compliant C compiler installed on a PC. The language
tool suite also consists of the MPASM assembly language interpreter, the MPLINK object
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linker, and debugger. The C18 compiler supports mixing assembly language and C language
instructions in the same file. A block of assembly code included in a C source file must be
labeled by

_asm

....

_endasm

The basic sequences for programming the PIC, using a PC as the development tool, are as
follows:

1. On the PC, create a new project in the MPLAB IDE environment. Setup the project
environment by selecting the target PIC microcontroller, specify directories to access
libraries, add source codes to the project, and specify the project name. For each
project, the following configurations must be made in the MPLAB IDE environment:

(a) Create a project: MPLAB IDE > Project> New.
(b) Select the target PIC microcontroller: MPLAB IDE > Configure >

Select Device: PIC18F452.
(c) Configure project options: MPLAB IDE > Project > Select Lan-

guage Toolsuite: Microchip C18 Toolsuite.
(d) Configure project options: MPLAB IDE > Project > Set Language

Tool Locations: MPLAB C18 C Compiler and,
....... >Set Language Tool Locations: MPLINK Object

Linker.
(e) Configure project build options: MPLAB IDE > Project > Build

Options...>Project, then setup the options in the window under differ-
ent tabbed pages (options: General, Assembler, Compiler, Linker options).

(f) Add source files to the project: in the project window, right click on “Source
Files” and select “Add Files.”

(g) Select a script file for the linker: in the project window, right click on “Linker
Scripts,” and select ”Add Files,” and then select file “18f452.lkr” from the “lkr”
directory.

2. Write the program source code in C language, using the built-in editor or any ASCII
text editor, and save it as filename.c. Add other relevant files to your project.
MPLAB IDE > File > New and MPLAB IDE > File > Save.

3. Build (compile and link) the project in the MPLAB IDE environment. This converts
the high-level C code to the corresponding hex files which contain the binary coded
machine instructions: MPLAB IDE > Project > Build All.

4. First debug the program using the software simulator (SIM, provided as part of
MPLAB IDE) for the PIC chip on the PC. This is a non-real-time simulation of the
PIC chip. Once the program is debugged using the non-real-time simulator (MPLAB
SIM), then it can be transferred to the PIC microcontroller. If programming in C
language, the program must be re-built using a different linker script file (18f 452i.lkr
file for building a program to run on the actual PIC 18F452 chip, instead of 18f 452.lkr
which is used for debugging the program on the PC). Then, transfer the program from
the PC to the PIC board through the MPLAB IDE environment and communication
cable (MPLAB ICD 3):
MPLAB IDE > Programmer > Select Programmer and
...........>Settings and
MPLAB > Debugger > Connect.
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MPLAB > Debugger > Program to download the application program to the
PIC microcontroller.
The debugging commands for non-real-time software debugger (MPLAB SIM) and hard-
ware debugger MPLC ICD3 are largely the same. Typical debugging commands to find
errors in the program are similar to debugging commands for other high level programming
languages. Typically we need to be able to

1. Run, Halt, Continue the program execution.

2. Single step, Step into the function, Step over functions.

3. Setup “Breakpoints” at various lines in the program. When the program reaches
that line, the program execution will halt. To setup a “Breakpoint”, open the source
file, place the cursor on the desired line, right-click on the line, and then select “Set
Breakpoint” from the menu. A red icon should appear on that line to indicate that
this is a breakpoint line. When the program execution reaches this line, the program
will halt before executing this line.

4. Setup a “Watch window” to view the values of selected variables and registers, that is
when the program stops at a breakpoint, values of various variables can be examined
to check for errors.

MPLAB IDE > Wiew > Watch

5. Give the run command to the PIC chip from the PC. Debug the code on the PIC chip
with software and hardware debugging tools (i.e., MPLAB ICD3). When debug-
ging a program, disable the watchdog timer (WDT). The watchdog timer can be
enabled/disabled from the IDE menus. Otherwise, while the program is paused for
debugging, the WDT will reset the processor.

4.2 BASIC COMPUTER MODEL

Let us consider the operation of a basic computer using a human analogy (Figure 4.3).
As shown in the Figure 4.3, the human has a brain to process information, eyes to read,
hands to reach various components, and fingers to write. There is also a clock. On the desk,
there is a deck of cards which has the instructions to follow, a chalk, an eraser, a black
board, input–output trays, and two pockets with one card each for quick access to read/write
things on.

The analogy between this human model and a computer is as follows:

brain --- CPU
wall clock --- clock
deck of instruction cards --- read only memory (ROM)
chalk-eraser-black-board --- random access memory (RAM)
pocket cards --- accumulators (also called registers)
input-output tray --- I/O devices
eyes, hands and arms --- bus to access resources (read/write)

There are seven basic components of a computer:

1. The CPU which is the brain of the computer. The CPU is made of a collection of
arithmetic/logic units and registers. For instance, every CPU has
(a) a program counter (PC) register which holds the address of the next instruction

to be fetched from the memory,
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FIGURE 4.3: Basic computer and human analogy.

(b) an instruction decoder register, which interprets the fetched instruction and passes
on the appropriate data to other registers,

(c) an arithmetic logic unit (ALU), which is the “brain inside the brain,” executes
the mathematical and logical operations.

2. A clock – a computer executes even the simplest instruction at the tick of a new clock
cycle. The clock is like the heart of a human body. Nothing happens in the computer
without the clock.

3. A ROM – read only memory which contains information on how to execute the basic
instruction set. It can only be read from and cannot be written to. It maintains data
when power is lost. EPROM is an erasable programmable ROM. An EPROM chip has
a window where the memory can be erased by exposing it to ultraviolet light and then
be reprogrammed. EEPROM is an electrically erasable programmable ROM where
the memory can be re-written by electrical signals in the communication interface
without any ultraviolet light.

4. RAM memory – random access memory serves as an erasable blackboard where the
information can be read from and written to. Data is lost if power is lost. Static RAM
and dynamic RAM are two common RAM types of memory. Static RAM stores data
in flip-flop circuits and does not require a refresh–write cycles to hold the data as
long as power is not lost. Dynamic RAM requires periodic refresh–write cycles to
hold the data even when power is maintained.

5. Registers are a few specific memory locations which can be accessed faster than the
other RAM memory locations.

6. I/O devices – every computer must interact with a user and external devices to perform
a useful function. It must be able to read in information from the outside world, process
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it, then output information to the outside world. An I/O device interface chip is also
called peripheral interface adaptor (PIA).

7. A bus to allow communication between the CPU and devices (memory, I/O devices).
The bus includes a set of lines that includes those to provide power, address, data,
and control signals.

Let us assume that the human is supposed to pick a new card from the deck (ROM)
at the tick of every minute of the clock, read it, execute the instruction, and continue this
process until the instruction cards say to stop. Here is a specific example. The program is
to read numbers from the input tray. It reads until five odd numbers are read. It adds the
five odd numbers and writes the result to the output tray at the end. Then, the program
execution stops.

Minute: 1, 2, 3, 4,...- pick a card at the tick of every minute from the deck of cards
(ROM). Assume that the first four cards in the deck include the following instructions.

Card 1: Read a number from the input tray, write it on the card on the left pocket
(Accumulator A).

Card 2: Is the number odd? If yes, write it on the blackboard.

Card 3: Are there five numbers on the black board? If yes – go to Card 4, if no – go to
Card 1.

Card 4: Add all numbers, write the total number to the output tray and stop.

Notice the following characteristics in a computer program:

� normally the program instructions are executed sequentially,
� the order of execution can be changed using the conditional statements,
� the CPU, clock, ROM, RAM and accumulators, and I/O are the key components of a

basic computer operation.

The digital computer is a collection of many ON/OFF switches. The transistor
switches are so small that a 1000 × 1000 array of them (1 000 000 transistor switches) can
be built on a single chip. A combination of transistor switches can be used to realize various
logic functions (i.e., AND, OR, XOR) as well as mathematical operations (+, − , *, / ).

Every CPU has an instruction set that it can understand. This is called the basic
instruction set or the machine instructions. Each instruction has a unique binary code
that tells the CPU what operation to perform and programmable operands for the source
of data. Some microprocessors are designed to have a smaller instruction set. They have
fewer instructions but execute them faster than general purpose microprocessors. Such
microprocessors are called reduced instruction set computers (RISC).

Assembly language is a set of mnemonic commands corresponding to the basic
instruction set. The mnemonic commands make it easier for programmers to remember the
instructions instead of trying to remember their binary code (also called hex code, because
it is easier to code each of four binary digits with one hex character 0–9 and A–F). A
program written in assembly language must be converted to machine instructions before it
can be run on a computer. This is done by the assembler.

All of the instructions in a program written in a high level language must first be
reduced to the combinations of the basic instruction set the CPU understands. This is
done by the compiler and the linker, which translates the high level instructions to low level
machine instructions. The basic instruction set is microprocessor specific. The build process
(compile and link) of the C18 compiler generates various files including the executable file
with extension “*.hex”. In addition, the filename extensions “*.map” contains the list of
variable names and the allocated memory address for them. The filename extension “*.lst”
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contains the machine code (disassembled) generated for each line of the assembly and
C-code in a program. These files can be useful in the debugging process.

High level programming languages try to hide the processor specific details from
the programmer. This allows the programmer to program different microprocessors with
a single high level language. In microcontroller applications, it is generally necessary to
understand the hardware and assembly language capabilities of a particular microcontroller
in order to fully utilize its capabilities.

A computer program minimally needs the following machine instructions,

� Access memory (and I/O devices), and perform read/write operations between the
CPU registers and the memory (and I/O devices). These operations are typically
called

LOAD address (read from address) and

STORE address (write to address).

� Mathematical (add, subtract, multiply) and logical operations, such as

ADD address (implied to be added to the content of one the accumulators),

SUB address (implied to be subtracted from the content of one the accumulators),

AND, OR, NOT, JUMP, CALL, RETURN.

In high level languages, data structures (variables, structures, classes, etc.) are used to
manage the information. Assembly language does not provide data structures to manage
data in a program. It is up to the programmer to define variables and allocate proper memory
address space for them. Assembly language provides access instructions to the memory
and I/O devices as the source and destination for data. In addition it provides operators
(mathametical, logical, etc.) as well as various decision making instructions such as GOTO,
JUMP, CALL, RETURN. Using these instructions, we operate on the data in memory and
I/O devices.

The computer CPU accesses the resources (ROM, RAM, I/O devices) through a bus
which is the hardware connection between the components of a computer. The bus has four
basic groups of lines Figure 4.4:

1. power bus

2. control bus

3. address bus

4. data bus.

The power bus provides the power for the components to operate. Each line carries a
TTL level signal: 0 VDC or 5 VDC (OFF or ON). The control bus indicates whether the
CPU wants to read or write. The address bus selects a particular device or memory location
by specifying its address. The data bus carries the data between the devices. Notice that if
address bus is 16 lines (16-bit), there can be 216 = 65 536 distinct addresses the CPU can
access.

An I/O operation between the CPU and the memory (or I/O devices) involves the
following steps at the bus interface level:

� the CPU places the address of the memory or I/O device on the address bus,
� the CPU sets the appropriate control lines on the control bus to indicate whether it is

an input or output operation,
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� the CPU reads the data bus if it is an input operation, or write, the data to the data bus
if it is a write operation.

In short, performing I/O between the CPU and the other computer devices involves con-
trolling all three components of the bus: address bus, control bus, data bus. In a high level
language such as C, when we have a line of code as follows,

x = 5.0 ;

the compiler generates the necessary code to assign a memory address for x, places the
address of it in the address bus, turns on the write control lines on the control bus, and
writes the data “5.0” on the data bus.

4.3 MICROCONTROLLER HARDWARE AND SOFTWARE:
PIC 18F452

The term microprocessor refers to the central processing unit (CPU) and its on-chip mem-
ory. The term microcontroller (𝜇C) refers to a chip that integrates the microprocessor
and many I/O device interfaces such as ADC, DAC, PWM, digital I/O and communi-
cation bus (Figure 4.5a). A microcontroller is an integrated microprocessor chip with
many I/O interfaces. It results in a small footprint (physical size) and low cost. In micro-
controller applications, the amount of memory typically needed is in the order of tens
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of kilobytes, as opposed to the hundreds of megabytes of memory commonly available
in desktop applications. As a result, the cost of microcontrollers is less compared to
general purpose computers, which makes them good candidates for embedded controller
applications.

From a high level programming point of view, that is using C language or a
MATLAB®/Simulink® type graphical development environment, programming an embed-
ded controller for a real-time control application is a matter of defining the logic between
inputs and outputs (Figure 4.5b).

The logic is application dependent and is implemented through basic constructs of a
high level programming language such as if…, for… , while(...) , basic AND, OR type logic
operators as well as mathematical operators and functions (+, - , * , / , sin(..), cos(..) etc.),
data structures to manage the data, and a hierarchy of functions for modular programming.
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All of the input and output access is simply a matter of accessing a set of registers
corresponding to the inputs and outputs. Generally, there are three kinds of register for
any I/O:

1. Setup registers used to “setup” (configure) the operation of the I/O, that is, if a pin is
programmed to be a digital input, digital output, or analog I/O. This is typically done
once at the beginning of the application program.

2. Status/Control registers, used to determine the status of the I/O at any time, as well as
initiate actions, that is to tell an ADC converter to start a conversion or to determine
if the current ADC conversion process is completed.

3. Read/write registers, which are the “data” register for the I/O. For input, it is to be
read, for output, it is to be written. Once the I/Os are setup, reading or writing an I/O
is simply a matter of reading/writing the corresponding data register, just like reading
and writing to a variable in memory.

In embedded programming, the I/O control is a matter of writing to/reading from these
three groups of registers. This read/write operation may quite often read/write individual
bits of registers (i.e., writing 0 or 1 to a particular bit in a register, or reading to determine
if a particular bit in a register is 0 or 1), as well as the whole register byte-by-byte or
word-by-word. Therefore, we can say that at the lowest level (register level) programming
of an embedded controller, the programming involves the read/write operation of bits. High
level programming language support with processor specific library functions often are
used in order to make the program development generic and easily portable to different
microcontrollers by simply configuring the compiler libraries for different processors. For
real-time programming, understanding how I/O works and how real-time interrupts are
handled are key to successful real-time application software development.

4.3.1 Microcontroller Hardware

As users of microcontrollers in mechatronic systems, we need to understand the hardware of
microcontrollers. We will study this from the inside out. In the discussion, we are interested
in the functionality of the microcontroller components as opposed to how they are designed
or manufactured.

The main hardware features that one needs to understand for any microcontroller or
digital signal processor (DSP) are as follows:

1. the pin-out on the chip that identifies the role of each pin,

2. the registers in the CPU that define the “brain” structure and internal workings of the
microprocessor, memory, the bus structure, which defines how the CPU communi-
cates with the rest of the memory and I/O resources,

3. the support chips such as the real-time clock, watch-dog timer, interrupt controller,
programmable timers/counters, analog to digital converter (ADC), and pulse width
modulation (PWM) module.

Most of the output pins of the microcontroller are implemented as three-state devices
(the state of the line can be one of three states: LOW (OFF), HIGH (ON), High Impedance
states), which allows them to be configured as either input or output under software
control.

The application program is stored in the ROM type memory so that the program is
not lost when the power is turned OFF to the computer. As a result, whenever the power is
turned ON, the computer knows what to do (that is the program and necessary data in the
ROM). The data generated after the program starts to run and which is not needed when
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the program starts is called the temporary data, and is stored in the RAM. When power is
turned OFF, information in the RAM is lost. The exception to this is battery backed-RAM,
where the data is not lost when power is turned OFF to the computer because the battery still
keeps the RAM powered. Flash memory has the characteristics of both ROM and RAM.

Flash memory is a type of EEPROM memory which is packaged as “flash-disk” or
“flash-stick” as a permanent data storage device, that is a solid-state permanent data store
device without any mechanically moving parts. It retains its content when power is turned
OFF, like a ROM, and it can be re-written, like a RAM. Read access time is in the order of
that of dynamic RAM. Erase and re-write time is significantly slower compared to RAM. It
offers random access read, but not random access write operations because it can be erased
and re-written in ”blocks.” Typically, flash memory can be used for about 100 000 re-write
cycles.

A microcontroller is a single-chip integrated circuit (IC) computer. PIC stands for
peripheral interface controller. PIC is a trade name given to a series of microcontrollers
manufactured by Microchip Technology Inc. We will be using the PIC 18F452 chip for the
laboratory experiments. The PIC 18F452 has five bidirectional input–output ports, named
Ports A to E. Port A is 7-bit wide port while Port E is 3-bits wide (Figure 4.6). The other
ports, B to D, are all 8-bit ports. Port pins are labeled RA0 through RA6, RB0 through RB7,
RC0 through RC7, RD0 through RD7, and RE0 through RE2. Hence, the total number of
pins at ports A through E is 7 + 8 + 8 + 8 + 3 = 34 out of a 40-pin DIP package of PIC
18F452 chip (Figure 4.6). The remaining pins are used for VDD (two pins), VSS (two pins),
OSC1∕CLK1, MCLR∕VPP. Most of the pins are software configurable for one of multiple
functions between general purpose I/O and peripheral I/O. Using registers in the chip, one
function is selected for each pin under software control.

The PIC 18F452 is an 8-bit microcontroller based on the Harvard architecture. It is
available in 40-pin DIP, 44-pin PLCC, and 44-pin TQFP packages. In the 44-pin packages,
4 of the pins are not used and labeled as NC. The Harvard architecture separates the program
memory and the data memory. During a single instruction cycle, both program instructions
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FIGURE 4.6: Pin diagrams of the PIC 18F452 microcontroller (DIP 40-pin model shown).
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and data can be accessed simultaneously. The PIC 18F452 contains a RISC processor. This
particular RISC processor has 75-word basic instruction set.

PIC 18F452 chip is compatible with clock speeds between 4 MHz and 40 MHz. The
clock speed is determined by two factors:

1. hardware: the external crystal oscillator or ceramic resonators along with a few
capacitors and resistors,

2. software: configuration register settings to select the operating mode of the processor.

PIC 18F452 supports up to 31 levels of stack, which means up to 31 subroutine calls
and interrupts can be nested (Figure 4.8) for the low priority interrupts. Stack space in the
memory holds the return address from the function calls and from interrupt service routines.
Stack space is neither part of the program memory nor data memory.

The program counter (PC) register is 21-bits long (Figure 4.7). Hence, the address
space for program memory can be up to 2 MB. PIC 18F4431 is flash memory based and
has 16 KB of FLASH program memory (addresses 0000h through 6FFFh) which is 8 K
of two-byte (single-word) instruction space (Figure 4.7). Data memory is implemented in
RAM and EEPROM. Data RAM (static RAM, (SRAM)) has 4096 (4 KB) bytes of space
via the 12-bit data bus address, of which 768 bytes is implemented as SRAM, and 256
bytes implemented as EEPROM on PIC 18F4431. The address space F60h through FFFh
(160 bytes) is reserved for Special Function Registers (SFR) each of which is an 8-bit
register. SFRs are used to configure and control the operation of the core CPU and I/O
peripherals. It is through accessing these registers (160 8-bit SFRs), that practically all
of the I/O operation of the microcontroller is accomplished. The rest of the data memory
can be considered as General Purpose Registers, which are used as a scratch pad for data
storage.

In C-language using a C18 compiler, using the “rom” directive, data variables can
be explicitly directed to be allocated in program memory space if data memory space is
not sufficient for a given application. Similarly, the “ram” directive in data declarations
allocates memory in data memory.

rom char c ;
rom int n ;

ram float x ;

Some of the important locations in the program memory map are as follows:

1. The RESET vector is at address 0x0000h.

2. The high priority interrupt vector is at address 0x0008h.

3. The low priority interrupt vector is at address 0x0018h.

The RESET condition is the startup condition of the processor. When the processor is
RESET, the program counter content is set to 0x0000h, hence the program branches to this
address to get the address of the instruction to execute. The C-compiler places the beginning
address of the main() function at this location. Hence, on RESET, the main() function of
a C-program is where the program execution starts. The source of RESET can be:

1. Power-on-reset (POR): when an on-chip VDD rise is detected, a POR pulse is gen-
erated. On power-up, the internal power-up timer (PWRT) provides a fixed time-out
delay to keep the processor in RESET state so that VDD rises to an acceptable and
stable level. After the PWRT time-out, the oscillator startup timer (OST) provides
another time delay of 1024 cycles of oscillator period.
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FIGURE 4.7: Block diagram of the PIC 18F452: registers, bus, peripheral devices, and ports

(Fig.1-2 from PIC 18Fxx2 Data Sheet). Reproduced with permission from Microchip Technology,

Inc.

2. MCLR reset during normal operation or during SLEEP: the MCLR input pin can be
used to RESET the processor on demand.

3. Brown-out reset (BOR): when the VDD voltage goes below a specified voltage level
for more than a certain amount of time (both parameters are programmable), the BOR
reset is activated automatically.
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4. Watch dog timer (WDT) reset: WDT can be used to reset the processor if it times-out
during normal operation in order to clear the state of the processor, or it can also
be used to wake-up the processor from SLEEP mode. In WDT reset during normal
operation, the program counter is initialized to 0x0000h, whereas in WDT wake-up
mode, the program counter is incremented by 2 to continue to the instructions where
it was left.

5. RESET instruction, stack full and stack underflow conditions result in software
initiated reset conditions.

When PIC 18F452 executes a SLEEP instruction, the processor is held at the beginning of
an instruction cycle. The processor can be woken-up from SLEEP mode by either external
RESET, Watchdog Timer Reset or an external interrupt.

4.3.2 Microprocessor Software

Addressing Modes Data memory space in PIC 18F452 is accessed by a 12-bit long
address space, which means that it is 4096 bytes long. This space is organized as 16 banks
of 256 bytes of memory (Figure 4.8). Banks 0–14 are used as General Purpose Registers
(GPRs). GPRs can be used for general data storage. The upper half of bank 15 (F80h-
FFFh) is used as Special Function Registers (SFR). Lists of all registers of PIC 18F452
are provided in the PIC 18F452 Users’ Manual. SFRs are used for configuration, control,
and status information of the microcontroller. Most features of the microcontroller are
configured by properly setting the SFRs. EEPROM data memory space is 256 bytes and is
accessed indirectly through SFRs. There are four SFRs involved in accessing EEPROM:
EECON1, EECON2, EEDATA, and EEADR. EEDATA and EEADR registers are used to
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hold the data and address for EEPROM. EECON1 and EECON2 registers control the access
to EEPROM.

There are two addressing modes: direct addressing and indirect addressing. In direct
addressing mode, Bank Select Register (BSR which is at the FE0h address in the SFR
section of Bank 15 in data RAM) bits 3:0 (4-bits) are used to select one of 16 banks, and
the bits 11:4 (8-bits) from the opcode are used to select one of 256 memory locations in the
selected bank.

Instruction Set The PIC 18Fxxx chip instruction set has 75 instructions (see PIC
18F452 or 18F4431 Users’ Manual for a list and description of the basic instruction set).
All, except three instructions, are 16-bit single word instructions. Three instructions are
double words (32-bit). Each instruction has a unique binary code. When the microcontroller
decodes the instruction code, the dedicated hardware circuit performs a function, such as
increment the value in accumulator, add two numbers, compare two numbers. An instruction
cycle is equal to four oscillator cycles. These four oscillator cycles per instruction cycle are
called Q1, Q2, Q3, and Q4 cycles. Therefore, if a 4 MHz oscillator is used, an instruction
cycle is 1 μs.

Obtaining an instruction from the memory is called fetch. Decoding it to determine
what to do is called decode. And performing the operation of the instruction is called
execute. Each one of these fetch, decode, and execute phases of the instruction takes
one instruction cycle. The fetch–decode–execute cyles are pipelined, meaning executed in
parallel, so that each instruction executes in one instruction cycle. In other words, while one
instruction is decoding and executing, another instruction is fetched from the memory at
the same time. Single word instructions typically take one instruction cycle, and two-word
instructions take two instruction cycles to execute.

The CPU understands only the binary codes of its instruction set. All programs must
ultimately be reduced to a collection of binary codes supported by its instruction set, spe-
cific to that microcontroller. However, it is clear that writing programs with binary codes
is very tedious. Assembly language is a collection of three to five characters that are used
as mnemonics corresponding to each instruction. Using assembly language instructions is
much easier than using binary code for instructions. The assembler is a program that con-
verts the assembly language code to the equivalent binary code (machine code) instructions
that can be understood by the CPU. At the assembly language level, the instructions can be
grouped into the following categories:

1. Data access and movement instructions used to read, write, and copy data between
locations in the memory space. The memory space locations can be registers, RAM,
or peripheral device registers. Examples of instructions in this category are: MOV,
PUSH, POP.

2. Mathematical operations: add, subtract, multiply, increment, decrement, shift left,
and shift right. Example instructions include ADDWF, SUBWF, MULWF, INCF,
DECF, RLCF, RRCF.

3. Logic operations: such as AND, OR, inclusive OR. Example PIC 18F452 instructions
include ANDWF, IORWF, XORWF.

4. Comparison operations: example instructions include CPFSEQ (=), CPFSGT (>),
CPFSLF (<).

5. Program flow control instructions to change the order of program execution based on
some logical conditions: GOTO, CALL, JUMP, RETURN.

In order to effectively use assembly language, one must very closely understand the hard-
ware and software architecture (pinout, bus, registers, addressing modes) of a particular
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microprocessor. High level languages, such as C, attempt to relieve the programmer from
the details of tedious programming in assembly language. For instance, in order to perform
a long mathematical expression in assembly language, we would have to write a sequence
of add, subtract, and multiply operations. Whereas in C we can directly type the expression
in a single statement. Although the basic mathematical and logical operations are expressed
the same way for different processors in C, the specific hardware capabilities of a processor
cannot be made totally generic. For instance, one must understand the interrupt structure in
a particular microcontroller in order to be able to make use of it even with C programming
language. Quite often, I/O related operations require access to certain registers that are
specific to each microcontroller design. Therefore, a good programmer needs to understand
the architecture of a particular microcontroller even if a high level language such as C is
used as the programming language.

4.3.3 I/O Peripherals of PIC 18F452

The input/output (I/O) hardware connection to the outside world is provided by the pins of
the microcontroller. Figure 4.6 shows the pins of PIC 18F452 and their functions.

I/O Ports There are five ports on PIC 18F452: PORTA (7-pin), PORTB (8-pin), PORTC
(8-pin), PORTD (8-pin), and PORTE (3-pin). Each port has three registers for its operation.
They are:

� TRISx register, where “x” is the port name A, B, C, D, or E. This is the data direction
or setup register. The value of the TRISx register for any port determines whether
that port acts an input (i.e., reads the value present on the port pins to the data register
of the port) or an output (writes contents of the port data register to the port pins).
Setting a TRISx register bit (= 1) makes the corresponding PORTx pin an input.
Clearing a TRISx register bit (= 0) makes the corresponding PORTx pin an output.

� PORTx register. This is the data register for the port. When we want to read the status
of the input pins, this register is read. When we write to this register, its content is
written to the output latch register.

� LATx register (output latch). The content of the latch register is written to the port.

As an example, the code below sets all pins of PORT C as output, and all pins of PORT B
as input.

TRISC = 0; /∗ Binary 00000000 ∗/
PORTC = value ; /∗ write value variable to port C ∗/

TRISB = 255; /∗ Binary 11111111 ∗/
value = PORTB ; /∗ read the data in port B to variable value. ∗/

The MPLAB C18 compiler provides C-library functions to setup and use I/O ports. For
example, Port B interrupt-on-change and pull-up resistor functions can be enabled/disabled
using these functions.

#include <portb.b>

OpenPORTB (PORTB_CHANGE_INT_ON & PORTB_PULLUPS_ON ) ;

/∗ Configure interrupts and internal pull-up resistors on PORTB ∗/
ClosePORTB (); /∗ Disable ................................................... ∗/
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OpenRBxINT (PORTB_CHANGE_INT_ON & RISING_EDGE_INT & PORTB_PULLUPS_ON );

/∗ Enable interrupts for PORTB pin x ∗/
CloseRBxINT () ; /∗ Disable ......................... ∗/

EnablePullups() ; /∗ Enable the internal pull-up resistors on PORTB ∗/

DisablePullups(); /∗ Disable ...................................... ∗/

PWM Input and PWM Output Signal An analog value, that is a value other
than two state (ON or OFF), can be coded to a pulse-width value signal which is called
pulse-width-modulation (PWM). The advantage of a PWM signal over an analog voltage
level signal is its immunity against noise. For instance, if we have an analog voltage level
signal in the 0 VDC to 10 VDC range, such as 4 VDC level, a noise voltage level of 0.1 V
results in 2.5% error in the signal value. However, if the same signal is coded as a PWM
signal as 40% duty cycle (that is the signal is at ON state (i.e., 5 VDC) for 40% of the
time and OFF state (i.e., 0 VDC) the other 60% of the time, the 0.1 VDC noise is not large
enough to confuse or change the ON/OFF level of the signal, and hence results in no error
in the signal. In short, PWM signals are more robust and insensitive to noise compared to
analog voltage level signals.

There are two variables that define a PWM signal (Figure 4.9):

1. PWM frequency,

2. duty cycle.

Time

y(t)
tcycle

tON

tOFF

25%

Time
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Time
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FIGURE 4.9: PWM signal: frequency and duty cycle. Examples shown are for 25, 50, 75% duty

cycle.
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FIGURE 4.10: PWM signal input and output interface in embedded controllers.

The PWM frequency is the carrier frequency of the signal. For output signals, that is
the PWM output signal from an embedded controller to a current amplifier. The PWM
frequency should be at least 10 times (or even 100 times) larger than the bandwidth of the
device (i.e., current aplifier) that the PWM signal is sent to. Similarly, if the PWM signal is
an input signal to an embedded controller from a sensor, the PWM frequency of the signal
should be at least 10 or more times faster than the highest frequency content expected in
the measured variable.

The duty cycle is the value of the signal. For instance, 25% duty cycle means the signal
is ON 25% of one period of the signal and 75% of the period is OFF. Resolution of the PWM
output signal is directly a function of the number of bits the PWM function. For instance, an
8-bit resoultion PWM output function has a resolution of 1 part in 28 = 256 for the full range
of the signal. A 25% duty cycle is indicated by writing a number duty cycle = 256∕4 = 64
to the register corresponding to the duty cycle of the PWM output peripheral (Figure 4.10).

A PWM input signal interface to an embedded controller can be accomplished by a
timer (Figure 4.10), where timer values are captured at the rising and falling edges of the
PWM signal to calculate the ON and OFF periods of the signal. By capturing the ON and
OFF durations, we can calculate the PWM signal frequency and duty cycle,

wPWM = 1
tON + tOFF

(4.1)

duty cycle =
tON

tON + tOFF
(4.2)

where tON, tOFF are the ON time period and OFF time period captured by the timer where
the PWM input signal is connected.

Similarly, there are amplifiers which require frequency as their command signal. And
there are sensors whose output signal for the measured variable is a variable frequency,
such as engine speed sensors. Frequency input can be best handled either by a counter
or timer module. For instance, a counter can count the number of pulses per unit time
period from which we can estimate the frequency. Alternatively, the time period of each
pulse can be measured by a timer from which we can calculate the frequency. Digital
output ports can be used to generate variable frequency output signals, however there
is no dedicated frequency output peripheral integral to the PIC microcontroller. A DAC
converter output (analog voltage) can be converted to a proportional frequency with an
operational amplifier circuit. Likewise, a variable frequency signal can be converted to an
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analog voltage signal with an operational amplifier circuit. Such circuits are standard in
op-amp cookbook reference books.

Capture/Compare/Pulse Width Modulation (PWM) The capture/compare/
PWM (CCP) module is used to perform one of three functions: capture, compare, or generate
a PWM signal. PIC 18F452 has two CCP modules: CCP1 and CCP2. The operation of both
these modules is identical, with the exception of a special event trigger. The operation of
CCP involves the following:

1. Input/Output pin: RC2/CCP1 and RC1/CCP2 pins for CCP1 and CCP2, respectively.
For the capture function, this pin must be configured as input, for compare and PWM
functions, it must be configured as output.

2. Timer source: in capture and compare mode, TIMER1 or TIMER3, and in PWM
mode TIMER2 can be selected as the timer source.

3. Registers: used to configure and operate the CCP1/CCP2 modules.
(a) CCP1CON (or CCP2CON) register: 8-bit register used to configure the CCP1

(CCP2) module and select which operation is desired (capture, compare, or
PWM).

(b) CCPR1 (CCPR2) register: 16-bit register used as the data register. In capture
mode, it holds the captured value of TIMER1 or TIMER3 when the defined
event occurs in RC2/CCP1 pin. In compare mode, it holds the data value being
constantly compared to the TIMER1 and TIMER3 value and when they match,
the output pin status is changed or interrupt is generated (the action taken is
programmable via the CCP1CON or CCP2CON register settings). In PWM
mode, CCP1 (CCP2) pin provides the 10-bit (1 part in 210 = 1024 resolution)
PWM output signal. PWM signal period information is encoded in the PR2, and
duty cycle in CCP1CON bits 5:4 (2-bit) and CCPR1 (8-bit) registers which make
up the 10-bit PWM duty cycle resolution. TIMER2 and register settings are used
to generate the desired PWM signal.

(c) PR2 register: used to set the PWM period in microseconds.
(d) T2CON register: used to select the prescale value of TIMER2 for the PWM

function.

In capture mode, the CCPR1 (CCPR2) register captures the 16-bit value of TIMER1
or TIMER3 (depending on which one of them has been selected in the setup) when an
external event occurs on pin RC2/CCP1 (RC1/CCP2). These pins must be configured as
input in capture mode. CCP1CON (CCP2CON) register bits are set to select the capture
mode to be one of the following (Figures 4.11, 4.12, 4.13): every falling edge, every rising
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FIGURE 4.11: PWM signal to analog voltage conversion in an embedded control system.



230 MECHATRONICS

TMR3H

Prescaler
÷ 1, 4, 16

TMR3L

Compare mode operation:

Capture mode operation:

TMR1H TMR1L TMR3H TMR3L

TMR1H TMR1L

CCPR1H

Comparator

CCPR1L

Comparator

CCPR2H CCPR2L

CCPR1H CCPR1L

and
edge detect

Set flag bit CCP1IF

CCP1CON<3:0>

Special event trigger

Set flag bit CCP1IF

Match
Output
logic

Q S

R

CCP1CON<3:0>
Mode select

TRISC<2>
Output enable T3CCP2

0 1

0 1

T3CCP2

T3CCP2 TMR3
enable

TMR1
enable

CCP1pin

Q’s

RC2/CCP1pin

Special event trigger

Set flag bit CCP2IF T3CCP1
T3CCP2

Match
Output
logic

Q S

R

CCP2CON<3:0>
Mode select

TRISC<1>
Output enable

RC2/CCP2pin

FIGURE 4.12: CCP Module: Capture and Compare modes of operation.

PWM mode operation:

Duty cycle registers CCP1CON<5:4>

CCPR1L

CCPR1H (Slave)

TMR2 (Note 1)

Comparator

PR2

Comparator Q

S

R

TRISC<2> TMR2 = PR2

TMR2 = Duty cycle

Duty cycle

Period

TMR2 = PR2

Clear timer,
CCP1 pin and
latch D.C.

RC2/CCP1

FIGURE 4.13: CCP Module: PWM mode of operation.



MICROCONTROLLERS 231

edge, every fourth rising edge, every 16th rising edge. When a capture occurs, the interrupt
request flag bit CCP1IF (PIR register, bit 2) is set and must be cleared in software. If another
capture interrupt occurs before the CCPR1 register value is read, it will be overwritten by
the new captured value. The C18 compiler library provides the following functions to
implement capture.

#include <capture.h>

#include <timers.h>

OpenCapture1(C1_EVERY_4_RISE_EDGE & CAPTURE_INT_OFF) ;

/∗ Configure capture 1 module: capture at every 4th rising edge of capture 1

pin signal, no interrupt on capture. ∗/

OpenTimer3(TIMER_INT_OFF & T3_SOURCE_INT) ;

/∗ Timer3 is the source clock to capture on trigger. ∗/

while (!PIR1bits.CCP1IF) ; /∗ Wait until Capture module 1 has captured ∗/
result = ReadCapture1() ; /∗ Read the captured value ∗/

.... /∗ Process captured data ∗/

if(!CapStatus.Cap1OVF) /∗ Check (if needed) if there was any overflow condition∗/
{

... /∗ Further processing of captured data if needed ∗/
}

In compare mode, the 16-bit CCPR1 (CCPR2) register value is constantly compared
to the TIMER1 or TIMER3 register value. When they match, RC2/CCP1 pin (RC1/CCP2
pin) is controlled to either high, low, toggle, or unchanged state. The choice of action on
the compare match event is made by proper settings of CCP1CON (CCP2CON) registers.
In compare mode, the RC2/CCP1 (RC1/CCP2) pin must be configured for output. It is
possible to select to generate interrupt on the “compare match” event. In this case, the
output pin status is not changed. That action is left to the interrupt service routine (ISR).

In PWM mode, the CCP1 pin produces PWM output with 10-bit resolution. The
CCP1 pin is multiplexed with the PORTC data latch, and the output is obtained from the
PORTC-2 (RC2) pin. The TRISC-2 bit must be cleared to make the CCP1 pin an output.
PWM output has two parameters: period which defines the frequency of PWM signal and
duty cycle which defines the percentage of ON-time of the signal within each period. The
PWM period obtained is a function of the frequency of the oscillator used to drive the PIC
18F452.

Example register values are given in the code below. The code configures the CCP2
port for PWM of 0.256 ms period (frequency 3.9 KHz) and a duty cycle of 25%.

PR2 = 255; /∗ Sets the period for the PWM1 output channel in

microseconds∗/
CCP1CON = 12; /∗ Activates the PWM mode in the CCP register∗/
CCPR1L = 63; /∗ Sets the duty cycle for the PWM output ∗/
TRISC = 0; /∗ Configures PortC for output ∗/
T2CON = 62; /∗ Configures Timer 2 for prescale value of 1:1 and postscale 1:8∗/

The PR2 register sets the PWM period, while the duty cycle is set by CCPR1L and
CCP1CON< 5 : 4 > bits. PWM period is given by:

PWMperiod = (PR2 + 1) × 4 × (Clock Period) × (Timer Prescale Value) (4.3)

= 256 × 4 × 1
4 MHz

× 1 = 0.256 ms (4.4)
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PWMDutycycle = CCPR1L : CCP1CON < 5 : 4 > × (4.5)

(Clock Period) × (Timer Prescale Value) (4.6)

= 252 × 1
4 MHz

× 1 = 0.063 ms (4.7)

C library functions used to setup and operate the PWM outputs (PWM1 or PWM2)are
shown below,

#include <pwm.h>

#include <timers.h>

OpenTimer2(TIMER_INT_OFF & T2_PS_1_4 & P2_POST_1_8) ;

/∗ Setup TIMER2: disable interrupt, set pre and post scalers to 4 and 8 ∗/

OpenPWM1(char period ) ;

/∗ Enable and setup PWM1 module output signal ”period” (8-bit value). ∗/
... /∗ PWM period=(period+1)∗4∗Tosc∗(TIMER2 Prescaler)∗/

SetDCPWM1(unsigned int duty_cycle) ;

/∗ Set ”duty cycle” of PWM output signal (10-bit value) ∗/
/∗ High Time of PWM = ( duty_cycle ∗Tosc) ∗/

...

ClosePWM1() ; /∗ Disable PWM1 output module ∗/

Analog to Digital Converter (ADC) The analog to digital converter (A/D or
ADC) allows conversion of an analog input signal to a digital number. The ADC on the
PIC 18F452 has a 10-bit range and eight multiplexed input channels. Unused analog input
channel pins can be configured as digital I/O pins. The analog voltage reference is software
selected to be either the chip positive and negative supply (VDD and VSS) or the voltage
levels at RA3/VREF+ and RA2/VREF− pins.

There are two main registers to control the operation of ADC:

1. ADCON0 and ADCON1 registers: to configure the ADC and control its operation,
that is:
� enable ADC,
� select the method to trigger the ADC conversion “START” (timer source or polled-

programming by directly writing to a bit of the control register),
� select which channel to sample,
� select the conversion rate,
� format the conversion result.

2. ADRESH and ADRESL registers: to hold the ADC converted data in 10-bit format
in the two 8-bit registers.

A 10-bit ADC conversion takes 12 × TAD time period. The TAD time can be software
selected to be one of seven possible values: 2 × TOSC, 4 × TOSC, 8 × TOSC, 16 × TOSC,
32 × TOSC, 64 × TOSC, or internal A/D module RC oscillator.

ADC must be setup with proper register value settings. Then, when ADCON0 bit:2
is set, the ADC conversion process starts. At that point, sampling of the signal is stopped,
the charge capacitor holds the sampled voltage, and the ADC conversion process converts
the analog signal to a digital number using the successive approximation method. The con-
version process takes about 12 × TAD time periods. When an ADC conversion is complete

1. the result is stored in ADRESH and ADRESL registers,

2. ADCON0 bit:2 is cleared, indicating ADC conversion is done,

3. the ADC interrupt flag bit is set.
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The program can determine whether ADC conversion is complete or not by either checking
the ADCON bit:2 (cleared) or waiting for ADC conversion complete interrupt if it is
enabled. The sampling circuit is automatically connected to the input signal again, and the
charge capacitor tracks the analog input signal. The next conversion is started again by
setting the ADCON0 bit:2.

The ADC can be configured for use either by directly writing to the registers, or
by using C library functions present in the C-18 compiler. The C functions OpenADC(..),
ConvertADC (), BusyADC() and ReadADC(), CloseADC() are used to configure the ADC
module, begin the conversion process, and read the result of conversion, and disable the
ADC converter. Examples of their use are given below:

#include <p18f452.h>

#include <adc.h>

#include <stdlib.h>

#include <delays.h>

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_8ANA_0REF, ADC_CH0 & ADC_INT_OFF);

/∗ Enable ADC in specified configuration. ∗/
/∗ Select: clock source, format (right justified), reference voltage source,

channel 0 , enable/disable interrupt on ADC-conversion completion ∗/
while(1)

{

ConvertADC(); /∗ Start the ADC conversion process∗/
while ( BusyADC() ) ; /∗ Wait until conversion is complete:

return 1 if busy, 0 if not.∗/
result = ReadADC(); /∗ Read converted voltage; store in variable ’result’.

10-bit conversion result will be stored in the

least or most significant 10-bit portion of

result depending on how ADC was configured

in OpenADC(...) call. ∗/

Delay1KTCYx(1) ; /∗ Delay for 1000 TCY cycle ∗/

}

CloseADC(); /∗ Disable the ADC converter ∗/

Here, the arguments in the OpenADC(..) function are used to configure the ADC
module to use the specified clock sources, reference voltages and select the ADC channel.
A detailed description of the arguments is provided in the C-18 users guide.

Timers and Counters In real-time applications, there are many cases when different
tasks need to be performed at different periodic intervals. For instance, in an industrial
control application, the status of doors in a building may need to be checked every minute,
the parking lot gate status may need to be checked every hour. The best way to generate such
periodic interrupts with different frequencies is to use a programmable timer/counter chip.
A timer/counter chip operates as a timer or as a counter. In the timer mode of operation, it
counts the number of clock cycles, hence it can be used as a time measurement peripheral.
The clock source can be an internal clock or external clock. In counter mode, it counts the
number of signal state transitions at a defined pin, that is, at rising edge or falling edge.

The PIC 18F452 chip supports four timers/counters: TIMER0, TIMER1, TIMER2,
and TIMER3. TIMER0 is an 8-bit or 16-bit software selectable, TIMER1 is a 16-bit,
TIMER2 is an 8-bit timer, and TIMER3 is a 16-bit timer/counter. Timer/counter operation
is controlled by setting up appropriate register bits, reading from and writing to certain
registers. Timer operation setup requires enable/disable, source of signal, type of operation
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(timer or counter), and so on. When a timer overflows, interrupt is generated. The timer
operation is controlled by a set of registers:

1. The INTCON register is used to configure interrupts in the microcontroller.

2. The TxCON register is used to configure TIMERx, where “x” is 0, 1, 2, or 3 for
the corresponding timer. Configuration of a timer involves the selection of the timer
source signal (internal or external), pre- or post-scaling of the source signal, source
signal edge selection, enable/disable timer.

3. The TRISA register port may be used to select an external source for the TIMER at
port A pin 4 (RA4).

4. The TMRxL and TMRxH are 8-bit register pairs that make up the 16-bit timer/counter
data register.

TIMER2 sets the interrupt status flag when its data register is equal to the PR2 register,
whereas TIMER0, TIMER1 and TIMER3 set the interrupt status flag when there is overflow
from maximum count to zero (from FFh to 00h in 8-bit mode, and from FFFFh to 0000h in
16-bit mode). The registers used to indicate the interrupt status are INTCON, PIR1, PIR2.
The interrupt can be masked by clearing the appropriate timer interrupt mask bit of the
timer interrupt control registers.

Counter mode is selected by setting the T0CON register bit 5 to 1. In counter mode,
TIMER0 increments on every state transition (on either falling or rising edge) at pin
RA4/T0CKI.

C library functions used to setup and operate timers are (the following functions are
available for all timers on the PIC microcontroller, TIMER0, TIMER1, TIMER2, TIMER3),

#include <timers.h>

OpenTimer0(char config) ; /∗ Open and configure timer 0: enable interrupt,

select 8/16-bit mode, clock source, prescale value ∗/
...

result = ReadTimer0() ; /∗ read the timer 0∗/
...

WriteTimer0(data) ; /∗ write to timer register 0 ∗/
...

CloseTimer0() ; /∗ close (disable) timer 0 and its interrupts ∗/

Often, a certain amount of time delay is needed in the program logic. C-library func-
tions provide programmable time delay where the minimum delay unit is one instruction
cycle. Therefore, the actual real-time delay accomplished by these functions depends on
the processor operating speed.

#include <delays.h>
....
Delay1TCY(); /∗ Delay 1 instruction cycle ∗/
Delay10TCYx(unsigned char unit);

/∗ unit=[1, 255], Delay period = 10∗unit instruction cycle ∗/
Delay100TCYx(unsigned char unit);

/∗ unit=[1, 255], Delay period = 100∗unit instruction cycle ∗/
Delay1KTCY(unsigned char unit);

/∗ unit=[1, 255], Delay period = 1000∗unit instruction cycle ∗/
Delay10KTCY(unsigned char unit);

/∗ unit=[1, 255], Delay period = 10000∗unit instruction cycle ∗/
....
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Watch Dog Timers A watch dog timer (WDT) is a hardware timer, which is used to
reboot or take a predefined action if it expires. The watch dog timer keeps a “watch eye”
on the system performance. If something gets stuck, the watch dog timer can be used to
reset everything. A watch dog timer is essential in embedded controllers. The WDT counts
down from a programmable preset value. If it reaches zero before the software resets the
counter to preset value, it is assumed that something is stuck. Then the processor’s reset line
is asserted. The time-out period can be programmed to a value between 4 ms to 131.072 s.

The watchdog timer (WDT) on the PIC chip is an on-chip RC oscillator. It works
even if the main clock of the CPU is not working. WDT can be enabled/disabled, and
the time-out period can be changed under software control. When the WDT times-out, it
generates a RESET signal which can be used to restart the CPU or wake-up the CPU from
SLEEP mode. There are three registers involved in configuration and use of WDT on PIC
18F452 (and PIC 18F4431): CONFIG2H, RCON, WDTCON. If CONFIG2H register bit
0 (WDTEN bit) is 1, WDT cannot be disabled by other software. If this bit is cleared, then
WDT can be enabled/disabled by WDTCON register, bit 0 (1 for enable, 0 for disable).
When WDT times-out, RCON register bit 3 (TO bit) is cleared. The time-out period is
determined in hardware, and extended by post-scaler in software (CONFIG2H register,
bits 3:1).

4.4 INTERRUPTS

4.4.1 General Features of Interrupts

An interrupt is an event which stops the current task the microprocessor is executing, and
directs it to do something else. And when that task is done, the microprocessor resumes
the original task. An interrupt can be generated by two different sources: 1. hardware inter-
rupts (external), 2. software (internal) generated interrupt with an instruction in assembly
language, such as INT n.

When an interrupt occurs, the CPU does the following:

1. Finishes currently executing statement.

2. Saves the status, flags, and registers in the stack so that it can resume its current task
later.

3. Checks the interrupt code, looks at the interrupt service table (vector) to determine the
location of the interrupt service routine (ISR), a function executed when the interrupt
occurs.

4. Branches to the ISR and executes it.

5. When ISR is done, restores the original task from the stack and continues.

When an interrupt is generated, the main task stops after some house-keeping tasks,
and the address location of the ISR for this interrupt needs to be determined. This infor-
mation is stored in the interrupt service vector. The table has default ISR addresses. If you
want to assign a different ISR address (or name) for an interrupt number, the old address
should be saved, then a new ISR address should be written. Later, when the application
terminates, the old ISR address should be restored.

In a given computer control system, there can be more than one interrupt source
and they may happen at the same time. Therefore, different interrupts need to be assigned
different priority levels to determine which one is more important. Higher priority inter-
rupts can suspend lower priority interrupts. Therefore, nested interrupts can be generated
(Figure 4.14).
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FIGURE 4.14: Nesting of interrupts is possible through a priority level.

The time between the generation of interrupt to the time the program branches to the
ISR for the interrupt (after saving the current state of microprocessor and house keeping
operations, taking care of other higher priority interrupts) is called the interrupt latency
time. Smaller interrupt latency time is generally desired. Due to multiple interrupt sources
and priorities, it may be impossible to calculate the worst possible interrupt latency time
since it may depend on the number of higher priority interrupts generated at the same time.

In critical applications, if interrupting the current process is not tolerable, interrupts
can be disabled temporarily with appropriate assembly instructions or C functions.

Let us assume that there are two interrupt sources: interrupt 1 and interrupt 2 (Figure
4.14). Let us assume that interrupt 2 has higher priority than interrupt 1. While the main
program is executing, let us assume that interrupt 1 occured. The processor will save
the status of microprocessor, determine the interrupt number, look in the interrupt service
vector table for the address of the interrupt service routine (ISR) for this particular interrupt,
and jump to that ISR-1. Let us further assume that while it is executing ISR-1, interrupt
2 occurs. The processor will save the status, and jump to ISR-2. When ISR-2 is done, the
processor returns to ISR-1, restores the previous state, and continues the ISR-1 from where
it was interrupted. When ISR-1 is finished, it will restore the state of the main task before
the interrupt 1 occured, and continue the main task.

4.4.2 Interrupts on PIC 18F452

PIC 18F452 supports external and internal interrupts (Figure 4.15). There are 17 interrupt
sources. In addition, external interrupts can be defined to be active in rising or falling edges
of input signals.

It supports two levels of interrupt priority: high priority and low priority. Each
interrupt source is assigned one of the two priority levels by setting appropriate register
bits. A high priority interrupt vector is at 000008h, and a low priority interrupt vector is at
000018h. The address of ISR routine for each interrupt category must be stored at these
addresses. High priority interrupts override any low priority interrupt in progress. Only
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FIGURE 4.15: Interrupts and their logic in PIC 18F452 (from PIC 18Fxx2 Data Sheet).

Reproduced with permission from Microchip Technology, Inc.

one high priority interrupt can be active at a given time, and they cannot be nested. Low
priority interrupts can be nested by setting the INTCON register bit 6 (GIEL bit = 1 ) at
the beginning of the ISR.

There are ten registers used to control the interrupts in PIC 18F452: RCON, INTCON,
INTCON2, INTCON3, PIR1, PIR2, PIE1, PIE2, IPR1, IPR2. Each interrupt source, except
INT0 which is always a high priority interrupt, has three bits for enable/disable and priority
setup, and to determine interrupt status (also called flag or request) register space:

1. one bit to enable/disable the interrupt (enable bit),

2. one bit to set the priority level (priority bit), and

3. one bit to indicate the current status of interrupt (flag bit).

These bits are distributed over the ten 8-bit registers referenced above.
Interrupt sources include:

1. Three external interrupt pins: RB0/INT0, RB1/INT1, RB2/INT2 can be programmed
to be edge triggered interrupts on rising or falling edges by setting appropriate bits in
the above 10 registers. Both global interrupt enable and individual interrupt enable
for a specific interrupt source must be enabled for the interrupt to be enabled. When
interrupt occurs, the corresponding interrupt status bit (also called interrupt flag) is
set (INTxF), which can be used to determine the source of the interrupt in ISR. INT0
is always high priority, whereas the priority of INT1 and INT2 can be programmed
as high or low. These interrupts can wake-up the processor from SLEEP state.
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2. PORTB pins 4, 5, 6, 7 can be programmed to generate interrupt on change-of-state
(on rising edge or falling edge). PORTB pins 4–7 change-of-state interrupts can be
enabled or disabled as well as priority set as a group under program control.

3. “ADC conversion done” is another interrupt, which is generated when an ADC
conversion is completed. When ADC conversion complete interrupt is generated
(assuming it is enabled), PIR1-bit 6 is set. The logic to trigger the start of the ADC
conversion must be handled separately (i.e., after reading the current ADC conversion
at the ISR routine, or periodically performing ADC conversion based on a TIMER
generated signal).

4. TIMER interrupts (interrupt-on-overflow generated by TIMER0, TIMER1, TIMER3,
and when TIMER2 data register = PR2 register). When timer interrupts are enabled
and timer overflow occurs, resulting in interrupt generation, interrupt status flag bits
in corresponding registers associated with the interrupt source are set that can be
used in the ISR routine to determine the source of the interrupt (INTCON bit 1
for TIMER0, PIR1-bit 0 for TIMER1, PIR1-bit 1 for TIMER2, and PIR2-bit 1 for
TIMER3).

5. CCP1, CCP2 interrupts (once enabled and priorities are selected to be either as high or
low) are generated as folows: in capture mode, a TIMER1 register capture occurred,
and in compare mode a TIMER1 register match occurred.

6. Communication peripheral interrupts (master synchronous serial port, addressable
USART, parallel slave port, EEPROM write interrupt).

For external interrupts at INT0-INT2 (RB0-RB2) pins or PORTB pins 4–7 (RB3-RB7) input
change interrupt, expected interrupt latency time is three to four instruction cycles. Notice
that PIC 18F452 groups all interrupts into two categories and provides two ISR addresses:
a low priority group with ISR address stored at 000018h, and a high priority group with ISR
address stored at 000008h. Within each group, application software must be implemented
by testing interrupt flag bits (bits contained in the 10 registered listed above) to determine
which one of the interrupt sources in a high or low priority group has triggered the interrupt.

The RESET signal can be considered as a non-maskable interrupt. The address for
the program code to execute on the RESET signal is stored at the vector address 0000h.

The following example C-code shows the use of an external interrupt and its software
handling in a PIC 18F452 microcontroller. There are two parts to setting up a function as
an interrupt service routine (ISR) with high or low priority.

1. First: interrupt service vector locations for high priority interrupt (address 000008h)
and low priority (address 000018h), must be setup to branch to the desired ISR
routine.

2. Second: the desired ISR function logic must be defined. Then each ISR function
should be defined. The ISR routine should be proceeded by a #pragma inter-

rupt ..... to indicate that the function is an ISR for high priority interrupt or a
#pragma interruptlow ..... to indicate that the function is an ISR for low
priority interrupt, not just a regular C-function. Furthermore, the ISR cannot have
any argument or return type.

/∗ ......High Priority Interrupt Service Routine (ISR) Setup ∗/

#pragma code HIGH_INTERRUPT_VECTOR = 0x8
/∗ Place the following code starting at

address 0x08, which is the location for
high priority interrupt vector ∗/
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void at_high_interrupt_vector(void)
{

_asm
goto High_ISR
_endasm

}
#pragma code /∗ Restore the default program memory allocation. ∗/

#pragma interrupt High_ISR
void High_ISR(void)
{

....

....

....

}

/∗ ...... Low Priority Interrupt Service Routine (ISR) Setup ∗/

#pragma code LOW_INTERRUPT_VECTOR = 0x18
/∗ Place the following code starting at

address 0x18, which is the location for
low priority interrupt vector ∗/

void at_low_interrupt_vector(void)
{
_asm

goto Low_ISR
_endasm

}
#pragma code

/∗ Restore the default program memory allocation. ∗/

#pragma interruptlow Low_ISR
void Low_ISR(void)
{

....

....

....

}
#pragma code /∗ Restore the default program memory allocation. ∗/

Example: Interrupt Handling with PIC 18F452 on PICDEM 2 Plus
Demo Board This example requires:

1. hardware: the PICDEM 2 Plus Demo board with PIC 18F452 microcontroller chip
and MPLAB ICD 3 (in-circuit debugger) hardware,

2. software: MPLAB IDE v6.xx and MPLAB C18 development tools.

The INT0 pin is connected to a switch which is an external interrupt. It is a high
priority interrupt. Therefore, when this interrupt occurs, the program will branch to the
interrupt vector table location 0x0008h and get the address of the interrupt service routine
to branch to. By default, this address contains the address of the interrupt service routine
called high_ISR. Hence, when INT0 occurs, the program will branch to the high_ISR
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function, after saving the contents of certain registers and return address in the stack. We
can type in the code for the interrupt service routine in high_ISR or call another function
from there and just have the “call” or “goto” statement in the high_ISR function. In
addition, we need to setup certain registers for the interrupt to function properly, that is,
enable interrupt, define the active state of interrupt. Interrupt service routine (ISR) must
have no input arguments and no return data.

#include <p18f452.h> /∗ Header file for PIC 18F452 register declarations ∗/
#include <portb.h> /∗ For RB0/INT0 interrupt ∗/

/∗ Interrupt Service Routine (ISR) logic ∗/

void toggle_buzzer(void) ;

#pragma code HIGH_INTERRUPT_VECTOR = 0x8
/∗ Specify where the program address to be stored ∗/

void at_high_interrupt_vector(void)
{
_asm

goto High_ISR
_endasm

}
#pragma code /∗ Restore the default program memory allocation. ∗/

#pragma interrupt High_ISR
void High_ISR(void)
{

CCP1CON = ˜CCP1CON & 0x0F
/∗ Toggle state of buzzer: OFF if ON, ON if OFF ∗/

INTCONbits.INT0IF = 0
/∗ Clear flag to avoid another inter-

rupt due to same event∗/
}

/∗ Setup of the ISR ∗/

void EnableInterrupt(void)
{

RCONbits.IPEN = 1 ; /∗ Enable interrupt priority levels ∗/
INTCONbits.GIEH = 1 ; /∗ Enable high priority interrupts ∗/
}

void InitializeBuzzer(void)
{
T2CON = 0x05 ; /∗ postscale 1:1, Timer2 ON, prescaler 4 ∗/
TRISCbits.TRISC2 = 0 ; /∗ configure CCP1 module for buzzer operation ∗/
PR2 = 0x80 ; /∗ initialize PWM period ∗/
CPPR1l = 0x80 ; /∗ ......... PWM duty cycle ∗/

}

void main (void)
{

EnableInterrupts() ;
InitializeBuzzer() ;

OpenRB0INT(PORTB_CHANGE_INT_ON & PORTB_PULLUPS_ON & FALLING_EDGE_INT) ;
/∗ Enable RB0/INT0 interrupt, configure RB0 pin for

interrupt, trigger interrupt on falling edge ∗/

CCP1CON = 0x0F ; /∗ Turn ON buzzer ∗/

while (1) ; /∗ Wait indefinitely. ∗/
/∗ when the interrupt occurs,

the corresponding ISR will be executed ∗/
}
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Example: Timer0 Interrupt Below is a sample code which sets up Timer0 to
generate interrupt. Timer0 is defined as a low priority interrupt. Interrupt vector table
location for low priority interrupts is 000018h . As in the previous example, a shell form of
low priority ISR for a low priority interrupt address is placed at the 0x18 vector address,
and “goto” statement is used to direct the program execution to the Timer0 ISR.

#include <p18f452.h> /∗ Header file for PIC 18F452 register declarations ∗/
#include <timer.h> /∗ For timer interrupt ∗/

/∗ Interrupt Service Routine (ISR) logic ∗/

void Timer0_ISR(void) ;

#pragma code LOW_INTERRUPT_VECTOR = 0x18

/∗ Specify where the program address to be stored ∗/

void Low_ISR(void)

{

_asm

goto Timer0_ISR

_endasm

}

#pragma code /∗ Restore the default program memory allocation. ∗/

#pragma interruptlow Timer0_ISR

void Timer0_ISR(void)

{

static unsigned char led_display = 0 ;

INTCONbits.TMR0IF = 0 ;

led_display = ˜led_display & 0x0F /∗ toggle LED display ∗/
PORTB = led_display ;

}

/∗ Setup of the ISR ∗/

void EnableInterruptTimer0(void)

{

TRISB = 0 ;

PORTB = 0 ;

OpenTimer0 (TIMER_INT_ON & TO_SOURCE_INT & TO_16BIT) ;

INTCONbits.GIE = 1 ;

}

void main (void)

{

EnableInterruptTimer0() ;

while (1) ; /∗ Wait indefinitely. ∗/
/∗ when the interrupt occurs,

the corresponding ISR will be executed ∗/
}
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PIC 18F4431 Microcontroller The PIC 18F4431 version of the PIC 18Fxxxx
family microcontrollers has a quadrature encoder interface at the following pins for an
incremental encoder interface:

� RA2, RA3, RA4 for Index (INDX), Channel A (QEA), Channel B (QEB), respec-
tively.

It also supports 8 channels of PWM output via the following pins:

� RB3:0, pins 0 through 3, can be configured for PWM0, PWM1, PWM2, PWM3,
respectively.
RB4 and RB5 pin can be configured for PWM5 and PWM4 output signals,
respectively.
RD6 and RD7 pins can be configured for PWM6 and PWM7 output.

Interrupts on-change-of-state for pins RB pins 4 through 7 (RB7:4) are effective only
if these pins are configured as input. If any of these pins is configured for output, the
interrupt for that pin is disabled.

Timers on PIC 18F4431 are TIMER0, TIMER1, TIMER2, and TIMER5. The timer
control register for each timer (T0CON, T1CON, T2CON, T5CON) is an 8-bit register
which is used to configure (control) the operation of the timer. The bits allows us to:
enable/disable timer mode or counter mode, 8-bit or 16-bit mode, clock source (internal or
external), pre-scaler/post-scaler values. Timer 2 and Timer 5 have PR2 and PR5 re-registers
which define the maximum value to which the timer is to count, then roll-over and generate
interrupt. Timer 1 and CCP1 compare configurations that can be used to trigger a periodic
“ADC conversion start” trigger to the ADC module. Timer 2 can be used as the source to
define the period (base frequency) of the PWM output pin. Other timers generate interrupt
when the counting from 00h to FFh is complete and overflow to 00h occurs. For counter
operation, an external source should be selected. In this mode, pre and post-scaling values
are used. In timer mode, pre and post-scaler values are ignored and timers are incremented
every instruction cycle. For each timer, if the interrupt is enabled via the corresponding
interrupt enabled bit on the corresponding timer control register, when a timer interrupt
occurs, the corresponding timer interrupt flag is set.

Motion feedback module (MFM) has a quadrature encoder interface (EQI), which
is used to interface to an incremental encoder for position feedback. Once the position
feedback is available, the microcontroller can perform closed loop position control in any
actuated motion control system, that is electric or electro-hydraulic or pneumatic. The QEI
interface has three pins: QEA, QEB, INDX which are to be connected to the A, B, and
Index channels of an incremental encoder (the Index channel of an incremental encoder is
sometimes referred as Index C or Z). Using the pulses on Channel A and B, and the phase
relationships between them, the module keeps track of position information using a 16-bit
up/down counter register. An INDX pin can also be connected to another external digital
input other than the Encoder’s Index channel, that is a registration sensor (see Chapter 10
for registration applications and possible use of these).

The following registers are used in the configuration and use of the MFM (QEI)
module:

QEICON 8-bit configuration register

POSCNT 16-bit up/down counter: position register

MAXCNT 16-bit maximum count register
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VELR 16-bit velocity estimation register

DFLTCON 8-bit four noise filters on the three
channels of the QEI and T5CKI pin: enable/disable.

PIR3 8-bit interrupt flag register;
bit OC1IF for velocity update,

IC2QEIF for position update,
IC3QEIF for direction change.

INTCON 8-bit interrupt control register

The QEI module is configured using the QEICON register (8-bit register). Bit settings
determine if x2 or x4 (quadrature) decoding is used. Using the phase angle relationship
between Channel A and B, the MFM module determines the direction of motion (forward
+ or reverse -), and hence increments the position register (POSCNT) up or down. the
POSCNT register is reset to zero when it either overflows or reaches MAXCNT register
value ((QEICON<4:2>= 110 or 010), or on INDX signal if it was configured to do so
using QEICON register (QEICON<4:2>= 101 or 001).

If the position counter reset interrupt is enabled, interrupt is generated (IC2QEIF flag
is set) on a reset of the POSCNT register when

1. the POSCNT register rolls over FFFFh to 0000h in period mode (QEICON<4:2>=
110 or 010),

2. the MAXCNT register value is reached by the POSCNT register (QEICON<4:2>=
110 or 010),

3. the INDX pulse is detected (QEICON<4:2>= 101 or 001).

The POSCNT register resets to 00h if it was moving in a forward (+) direction from
which it continues to count up, and to FFh if it was moving in a reverse (-) direction from
which it continues to count down. In addition, the module can accurately estimate velocity
both at high speed and low speed and writes the velocity estimation to the VELR register
which the application program can access.

The same pins are software configurable for input capture function using TIMER5:
CAP1/QEA, CAP2/EQB, CAP3/INDX.

PIC 18F4431 supports 4-pairs (8 channels, 4 pairs where in each pair one channel
is a complement of the other channel) of PWM channels using a PWM module, at pins
PWM0-7. Each pair have independent PWM generators (independent PWM frequency and
pulse width). The PWM module can be configured for automatic dead-time insertion, edge
and center-aligned output modes, up to 14-bit resolution. PWM frequency can be changed
on-the-fly under software control.

4.5 PROBLEMS

1. In the PIC 18F452 microcontroller, how is the RESET condition generated and what sequence
of events happens under that condition?

2. What is the role of “watch dog timer”? How does it work in the PIC 18F452?
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3. How many hardware interrupt priorities are supported in the PIC 18F452? Describe how these
interrupts are enabled/disabled, how an interrupt is handled, and the sequence of events that occurs
in the microcontroller when an interrupt event occurs.

4. List the input/output (I/O) ports available on the PIC 18F452 microcontroller. Give examples of
C-code to show how they are setup and used in a real-time application software.

5. What is the role of capture/compare/PWM port on the PIC 18F452 microcontroller? Describe
how this port is setup and used in different applications.

6. Discuss the differences between “polling driven” versus “interrupt driven” programming. Give
examples for polling driven and interrupt driven applications. What are the internal and external
interrupt sources to the microcontroller?

7. Discuss analog and digital converter (ADC) inputs available on the PIC 18F452 chip: how
many channels, resolution of each channel, multiplexed or not, how ADC operation is controlled in
software.

8. PWM input and output signals are often converted to analog voltage signals using low-pass
filters. Design and simulate the following in Simulink®: a PWM signal source with 1 KHz base
frequency and adjustable pulse-width modulation (PWM source), an analog filter with time constant
of 0.01 s. Simulate the input and output of the low pass filter for a PWM duty cycle of 25, 50, and
100% the low pass filter transfer function is

D(s) = 1
0.01 s + 1

(4.8)
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CHAPTER 5
ELECTRONIC COMPONENTS FOR
MECHATRONIC SYSTEMS

5.1 INTRODUCTION

Analog and digital electronic components are an integral part of mechatronic devices. Most
commonly used analog and digital electronic devices are discussed in this chapter. We start
with linear circuits, semiconductors, and discuss electronic switching devices (diodes and
transistors). This is followed by a discussion of analog operational amplifiers (op-amps).
Examples of proportional, derivative, integral, low pass, and high pass filters using op-amps
are discussed. Digital electronic circuit components are discussed last. The focus of the
discussions is on the input–output functionality of the devices, not the detailed modeling
of the input–output dynamics nor the details of their construction and manufacturing.

5.2 BASICS OF LINEAR CIRCUITS

Basic passive components of electrical circuits are (Figure 5.1) the resistor, capacitor, and
inductor. By passive components, we mean that the component can be connected to a
circuit with two terminal points without requiring its own power supply. Basic variables in
an electrical circuit are

1. voltage (potential difference analogous to pressure in hydraulic systems), and

2. current (flow of electrons, analogous to fluid flow).

The basic parameters of a typical electrical component involve three properties,

1. resistance, R,

2. capacitance, C,

3. inductance, L.

Current is the rate of charge flow through a conductor in a circuit,

i(t) = dQ(t)
dt

(5.1)

where Q(t) is the amount of electrical charge, “electrons,” that passes through the conductor.
The smallest unit of electrical charge is the electrical charge of an electron or of a proton.
The amount of electrical charge of an electron (e−) and that of proton (p+) is the same

Mechatronics with Experiments, Second Edition. Sabri Cetinkunt.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/cetinkunt/mechatronics
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(b)

FIGURE 5.1: Basic components of electrical circuits: (a) symbols of resistance (R), capacitance

(C), inductance (L). (b) Pictures of resistors, capacitors, and inductors.

except that they are opposite signs, in units of Coulomb,

|e−| = |p+| = 1.60219 × 10−19 C (5.2)

The passive components define relationships between current and voltage potential
difference between their two nodes. An ideal resistor has a potential difference between
its two ends proportional to the current passing through it. The proportionality constant is
called the resistance, R

V12(t) = R ⋅ i(t) (5.3)

The resistance of a material is a function of the material property, that is the resistivity (𝜌)
and its geometry. As the cross-section of the conductor increases, resistance to the flow of
charges reduces, as they have more room to move through. As the length of the conductor
increases, resistance increases. Hence, the resistance of a conductor is

R = 𝜌
l
A

(5.4)

where 𝜌 is the resistivity of the material (𝜌 = 1.7 × 10−8 Ω ⋅ m for copper, 𝜌 = 2.82 ×
10−8 Ω ⋅ m for aluminum, 𝜌 = 0.46Ω ⋅ m for germanium, 𝜌 = 640Ω ⋅ m for silicon, 𝜌 =
1013 Ω ⋅ m for hard rubber, 𝜌 = 1010 to 1014 Ω ⋅ m for glass), l is the length, A is the
cross-sectional area of the conductor. It is also important to point out that the resistivity of
materials, and hence the resistance, is a function of temperature. The variation of resistance
as a function of temperature varies from material to material. In general, many materials,
but not all, have the following resistance and temperature relationship,

R(T) = R0[1 + 𝛼(T − T0)] (5.5)

where R(T) is the resistance at temperature T , R0 is the resistance at temperature T0, and
𝛼 is the rate of change in resistance as a function of temperature. Superconductors are
materials that have almost zero resistance below a certain critical temperature, Tc. For each
superconductor, there is a critical temperature Tc below which the above relationship does
not hold. The resistance suddenly drops to almost zero at T ≤ Tc. This critical temperature
for mercury is about Tc = 4.2 ◦K.

There are two major types of resistors: wire wound and carbon types. Wire wound
resistors are used for high current applications such as regenerative power dumping as
heat in motor control. Carbon type resistors are used in low current signal processing
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applications where the resistance value is color coded on the component using a four color
code. The maximum power rating of a resistor defines the maximum power it can dissipate
without damage,

P = V12 ⋅ i = V12 ⋅ (V12∕R) = R ⋅ i2 =
V2

12

R
< Pmax (5.6)

which defines the maximum voltage drop or maximum current that can be present across
the resistor.

A capacitor stores electric charges, and hence creates an electric field (electric volt-
age) across its terminals. It is made of two conducting materials separated by an insulating
material such as air, vacuum, glass, rubber, or paper. The two conductor surfaces store
equal but opposite charges. As a result, there is a voltage potential across the capacitor.
The voltage potential is proportional to the amount of charge stored and the characteristics
of the capacitor. There are four major capacitor types: mica, ceramic, paper/plastic film,
and electrolytic. Electrolytic type capacitors are polarized. Therefore, the positive terminal
must be connected to the positive side of the circuit.

An ideal capacitor generates a voltage potential difference between its two nodes
proportional to the stored electrical charge (integral of current conducted)

V12(t) = Q
C

= 1
C ∫

t

0
i(𝜏) ⋅ d𝜏 (5.7)

where C is called the capacitance. An ideal capacitor induces a 90◦ phase angle between
its voltage and current across its terminals due to the integral function. When a capacitor is
fully charged, it stores a finite amount of charge,

Q = ∫
t

0
i(𝜏) ⋅ d𝜏 = C ⋅ V12 (5.8)

The size of a capacitor is indicated by the amount of charge it can store (capacitance, C).
A given capacitor can hold voltage up to a certain amount, Vmax (called the rated voltage).
Capacitance (C) is a measure of how much charge (Q) the capacitor can hold for a given
voltage potential, (V). A capacitor cannot hold a voltage potential above a maximum value,
Vmax. If the rated voltage is exceeded, the capacitor breaks down and cannot hold the
charges. The construction principle of a capacitor includes two conductors separated by
insulating material. The capacitance is proportional to the surface area of the capacitor
(conductors inside the capacitor) which holds the charge and inversely proportional to the
distance between them. The proportionality constant is the permittivity of the medium that
separates the conductors, 𝜖,

C = 𝜖 ⋅ A
l

=
𝜅𝜖0 ⋅ A

l
(5.9)

where 𝜅 is the dielectric constant, 𝜖0 is the permittivity of free space. The dielectric constants
for some materials are as follows: 𝜅 = 1.00 for vacuum, 𝜅 = 3.4 for nylon, 𝜅 = 5.6 for glass,
𝜅 = 3.7 for paper. Clearly, as the dielectric constant of the insulating material increases,
the capacitance of the capacitor increases. The capacitance is proportional to the surface
area of the capacitor plates and inversely proportional to the distance between them. The
maximum voltage that the capacitor can handle before break-down, called break-down
voltage or rated voltage, increases with the increase in dielectric constant of the insulator.
The break-down voltage of the capacitor also increases with the distance parameter l.
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Energy stored in a capacitor can be calculated as follows,

dW = V ⋅ dQ = Q
C

dQ (5.10)

W = 1
2

Q2

C
(5.11)

and the W ≤ Wmax, where Wmax is the maximum energy storage capacity of the capacitor,

Wmax = 1
2

C ⋅ V2
max (5.12)

Notice that capacitors block the DC voltage and pass the AC voltage. In other words,
the DC voltage will build a potential difference in the capacitor until they are equal,
provided that the DC source voltage is below the break-down voltage of the capacitor. The
AC voltage simply alternates the charge and discharge of the capacitor. Unlike the DC
component, which is blocked by the capacitor, the AC component of the voltage is passed.

An ideal inductor generates a potential difference proportional to the rate of change
of current passing through it

V12 = L ⋅
di(t)
dt

(5.13)

where L is called the inductance. Notice that, regardless of the direction of current (i > 0 or
i < 0), the voltage across the inductor is proportional to the rate of change of the current.
Let V10 and V20 be the voltages at point 1 and 2 across the inductor with reference to
ground. Then,

V10 > V20 when
di
dt
> 0 (5.14)

V10 < V20 when
di
dt
< 0 (5.15)

The inductor is made with a coil of a conductor around a core, like a solenoid. The
core can be a magnetic or an insulating material. The inductance value, L, is a function
of permeability of the core material, number of turns in the coil, cross-sectional area, and
length. Permeability of a material is a measure of its ability to conduct electromagnetic
fields. It is analogous to the electrical conductivity. If the material composition of the space
around an inductor changes, that is due to motion of device components in a solenoid, the
inductance changes.

In deriving the equation for electric circuits, two main relationships are used (Kirch-
hoff’s Laws);

1. current law,

2. voltage law (Figure 5.2).

i1 i2

i3

ii i21 3 0−− =
V VVV12 23 34 41 0++ =+

1 2

34

(a) (b)

FIGURE 5.2: Kirchhoff’s electric circuit laws: (a)

current law: algebraic sum of currents at any

node is zero. (b) voltage law: algebraic sum of

voltages in a loop is zero.
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Current law states that the algebraic sum of currents at a node is equal to zero, which is a
statement of the “conservation of charge.” Voltage law states that the sum of voltages in a
loop is equal to zero, which is a statement of the “conservation of potential.” For instance
in Figure 5.2, Kirchoff’s current law states that

i1 − i2 − i3 = 0 (5.16)

and Kirchoff’s voltage law states that

V12 + V23 + V34 + V41 = 0 (5.17)

5.3 EQUIVALENT ELECTRICAL CIRCUIT METHODS

Quite often, we need to reduce a two-terminal circuit with multiple components into an
equivalent simpler circuit with a voltage source and an impedance or a current source and
an impedance. For now, assume that impedance is a generalized form of resistance. Two
of the most well-known equivalent circuit analysis methods are discussed below. These
methods are useful in determining input and output loading errors in coupled electrical
circuits, that is measurement errors introduced due to the effect of a measuring device in
an electrical circuit.

5.3.1 Thevenin’s Equivalent Circuit

Thevenin’s equivalent circuit consists of a voltage source in series with an equivalent
resistor. Any section of a linear circuit with multiple resistors (plus voltage and current
sources) components can be replaced with a Thevenin’s equivalent circuit.

Consider the circuit shown in Figure 5.3. Our objective is to determine the equivalent
voltage source and series resistance value for the circuit shown in the dotted line. Hence,
we can examine the interaction between the load resistance RL and the rest of the circuit.

(a)

(c)

(b)

(d)

FIGURE 5.3: Thevenin’s equivalent circuit procedure. An equivalent circuit consists of an open

circuit voltage and an equivalent resistor in series.
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Thevenin’s equivalent circuit analysis requires the calculation of two parameters: VT and
Reqv. The following are the standard steps to do that.

1. Identify the sub-circuit whose Thevenin’s equivalent circuit is to be determined.
Identify the two point terminals (a and b) out of the sub-circuit. Remove the load
resistor between the two points (Figure 5.3a).

2. Calculate the open circuit voltage between a and b, VT = Vab, (Figure 5.3b).

3. Short-circuit voltage sources (i.e., zero source) and disconnect all current sources
(open circuit the current sources) (Figure 5.3), and

4. calculate the equivalent series resistor (Reqv) in the remaining circuit (excluding the
RL), Reqv (Figure 5.3c). The equivalent resistance of the circuit inside the dotted box
(as viewed from Vab) is represented by Reqv and also called the output resistance of
the sub-circuit. The circuit inside the dotted box can be viewed as a voltage source
plus a resistance the source has in addition to the load (Figure 5.3d).

As far as the two points a and b are concerned, the circuit inside the dotted block is
equivalent to a voltage source VT = Vab and series resistor Reqv.

5.3.2 Norton’s Equivalent Circuit

Norton’s equivalent circuit consists of a current source in parallel with an equivalent resis-
tor (Figure 5.4). The equivalent resistor is the same as the resistor calculated in Thevenin’s
equivalent circuit. The value of the current source (iN) is same as the value of the current
that would flow in a short-circuit of the output terminals, that is to replace the output resis-
tance between points a and b with a short-circuit connection. The procedure for obtaining
Norton’s equivalent circuit is similar to the procedure for Thevenin’s equivalent circuit. The
conversions can be made between the equivalent Thevenin’s circuit and Norton’s circuit, that
is between two points in a circuit any voltage source with series resistance can be replaced
by an equivalent current source and parallel resistor, and visa versa. It can be shown that

VT = iN ⋅ Reqv (5.18)

(c)

(a) (b)

(d)

FIGURE 5.4: Norton’s equivalent circuit procedure. The equivalent circuit consists of a

current-source and an equivalent resistor in parallel.
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The steps to follow to find the Norton’s equivalent circuit are as follows (Figure 5.4),

1. Short-circuit the load resistor, and then calculate the Norton source current (iN)
through the short wire jumping across the open connection points where the load
resistor used to be (Figure 5.4b).

2. Short-circuit voltage sources and open circuit current sources.

3. Calculate the total resistance between the open connection points (excluding the load
resistance, Figure 5.4c).

4. Draw the Norton equivalent circuit with the Norton equivalent current source in
parallel with the Norton equivalent resistance (Figure 5.4d). The load resistor re-
attaches between the two open points of the equivalent circuit.

Example In the example shown in Figure 5.3, let the following values for the parameters
be

Vs = 10 V , R1 = 7Ω, R2 = 3Ω, is = 5 Amp (5.19)

Then, it is easy to show that (Figure 5.3b),

Vs = R1 ⋅ i1 + R2 ⋅ (i1 + is) (5.20)

10 V = 7 ⋅ i1 + 3 ⋅ (i1 + 5) (5.21)

= 10 ⋅ i1 + 15 (5.22)

i1 = −0.5 A (5.23)

The voltage potential Vab is

Vab = 3 ⋅ (−0.5 + 5.0) = 13.5 V (5.24)

The equivalent resistance of the circuit after the voltage sources are short-circuited, and
current sources are open-circuited (Figure 5.3c),

1
Reqv

= 1
7
+ 1

3
(5.25)

Reqv = 7 ⋅ 3
7 + 3

(5.26)

= 2.1Ω (5.27)

Thevenin’s equivalent circuit of this example is represented by a voltage source
VT = 13.5 V and equivalent resistor Reqv = 2.1Ω (Figure 5.3d).

For instance, the current on the load resistor RL can be calculated as a function of the
load resistance,

iR =
VT

RL + Reqv
(5.28)

= 13.5
RL + 2.1

(5.29)

iR = iR(RL; VT, Reqv) (5.30)

It is instructive to obtain the Norton equivalent of the same circuit and confirm that
VT = Reqv ⋅ iN. Referring to Figure 5.4b, the current iN is sum of the current due to current
source and voltage source,

iN = is + i1 (5.31)
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Notice that no current will pass through R2 since there is zero resistance path parallel to it,
therefore,

i1 =
Vs

R1
(5.32)

Hence,

iN = 5 A + 10
7

A = 45
7

A (5.33)

Referring to Figure 5.4c, the equivalent resistance in the dotted block as seen by the load is
again,

1
Reqv

= 1
R1

+ 1
R2

(5.34)

= 1
7
+ 1

3
(5.35)

Reqv = 7 ⋅ 3
7 + 3

= 2.1Ω (5.36)

And it is confirmed that the relationship between Thevenin’s and Norton’s equivalent circuit,

VT = Reqv ⋅ iN (5.37)

= 2.1 ⋅
45
7

= 13.5 V (5.38)

5.4 IMPEDANCE

5.4.1 Concept of Impedance

The term impedance is a generalization of the resistance. If a circuit consists of a potential
source and a resistor, the impedance and the resistance are the same thing. Impedance
is a generalized version of resistance when a circuit contains other components such as
capacitive and inductive components. The input–output relationship between voltage and
current in a resistor circuit is

V(t)
i(t)

= R (5.39)

Let us take the Fourier transform of this,

V(jw)
i(jw)

= R (5.40)

where in the frequency domain the input–output ratio is constant, R, not a function of

frequency, w, and j =
√
−1. The impedance of a resistor is a real constant.

Let us examine an RL circuit (Figure 5.5a), and consider the input (current)–output
(voltage) relationship in the frequency domain. In Figures 5.5c and d, if the switch is
disconnected from the voltage supply lead (A) and connected to the other lead (B), that is
putting the voltage supply out of the circuit, the V(t) in the equations below would be set
to zero.

V(t) = R ⋅ i(t) + L
di(t)
dt

(5.41)

V(jw)
i(jw)

= (R + jwL) (5.42)
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(a)

i(t)

V(t)

(b)

R

C

i(t)

R
L

V(t)

i(t)

R
L

V(t)

A

B i(t)

V(t)

R

C

A

B

(c) (d)

FIGURE 5.5: (a) RL circuit, (b) RC circuit, (c) RL circuit with a switch, (d) RC circuit with a switch.

where Z(jw) is defined as the impedance as follows,

Z(jw) =
V(jw)

i(jw)
= (R + jwL) (5.43)

which can be viewed as generalized resistance that is a complex function of frequency. The
complex function of frequency has a magnitude and phase for each frequency. Impedance
is a transfer function between current (input) and voltage (output).

Admittance, Y(jw), is defined as the inverse of impedance,

Y(jw) = 1
Z(jw)

= Re(Y(jw)) + jIm(Y(jw)) (5.44)

where the real part of admittance (Re(Y(jw))) is called the conductive part or the conduc-
tance and the imaginary part (Im(Y(jw))) is called the susceptive part or susceptance.

Similarly, let us consider the RC circuit (Figure 5.5b). The voltage and current
relationship of the circuit is

V(t) = R ⋅ i(t) + 1
C ∫

t

0
i(𝜏)d𝜏 (5.45)

V(jw) =
(

R + 1
Cjw

)
⋅ i(jw) (5.46)

V(jw)
i(jw)

=
1 + RC jw

Cjw
(5.47)

The impedance of the RC circuit is defined as

Z(jw) =
V(jw)
i(jw)

=
1 + RC jw

Cjw
(5.48)

Notice that if we were interested in the relationship between the input voltage and the
voltage across the capacitor (VC(t)) as the output voltage (i.e., the RC circuit is used as a
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V(t) R V(t) L V(t) C

j Cω
1Z( j   ) = Rω Z( j   ) =ωZ( j   ) = j   .Lω ω

FIGURE 5.6: Concept of impedance: generalized resistance as impedance.

filter between input and output voltages), the transfer function between them is

VC(t) = 1
C ∫

t

0
i(𝜏)d𝜏 (5.49)

VC(jw) = 1
C ⋅ jw

⋅ i(jw) (5.50)

i(jw) = C ⋅ jw ⋅ VC(jw) (5.51)

and

VC(jw)

V(jw)
= 1

1 + RC jw
(5.52)

which defines a low pass filter between the input voltage and output voltage.
It is rather easy to show that the impedance of a resistor, capacitor, and inductor are

as follows (Figure 5.6),

ZR(jw) = R (5.53)

ZC(jw) = 1
C jw

; also called capacitive reactance (5.54)

ZL(jw) = jw L; also called inductive reactance (5.55)

Impedance between two points in a circuit is the Fourier transform of the voltage (output)
and current (input) ratio. It is also called the transfer function between voltage (output)
and current (input). Impedance is a complex quantity. It has magnitude and phase, and is a
function of frequency. When we refer to large or small impedance, we generally refer to its
magnitude.

Example Consider the RL and RC circuits shown in Figure 5.5c, d, respectively. A
switch in each circuit is connected to the supply voltage (A side) and B side at specified
time instants. Assume the following circuit parameters; L = 1000 mH = 1000 × 10−3 H =
1 H, C = 0.01 μF = 0.01 × 10−6 F, R = 10 kΩ. Let the supply voltage be Vs(t) = 24 VDC.
Assume in each circuit, initial conditions on the current is zero and initial charge in the
capacitor is zero. Starting time is to = 0.0 s. At time t1 = 100 μs the switch is connected
to the supply, and at time t2 = 500 μs, the switch is disconnected from the supply and
connected to the B side of the circuit. Plot the voltage across each component and current
as function of time for the time period of t0 = 0.0 s to tf = 1000 μs.

For the RL circuit, when it is connected to the supply,

Vs(t) = L ⋅
di(t)
dt

+ R ⋅ i(t); t1 ≤ t ≤ t2 (5.56)
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and when it is disconnected from the supply and connected to the B side,

0 = L ⋅
di(t)
dt

+ R ⋅ i(t); t2 ≤ t ≤ tf (5.57)

with the initial conditions of current being the last value during the previous state. Another
way of treating this problem is to consider the first equation with a pulse input voltage,

Vs(t) = L ⋅
di(t)
dt

+ R ⋅ i(t); 0 ≤ t ≤ tf (5.58)

where Vs(t) is a pulse signal, that is the circuit is connected to 24 VDC (switch is on A side)
and 0.0 VDC (switch is on B side),

Vs(t) = 24 ⋅ (1(t − t1) − 1(t − t2)) (5.59)

where 1(t) represent the unit step function, 1(t − t1) represent the unit step function shifted
in time by t1.

The solution of the above differential equations can be shown to be as follows, or
more easily with Simulink® (Figure 5.7).

i(t) = 0.0; t0 ≤ t ≤ t1 (5.60)

i(t) = 24∕(10 × 103) ⋅ (1 − e−(t−t1)∕(L∕R)) A (5.61)

= 2.4 × (1 − e−(t−0.0001)∕0.0001) mA; t1 ≤ t ≤ t2 (5.62)

i(t) = i(t2) ⋅ (e−(t−t2)∕(L∕R)) A = 2.356 ⋅ e−(t−0.0005)∕0.0001 mA; t2 ≤ t ≤ tf (5.63)

Then the current across the resistor and inductor in each time period can be found by

VR(t) = R ⋅ i(t) (5.64)

VL(t) = L ⋅
di(t)
dt

= Vs(t) − R ⋅ i(t) (5.65)

We can confirm our physical expectation by the plots of these results. Initially, the inductor
will oppose, by generating an opposing voltage, the large rate of change in current and the
opposition will get smaller as the rate of change of current gets smaller, and as the current
reaches steady-state. When the voltage source switches suddenly to zero volts, the current
will start to decrease and the inductor will generate voltage in opposition to that change. In
other words, the inductive voltage will be negative since di(t)∕dt is negative.

For an RC circuit, the circuit relationships are, when connected to supply,

Vs(t) = R ⋅ i(t) + Vc(t) (5.66)

= R ⋅ i(t) + 1
C

(
Q(t1) + ∫

t

t1

i(𝜏)d𝜏

)
; t1 ≤ t ≤ t2 (5.67)

and when it is disconnected from the supply and connected to the B side,

0.0 = R ⋅ i(t) + 1
C

(
Q(t2) + ∫

t

t2

i(𝜏)d𝜏

)
; t2 ≤ t ≤ tf (5.68)

The voltage across the capacitor at any given time (t) is the initial voltage due to the initial
charge at a given time (t0) plus the net change in the charge (integral of the current from
the initial time (t0) to present time (t))

Vc(t) = 1
C

(
Q(t0) + ∫

t

t0

i(𝜏)d𝜏

)
(5.69)
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FIGURE 5.7: Simulink® model of the RL and RC circuits with a switch and simulation results.
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Again, the above two different states of the RC circuit can be represented with the first
equation with a pulse input voltage representation,

Vs(t) = R ⋅ i(t) + 1
C

(
∫

t

t1

i(𝜏)d𝜏

)
; t1 ≤ t ≤ tf (5.70)

where we used the fact that Q(t1) = 0.0 since initially the capacitor is assumed to be
uncharged and

Vs(t) = 24 ⋅ (1(t − t1) − 1(t − t2)) (5.71)

The above differential equation can be solved using Laplace transforms method for i(t), then
Vc(t) and VR(t) can be obtained from the current–voltage relationship across the capacitor
and resistor components. Using Simulink® for numerical solution is also an easier option
(Figure 5.7).

Vc(t) = 0.0; t0 ≤ t ≤ t1 (5.72)

Vc(t) = 24 ⋅ (1 − e−(t−t1)∕(RC)) V = 24 ⋅ (1 − e(t−0.0001)∕0.0001) V; t1 ≤ t ≤ t2 (5.73)

Vc(t) = Vc(t2) ⋅ (e−(t−t2)∕(RC)) V = 23.56 ⋅ e−(t−0.0005)∕0.0001) V; t2 ≤ t ≤ tf (5.74)

It is important to recognize that both circuits are first-order filters and that the response speed
is dominated by the time constant of the circuit, 𝜏 = L∕R = 100 μs for the RL circuit and
𝜏 = RC = 100 μs for the RC circuit. Similarly, we can confirm our physical expectations by
comparing these results. Initially, the capacitor is uncharged and there is no voltage across
it. Hence the current will be developed as if there is only a resistor on the circuit. Then, as a
result of the current, the capacitor will start to charge and develop voltage potential across
it. As a result, the available voltage across the resistor will decrease. Eventually, when the
capacitor charge is so large that the voltage across t is equal to the supply voltage, the
voltage across the resistor will be zero, hence the current will be zero. When the circuit is
switched to zero supply voltage, the capacitor voltage will drive the current in the opposite
direction until the charge it holds is fully drained. The charge and discharge of the capacitor
is an exponential function, whose time constant is determined by R ⋅ C.

5.4.2 Amplifier: Gain, Input Impedance,
and Output Impedance

Electronic circuits consist of connections between components where the output of one com-
ponent is connected to the input of another component. The input and output impedances
of connected components are important and can significantly affect the transmitted signal.
For instance, op-amps are used to amplify and filter its input signal before passing it to the
next component.

An ideal amplifier, in its simplest form, amplifies its input signal (Figure 5.8) and
presents the result as its output signal. It does not change the original signal shape (frequency
content) due to the fact that the signal is connected to the amplifier. Consider an operational
amplifier (op-amp) connected to an input source (i.e., a sensor signal) and an output load.
Ideally, the op-amp has a gain (Kamp), input impedance (Zin or Rin), and output impedance
(Zout or Rout). An ideal op-amp has infinite input impedance and zero output impedance. In
reality, it has a very large input impedance and very small output impedance. The Zin is the
generalized version of Rin, and Zout is the generalized version of Rout.
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FIGURE 5.8: Input and output loading effects as a result of the connection of an op-amp to an

input signal source and output load. (a) input and output connection of the op-amp device, (b)

model of the op-amp with input impedance, output impedance, and open circuit voltage gain.

The open circuit voltage gain, Kamp, is assumed constant for low frequency signals
relative to the bandwidth of the amplifier,

Vout,open = Kamp ⋅ Vin (5.75)

where the Vin is the voltage across the input terminals of the amplifier, and Vout,open is the
voltage across the output terminals of the amplifier when it is in open loop condition.

Let us recall the definition of the impedance and the fact that it is a generalization of
resistance. For the amplifier model shown in Figure 5.8, the input and output impedances
are defined as,

Zin(jw) =
Vin(jw)

iin(jw)
(5.76)

Zout(jw) =
Vout(jw)

iout(jw)
(5.77)

The input impedance is the generalized resistance seen by the input signal source. The
output impedance is the generalized resistance of a voltage source which is the same
as the output resistance of its equivalent Thevenin’s circuit. The gain, input, and output
impendances are three parameters that effectively define the performance characteristics of
an amplifier.

5.4.3 Input and Output Loading Errors

Let us consider an amplifier connected between a voltage source and a load (Figure 5.8).
The input voltage is affected by the input impedance of the amplifier,

Vin =
Rin

Rin + Rs
vs (5.78)
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and the output voltage is affected by the output impedance,

Vout =
RL

RL + Rout
Kamp Vin (5.79)

Notice that the ideally, when Rin → ∞ and Rout → 0, Vin = vs and Vout = Kamp vs, where the
input and output loading effects are zero. In reality, the finite input and output impedance
introduces so-called loading errors to the signal amplification. This is minimized when
the input impedance is very large relative to the source impedance, and output impedance
is very small relative to the load impedance. The net gain of the amplifier in a real
amplifier is

vo =
(

RL

RL + Rout

)(
Rin

Rin + Rs

)
Kamp vs (5.80)

where the portion of the amplifier gain

RL

RL + Rout

Rin

Rin + Rs
(5.81)

is due to the input and output loading effects. In order to minimize the effect of input
loading errors,

Rin ≫ Rs (5.82)

Similarly, in order to minimize the output loading errors,

Rout ≪ RL (5.83)

Furthermore, more accurate analysis of the amplifier would take the frequency depen-
dance of the input and output impedance into account (Zin(jw) instead of Rin, Zout(jw) instead
of Rout).

Example Let us consider a sensor, a signal amplifier, and a measurement device, all
connected in series as shown in Figure 5.8. The sensor provides a voltage proportional to the
measured physical variable. Let us call that voltage vs(t) = 10 V at steady-state condition.
For simplicity let us assume that the gain of the amplifier is unity, Kamp = 1.0. Determine
the voltage measured at the measuring device (i.e., digital voltmeter or oscilloscope) for
the following two conditions,

1. Rs = 100Ω, RL = 100Ω, Rin = 100Ω, Rout = 100Ω
2. Rs = 100Ω, RL = 100Ω, Rin = 1 000 000Ω, Rout = 1 Ω

For the first case, the measured voltage is

vout =
(

RL

RL + Ro

)(
Rin

Rin + Rs

)
Kamp vs (5.84)

=
( 100

100 + 100

)( 100
100 + 100

)
1 vs (5.85)

= 0.25 ⋅ vs (5.86)

= 2.5 V (5.87)

which shows an error of 75% of the correct value of the voltage.
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For the second case the measured voltage is

vout =
(

RL

RL + Rout

)(
Rin

Rin + Rs

)
Kamp vs (5.88)

=
( 100

100 + 1

)( 1 000 000
1 000 000 + 100

)
⋅ 1 ⋅ vs (5.89)

=
(100

101

)(1 000 000
1 000 100

)
⋅ vs (5.90)

= 0.990 ⋅ vs (5.91)

= 9.90 V (5.92)

which shows an error of 1% of the correct value of the voltage. Notice that there are two
components to the error in the gain due to input and output loading, one due to the input
loading (K1) and and the other due to the output loading (K2),

vout = K2 ⋅ K1 ⋅ Kamp vs (5.93)

where,

K1 =
(

Rin

Rin + Rs

)
(5.94)

= 1 000 000
1 000 100

(5.95)

K2 =
(

RL

RL + Rout

)
(5.96)

= 100
101

(5.97)

This example illustrates that in order to minimize the effect of loading errors, components
should have very large input impedance (ideally infinite), and very small output impendace
(ideally zero).

5.5 SEMICONDUCTOR ELECTRONIC DEVICES

Electronic systems include components made using semiconductor materials, such as
diodes, SCRs, transistors, and integrated circuits (ICs). Pictures of some common semicon-
ductor devices are shown in Figure 5.9. Because current flow is accomplished through the
flow of electrons in the solid crystal structure of semiconductor materials, components made
from semiconductor materials are also called solid-state devices. The difference between an
electrical and electronic system lies in whether solid-state components (diodes, transistors,
ICs) are used in the circuit or not.

5.5.1 Semiconductor Materials

Semiconductor materials are the group IV elements in the periodic table. The most com-
monly used semiconductor materials are silicon (Si) and germanium (Ge). Semiconductor
materials have an electrical conductivity property that is somewhere in between the conduc-
tors and insulators (non-conductors), hence the name semiconductors. A silicon atom has
14 electrons, and four of these electrons revolve in the outermost orbit around the nucleus
(Figure 5.10a). In its pure form, silicon is not much use as a semiconductor. The crystalline
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FIGURE 5.9: Pictures of some commonly used semiconductor devices: discrete devices

(diode, transistor) and integrated circuit chips (ICs).

structure of silicon is similar to the diamond structure of carbon which is a very stable
structure (Figure 5.10b). A three-dimensional view of the crystal structure shows that each
silicon atom is surrounded by four other atoms and they each share one electron in each
connection (Figure 5.10a,b,c).

Impurities from group III and group V elements are added to pure silicon. The
resulting silicon is also called doped silicon. When a material from group III of the periodic
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FIGURE 5.10: Semiconductor materials: (a) a silicon atom has four electrons in the outermost

oribit. (b and c) each silicon atom is surrounded by four other atoms in the crystal structure

where it is shown both in three-dimensional and two-dimensional representation. (d) p-type,

and (e) n-type semiconductor material (doped silicon) crystal structure.

table (i.e., boron (B)) is added to the silicon, there will be one missing electron for each
added impurity atom in the crystal structure. One of the four connections around the group
III atom will be missing an electron (Figure 5.10d). This effective positive charge, also
called a hole, is loosely connected to the atom. Its ability to move around the crystal
structure gives the material the ability to conduct electricity. Since the net added electrical
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charge is positive, such semiconductors are called p-type semiconductors (Figure 5.10d).
Similarly, if the added material is from group V of the periodic table (i.e., phospore (P),
arsenic (As)), there will be an extra electron around the added impurity atom. This provides
the conductor property to the semiconductor material. Since the net added electrical charge
to the crystal structure is a negative charge due to the extra electron, this type is called n-type
semiconductor (Figure 5.10e). All semiconductor materials conduct electricity through the
holes and electrons introduced by the doping material into its crystal structure.

Semiconductor materials are the basis of electronic switches which contain various
junctions of n-type and p-type semiconductor materials. The conductivity property of these
junctions are controlled by a base current under our control or a function of the voltage
bias between the two terminals. The device acts as a conductor (closed switch) and as a
non-conductor (insulator, open switch) under different operating conditions.

5.5.2 Diodes

A diode is a two-terminal device made of a p-n junction (Figure 5.11a). It works like
an electronic switch that allows current flow only in one direction. It functions like a
one-directional check valve. It lets the flow in one direction when the pressure is above
a threshold value and it blocks the flow in the reverse direction. It is a conductor in the
positive direction, and an insulator in the negative direction. Once it starts conducting, the
resistance of it is negligable. It is like a closed switch. The voltage and current relationship
across a diode has three regions: forward bias region, reverse bias region, and reverse break-
down region. When the voltage is larger than the forward bias voltage value (VF = 0.3 V
for germanium diode, VF = 0.6 V to 0.7 V for silicon diode), VD > VF, the diode becomes
a conductor and acts as a closed switch. Hence, the current increases very fast indicating
very low resistance at this device. The actual value of the current is determined by the rest
of the circuit. In this region, the diode can be considered as a closed switch with negligable
resistance and a small voltage drop of VF. When the diode is in the reverse bias region,
VZ < VD < VF, then the diode acts as an insulator or open switch. In other words, it acts
like a very large resistor. When the VD < VZ, the diode operates in the brea-kdown region,
and acts as a closed switch. This is referred to as the avalanche effect and a large current
flows in the reverse direction. If this reverse current is larger than a rated value for the
diode, the component will fail. The design parameters of a diode include:

1. VF, forward bias voltage.

2. VZ, reverse break-down voltage.

3. fsw, maximum switching frequency the diode can respond to.

4. iFWD,ave, the forward average (continuous) current the diode can conduct without dam-
age at a given temperature. As temperature increases, this current rating decreases.

5. iFWD,peak, the forward peak (short period, i.e., 10 ms) current the diode can conduct
without damage. More specifically, this rating is a function of the repetetion rate (pulse
width), and as the repetetion (pulse rate) increases, this rated current decreases.

6. iREV,max, the maximum reverse current the diode will conduct while the reverse bias
is voltage below the break-down voltage.

7. Pnom nominal power dissipation at the diode, which is approximately the voltage drop
across it times the current it is conducting. Generally this is a small amount since at
all operating modes of a diode, either the voltage drop across it or the current through
it is very small.

8. Temperature range the diode is rated to operate, i.e. −65 ◦C to 200 ◦C.
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FIGURE 5.11: Some semiconductor devices: (a) diode (pn-junction), (b) Zener diode, (c)

thysristor (silicon controller rectifier or SCR), (d) Triac.

The most common applications of diodes are half-wave and full-wave rectification of AC
signals to DC signals.

Zener Diode A Zener diode is a special type of diode which makes use of the reverse
break-down voltage (VZ). It operates in the break-down region without destroying itself.
Given a well-defined reverse break-down voltage, a Zener diode is generally used as a
voltage regulator under varying supply and load voltage conditions (Figure 5.11b). Any
voltage above the VZ value across the Zener diode, and hence across the load, will be
reduced to VZ due to very high conductance across the diode. Therefore, when the Zener
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diode is conducting, the current across the load and diode are

iL =
VZ

RL
; VS ≥ VZ (5.98)

iS =
VS − VZ

RS
; Vs ≥ VZ (5.99)

iZ = iS − iL; VS ≥ VZ (5.100)

When the Zener diode is not conducting,

VL < VZ (5.101)

iZ = 0.0 (5.102)

iL = iS (5.103)

Rl ⋅ iL = VL < VZ (5.104)

The power dissipated on a Zener diode is

PZ = iZ ⋅ VZ =
[

(VS − VZ)

RS
−

VZ

RL

]
⋅ VZ (5.105)

which must not exceed the power rating of the diode. The main design parameters of a
diode are the maximum power dissipation capacity (PZ,max, i.e., 0.25 W to 50 W) and the
reverse breakdown voltage (VZ, i.e., 5 V to 100 V range).

Thyristors Thyristors (also called silicon controller rectifiers (SCR)) are a three-
terminal device made of three junctions (junctions of PNPN) using two p-type and two
n-type semiconductor materials (Figure 5.11c). The three terminals are anode (A), cathode
(K), and gate (G). The input–output relationship in steady-state is the voltage (vAK) and
current (iAK) between A and K where this relationship is a function of the gate current (iG).
SCR is a controllable diode. The gate is used to turn ON the SCR, but it cannot be used
to turn it OFF. SCR turns OFF when the iAK goes to zero, then the gate can be used to
turn it ON again. In order to turn ON the SCR, it must be forward biased (VAK ≥ VFB(iG))
plus the gate current must be above the latching current specification (iG > iG,min), the
minimum amount of current required to turn ON the SCR. The forward voltage drop VFB
is in the range of 0.5 V to 1.0 V. The current conducted by the SCR can range between
100 mA to 100 A. The power dissipated across the SCR is the voltage drop across it times
the conducting current,

PSCR = Vdrop ⋅ iAK < Pmax (5.106)

By controlling the timing of the gate current while the SCR is forward biased, a con-
trolled portion of a forward alternating voltage can be conducted. This is used in speed
control of DC motors from an AC source. If SCR is forward biased suddenly (i.e.,
dVAK∕dt > 50 V∕μs), it may turn ON even though base current is not applied. To reduce
such undesirable effects, a low pass passive RC-circuit (also called a snubber circuit) is
used in parallel with the SCR. In addition, when a SCR is turned ON, the rate of current
change, di(t)∕dt, may be very large. In order to reduce that, the load should have inductance
that is larger than a minimum required value. If the inductance is very low, the rate of
current change can be too large.

Triacs Triac is equivalent to two SCRs connected in reverse-parallel configuration
(Figure 5.11d). While an SCR can be turned ON only in the forward biased direction, a
triac can be turned ON in both directions. Typical voltage drop across a triac is about 2 V
while it is conducting. This voltage times the load current determines the energy dissipation
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in the form of heat by a triac. SCR and triac components are generally used to switch AC
loads. The amount of power that is allowed to conduct is controlled by the timing gate
voltage of SCR and triac relative to the AC voltage applied between terminals A and K.

Example Consider the Zener diode application circuit shown in Figure 5.11b. Let
us assume that Vs = 24 V, Rs = 1000Ω, VZ = 12 V, and RL varies between 1000Ω and
2000Ω. Let us determine the currents in each branch of the circuit, voltage across the
load, and power dissipated across the Zener diode. The Kirchoff’s voltage law in the loop
including the power supply and the zener diode gives,

Vs = Rs ⋅ is + VZ (5.107)

24 = 1000 ⋅ is + 12 (5.108)

is =
24 − 12

1000
= 0.012 A = 12 mA (5.109)

Since the voltage drop across the Zener diode is limited to VZ = 12 V, the same voltage
potential exists across the parallel load resistor,

VRL
= VZ = RL ⋅ iL (5.110)

12 = RL ⋅ iL (5.111)

iL = 12
RL

(5.112)

when RL = 1000Ω, iL = 12.0 mA, and when RL = 2000Ω, iL = 6.0 mA. Since

is = iL + iZ (5.113)

The current across the diode is

iZ = is − iL (5.114)

which varies as the load resistance varies. In other words, the current across the zener
diode is iZ = 0.0 mA when RL = 1000Ω and iZ = 6.0 mA when RL = 2000Ω. The Zener
diode provides a constant 12 V voltage across the load resistor. As the load resistor varies,
the Zener diode dumps the excess current while providing the VZ = 12 V constant voltage
across the two terminals. If RL < 1000Ω, that is RL = 500Ω, the diode does not conduct.
Assume that the diode is not conducting, then, iZ = 0,

is = iL =
Vs

RL + Rs
= 24

1500
= 0.016 A = 16 mA (5.115)

VL = RL ⋅ iL = 500Ω ⋅ 16 mA = 8 V < VZ (5.116)

So, the Zener diode acts as a component to dump the excess voltage, but does not make
up for lower voltages. The maximum power dissipated across the Zener diode in this
example is

PZ = VZ ⋅ iZ = 12 V ⋅ 6 mA = 72 mW (5.117)

Therefore, a Zener diode with 1∕4 W power rating and 12 V breakdown voltage rating
would be sufficient for this circuit.

Figure 5.12 shows the application of diodes for voltage surge protection due to
inductive loads. Such a use of diodes is called free-wheeling diodes. When a diode is placed
parallel to the transistor in motor control applications, it is called a by-pass diode. When
there is an inductive load (a coil winding of the conductor, i.e., in relays, solenoids, motors),
sudden switching of the current either by mechanical switches or electronic switches
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Vcc

(a) (b)

FIGURE 5.12: Diode application:

voltage surge protection when inductive

load is present in the circuit. (a) For DC

circuits, (b) for AC circuits.

(transistors) results in large voltage surges due to the inductive load. Recall that for an
inductor,

V(t) = L ⋅
di(t)
dt

(5.118)

When the current is switched suddenly there can be large voltage surges since di(t)∕dt can
be very large. Especially when the current is switched OFF, the surge in current does not
have path to travel but shows up across the switch, which can be damaged. In addition,
the voltage surge maybe so large as to damage the insulation of the conductor. In order to
reduce the effects of the surge voltages, a diode is used across each inductive load. If the
voltage supplied to the inductive load is DC, a single diode is sufficient. If it is AC, then two
opposite Zener diodes are used to handle the voltage surges in both directions (Figure 5.12).
In order to quickly dissipate the power trapped in the inductive load after the switch-OFF,
some designs include a small resistor in series with the diodes.

Light emitting diodes (LEDs) and light sensitive diodes (LSDs) are diodes that give
out light with an intensity that is proportional to the current and pass currents proportional to
the received light intensity, respectively. Furthermore, the light frequency can be modulated
or pulsed (i.e., up to 10 MHz range) where the LEDs and LSDs respond only to the selected
frequency range of the modulated light, hence they would not be affected by the ambient
light. LEDs and LSDs are used as opto-couplers in electrical circuits in order to electrically
isolate two circuits and couple them optically (Figure 5.13).

Example Consider the circuits shown in Figure 5.14. Part (a) of the figure shows a half
wave rectifier. The output voltage across the load resistor is simply the positive portions of
the input voltage minus the bias voltage of the diode. Part (b) of the figure shows the same
circuit with a low pass filter inserted between the diode and load resistor. This method is
used in DC power supplies in order to smooth out the pulsation of AC input voltage and
generate a DC output voltage. Let us examine the behavior of each circuit. For both cases,

Opto-coupler

FIGURE 5.13: Opto-coupler symbol: light emitting

diode (LED) and light sensitive transistor (LST) pair

used to electrically isolate two sides of the circuit

using optical light as the coupling medium.
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FIGURE 5.14: Simple DC power supply using a diode: (a) using a single diode for half wave

rectification function, (b) using a diode and a low pass filter. (c) Simulated results for each

circuit. For good DC power supply behavior, we need RC to be small compared to input signal

frequency (that is 1∕RC larger than input signal frequency), and RLC to be large (that is 1∕RLC

smaller than input signal frequency).

input voltage is an AC voltage with 60 Hz frequency and 10 V magnitude, and the forward
bias voltage of the diode is VFB = 0.7 V.

For case (a), the output voltage is simply

Vout(t) = Vin(t) − VFB : when Vin(t) ≥ VFB (5.119)

= 0; when Vin(t) < VFB (5.120)

Since Vin(t) = 10.0 ⋅ sin(2𝜋 60 t),

Vout(t) = 9.3 ⋅ sin(2𝜋 60 t) : when Vin(t) ≥ 0.7 V (5.121)

= 0; when Vin(t) < 0.7 V (5.122)

The results are plotted in the same figure.
For case (b), we need to consider two cases:

1. when the diode is conducting, and

2. when the diode is not conducting.

Unlike case (a), in case (b) when the diode is not conducting, the current (and voltage) at
the output circuit is not zero due to the capacitor. When the diode is conducting,

(Vin(t) − VFB) ≥ Vout(t) (5.123)

the full circuit is active. When the diode is not conducting,

(Vin(t) − VFB) < Vout(t) (5.124)
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the capacitor C and load resistor RL form a complete circuit and the current flows due to
the non-zero voltage in the capacitor. Assume that the charge in the capacitor is zero when
the circuit is first turned on.

(i) When the diode is conducting; (Vin(t) − VFB) ≥ Vout(t)

Vin(t) − VFB − R ⋅ i(t) = Vout(t) (5.125)

i(t) = iC(t) + iRL
(t) (5.126)

iRL
(t) = 1

RL
⋅ Vout(t) (5.127)

iC(t) = C ⋅
dVout(t)

dt
(5.128)

Let V∗
in(t) = Vin(t) − VFB, and substitute the i(t), iC(t), iRL

(t) in the first equation in order to
obtain the dynamic relationship between the input voltage and output voltage. The result
can be shown to be

RC
dVout(t)

dt
+
(

1 + R
RL

)
Vout(t) = V∗

in(t) (5.129)

where the initial value of output voltage at the begining of each cycle (when the diode first
starts to conduct) is the voltage across the capacitor, Vout(ti) = VC(ti). During the time that
the diode conducts, we want the output voltage to quickly track the input voltage. In order to
accomplish this we need a small time constant, which means RC should be small compared
to the input frequency, or equivalently 1∕RC should be larger than the input frequency, that
is ten times larger 1∕RC = 10 ⋅ 60 or RC = 1∕(10 ⋅ 60).

(ii) When the diode is not conducting, (Vin(t) − VFB) < Vout(t), we have a capacitor C
(with initial charge and voltage from the last instant when diode was conducting) and load
resistor RL forming a closed electrical circuit. Hence, the dynamic behavior of the voltage
and current relationship during that period is described by

VC(ti) ; given from previous phase or initial condition (5.130)

Vout(t) = VC(t) = VC(ti) +
1
C∫ti

t

iC(𝜏)d𝜏 = RL ⋅ iRL
(t) (5.131)

iC(t) = −iRL
= −

VC(t)

RL
(5.132)

Evaluating this equation, it can be shown that the output voltage dynamics during the time
when the diode is not conducting is defined by

1
RLC ∫

t

ti

Vout(𝜏)d𝜏 + Vout(t) = VC(ti) (5.133)

or

dVout(t)

dt
+ 1

RLC
Vout(t) = 0.0; (5.134)

with the initial condition of

Vout(ti) = VC(ti) (5.135)

where VC(ti) is the voltage across the capacitor (which is same as the output voltage) the last
time the diode was conducting. Notice that the time domain analytical solution of the above
equation is (which can be numerically confirmed by MATLAB®/Simulink® simulation)

Vout(t) = VC(ti) ⋅ e−(t−ti)∕(RLC) (5.136)
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which shows that in order to make the decay rather slow and obtain a DC output voltage,
RLC should be as large as possible. RL will be function of the load connected to the output,
therefore we have more control over the value of capacitor, C, to make sure that RLC is
large enough to provide a smooth output DC voltage relative to the oscillation frequency
of the input voltage. Results are shown for 60 Hz input voltage and RC = 0.1∕60, RLC =
10.0∕60.

In summary, the diode alone only passes the positive half of the input signal and acts
as a half wave rectifier. The diode plus the low pass filter circuit smooth out the oscillations
of the AC input and provide almost constant DC output voltage. In order to get a smooth
DC output voltage, the 1∕(RC) should be much larger than the input signal frequency
and 1∕(RLC) should be much smaller than the input signal frequency. The performance
of the simple DC power supply shown in Figure 5.14b can be simulated for different
values of R ⋅ C and RL ⋅ C relative to the frequency of the input signal which is 60 Hz in
this example.

% Simulation of the diode and low pass filter circuit for
DC power supply operation.

t0 = 0.0 ;
tf = 4.0/60.0 ;
t_sample = 0.001 ;
x_out = 0 ;
u_out = 0 ;

% Start the simulation loop...

u = 0.0 ;
x = 0.0 ;

for (t = t0 : t_sample : tf )
u1 = 10.0 * sin(2*pi*60*t) ;
Vfb = 0.7 ;
u = u1 - Vfb ;
x = rk4(’process_dynamics’,t,t+t_sample, x, u) ;

x_out=[x_out ; x’ ] ;
u_out=[u_out ; u1 ] ;

end

% ..Plot results....
t_out=t0:t_sample:tf ;
t_out = [t_out’ ; tf+t_sample ] ;
subplot(111)

plot(t_out,u_out(:,1),’r’,t_out,x_out(:,1),’b’) ;
title(’Input and output voltages vs time for
parameters: RC=0.1/60, R_LC = 10.0/60’) ;

%

function xdot= process_dynamics(t,x,u)
%
% describes the dynamic model: o.d.e’s
% returns xdot vector.
%

R= 0.1/60. ;
C= 1.0 ;
R_L = 10./60. ;
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if (u >= x )
xdot = (1/(R*C))*(u - (1+(R/R_L)) * x) ;

else
xdot = -(1/(R_L*C))*x ;

end

5.5.3 Transistors

A transistor can function in two ways:

1. as an ON/OFF switch,

2. as a proportional amplifier.

It is an electronic switch (solid-state switch) that can be opened or closed completely or
partially. Another way of looking at a transistor is that it is a variable resistor where the
resistor value is controlled by the gate current. It is an active element which is used to
modulate (control) the flow of power from source to load. A transistor is a three-terminal
device made of two junctions of p-type and n-type semiconductors. If the junctions are
made of n-p-n order, it is called npn-type transistor. If the junctions are made of p-n-p
order, it is called pnp-type transistor. The difference between them in a circuit application
is that the supply connection polarity is opposite, hence the direction of current is opposite.
The three terminals are collector (C), emitter (E), and base (B) (Figures 5.13 and 5.15).
One of the important features of input and output relations of a transistor is that the input
strongly affects the output. However, the output variations (i.e., due to load changes) do
not affect the input. Therefore, the base of a transistor is always part of the input circuit
which controls the output circuit. Unlike passive components such as resistors, capacitors,
and inductors, the transistor is an active device. It requires a power supply to operate and
can increase the power between input and output. The input circuit acts as a control circuit
which controls a much larger power level in the output circuit using a much smaller power
level at the input circuit. The transistor is the electronic analogy of a hydraulic valve.

The main types of transistors are discussed below. Bipolar junction transistors
(BJTs) are the most common transistors. Metal oxide semiconductor field effect transistors
(MOSFETs) require smaller gate current, have better efficiency, and have higher switching
frequency. Insulated gate bipolar transistors (IGBTs) are a more recent transistor type which
attempts to combine the advantages of BJTs and MOSFETs. A transistor performance is
characterized by the maximum base current, current between the two main terminals
(collector-emitter, drain-source), forward bias voltage, reverse breakdown voltage, max-
imum switching frequency, forward current gain, reverse voltage gain, input impedance,
and output impedance.

Bipolar Junction Transistors (BJTs) There are two types of BJTs: npn-type
and pnp-type, each type being a three-terminal device (Figure 5.13a). The input–output
relationship between collector (C) and emmitor (E) terminals is controlled by the base (B)
signal. A BJT can be used as an electronic switch (ON/OFF) or a proportional amplifier
(output current iC is proportional to input current iB). The voltage and current relationship
across the C and E terminals of the transistor (VCE, iCE) is a function of the base current.
There are three main design parameters of interest: current gain (beta), voltage drop between
base and emitter when the transistor is conducting (VBE = VFB), and the minimum voltage
drop across the collector and emitter when the transistor is saturated or fully ON (VCE =
VSAT). Note that iE = iB + iC always.
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FIGURE 5.15: Some semiconductor devices: transistors. (a) Bipolar junction transistors (BJT),

(b) metal oxide semiconductor field effect transistor (MOSFET), and (c) insulated gate bipolar

transistor (IGBT).

There are three main modes of operation of the BJT in steady-state,

1. Cut-off Region:VBE < VFB, iB = 0, hence, iC = 0, VCE > Vsupply. The transistor acts
like an OFF-state switch. There is no current flow between the C and E. VFB can vary
between 0.6 V to 0.8 V as a result of manufacturing variations. In valve analogy, the
valve is closed.

2. Active Linear Region: VBE = VFB, iB ≠ 0; iC = 𝛽 iB, VSAT < VCE < Vsupply. The typ-
ical value of VSAT ≈ 0.2 V to 0.5 V. Transistor acts like a current amplifier. The output
current, iC, is proportional to the base current, iB, where the proportionality constant
(gain) is a design parameter of the transistor, which is typically around 100 and
can range from 50 to 200. Good circuit designs should not rely on this open-loop
transistor gain for it can vary significantly from one copy to another of the same
transistor as well as being a function of temperature. The current iC is also function
of the VCE slightly. Under constant base current conditions, the collector current
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FIGURE 5.16: Darlington transistor.

increases slightly as the collector to emitter voltage increases. In valve analogy, valve
is partially open.

3. Saturation Region: VBE = VFB, iB > iC,max∕𝛽, VCE ≤ VSAT ≈ 0.2 V − 0.5 V. In this
mode the transistor operates like a closed (ON) switch between C and E terminals.
The actual value of iC is determined by the circuit preceeding the collector, which is
analogous to a completely open valve where the flow rate is determined by the supply
and load pressures.

In approximate calculations, it is customary to assume VFB = VSAT = 0.0 and iE = iC in
transistor circuits. In valve analogy, the valve is fully open.

BJT type transistors can support collector currents in the range of 100 mA to 10 A.
The BJTs rated for above 500 mA current are called power transistors and must be mounted
on a heat sink.

In order to obtain higher gain, 𝛽, from BJTs, a commonly used transistor is the
Darlington transistor which gives a gain that is the multiplication of the two stages of the
transistors (Figure 5.16)

𝛽 = 𝛽1 ⋅ 𝛽2 (5.137)

where the gain 𝛽 of a Darlington transistor can be in the order of 500 to 20 000.
Note that the power dissipation across a BJT is

PBJT = VCE ⋅ iCE (5.138)

which should be below the rated power of the transistor in a given design. The power
dissipation across the transistor is a key factor to consider for two different reasons:

1. failure of the component due to excessive heating and the associated heat dissipation
issues,

2. efficiency of the component by reducing the wasted heat energy.

When a transistor operates in fully ON (in the saturated region), the voltage drop across
it is very small, VCE ≈ 0.4 V. Hence the power dissipation is small. Similarly, when the
transistor is fully OFF (in the cutoff region), even though the voltage drop across it is
large, the current conducted is zero, iC ≈ 0.0. Hence power dissipation is again small. The
observation we make here is that when the transistor is operated either in fully ON or fully
OFF mode, the power dissipation is minimized and its operational efficiency is improved.
Let us consider that we control the gate of the transistor with a high frequency signal (i.e.,
wsw = 10 KHz). One period of the gate signal is tsw = 100 μs long. If we control the width
(portion) of the signal within each period that will saturate the transistor (fully ON) and
the width of the signal that will turn OFF the transistor, we can control the average gain
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FIGURE 5.17: Common emitter configuration and voltage amplifier usage of a transistor.

of the transistor by the average of the ON–OFF widths of the gate signal. By increasing
and decreasing the ON–OFF width periods within each tsw period, we can vary the net
average gain. Since only two states of transistor control are needed, the gate signal only has
to have two voltage levels: a high level to saturate the transistor and a low level to cutoff
the transistor. Then the only control problem is controlling the ON–OFF widths of the
switching pulses. This is called the pulse width modulated (PWM) control of transistors.
The PWM control method results in more efficient operation of the transistors. It operates a
transistor in one of two regions: cutoff region (OFF state) and saturation region (ON state).

If the transistor is operated in the active region, which is the region where the
output current is linearly proportional to the gate current, we use the transistor in linear
(or proportional) mode. In this case both the iC and VCE can have reasonably finite values.
Hence, in linear gate signal control mode, the power dissipation is larger. In linear operating
mode, the efficiency of the transistor is lower compared to the efficiency in PWM mode.

In the common-emitter configuration (input and output have the emitter as common
as shown in Figure 5.17) of a transistor, the input circuit voltage–resistor combination
determines the base current. Base current times the transistor gain determines the collector
current. Then, the voltage drop across the C and E terminals is determined by the voltage
balance in the output circuit loop given the known value of collector current, voltage and
resistor. If the calculated iC requires a VCE value that is less than VCE,sat = 0.2 V, then the
transistor saturates. Then the actual iC value is determined by the output circuit.

Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) A
MOSFETs are also a three-terminal transistors with terminals called drain (D), source
(S), and gate (G) (Figure 5.13b). Like BJTs, there are two types of MOSFETs: npn-type
and pnp-type. The input (control) variable is the gate voltage, VG. The output is the drain
current, iD. There are three regions of operation of a MOSFET,

1. Cutoff Region: VGS < VT and iG = 0, hence, iD = 0, where VT is the gate-source
threshold voltage. The threshold voltage takes on different values for different types
of FETs (i.e., VT ≈ −4 V for junction FETs, VT ≈ −5 V for MOSFETs in depletion
mode, VT ≈ 4 V for MOSFETs in enhancement mode). There is negligible current
flow through the D terminal and the connection between D and S terminals is in an
open switch state.

2. Active Region: VGS > VT, hence, iD ∝ (VGS − VT)2, VDS > (VGS − VT). The transis-
tor functions as a voltage controlled current amplifier, where the output current is
proportional to the square of the net GS voltage. Notice that for the MOSFET to oper-
ate in this region, VDS must be above a certain threshold. Otherwise, the MOSFET
operates in the ohmic region.
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3. Ohmic Region: When VGS is large enough (VGS > VT) and VDS < VGS − VT, the iD
is determined by the source circuit connected to the D terminal and the transistor
behaves like a closed switch between D and S terminals. VGS ≫ VT, then and iD =
VDS∕RON(VGS). The MOSFET acts like a nonlinear resistor where the value of the
resistance is nonlinear function of the gate voltage.

It should be noted that the advantages of MOSFETs over BJTs are higher efficiency, higher
switching frequency, and better thermal stability. On the other hand, MOSFETs are more
sensitive to static voltage. In general, MOSFETs have been replacing BJTs in low voltage
(<500 V) applications.

Insulated Gate Bipolar Transistors (IGBT) IGBTs are the new alternative to
BJTs in high voltage (>500 V) applications where they combine the advantages of BJTs and
MOSFETs. IGBT is a four layer device with three terminals similar to BJTs (Figure 5.15c).
IGBTs are widely used in motor drive applications and operate in PWM mode for high
efficiency.

Example In Figure 5.17, let VCC1 = 5 V, VCC2 = 25 V, R1 = 100 KΩ, R2 = 1 KΩ. The
base current is (assuming VBE = 0.0 for simplicity)

iB = 5 V
100 KΩ

= 0.05 mA (5.139)

Let the gain of the transistor be 𝛽 = 100. The collector current is

iC = iC(iB, VCE) (5.140)

iC ≈ 𝛽 ⋅ iB = 5 mA (5.141)

Hence, the voltage balance in the output circuit dictates that

25 V = 1000 ⋅ 5 ⋅ 10−3 + VCE (5.142)

VCE = 25 − 5 = 20 VDC (5.143)

In general, the output voltage across the transistor for the common-emitter configuration
shown in Figure 5.17 is (let Vout = VCE, Vin = VCC1, Vs = VCC2)

Vout = Vs −
R2

R1
⋅ 𝛽 ⋅ Vin (5.144)

and the voltage potential across the output circuit resistor (VR2) is

VR2 =
R2

R1
⋅ 𝛽 ⋅ Vin (5.145)

The common-emmiter configuration of the transistor as shown in Figure 5.17 can be used
as a voltage amplifier. If the output voltage is taken as the voltage across the transistor,

Vout = Vs − K1 ⋅ Vin (5.146)

or if the output voltage is taken as the voltage across the resistor preceeding the collector,

Vout = K1 ⋅ Vin (5.147)

Example In order to illustrate the fact that a transistor can be operated like a switch
(ON or OFF) as well as a proportional amplifier, let us consider the following cases of
input voltage in the same Figure 5.17. Furthermore, let us more accurately assume that
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the maximum voltage drop across the base and emitter is VBE = 0.7 V, and the minimum
voltage drop across the collector and emitter is VCE = 0.2 V.

1. Case 1: VCC1 = 0.0 V. Then iB = 0, hence, iC = 0. Therefore, the voltage measured
between the collector and the emitter (let us call it the output voltage, Vout) is
Vout = VCC2 = 25 VDC. We can call this the OFF state of the transistor.

2. Case 2: VCC1 = 30.7 V (more precisely, the input voltage at the gate is large enough
to generate a large base current that will saturate the transistor output circuit). Then
iB = (30.7 − 0.7)∕100 K = 0.3 mA, hence, iC = 𝛽iB = 30 mA. Therefore, the voltage
measured between the collector and the emitter (let us call it the output voltage, Vout)
is Vout = VCC2 − R2 ⋅ iC = 25 − 1000 ⋅ 30 mA = −5 V. Since the output voltage at
the collector cannot be less than the emitter voltage plus the 0.2 V minimum voltage
drop across the collector and emitter, it must be, Vout = 0.2 V. Hence the actual
collector current saturates at iC = (VCC2 − VCE)∕R2 = (25 − 0.2)∕1000 = 24.8 mA
and the output voltage at the collector is Vout = 0.2 V. We can call this the ON state
of the transistor.

3. Case 3: When the input voltage is above cutoff voltage (VBE = 0.7 V) but below the
saturation voltage, the transistor operates as a proportional voltage amplifier. The
saturation voltage can be calculated as follows. The minimum voltage drop across C
and E when the transistor is saturated is

VCE = 0.2 V; when saturated (5.148)

At this point, the current is

iC =
VCC2 − VCE

R2
= 25 − 0.2

1000
= 24.8 mA (5.149)

The base current must be

iB = 1
𝛽

iC = 1
100

iC (5.150)

=
Vin,sat − VBE

R1
(5.151)

Vin,sat = 0.248 mA ⋅ 100 KΩ − 0.7 = 24.1 V (5.152)

Base voltage value larger than that operates the transistor in the saturation region.

Vin < VBE; transistor is in fully OFF state (5.153)

VBE < Vin < Vin,sat; linear region (5.154)

Vin > Vin,sat; saturated region (fully ON state) (5.155)

Case 1 and case 2 are shown as a mechanical switch analogy in Figure 5.18. Figure 5.18a
shows the so-called sinking connection and Figure 5.18b shows the so-called sourcing
connection of the transistor to the load. The names sinking and sourcing are given from the
point of view of the transistor in that it either sinks the current from the load or sources
current to the load.

Example A transistor circuit shown in Figure 5.19 can be used to switch the power
on a load which is controlled by a mechanical switch. Let’s assume that VBE = 0.7 V and
VCE = 0.2 V. If the load is of inductive type, a suppression diode should be used in parallel
with the load. When the transistor goes from the ON to OFF stage very fast, large voltage
transients develop due to inductance. These large voltage transients can be easily large
enough to damage the transistor if it is larger than the forward break-down voltage of the
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(a)

(b)

FIGURE 5.18: Mechanical switch analogy for a transistor: (a) Current sinking connection

(sinking current from the load). Also called a low-side (output) switch. (b) Current sourcing

connection (sourcing current to the load). Also called a high side (output) switch.

Mechanical 
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Vcc = 10 V

A

C

E

B
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R1 = 1 kΩ
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L

FIGURE 5.19: A transistor circuit used

as an electronic switch.
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transistor. The diode limits the voltage to the supply voltage by providing a current flow
path during that transient period. The current flow due to inductive voltage is then dissipated
in the diode-load loop within a short period of time. The resistor (R2) which connects the
base to the ground is not necessary, but makes the circuit a better one by providing a ground
to the base when the transistor is not turned ON (when the mechanical switch is open).
In the following discussion, assume the components in the dotted blocks do not exist for
simplicity. Let L = 0.0 H and R2 = 0.0Ω. When the mechanical switch is OFF, the base
voltage and current are zero, the transistor is OFF, no current flows through the load. When
the mechanical switch is ON, the base current and collector current are,

iB =
VAB

R1
= (10 − 0.7)V

1000Ω
= 9.3 mA (5.156)

iC = 𝛽 ⋅ iB = 0.93 A (5.157)

where it is assumed that 𝛽 = 100. But the maximum current that the supply can support is

iC,max =
VCC − VCE

RL
= 10 − 0.2

100
= 0.098 A (5.158)

Hence, the transistor saturates with the maximum voltage drop across the load, VL = 10 −
0.2, and the minimum voltage drop across the transistor, VCE = 0.2 V. The transistor acts
like a very low resistance switch when it is saturated. Voltage drop across it is VCE = 0.2 V.
Providing excess base current to saturate the transistor is a good idea and provides a safety
margin to make sure the transistor is fully turned ON (in its saturation region) and hence
providing the maximum voltage drop across the load. Notice that when the transistor is
ON, the current drain through the resistor R2 is

i2 =
VBE

R2
= 0.7

10 000
= 0.07 mA (5.159)

which is a negligable load.

Example Another common use of a transistor is in a current-source circuit (Fig-
ure 5.20). Notice that this circuit does not have any voltage amplification, but it has current
amplification. Output voltage tracks the base voltage as shown below with the exception of
the small voltage drop across the base and emitter. Let us assume voltage drop across the
base-emitter is VBE = 0.6 V.

Vout = Vin − 0.6; when Vin ≥ 0.6 V (5.160)

Vout = 0; when Vin < 0.6 V (5.161)

A

B

E

vin

vout

C

RE

iE

FIGURE 5.20: A transistor circuit as a current-source.
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The current through the RE,

iE =
Vout

RE
=

Vin − 0.6

RE
(5.162)

and the current through the collector,

iC = 𝛽 ⋅ iB (5.163)

iE = iC + iB = (𝛽 + 1) ⋅ iB (5.164)

= (𝛽 + 1)
𝛽

iC (5.165)

and

iC = 𝛽

𝛽 + 1
iE = 𝛽

𝛽 + 1

Vin − 0.6

RE
(5.166)

as long as the transistor is not saturated, (VC > VE + 0.2), the current output (iE) is pro-
portional to the base voltage. This circuit does not have any voltage gain, but it does have
current gain, and hence power gain, between input and output signals.

Note that

Vin = VBE + VE (5.167)

VE = Vin − VBE ≥ 0.0 (5.168)

VC = VCE + VE (5.169)

The voltage at the emitter follows the base voltage. Current through the collector and emitter
is proportional to the base voltage.

Example There are many applications where a load resistor varies and despite these
variations it is desired to provide a constant current through the load.

Let us modify the circuit of the previous example as shown in Figure 5.21. The
main additions are an input circuit supply voltage VCC1, a resistor R1, and a Zener diode
with breakdown voltage of VZ. In the output circuit, we have a load resistor RL connected
between the output supply VCC2 and the collector terminal of the transistor.

FIGURE 5.21: A transistor circuit as a

constant current-source.
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Notice that as long as the Zener diode is conducting, the voltage across the base and
ground will be VB = VZ, and the maximum base current is

iB = (VCC1 − VZ)∕R1 (5.170)

The voltage between the emitter and ground is

VE = VZ − VBE = VZ − 0.7 (5.171)

Hence, current across the resistor RE is

iE = VE∕RE = (VZ − 0.7)∕RE (5.172)

The collector current which also is the load current is

iC = iE − iB = 𝛽

𝛽 + 1
iE (5.173)

Notice that iB is very small compared to iE. The iE is constant as long as the VCC1 > VZ and
the RE is constant. Therefore, the iC will remain a constant current despite the variations in
the load resistance RL.

Bias Voltage So far we have considered transistor amplifiers that amplify current or
voltage and that when the input signal is zero, the output signal is zero as well, that is

Vout = Kv ⋅ Vin (5.174)

Many applications require offset voltage in the input and output voltage relationship as
follows,

Vout = V0 + Kv ⋅ Vin (5.175)

where V0 is the bias voltage. There are many different versions of circuit designs to introduce
bias voltage to the amplifier, one of which is shown in Figure 5.22. When the input voltage
(Vin) is zero, there is still a base current due to the power supply voltage (VCC) and the
resistor RB. Given the supply voltage, load resistance, amplifier current gain, and the desired
bias voltage: VCC, RL, 𝛽, V0, determine the bias resistance (RB) needed.

The output circuit relation of the transistor is

VCC = RL ⋅ iC + VCE = RL ⋅ iC + Vout (5.176)

iC =
VCC − Vout

RL
(5.177)

VCC

vin

RB
RL

ic

vout = Vo
iB

FIGURE 5.22: Bias voltage circuit for an

amplifier.
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The input circuit of the transistor has the relationship (assuming the transistor is operating
in the linear active region), and Vin = 0.0,

iB = 1
𝛽
⋅ iC (5.178)

iB =
VRB

RB
(5.179)

=
VCC − VBE

RB
(5.180)

≈
VCC

RB
(5.181)

Let use denote Vout = V0 to indicate the bias voltage, since Vin = 0. From the above
relations, we can determine the bias resistor needed to provide the desired bias voltage for
the given supply, load, and transistor,

V0 = VCC − RL ⋅ iC (5.182)

= VCC − RL ⋅ 𝛽 ⋅ iB (5.183)

= VCC − RL ⋅ 𝛽 ⋅
VCC

RB
(5.184)

V0 = VCC

(
1 −

𝛽 ⋅ RL

RB

)
(5.185)

The bias resistor is then

RB = 𝛽 ⋅
VCC

VCC − V0
⋅ RL (5.186)

It should be noted again that this is only one of many possible and simple ways of introducing
bias voltage to a transistor amplifier. In this design, the bias voltage is a linear function of
the amplifier current gain, 𝛽, which is known to vary significantly due to manufacturing
variations and temperature. In a given initial design, if it turns out that the bias voltage (V0)
is larger than anticipated as a result of variations in 𝛽, then the designer may need increase
or reduce RB.

Example Consider the bias voltage circuit for a transistor as shown in Figure 5.22. Let
the parameters of this circuit be given as follows,

VCC = 12 V, 𝛽 = 100, RL = 10 KΩ (5.187)

Determine the value of the bias resistor, RB, so that the bias voltage is V0 = 6 V.
From the above equation, the bias resistor is

RB = 𝛽 ⋅
VCC

VCC − V0
⋅ RL (5.188)

= 100 ⋅ 2 ⋅ 10 KΩ (5.189)

= 2 MΩ (5.190)

After this initial design, if the circuit indicates that the V0 is different than the desired value
(due to the variation in the transistor gain 𝛽), then the value of the resistor RB should be
modified according to the above relation until the desired bias voltage is obtained.
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5.6 OPERATIONAL AMPLIFIERS

Operational amplifiers (op-amps) were first developed in the late 1940s. Today, op-amps
are linear integrated circuits which are low cost, reliable, and hundreds of millions of units
are made per year. As the name implies, an op-amp performs an operational amplification
function where the operation may be add, subtract, multiply, filter, compare, convert, and
so on. Op-amp is a device with a very high open loop gain (ideally infinity, in reality finite
but very large). The main function of an op-amp is often defined by external feedback com-
ponents. There are a number of operational amplifiers manufactured by multiple vendors
under licence. For instance, op-amp 741 is available under the trade names LM741, NE741,
μA741 by different manufacturers. LM117/LM217/LM317 is a higher performance ver-
sion of 741. LM117, LM217, LM317 are rated for military, industrial and commercial
applications, respectively. The 301, LM339, LM311 (comparator IC chip), LM317 (volt-
age regulator), 555 timer IC chip, XR2240 counter/timer are widely used op-amps. The
integrated circuit design incorporates multiple discrete devices (transistors, resistors, capac-
itors, diodes) into one compact chip which is typically in dual-inline-package (DIP) form.

The 741 op-amp has 17 BJT transistors, 12 resistors, 1 capacitor, and 4 diodes.
Note that the actual internal component count and design may vary from manufacturer to
manufacturer. The coding standard used to identify an op-amp includes the manufacturer
code, op-amp functional code, rating for commercial or military use, and mechanical
package form (i.e., DIP). In order to use an op-amp in a design, the designer needs the
physical size, functionality described in the data sheet, and pinout information of the op-
amp. With the wide availability and proven designs of integrated circuit (IC) op-amps, it
is very rare that one designs circuits from discrete components (using transistors, resistors,
capacitors, etc.) for analog signal processing purposes. For almost every analog signal
processing need, there is an IC op-amp available in the market. Most often, the designer
does not need to know all the internal circuit details of the IC op-amp. The characteristics
of the IC op-amp that are needed are its input–output function (i.e., low pass filter), gain,
bandwidth and input/output impedances. Most IC op-amp packages include multiple stages
in the IC design, that is input stage generally includes a differential amplifier for its high
input impedance, followed by an intermediate gain stage and finally an output stage.

5.6.1 Basic Op-Amp

Figure 5.23 shows the DIP package and symbol for a basic op-amp. Notice that in an 8-pin
DIP package, the integrated circuit chip is actually a small portion of the DIP package. A
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FIGURE 5.23: Operation amplifier: (a) op-amp DIP-packages, (b) op-amp pins, (c) op-amp

symbol.
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FIGURE 5.24: Model of an op-amp:

single-ended output op-amp. Idealized

model assumes infinite input impedance

and open loop gain, and zero output

impendance, Zin = ∞, Zout = 0, and K = ∞.

triangle is always used as a symbol of amplification in electrical circuits. The symbol of a
basic op-amp shows the following five terminal, connections,

1. Power supply (bipolar) terminals (V+, V−, i.e., ±15 VDC, ±12 VDC, ±9 VDC,
±6 VDC).

2. Inverting (−) and noninverting (+) input terminals, each referenced to ground, with
voltages v− and v+.

3. Output terminal referenced to ground, where output voltage is designated as Vo.

This is an open loop op-amp. Most uses of op-amps involve adding external components
to it between its terminals to implement the desired functionalities. However, key to under-
standing the applications of op-amps (open loop or closed loop) is its open loop properties.
Here are the idealized assumptions of an open loop op-amp. Notice that in practice, actual
parameters are very close to the idealized assumptions that the performance difference
between the two is negligible in most cases.

Idealized assumptions on op-amps are as follows (Figure 5.24):

1. Input impedance of the op-amp is infinite. In reality it is a very large number compared
to source impedance.

2. Output impedance of an op-amp is zero. In reality it is a small number compared to
load impedance.

3. Open loop gain of the op-amp (KOL) is infinite. In reality, it is a very large number,
such as 105 to 106.

4. Bandwidth of dynamic response is assumed to be infinite, but in reality it is a finite
large number.

The implications of these assumptions are as follows, which are very useful in deriving the
input–output relationship of any op-amp configuration.

1. Because input impedance is infinite, current flow into the op-amp from either input
terminal is zero, i− = i+ = 0.

2. In addition, the differential voltage between the two input terminals is zero, v+ = v−

or Ed = v+ − v− = 0.
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Note that these are approximate conclusions based on idealized assumptions. In
reality, they are not exactly zero, but close. The output voltage Vo = KOL ⋅ Ed, finite since
KOL is a very large number and Ed is a very small number. When the op-amp output is
saturated, the output voltage is equal to the supply voltage,

Vo = Vsat = V+ or Vo = −Vsat = V− (5.191)

The implication of the fact that a practical op-amp has large input impedance and
very small output impedance makes it ideal as a buffer between a signal source (input
signal) and a load (output signal). Using an op-amp (i.e., unity gain op-amp) between a
signal source and a load isolates the input signal from the effects of the load. This is a
fundamental benefit and is widely used in processing sensor signals.

Noise in Electrical Circuits Any unwanted component of a signal is broadly
categorized as noise. Noise can be induced on a signal by electric and magnetic field
interferences, as well as ground loops. Electrical field interference occurs due to very large
voltage sources in the vicinity of the signal carrying conductors. Large electric potentials
can add unwanted voltages (“noise”) on the signal. Noise due to magnetic field interference
occurs due to large magnetic fields in the vicinity of the signal. Magnetic fields (also called
electromagnetic fields) are created by large currents, strong permanent magnets, radio and
TV stations. Variations in a magnetic field induce a voltage on the conductors around it.
As the magnetic field changes so does the induced voltage, which is considered a noise.
In general, the closer the signal carrying conductor to these large electrical voltage source
or electromagnetic fields, the larger the induced voltage noise is. The induced noise is
minimized by minimizing the coupling between the two: our signal and electric field or
magnetic field. This is best done by minimizing the permitivity (“electrical conductivity”) of
the medium for electric field coupling, and permeability (“electromagnetic conductivity”)
of the medium for electromagnetic field coupling.

In order to minimize the interference related noise (either as a result of electric fields
or magnetic fields, which is called electromagnetic interference (EMI)), designers practice
the following general guides:

1. Keep the low power signals as far away from high voltage and high current signals
as possible. In electric power panels, the high power signals (amplifier and actuation
signals) and low power signals (sensor and controller signals) should always be
grouped separately and physically routed as far away from each other as possible
in order to minimize the noise induced on the low power signals due to high power
signals.

2. Twisting the two wires of a cable has the effect of cancelling out the interference
noise that may be induced on each of the wires. This works assuming that both wires
have the same induced noise voltage, which is a fairly good assumption in practice.
Coaxial cables provide even better protection against noise.

3. Shielding of the twisted cable pair and grounding it provides further protection against
noise. The shield is typically a metal foil that wraps the twisted cable and “shields”
them from external noise sources. The shield should be connected to ground only at
one end.

Grounding related noise is another commonly encountered noise category. The term
ground refers to providing a zero voltage reference for electrical circuits. There are three
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FIGURE 5.25: Grounding in an electrical circuit: earth ground, chassis ground, signal ground.

different kinds of grounds (Figure 5.25):

1. earth ground,

2. chassis ground,

3. signal (COMMON) ground.

Consider a single phase AC line in a residential building. The power plug to the supply line
has three leads: the hot wire (usually black color) which carries the AC power, the neutral
wire (usually white color) which is the reference, and the ground wire (usually green color)
which is physically connected to the earth via a large copper conductor. For instance, the
earth ground would be common to all outlets in a residential home, that is to say that all of
the ground wires from different outlets in the home would terminate at the same point for
the earth ground connection. Since earth is assumed to have infinite capacitance, as various
circuits dump current to it, its voltage potential does not change.

In general, chassis ground (grounding the metallic enclosure) is connected to the earth
ground as a safety measure. That way, if there is any voltage potential that may develop on
the chassis due to unintended electrical leakage, it would be “dumped” quickly to the earth,
hence not allowing a dangerous voltage level buildup on the chassis. Connecting the chassis
ground to the earth ground is an important safety measure in electrical devices (Figure 5.25,
see how the DC power supply connector connects the chasis ground to the earth ground
through the AC outlet). A device’s chassis is grounded only if it is connected to the earth
ground. For instance, in home appliance applications, sometimes there is only a two-prong
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electrical outlet in a room, and we have an electrical device with a three-prong power cord.
If a three-prong connector is connected to another adaptor that has three prongs on one side
and two prongs on the other side (hot and neutral), the third prong is not connected to the
electrical circuit, and the net result is that the chassis of the device is not grounded.

If there is a short from power lines to the enclosure or some charge has accumulated
on the enclosure, having it (the enclosure) grounded provides a conductive path to the
ground so that there will not be a high voltage built up on the enclosure. If a person touches
such an enclosure, there will not be an electric shock. If the enclosure is not grounded,
and there is a leak to the enclosure, it will result in a high potential build-up. When a
person touches it, the person’s body will provide a conductive path which is dangerous. For
example, the frame of an electric motor should be grounded. In case the windings make
contact with the frame due to some damage, the ground connection provides a path for the
current to ground. If a person touches the motor frame under that condition, there would not
be any danger. If the motor frame was not grounded, then there would be a serious danger
of electric shock. The same applies for home appliances such as electric heaters, electric
ovens, washers, and so on. The so-called ground fault interrupter (GFI) type receptacle
works on the principle that it monitors any voltage leakage and voltage build-up on the
connected equipment enclosure. If there is voltage build-up, the GFI receptacle disconnects
the power from the line to the device, effectively behaving like a circuit breaker. Hence, it
provides a safety measure against such voltage leakage and potentially harmful conditions.

Signal ground (also referred as COMMON ground or just COM in circuits) is used
as the zero voltage reference for sensor signals.

Voltage is a relative quantity measured always between two points. Ground in any
electrical circuit provides the local zero voltage level against which other voltages are
referenced. Ideally, there would be one common ground point in all circuits and all voltages
would be referenced to it. However, practical circuits often have more than one ground
point. When the actual voltage level of these multiple ground points are different from each
other, two different kinds of errors occur:

1. The voltages measured against different grounds will not be compared correctly,
since their values are referenced against different “zero” levels.

2. If the different ground points are electrically connected to each other via a conductive
path and they have different voltage levels, there will be a current flow between
the grounds. This is called the ground loop, and results in error (noise) on the
signal. Therefore, in circuits with multiple grounds, there should not be a conductive
path between the grounds. The key to avoiding ground loops is to make sure that
there is no conductive path between different grounds in a circuit. For instance, as
shown in Figures 5.25 and 5.26, the shield should be grounded only at one end,
not both. Similarly, signal common wire in single-ended signals and ground wire in
differential-ended signals should be grounded at one end only.

Single-Ended Voltage Signal and Differential-Ended Voltage Signal
When a signal is presented and measured as a voltage difference between a conductor and
a ground, it is called a single-ended signal. When a signal is presented and measured as
the difference in voltage between two conductors both of which are referenced to the same
ground, it is called a differential-ended signal. In order to conduct a single-ended signal
over a conductor, one signal wire and a ground wire are needed. One ground wire may
be shared by multiple single-ended signals. In order to conduct a differential-ended signal
over a conductor, two signal wires and a ground wire are needed. Again, the ground wire
may be shared by multiple differential-ended signals (Figure 5.26a and b). For example,
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FIGURE 5.26: (a) Single-ended signal, (b) differential-ended signal and operational amplifier.

a 16-channel ADC (plus a ground wire for zero reference voltage, hence a total of 17
wires) may be configured to handle 16 single-ended (SE) signals or 8 differential-ended
(DE) signals (Figure 5.27a and b). Both single-ended and differential-ended signals should
always be grounded only at one end (source or destination), not at both ends, in order to
avoid ground loop related noise.

In Figure 5.26a, a single-ended signal is connected to an operational amplifier. If
there is external noise, it will be additive to the signal line (V2) that is not grounded,
while the grounded line (V1) will dump the noise quickly. As a result, external noise will
be amplified with the same gain as the desired signal component. Figure 5.26b shows a
differential-ended signal connected to a differential op-amp. Differential amplifier inputs
are not grounded. It amplifies the difference between the two inputs. None of the inputs are
grounded, rather each carries a voltage level relative to the ground (GND). The actual signal
information is the difference between the two lines. When unwanted noise is induced, it is
fairly accurate to assume that it will be additive to both of the lines by the same amount.
Hence, the difference taken at the amplifier will cancel out this so called common-mode
signal. As long as the noise signal is induced equally on both conductors, to differential
amplifier can effectively cancel the noise.
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data acquisition system for sampling a set of 16-channel single-ended signals and 8-channel

differential-ended signals.

The performance characteristics of a differential amplifier are defined by the differ-
ential gain, common mode gain, and common-mode rejection ratio (CMMR),

Kdiff =
Vout1 − Vout2

Vin1 − Vin2
(5.192)

Kcm =
Vout1 − Vout2

((Vin1 + Vin2)∕2)
(5.193)

CMRR =
Kdiff

Kcm
(5.194)
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Notice that we only need to know two of these parameters. The most commonly
referenced ones are Kdiff and CMRR. Ideally, the differential gain is the desired gain of the
amplifier (i.e., 1.0 or 10.0) and the common mode gain is zero. That is, the noise induced
on both lines that are common is rejected totally by the differential amplifier. Hence, an
ideal differential amplifier would have infinite CMRR. In reality, the common-mode gain is
small but finite, hence CMRR is large, but finite. Typical values of CMRR are in the order
of 80 dB to 120 dB1 , which means that the amplifier amplifies the differential signal 104 to
106 times more than the common-mode signal (noise).

The output voltage and input voltage relationship of a differential amplifier can be
expressed as

Vout = Kdiff ⋅ (Vin1 − Vin2) + Kcm ⋅ (Vin1 + Vin2)∕2 (5.195)

= Kdiff ⋅ (Vin1 − Vin2) +
(

Kdiff

CMMR

)
⋅ (Vin1 + Vin2)∕2 (5.196)

In an ideal differential amplifier, CMMR is infinite, hence Kdiff∕CMMR = Kcm = 0.0. In
reality it is of course a very small, but finite gain.

The parameters of a real op-amp that are of interest for designers are as follows:

1. open loop gain (i.e., 104 to 107 range),

2. bandwidth (i.e., 1 MHz range),

3. input impedance (i.e., Zin = Rin = 106 Ω range),

4. output impedance (i.e., Zout = Rout = 102 Ω range),

5. common mode rejection ratio (CMRR) for differential amplifiers, (i.e., CMRR =
60 dB to 120 dB range)

6. power supply required (i.e. 1.5 VDC to 30 VDC range, unipolar or bipolar),

7. maximum power dissipated internally by the op-amp,

8. maximum input voltage and differential input voltage levels,

9. operating temperature range (commercial rating: 0 to 70 ◦C, industrial rating: −25 to
85 ◦C, military rating: −55 to 125 ◦C).

Example Consider a sensory signal in a medical application, that is an EKG signal,
where the nominal value of the signal is about 10 mV, yet the expected noise in the signal can
vary from 0 V to 100 mV. Let us consider two different ways of transmitting and amplifying
this signal: (1) single-ended signal, and (2) differential-ended signal. In both cases let us
assume that the gain of the op-amp is Kdiff = 40 dB = 100 V∕V, and the common-mode
rejection ratio of the differential op-amp is CMMR = 100 dB = 105 V∕V. We assume that
the noise is induced equally in both conductors when differential-ended signal is used.

If single-ended signal is used, output signal voltage level would vary between

Vo = Kdiff ⋅ Vi (5.197)

Vo = 100 ⋅ 10 mV = 1 V; when Vi = 10 mV (5.198)

Vo = 100 ⋅ 110 mV = 11 V; when Vi = 10 mV + 100 mV (noise) (5.199)

Clearly, the single-ended signal and op-amp cannot differentiate the difference between the
actual signal and noise. If a differential-ended signal is used, the output signal voltage level

1 KdB = 20 log10 K or K = 10
KdB
20 , i.e., K = 0.01, 0.1, 1, 10, 100 is same as KdB = −40,−20, 0, 20, 40, respectively.



JWST499-c05 JWST499-Cetinkunt Printer: Yet to Come October 28, 2014 11:15 254mm×178mm

290 MECHATRONICS

would vary between

Vo = Kdiff

(
Vdiff +

1
CMMR

⋅ Vcommon

)
(5.200)

Vo = 100 ⋅ (10 mV + (1∕105) ⋅ 0.0) = 1 V; when Vi = 10 mV (5.201)

Vo = 100 ⋅ (10 mV + (1∕105) ⋅ 100 mV) = 1.0001 V (5.202)

; when Vi = (10 + 100) mV (5.203)

Clearly, the differential-ended signal and op-amp are able to amplify the desired portion of
the signal and attenuate very effectively the noise portion of the signal. The key assumption
for this to work is that the same noise signal is induced on both conductors (both inputs of
the differential amplifier).

5.6.2 Common Op-Amp Circuits

Op-amps are used in both open loop and closed loop configurations. Various op-amp
circuits for specific functions are discussed below: comparator, inverting and non-inverting
amplifier, sum, derivative, integral, and various filters.

Comparator Op-Amp The comparator functionality is to compare two signals, and
turn ON (i.e., Vo = Vsat) or OFF (Vo = −Vsat) the output of the op-amp based on relative
values of the two input signals (Figure 5.28). A reference signal Vref is connected to the
inverting (−) input terminal. The other input signal (Vi) is connected to the noninverting
(+) input terminal. The output of the op-amp will be either Vo = Vsat or Vo = −Vsat. The

_
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FIGURE 5.28: Open loop op-amp used as a comparator: direct polarity and reverse polarity.
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op-amp circuit determines whether input signal Vi is above or below the reference signal,
Vref . By changing the connection of Vref and Vi into (−) and (+) terminals, the output
polarity of the op-amp is changed. The open loop op-amp circuit input–output relationship
as a comparator can be summarized as

Vo = KOL ⋅ (Vi − Vref ); (5.204)

if − Vsat < KOL ⋅ (Vi − Vref ) < Vsat (5.205)

= Vsat; if KOL ⋅ (Vi − Vref ) > Vsat (5.206)

= −Vsat; if KOL ⋅ (Vi − Vref) < −Vsat (5.207)

Let us consider an op-amp with the following parameters,

KOL = 106, Vsat = 12 VDC (5.208)

Then, when the difference between the two input terminal voltages is within ±12 μV, the
output is proportional to the difference with a voltage output between ±12 V. Otherwise,
the output is either saturated at 12 V or at −12 V.

The same circuit is also used as a PWM modulator which converts the reference
Vi analog voltage level signal to a pulse width modulated (PWM) signal when Vref is a
fixed frequency periodic signal (i.e., triangular or sinusoidal signal). Similarly, compara-
tor op-amp configurations are also used as signal generator circuits. The LM311 (and
LM111/LM211) family of integrated circuit op-amps are commonly used as high-speed
comparators.

Example Consider the op-amp comparator circuits shown in Figure 5.29. Assume that
the resistances at the input terminals are

R1 = 4 kΩ R2 = 6 kΩ (5.209)

and the supply voltage VC1 = 10 VDC. Let the saturation output voltage be Vsat = 13 VDC.
The input voltage vin = 9 sin(2𝜋t). Notice that the difference between the two circuits is the
connection of the reference voltage and input voltage to the op-amp terminals. Draw the
output voltage as function of time for both circuits. Notice that the reference voltage is

Vref =
R2

R1 + R2
VC1 = 6

4 + 6
⋅ 10 = 6 V (5.210)

Notice that this is a comparator op-amp circuit. Let us neglect the raise time transient
of the output voltage response at this timescale range. Hence, we can show the change
of output state like a step function. When the (v+ − v−) > Vsat∕KOL ≈ 0.0, the output
voltage is Vo = Vsat and otherwise, when the (v+ − v−) < −Vsat∕KOL ≈ 0.0, the output
voltage is Vo = −Vsat. For all practical purposes, for the first connection, when Vin > 6 V,
the Vout = Vsat = 13 V, and when Vin < 6 V, the Vout = −Vsat = −13 V. For the second
configuration, the output polarity would be opposite to the first configuration. The input–
output voltage is shown in Figure 5.29.

Example The circuit shown in Figure 5.30 determines whether input voltage Vin is
inside the window defined by two reference voltages, Vref,l, Vref,h. The output voltage will
be Vsat if the input voltage is outside the window. It will be −Vsat if the input is inside the
voltage window defined by Vref,l, Vref,h. The LED will be ON when the input voltage is
outside the window.
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FIGURE 5.29: Open loop op-amp used as a comparator: Vref reference voltage and Vin input

voltage (i.e., voltage from a sensor) are switched at the op-amp terminals between the two

cases. The net result is the output polarity change.

Op-Amps with Positive Feedback Modifications to the op-amp feedback loop
on the non-inverting terminal can provide hysteresis in the comparator to implement
ON/OFF relay control with hysteresis, such as is used in home temperature control. A
well-known circuit with this function is the Schmitt trigger (inverting and noninverting
types, Figure 5.31). The op-amp uses positive feedback which results in a hysteresis rela-
tionship between input and output. Positive feedback is the key to the hysteresis function
realization. Such circuits are not only used in ON/OFF control systems with desired hys-
teresis, but also reject undesirable noise in the signal provided the noise magnitude is
smaller than the hysteresis magnitude (Figure 5.31). A more general form of the Schmitt
trigger op-amp circuit allows adjustment of both the hysteresis magnitude and center input
voltage value about which the hysteresis is designed. Schmitt trigger circuits are also used
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FIGURE 5.30: Two open loop op-amps used as a window comparator: Vref,l ≤ Vin ≤ Vref,h.

in digital circuits to eliminate the noise, for example the LM7414 integrated circuit package
incorporates six Schmitt triggers in one IC package for digital circuit applications. Elim-
inating the switch bouncing from the electrical signal is called de-bouncing, which is a
typical application of the Schmitt trigger in digital circuits.

Consider an inverting Schmitt trigger op-amp (Figure 5.31b). The voltage at the (+)
terminal is same as the voltage across R2,

VR2
=

R2

R1 + R2
⋅ Vo =

R2

R1 + R2
⋅ Vsat (5.211)

=
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FIGURE 5.31: Schmitt trigger: (a) noninverting, and (b) inverting configuration. ON/OFF output

with hysteresis function.
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where Vo = Vsat or Vo = −Vsat, the output of the amplifier is essentially always saturated
depending on the signals on its input terminals (+) and (−).

v+ =
R2

R1 + R2
⋅ Vsat during Vo = Vsat (5.212)

v+ = −
R2

R1 + R2
⋅ Vsat during Vo = −Vsat (5.213)

Let us trace the operation on the op-amp along the input–output relationship curve that has
the hysteresis loop. Assume that initially we start on the curve from the left hand side,

Vo = Vsat, v+ =
R2

R1 + R2
⋅ Vsat, vi < 0 (5.214)

For the op-amp output to change state, Vo = −Vsat (move to the C part of the curve), the
inverting input must slightly exceed (vi = v−) > (v+). In other words, we move along B
on the input–output curve, where v− must be larger than v+ = R2

R1+R2
Vsat > 0. Here, we

neglect the transient response details of the change in the output state of op-amp. At that
point, v+ = R2

R1+R2
Vsat and Vo = −Vsat. In order to return to the previous state, now the

inverting input must be slightly more negative than the noninverting input which is at the
value of v+ = − R2

R1+R2
Vsat. This can happen on the curve to the left side of region D. Then,

the state of the op-amp output is switched back to ON (D line along the hysteresis loop).
The noninverting Schmitt trigger circuit works with the same principle except the output
polarity is different.

Let us consider the noninverting Schmitt trigger circuit shown in Figure 5.28a. The
voltage on inverting terminal v− is connected to ground zero. The voltage on the noninverting
terminal, v+, is a value between Vi and Vo as follows (assuming that there is no current flow
through the op-amp). The current through the circuit between Vi and Vo, through resistors
Ri and Rf is as follows,

i =
Vi − Vo

Ri + Rf
(5.215)

where a positive direction of the current is assumed as the direction from Vi to Vo. Then,
the voltage at v+, which is the point between the resistors is

v+ = Vi − Ri ⋅ i (5.216)

= Vi − Ri ⋅
Vi − Vo

Ri + Rf
(5.217)

= 1
Ri + Rf

(Rf Vi + Ri Vo) (5.218)

Now, let us consider the case starting with Vi ≪ 0.0, then Vo = −Vsat. Then, v+ < 0.0 = V−,
and then Vo = −Vsat will continue to be in negative saturation output values. The only way
the output will switch state, that is Vo = Vsat, is when v+ > v− = 0.0, which can happen
(see above equation for v+) if

Rf Vi + Ri Vo > 0.0 (5.219)

Rf Vi − Ri Vsat > 0.0 (5.220)

Vi >
Ri

Rf
Vsat (5.221)

At this point and above values of Vi, the output Vo will switch to a Vo = Vsat value. In order
for the op-amp output to return to the previous state, Vo = −Vsat, the following condition
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must be met: v+ < v− = 0.0. Then, again referring to the equation describing v+, this can
happen if

Rf Vi + Ri Vo < 0.0 (5.222)

Rf Vi + Ri Vsat < 0.0 (5.223)

Vi < −
Ri

Rf
Vsat (5.224)

Hence, the op-amp output will switch from Vo = Vsat state to Vo = −Vsat state when Vi ≤
− Ri

Rf
Vsat. Similarly, the op-amp output will switch from Vo = −Vsat state to Vo = Vsat state

when Vi ≥ Ri
Rf

Vsat.

Notice that the nonlinear hysteresis function is accomplished by the feedback of the
output signal to the noninverting (positive) input of the op-amp, not the negative input.
Feedback to the negative input is used for implementing linear functions with an op-amp.

Schmitt trigger functionality is also used in digital circuits. For instance, the desired
output of a device is ON (for 5 VDC) or OFF (for 0 VDC). The input voltage might not be
exactly 0 VDC or 5 VDC but somewhere in between (Figure 5.32). Instead of defining a
single transition voltage, a hysteresis region can be defined at 3.0 VDC with a 2.0 (+1 and
−1) VDC hysteresis. This would result in an ON output state when voltage transitions from
0 VDC to 5 VDC at 4 VDC and above, and back to the OFF state when the input signal
transitions from 5 VDC region to 0 VDC region at 2 VDC and below. Schmitt triggers are
used in de-bouncing of input signals, and avoiding unintended ON/OFF state changes due
to noise. For instance, when a mechanical or electromechanical input switch is closed or
opened, the transition from ON to OFF state, or OFF to ON state, does not happen in one
single clean switching but by bouncing of the contact. This results in a noisy input signal
as shown in Figure 5.32c. Schmitt triggers can be used to “clean-out” or “de-bounce” the
switch signal. Digital IC packages typically have two, four, six or more Schmitt triggers in
one DIP package (i.e., 7413, 7414, 7418, 7419, 74310, 4093, 40106, 4024, 4040, 4022).

Example Consider the op-amp circuit shown in Figure 5.31b. Let us assume that the
saturation voltage is Vsat = ±13 V and that the input signal Vi(t) is a sinusoidal signal with
magnitude 10 V and frequency 10 Hz,

Vi(t) = 10 sin(2𝜋t) (5.225)

Draw the output voltage of the op-amp for the following values of the feedback resistors,

1. R1 = 100 kΩ, R2 = 100Ω
2. R1 = 100 kΩ, R2 = 100 kΩ

For case 1, the width of the hysteresis voltage, VT is

VT =
R2

R1 + R2
⋅ Vsat =

100
100 000 + 100

⋅ 13 (5.226)

= 13∕1001 V ≈ 13 mV (5.227)

The output voltage will switch between Vsat = +13 V and −Vsat = −13 V when the input
signal passes the band of −13 mV and 13 mV around zero voltage. Due to the hysteresis,
the output state switching is dependent upon the previous direction of the input voltage
crossing the hysteresis band. Notice that due to the scale, the hysteresis behavior is not
visually detectable in the figure.
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FIGURE 5.32: Schmitt trigger circuit in digital circuits: (a) symbol, (b) input–output

relationship, (c) a noisy input signal, ON/OFF signal at the input port of an IC without Schmitt

trigger, and ON/OFF signal after it passes through the Schmitt trigger, which is also referred to

as switch-debouncing.

For case 2, the width of the hysteresis voltage, VT is

VT =
R2

R1 + R2
⋅ Vsat =

100 000
100 000 + 100 000

⋅ 13 (5.228)

= 6.5 V (5.229)

In this case, the output voltage switches between the Vsat = +13 V and−Vsat = −13 V when
the input signal goes through the hysteresis band of +6.5 V and −6.5 V. The hysteresis
magnitude is large and visually observed on the figure. The input signal and output signal
for both of the cases above are shown in Figure 5.33.
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FIGURE 5.33: Schmitt trigger (inverting

configuration) op-amp circuit used to convert a

periodic input signal to a square wave output

signal.

Inverting Op-Amp The functionality is to amplify the input voltage to output voltage
with a negative gain. Neglecting the transient delay of response between input and output
voltages,

Vo(t) = KCL ⋅ Vi(t) (5.230)

Inverting the op-amp (Figure 5.34a) connects the (+) input terminal to ground, and the input
signal is connected to the (−) input terminal. There are two resistors around the op-amp: Ri
and Rf . Let us show the relationship between Vi and Vo using the ideal op-amp assumptions.
Recall that ideal op-amp assumptions state i+ = i− = 0, Ed = v+ − v− = 0, if = iin. Notice
that since the noninverting terminal of the op-amp is grounded,

v+ = v− = 0 (5.231)

R i
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RV += 1(            )
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FIGURE 5.34: Basic feedback (closed loop) configuration of op-amps: (a) inverting, and (b)

noninverting configuration as a gain amplifier.
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Then,

iin = Vi∕Ri (5.232)

if = iin (5.233)

Vf = Rf ⋅ if = Rf ⋅ Vi∕Ri (5.234)

Hence, since the output voltage will have opposite polarity to Vf ,

Vo = −Vf = −
Rf

Ri
⋅ Vi (5.235)

Vo = KCL ⋅ Vi (5.236)

where the gain of the inverting op-amp

KCL = −
Rf

Ri
(5.237)

Noninverting Op-Amp A noninverting amplifier simply amplifies an input voltage
to output voltage with a positive gain. This is accomplished by the feedback connections
shown in Figure 5.34b. Following the same ideal op-amp assumptions (v+ = v−, i+ = i− =
0), the input–output relationship (neglecting transient response differences) can be derived
as follows,

v+ = v− = Vi (5.238)

iin = Vi∕Ri (5.239)

if = iin (5.240)

V0 = (Ri + Rf ) ⋅ if (5.241)

Since this is a noninverting amplifier,

Vo =
Ri + Rf

Ri
⋅ Vi (5.242)

= KCL ⋅ Vi (5.243)

where the gain of the noninverting op-amp is

KCL = 1 +
Rf

Ri
(5.244)

which is always larger than one.

Example A special case of the noninverting op-amp is obtained when there are no
resistors in the configuration. Effectively, this is same as Rf = 0, and Ri = ∞. Hence, the
gain of the amplifier is unity. Such an op-amp configuration is called the voltage follower
op-amp or buffer op-amp and used to isolate the source and load (Figure 5.27b). The voltage
gain is unity, but the current gain is larger than unity in order to isolate the source from the
load.

Example Let us consider a noninverting op-amp with a saturation output voltage of
Vsat = 13 V, Ri = 10 kΩ, and Rf = 10 kΩ. The input voltage and output voltage relationship
can be easily determined by

Vo =
Ri + Rf

Ri
⋅ Vi (5.245)

= 2.0 ⋅ Vi (5.246)
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As a result, the input voltage range is limited to the ±6.5 V range. Beyond that, the output
voltage saturates at 13 V.

Notice that a typical op-amp can handle input voltages up to the supply voltage values
or a few volts less. However, the feedback resistor values can be such that the output of
the linear amplifier saturates much earlier than the maximum input voltage the op-amp can
accept. For further discussion, consider the same example with Ri = 1 kΩ and Rf = 99 kΩ.
Then, the nominal gain of the noninverting op-amp is 100.0. The output voltage would
saturate when the input voltage is outside the range of ±0.13 V.

Differential Input Op-Amp The desired function is to determine the difference
between two signals and possibly multiply the difference with a gain,

Vo = K ⋅ (V1 − V2) (5.247)

which is used in closed loop control circuits as the summing junction that is find the
difference between a command signal and sensor signal. (Figure 5.35a) shows a differential
input op-amp circuit. In its general form, the input–output relationship can be obtained
using the superposition principle. The output is the sum of the outputs due to the inverting
input and the noninverting input. The superposition principle can be used in the derivation:
(i) connect V2 to ground and solve for v′o = K1 ⋅ V1, and (ii) connect V1 to ground and solve
for v′′o = K2 ⋅ V2. Then, add them together to get Vo = v′o + v′′o . The output due to input at
its noninverting terminal is (Figure 5.34b)

v+ =
R2

R1 + R2
V1 (5.248)

v′o =
R3 + R4

R3
v+ (5.249)

=
R3 + R4

R3

R2

R1 + R2
⋅ V1 (5.250)

And the output due to input at its inverting terminal is (Figure 5.34a)

v′′o = −
R4

R3
⋅ V2 (5.251)

The total output is

Vo = v′o + v′′o (5.252)

Vo =
(

R2

R1 + R2

)(
R3 + R4

R3

)
⋅ V1 −

(
R4

R3

)
⋅ V2 (5.253)

Note that when R1 = R2 = R3 = R4, the input–output relationship is

Vo = V1 − V2 (5.254)

Similarly, when R1 = R3 = R and R2 = R4 = K ⋅ R,

Vo = K ⋅ (V1 − V2) (5.255)

One of the main usages of differential op-amps is in amplifying noise sensitive signals.
As discussed in Figure 5.25, single-ended signals are referenced with respect to ground.
Any noise induced on the signal wire coming into the op-amp would be amplified. This is
particularly problematic when the noise signal is comparable to the actual signal magnitude.
In such cases, it is best to transmit the signal voltage in differential-ended format. That is
using two wires and the signal information is the voltage difference between the two wires.
If any noise is induced during the transmission, it would be induced on both lines and the
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FIGURE 5.35: Some op-amp circuits: differential input amplifier, differentiator, integrator.

difference between them would still be unaffected by noise. Amplification of differential-
ended signals is one of the most common applications of differential op-amps. Later we
will review an improved version of this op-amp, that is the instrumentation amplifier.

Example Consider the differential op-amp circuit shown in Figure 5.35. Calculate the
values of the resistors in order to obtain the following input–output voltage relationship,
vo = v1 − 2 v2.

The output voltage and input voltage relationship for the differential op-amp is

vo =
R2

R1 + R2

R3 + R4

R3
⋅ v1 −

R4

R3
v2 (5.256)

Since we want v2 to have a gain of 2, then

R4

R3
= 2 (5.257)

R4 = 2 ⋅ R3 (5.258)
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Since we want v1 to have a gain of 1, then

R2

R1 + R2

R3 + R4

R3
= 1 (5.259)

R1 = 2 ⋅ R2 (5.260)

Let R2 = R3 = 10 kΩ, then R1 = R4 = 20 kΩ.

Derivative Op-Amp The desired function is to take the derivative of the input voltage
signal and provide that as an output voltage signal,

Vo(t) = K
d
dt

(Vi(t)) (5.261)

Figure 5.35 shows an op-amp circuit for differentiation. Using the ideal op-amp assump-
tions, the input–output relationship is derived as follows,

ic = C ⋅
dVi(t)

dt
(5.262)

if = ic (5.263)

Vf = R ⋅ if (5.264)

Vo = −Vf (5.265)

Hence,

Vo = (−R C) ⋅
dVi(t)

dt
(5.266)

Integrating Op-Amp If we change the locations of the resistor and capacitor in
the derivative op-amp, we obtain an integrating op-amp circuit (Figure 5.35). The desired
function is

Vo(t) = K ∫ (Vi(𝜏)d𝜏) + Vo(0) (5.267)

where Vo(0) is the initial voltage. The derivation of the I/O relationship is straightforward,

ic = Vi(t)∕R (5.268)

if = ic (5.269)

Vf(t) =
1
C ∫

t

0
if(𝜏)d𝜏 (5.270)

Vo(t) = −Vf (t) (5.271)

= − 1
R C ∫

t

0
Vi(𝜏)d𝜏 (5.272)

where the initial voltage values in the integrations have been neglected.
Next we present the op-amp circuits and the input–output relation for filtering oper-

ations used in signal processing and control systems. We provide op-amp circuits for the
low pass, high pass, band pass, and band reject (notch) filters. It should be noted that
digital implementations of filters in software provide more flexibility than the analog op-
amp implementations. However, op-amp implementation is simpler as it does not require a
real-time software.

Low Pass Filter Op-Amp The low pass filter passes the low frequency content of
a signal and suppresses the high frequency content (Figure 5.36). The break frequency at
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FIGURE 5.36: Some op-amp filter circuits: (a) low pass, (b) high pass, (c) band pass, (d) band

reject (notch) filters.

which the transition from low to high frequency occurs is defined by the filter parameters.
In addition, the rate of transition and the phase lag are determined by the filter order. The
frequency domain input–output voltage relationship of a low pass op-amp filter is

Vo(jw)

Vin(jw)
= 1

1 + 𝜏1 ⋅ jw
(5.273)

where the time constant of the first-order filter 𝜏1 = RC.
The input–output voltage relationship for the low pass filter can be derived as follows.

The current into the op-amp is zero. Hence, the voltage at the (−) and (+) terminals of the
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op-amp is the same. Since current into the op-amp is zero, voltage at the (−) terminal is the
same as the output voltage. That is,

i− = i+ = 0.0 (5.274)

V− = V+ (5.275)

= Vo (5.276)

Notice that the output voltage, Vo = V+ is the voltage across the capacitor C. The voltage
across the capacitor is the output voltage and is related to the current and capacitance value
as (assuming zero initial voltage at t = 0, Vo(0) = 0.0),

Vo(t) = 1
C ∫

t

0
i(𝜏)d𝜏 (5.277)

Vo(s) = 1
Cs

i(s) (5.278)

The current in the circuit is

i(t) =
Vi(t) − Vo(t)

R
(5.279)

i(s) =
Vi(s) − Vo(s)

R
(5.280)

R ⋅ i(s) = Vi(s) − 1
Cs

i(s) (5.281)(
R + 1

Cs

)
⋅ i(s) = Vi(s) (5.282)

i(s)
Vi(s)

= Cs
RCs + 1

(5.283)

Hence the transfer function between the output voltage and input voltage is

Vo(s)

Vi(s)
= 1

RCs + 1
(5.284)

Vo(jw)

Vi(jw)
= 1

1 + jRCw
(5.285)

Notice that when w = 1
RC

rad∕s, the magnitude ratio of the output voltage to input
voltage is

||||Vo(jw)

Vi(jw)

|||| = 1√
2
= 0.707 (5.286)

where the value wc =
1

RC
rad∕s or fc =

1
2𝜋RC

Hz is called the cutoff frequency of the filter,
that is the frequency at which the output signal magnitude is 0.707 times the input sig-
nal magnitude in steady-state. In other words, the output signal is attenuated by 3 dB in
comparison to the input signal.

High Pass Filter Op-Amp The high pass filter suppresses the low frequency content
of the input signal, and passes the high frequency content. An op-amp implementation of
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a high pass filter is shown in Figure 5.36. The frequency domain input–output voltage
relationship of a high pass op-amp filter is

Vo(jw)

Vin(jw)
=

j𝜏1 ⋅ w

1 + 𝜏1 ⋅ jw
(5.287)

where the time constant of the first-order filter 𝜏1 = RC. Notice that the only difference
between the low pass and high pass filter is the placement of the resistor and capacitor in
the (+) input terminal.

Similarly, the input–output voltage relationship can be derived for the high pass filter.
Notice that the location of the resistor and capacitor on the circuit is swapped compared to
the low pass filter. Following a similar derivation process, it is straightforward to derive the
input–output voltage relationship.

Vo(t) = R ⋅ i(t) (5.288)

Vo(s) = R ⋅ i(s) (5.289)

The voltage across the capacitor,

Vi(t) − Vo(t) = 1
C ∫

t

o
i(𝜏)d𝜏 (5.290)

Vi(s) − Vo(s) = 1
Cs

i(s) (5.291)

By substituting the relationship for i(s) = 1
R

Vo(s), it can be shown that

Vo(s)

Vi(s)
= RCs

1 + RCs
(5.292)

Vo(jw)

Vi(jw)
=

jRCw

1 + jRCw
(5.293)

which represents the high pass filter transfer function. Again, notice that at w = wc where
wc =

1
RC

rad∕s or fc =
1

2𝜋RC
Hz, the magnitude ratio is 0.707. Except that in the high

pass filter, the filter passes the frequency content above this frequency and attenuates the
frequency content below that frequency. The low pass filter does the opposite.

Band Pass Filter Op-Amp A band pass filter passes a selected narrow band of
frequencies, and suppresses the rest (Figure 5.36). The design parameters of the filter are
to select the frequency band to pass: center frequency and the width around that frequency,
wr and ΔwB. It can be realized by a low pass and high pass filter in series.

Band Reject Filter Op-Amp A band reject filter passes all frequencies except a
selected narrow band of frequencies (Figure 5.36). This is also called a notch filter, and
basically does the opposite of the band pass filter. The design parameters of a notch filter are
to select the center frequency and the width of the frequency around the center frequency
that will be suppressed, wr and ΔwB. It can be realized by a low pass and high pass filter in
parallel.

Instrumentation Op-Amp An instrumentation op-amp is used to amplify small
sensor signals in noisy environments (Figure 5.37). It is a modified version of the differential
op-amp with improved performance characteristics (i.e., higher input impedance, easy
adjustment of gain). The instrumentation amplifier has a higher CMRR (common mode
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FIGURE 5.37: Instrumentation op-amp: modified version of a differential op-amp with

improved characteristics to amplify sensor signals in noisy environments.

rejection ratio) which is an advantage for noisy environments, and the gain of the op-amp
is adjustable with a single resistor (Rx) for both input terminals. Notice that the op-amp at
the output side of Figure 5.37 is the same as the difference amplifier shown in Figure 5.31a
with unity gain. The voltages at the inverting terminals of the top and bottom op-amp are
v1 and v2 based on the ideal op-amp assumptions. Then the current through Rx can be
calculated as,

i =
v2 − v1

Rx
(5.294)

where we took the positive direction of the current from top to bottom. If v1 is larger than
v2, the direction of the current would be opposite (negative value). Since current flow into
the op-amps must be zero, this current i must also pass through resistors R above and
below the resistor Rx. Then the voltage difference between the outputs of top and bottom
op-amps is

v2
′ − v1

′ = i ⋅ R + i ⋅ Rx + i ⋅ R = (v2 − v1) ⋅
(

1 + 2R
Rx

)
(5.295)

Finally the last difference op-amp performs the amplification of −1

vo = (v1
′ − v2

′) =
(

1 + 2R
Rx

)
⋅ (v1 − v2) (5.296)

Current-to-Voltage Converter and Voltage-to-Current Converter In
electronics circuits, we often need to convert a current signal to a proportional voltage and
convert a voltage signal to a proportional current signal. The first case is used typically in
sensor signal transmission where a current source (sensor) indicates the value of a measured
variable. At the controller end, we may need to convert the current to a proportional voltage
signal. Figure 5.38a shows a modified version of an inverting op-amp used as a current-
to-voltage converter. Notice that since the current flow between the two terminals of the
op-amp are zero, the source current must flow through the resistor R. Furthermore, since
the terminals of the op-amp is connected to the ground, the output voltage must be negative
relative to the ground when the current is positive. Hence, the input current to output
voltage conversion relationship is

Vout = −R ⋅ iin (5.297)
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FIGURE 5.38: (a) Current to voltage converter op-amp circuit. (b) Voltage to current converter

op-amp circuit.

Figure 5.38b shows a circuit which performs the opposite function: converts voltage to
current. An op-amp is used as a current source. This is a noninverting op-amp. The only
difference here is that the circuit output that we are interested in is the current through
the load resistor, RL. Such a function is used to drive small DC motors and solenoids. For
instance, the input voltage is the command signal from a controller which is proportional
to the desired torque. In DC motors, torque is proportional to the current passing through
its windings. Therefore, in order to obtain the desired torque output from the motor, we
must provide a current value proportional to the commanded voltage signal. In the figure,
the load (i.e., motor winding) is shown as having resistance Rf (or can be impedance Zf
for more general case of electrical load) and is placed in the feedback loop of the op-amp.
Since this is a noninverting op-amp,

Vout =
Ri + Rf

Ri
⋅ Vin (5.298)

and the output current over the load is

iL =
Vout

Ri + Rf
= 1

Ri
Vin (5.299)

Notice that the load current is independent of the load resistance (Rf ) and its variations. For
linear operating regions without saturation,

Vout = (Ri + Rf ) ⋅ iL < Vsat (5.300)

When the output load requires current levels above 0.5 mA, the output current should be
amplified using power transistors (i.e., BJTs, MOSFETs or IGBTs).

Figure 5.39 shows simple examples of the use of these two op-amp configurations.
In the first case, a solar cell is used to generate a current proportional to the light it receives.
The input current is converted to a proportional output voltage by the op-amp. Hence, the
voltage output is proportional to the light received. This circuit can be used as an analog
light intensity sensor. The other circuit input voltage is manually adjusted, and the output
current is proportional to the voltage presented by the resistor R3. The output current is
proportional to this voltage, where the proportionality constant is R2. Hence, the intensity
of light emitted by the LED is proportional to the input voltage. The 741 op-amp can be
replaced by other similar op-amps.
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FIGURE 5.39: Example op-amp circuits: (a) current-to-voltage converter op-amp circuit used

to provide output voltage that is proportional to the current generated by the solar cell, (b)

voltage-to-current converter op-amp circuit where the intensity of LED light is proportional to

the current, which is proportional to the input voltage pickup by the adjustable resistor R3.

Example Show that the following Figures 5.40a and b represent a low pass and a high
pass filter, like those shown in Figure 5.36, except that the sign of the input–output gain is
negative.

Vout(s)

Vin(s)
= − 1

RCs + 1
; low pass (5.301)

Vout(s)

Vin(s)
= − RCs

RCs + 1
; high pass (5.302)

where R1 = R2 = R is assumed.
The transfer function in the frequency domain between input and output voltages

can be derived by following the op-amp idealized assumptions and Kirchoff’s current and
voltage laws. Consider the low pass filter. The voltage at the positive terminal is grounded,
hence the voltage potential at the negative terminal is also grounded since v+ = v−,

v+ = 0 (5.303)

v− = 0 (5.304)

(a) (b)

R R
R 

RC

C

V
V

1 1

2

2

i
o

Vi Vo

FIGURE 5.40: (a) Low pass, inverting, active filter, (b) high pass, inverting, active filter.
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Then we can calculate the current over the resistor R1.

i1 =
Vi

R1
(5.305)

Also note that no current would flow into the op-amp, then the same current must pass
through the R2 and C combination (noting Kirchoff’s current law),

i1(t) =
Vi(t)

R1
= iR2(t) + ic(t) (5.306)

=
Vo(t)

R2
+ ic(t) (5.307)

Vo(t) = 1
C ∫

t

0
ic(𝜏)d𝜏 (5.308)

where we use the fact that the current flow over the R2 and C is determined by the output
voltage and the ground voltage at the negative input (inverting) terminal. We will add the
negative sign to the input–output voltage relation at the end of the derivation. If we take the
Laplace transform of the above equations, we can easily find the transfer function betwen
input voltage and output voltage,

i1(s) =
Vi(s)

R1
=

Vo(s)

R2
+ Cs ⋅ Vo(s) (5.309)

Vo(s)

Vi(s)
= −

R2

R1
⋅

1
1 + R2Cs

(5.310)

where we added the negative sign to indicate that the sign relationship between input voltage
and output voltage is opposite.

Vo(s)

Vi(s)
= −

R2

R1
⋅

1
R2Cs + 1

(5.311)

For the case of R1 = R2 = R we have

Vo(s)

Vi(s)
= − 1

RCs + 1
(5.312)

The same reasoning applies for the derivation of the transfer function between input
voltage and output voltage for the high pass filter. The only difference is the definition of
the output voltage. In the above derivation, we would use

Vo(t) = R ⋅ i(t) (5.313)

and it can be shown, by following the same procedure for the low pass filter, that the transfer
function for the high pass filter is

Vo(s)

Vi(s)
= − RCs

RCs + 1
(5.314)

5.7 DIGITAL ELECTRONIC DEVICES

The logic ON state is represented by 1 and the logic OFF state is represented by 0. Two of the
most popular digital device types are transistor–transistor logic (TTL) and complementary
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metal oxide silicon (CMOS). Logic device families differ from each other in terms of their
power consumption and the speed of operation. When mixed series of logic ICs are used in
a circuit, the most important factors to consider are the current loading and current driving
capacity of the device. The design should make sure that each device can drive the gates it
is connected to and does not present an overload current to the other devices.

The TTL nominal voltage level for logic 1 is 5 VDC, and for logic 0 is 0 VDC. The
supply voltage must be in the range of 4.75 V to 5.25 V. Per gate power consumption of a
TTL device is in the order of few miliamps. The output current sinking capacity is about
30 mA. A CMOS device supply voltage can be in the 3 to 18 VDC range. Per gate power
consumption of a CMOS device is 80% less than that of a TTL device. The CMOS logic
family requires a less stringent power supply voltage, consumes less power but is sensitive
to static voltages. Digital logic devices are realized by complex networks of transistors on
an integrated circuit (IC). The basic device number for the TTL NAND gate is 7400 (the
military version is 5400 for extended temperature range) and has four NAND gates. The
variations of the 7400 series take the following forms: 74L00 for low power but slower
devices, 74H00 for high power and high speed, and a more recent version is the 74LS00
series for low power but high speed performance. The TTL series IC chips are numbered
in 74LSxxx form where the xxx code is assigned based on the chronological introduction
of the device into the market.

When an IC chip is used in a circuit and some of the pins are not used, they should be
connected to common or pulled up to high voltage state. Open pins are not a recommended
design practice since they tend to fluctuate and give a bad logic state.

5.7.1 Logic Devices

AND, OR, XOR, NOT (inverter), NAND, and NOR are the most common logic gates in
digital electronics. The AND gate has two inputs and one output. The output logic is 1 if
both inputs are 1, otherwise it is logic 0 state. The AND logic among more than two inputs
can be implemented by cascading many AND gates in one chip. The NOT gate inverts
the logic state of the input. The output is always at the opposite logic state to that of the
input. Combining NOT gates with AND and OR, we form NAND and NOR gates. The
gate symbols and logic diagrams are illustrated in Figure 5.41 and Figure 5.42.

5.7.2 Decoders

Decoders are used as device selection components in a computer bus system. When a
computer places the address of a device on the bus, the decoder attached to each device
checks that and gives either an ON or OFF output signal if it is the addressed device. So,
only one decoder should give logic 1 output in response to a unique address in the bus.
By combining AND and NOT gates, it is straightforward to design address decoders. In
general, an 8-bit general purpose decoder is set to respond to a specific address by setting
8-dip switches ON/OFF which define the address of the device the decoder is connected to
(Figure 5.43).

5.7.3 Multiplexer

A multiplexer is used to connect one of multiple input lines to an output line. A typical
application of a multiplexer is with analog to digital converters (ADC). For instance, there
can be four or eight analog signal channels connected to one ADC. Under program control,
each channel is connected to the ADC for conversion. Such ADC converters are referred
to as 4-channel multiplexed ADC or 8-channel multiplexed ADC. The desired channel is
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FIGURE 5.41: Logic gates: AND and OR gates - concept, transistor implementation, IC symbol.

selected by providing the binary code on the multiplexer control lines, that is two control
lines are needed for a 4-channel multiplexer, three control lines are needed for an 8-
channel multiplexer (Figure 5.44). A 4-channel multiplexer circuit is shown in Figure 5.45.
Depending on the code presented in channel select lines A and B (00, 01, 10, 11) one of
the four channels (Ch1, Ch2, Ch3, Ch4) is connected to the output under program control.

5.7.4 Flip-Flops

Flip-flop circuits are implemented using a combination of AND, OR, and NOT gates. The
most common flip-flop types are D, RS, and JK flip-flops (Figure 5.46). RS flip-flop is
commonly used as a debouncer for single-pole double-throw (SPDT) mechanical switches.
When a SPDT mechanical switch is closed and opened (ON/OFF), it makes multiple ON-
OFF contacts in the order of a millisecond time period. In human terms, this may look like
a single OFF/ON transition, but in the digital electronics time scale, the many transitions
of OFF/ON are detected. RS flip-flop is used in debouncing the mechanical switch input.

D-type Flip-Flop The logic level present in D-input is transferred to output Q and
latched when E-input is ON or transition of state on the E-channel occurs. When the
E-input is low, the D-input is ignored and Q maintains its previous state. The D-latch is
used to strobe and buffer (latch) an input signal state. D-type flip flops are used in groups to
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FIGURE 5.42: Logic gates:

Buffer, NOT (inverter), tri-state

buffer and inverter, NAND, NOR,

XOR, Not XOR gates.

form n-bit data buffers (Figure 5.47). For output operations from a digital computer to D/A
converter or discrete output lines, the data from the computer bus is latched and maintained
(until updated by the computer) using D-flip flops.

RS-type Flip-Flop A reset-set flip-flop has two inputs (R and S) and two outputs (Q,
Q̄) where the two outputs are the opposite of each other. The logic between the input and

AND

0

0

0

0

1

1

1

1

Decoder (8 bit)

out

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0
FIGURE 5.43: An 8-bit address decoder

circuit implemented with NOT and AND

gates.
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FIGURE 5.44: Multiplexer circuit and its

function.

output terminals is as follows:

� when S = 1 and R = 0, then Q = 1 (is “set” to the 1),
� when S = 0 and R = 1, Q = 0 (is “reset” to 0).

When both S and R are 0, then the outputs do not change. The state of R and S both
being 1 is not allowed. If that occurs, outputs both go to 0. Basically, the output Q is set
(Q = 1) and reset (Q = 0) by S and R pulses.

JK-type Flip-Flop JK flip-flop is similar to RS flip-flop with only one difference: if
both inputs are 1 simultaneously, the outputs of JK reverse their states. The I/O transfer is

AND

AND

AND

AND

AND AND AND AND

OR
Output

Inputs

Ch 1

Ch 2

Ch 3

Ch 4

Multiplexer

Chanel select

A B

FIGURE 5.45: A multiplexer circuit for selecting one of four digital input channels. For

instance, digital code on channel select lines AB, selects the following channels: 00 select

channel 1, 01 selects channel 2, 10 selects channel 3, 11 selects channel 4.
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FIGURE 5.46: Flip-flops: D-type, RS-type, JK-type.
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FIGURE 5.47: n-bit data latch buffer using n-set of

D-type flip-flops for data input and output between

a digital computer bus and I/O devices. Data is
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E-line is pulsed to latch the data in the D-flip flops.
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new pulse in the E-line.
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triggered either by a predefined edge transition signal of a clock or input sampled in a high
state of clock signal and transferred to the output at the trailing edge of the clock signal.
JK flip-flops are used in counters. For instance, four JK-flip flops can be used to count up
to sixteen.

5.8 DIGITAL AND ANALOG I/O AND THEIR
COMPUTER INTERFACE

Figure 5.48 shows the interface between a generic computer bus and a parallel input and
a parallel output device. For the purpose of the present discussion, let us consider the
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FIGURE 5.48: Interface circuit between a digital computer and parallel data input and output

device. For instance, parallel data input may be the register of an ADC, parallel output may be

the register of a DAC.
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digital computer as having a CPU and a bus. Here we assume that the CPU includes the
microprocessor’s clock, the CPU, the memory (random access memory (RAM) and read-
only memory (ROM)). The bus is made of three main groups of digital lines: address bus
lines used to address devices and memory by the CPU, control bus lines used to indicate
whether the operation is a read or a write as well as used for interface handshaking signals
between CPU and I/O devices, and a data bus which carries the data between the CPU and
I/O devices (or memory). Let us assume that the CPU executes programmed instructions
to perform logic and I/O with the external devices.

The address decoder circuit of each I/O device uniquely specifies the address of
the I/O device on the bus. The data lines of the device are connected to the data bus of
the computer. Every device that the CPU communicates with (reads or writes) must be
addressed by the CPU first. A particular device is selected on the address bus via the
decoder of the device whose address has been placed on the address bus by the CPU. The
address number to which the decoder responds by turning its output ON is set by jumpers
or DIP switches which define whether or not each address bus line has an inverter or direct
connection.

The control bus of the computer is used to strobe the I/O device to process the data
bus information. When a read (input) or write (output) operation is performed by the CPU,
the following sequence of events are generated by the CPU at the machine instruction level:

1. The CPU places the address of the I/O device on the address bus. Only one device
decoder will provide an active output in response to a unique address in the address
bus.

2. The CPU places the data on the data bus for the write operation, and

3. The CPU turns on the OUT signal of the control bus to tell the I/O device that the
data is ready.

4. When the I/O device is given enough time to read (or signals the CPU that it is done
via a handshake line in the control bus), the OUT signal is dropped, and CPU goes
on with other operations.

For read (input) operations, the sequence of steps 2 and 3 are changed:

1. The CPU places the address of the I/O device on the address bus. Only one device
decoder will provide an active output in response to a unique address in the address
bus.

2. The CPU turns on the IN signal of the control bus to tell the I/O device it is ready to
read the data.

3. The CPU reads the data on the data bus, and

4. When the CPU is done (transfer the data to its registers from the data bus), it drops
the IN signal, and CPU goes on with other operations.

In process control applications, the output device is a set of D-type flip-flops connected
to discrete output lines or a D/A converter, and the input device is a set of R-S flip-flops
connected to discrete input lines or an A/D converter (Figure 5.49).

Example Figure 5.50 shows the interface between a digital computer data output line
and a relay. The digital data line is set high or low under software control. This controls the
opto-coupler, which then turns the transistor ON/OFF. The transistor powers the control
circuit to the relay coil. Once the relay coil is energized, its contact conducts the current in
the output circuit which may turn ON/OFF a device, such as a light or a motor. Notice that
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FIGURE 5.49: Interface circuit between a digital computer and discrete input and discrete

output devices. A R-S flip-flop is used to eliminate the debouncing problem of the switch. The D

flip-flop is so that the data is maintained at the output of the flip-flop even when this device is

no longer addressed.
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FIGURE 5.50: ON/OFF control

of a relay through an

opto-coupler and transistor.
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as shown in Figure 5.49.
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FIGURE 5.51: ON/OFF control using a digital computer data bus line: (a) LED (ON/OFF) light

output, (b) relay ON/OFF control, (c) SCR control in an AC circuit. In all cases, a transistor is

used as an electronic switch between the computer and the output circuit.

in this example, since no flip-flop is used, the data line must be dedicated for the control of
this relay.

Example Figure 5.51 shows various interfaces between a digital computer data output
line and an ON/OFF output device through a transistor. In case 1, an output LED light is
turned ON/OFF by the computer data bus via a transistor. In case 2 and 3, a relay and a
SCR are controlled (turned ON/OFF) respectively. By controlling the timing of the SCR
gate signal, a proportional control is approximately achieved.
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5.9 D/A AND A/D CONVERTERS AND THEIR
COMPUTER INTERFACE

A D/A converter converts a digital number to an analog signal, that is generally a voltage
level. An A/D converter does the opposite. It converts an analog signal to a digital number.
D/A and A/D converters are essential components in interfacing the digital world to the
analog world.

The process of converting signals from analog form to digital form involves two
operations:

1. sample the signal,

2. quantize the signal to the resolution the A/D can represent with n-bits.

Sampling is the process where a finite number samples of a continuous signal is
taken and converted into a discrete number sequence. The samples are the only information
available regarding the signal in the computer.

Let us consider how a D/A converter converts a digital number to an analog signal
(Figure 5.52). The voltage potential across the resistor bank at the output of the D flip-flop
memory device is Vh and held constant, that is 10 VDC. The resistor value Rf is selectable
to usually one of four different values. This is used to change the output range of the D/A
converter. If a bit is ON (D0-D7, which is same as Q0-Q7), there will be a current flowing
through the corresponding resistor. If the bit is OFF, there will not be any current flowing
through that resistor. Therefore, since the sum of current at point A of the op-amp should
be zero, the output voltage for a given digital number N sent to the D/A converter can be
calculated as follows:

V0∕Rf = Vh(b0∕R + b1∕(R∕2) +…+ b7∕(R∕27))

V0 = Vh(Rf∕R)N

where, bi is zero (0) or one (1) representing the value of bit i, N is the corresponding number
sent to the D/A converter. The range it can cover is zero to Vrange, where

Vrange = Vh(Rf∕R) ∗ (2n − 1) (5.315)

OUT
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D7 Q7 R/2
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R N
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D Flip-flop

FIGURE 5.52: Operating principles of a D/A converter.
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FIGURE 5.53: Operating principles of an A/D converter.

The resolution of a D/A converter (the smallest voltage change that can be made at the
output of the D/A converter) is

ΔV = Vh(Rf∕R) = Vrange∕2n − 1 (5.316)

In that range, the D/A can provide (2n − 1) different levels of voltage.
The basic A/D converter operation uses a D/A converter plus an additional circuit

(Figure 5.53). The analog signal is passed through an anti-aliasing filter. This filter may or
may not be an integral part of the A/D converter. Then the signal is sampled and held at
the sampled level (Figure 5.54). While it is being held, a D/A converter cycles through a
sequence of numbers based on a search algorithm to match the D/A output signal to the
sampled signal. When the two are equal, the comparator will indicate that the correct signal
level is determined by the D/A. The digital representation of the sampled analog signal is
the same as the digital number used by the D/A to generate the equal signal. The conversion
is accurate to the resolution of the A/D converter. Then, the CPU will be signalled about
the fact that the A/D conversion is complete.

This signaling is typically done in two ways:

1. Set a bit in the ADC status register to indicate the “end-of-conversion ADC.” By
reading the value of this bit, the program can determine whether the current ADC
conversion process is completed or not. This method is used in the “polled” (pro-
grammed) method of handling the ADC conversion.

2. Set the interrupt bit in the ADC control register (or status register, depending on
where the interrupt bit is implemented for the particular microcontroller) to generate
an interrupt to the CPU, indicating that the ADC conversion process is complete. This
is used in the interrupt driven ADC conversion handling method. The application
program must be setup to service this interrupt, which is simply providing a sub-
routine (called “interrupt service routine” (ISR)) to read the ADC data register.

The CPU would then read the data on the D/A portion of the A/D through the data
bus. Notice that this type of A/D conversion is an interative process and takes a longer time
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FIGURE 5.54: Sample and hold circuit using a buffer op-amp, JFET type transistor switch, and

a capacitor.

to complete than the D/A conversion process. There are other types of A/D converters,
such as the flash A/D converter which makes the conversion faster without using an D/A
converter in the circuit, but these are also more expensive.

The sample and hold circuit is a fundamental circuit for analog to digital signal
conversion. For the conversion, we must sample the signal in periodic intervals (which
must be fast enough to capture the frequency details of the signal) and hold the sampled
value constant while the A/D converter tries to determine its digital equivalent. A basic
sample and hold circuit includes a voltage follower op-amp (buffer), a JFET type transistor
switch to turn ON and OFF the connection of the input voltage, and a capacitor at the
op-amp input terminal to charge and hold the signal constant. The sampling process is done
typically in fixed frequency, that is fs = 1 kHz. The input transistor switch is turned ON
every Ts = 1∕fs s, for a very short period of time that is long enough to charge the capacitor
to the input voltage level present, that is Ton = 0.05 ⋅ Ts. Then, the transistor switch is turned
OFF and the capacitor holds the last (sampled) value of the input voltage constant. The Ton
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time must be long enough so that the circuit output voltage reaches the input voltage value
within a desired accuracy. Typical values of Ton are in the order of microseconds. It should
be pointed out that the sample and hold circuit shown in Figure 5.54 is only a basic concept
circuit. Actual sample and hold circuits involve two or more op-amps and are a bit more
complicated. One op-amp is used to buffer the input and the other op-amp is used to buffer
the sampled output.

Quite often an A/D converter is used to sample and convert signals from multiple
channels. A multiplexer has many input channels and one output channel. It selectively
connects one of the input channels to the output channel. The selection is made by a
digital code in a set of digital lines in the interface. Figure 5.55 shows two different
implementations. In case (a), there is only one sample and hold circuit. Therefore, the
signals converted from different channels are not taken at the same time instant. For
instance, the A/D converter selects channel 1, samples-hold-converts. This takes finite
time, Tconv. Then it selects-samples-holds-converts channel 2. This takes another Tconv
time. Hence, the channel 3 will be sampled 2 Tconv time later than channel 1. This is called
the sequential sample-and-hold.

In case (b), there are individual sample and hold circuits for each channel. All the
channels are sampled at the same time and signals are held at that value. Then the A/D
conversion goes through each channel using the multiplexer. This is called the simultaneous
sample-and-hold circuit.

Quantization Error of A/D and D/A Converters: Resolution An n-bit
device can represent 2n different states. The resolution of the device is one part in 2n − 1. In
physical signal terms, the resolution is 1 part in the whole range divided by 2n − 1. Notice
that we need to mark a range into four discrete levels (Figure 5.56). Similarly, if we have
the ability to represent 2n states, we can divide a given range into 2n levels. Therefore, the
resolution of an n-bit A/D or D/A converter is

Vrange∕(2n − 1) (5.317)



JWST499-c05 JWST499-Cetinkunt Printer: Yet to Come October 28, 2014 11:15 254mm×178mm

322 MECHATRONICS

t

t

y(t)

u(t)

CPU

D/A

A/D

0

0

1

1

1

1

1

1

0

0

0

0

n - 1

n - 1

0

1

2

3

-1

-2

-3

-4

2.0
2.32

Quantized signal

Unquantized signal

n - bit

FIGURE 5.56: Resolution and range of A/D and D/A converters.

Quantization is the result of the fact that the A/D, D/A, and also the CPU are finite word
and finite resolution devices (Figure 5.56). Let us consider that we are sampling a signal
in the 0 to 7 V DC range. Assume that we have a 3-bit A/D converter. The A/D converter
can represent only 0, 1, 2, 3, 4, 5, 6, 7 VDC signals exactly. If the analog signal was 4.6 V,
it can be represented as either 4 or 5 by the A/D conversion. If the truncation method is
used in the quantization, it will be converted to 4. If the round-off method is used, it will be
converted to 5. The maximum value of the quantization error is the resolution of the A/D
or D/A converter.

For instance, an 8-bit A/D converter can represent 256 different states. If an analog
sensor with a signal range of 0 to 10 VDC is connected to it, the smallest change the A/D
can detect in the signal is 10/255 VDC. Any change in the signal less than 10/255 VDC
will not be detected by the computer. Similiarly, if the A/D converter is 12-bit, the smallest
change detectable in the signal is equal to the signal range divided by 212 − 1 = 4095. This
is called the resolution of the A/D converter. If it is 16-bit A/D converter, its resolution is
one part in 216 − 1 = 65 535.

The D/A converter converts the digital numbers into analog signals. This is also
referred to as the signal reconstruction stage. Discrete values of control action are presented
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FIGURE 5.57: A commercially available data

acquisition board for a PC bus

(Model-KPCI-1801HC by Keithley). I/O

capabilities are 12-bit 32-Ch differential ended

or 64-Ch single ended analog input

(multiplexed A/D converter), 12-bit 2-Ch D/A

converter, 4-Ch digital input, 8-Ch digital

output, maximum sample rate is 333 kHz.

Reproduced with permission from Keithley

Instruments, Inc.

to the D/A converter once per sampling period. The interpolation performed by the D/A
converter for the values of the signal during the period between the updates is called the
reconstruction approximation. The most commonly used form of D/A converter is the
zero-order-hold type where the current value of the signal is held constant until a new
value is sent. The resolution of the D/A converter is the smallest change it can send out.
This is one part in the whole range it can cover, 1 part in 2n − 1, where n is the number
of bits the D/A converter has. If the D/A converter has an output range of −10 VDC
to +10 VDC, lets us call R = 10 − (−10) = 20 VDC. If the D/A converter is an 8-bit
converter, it can have N = 28 different states. Therefore, the smallest change it can make in
the output is R∕N = R∕(2n) = 20∕(255). Clearly, as the number of bits of the A/D and D/A
gets larger (i.e., 16-bit), the resolution and the resultant quantization error becomes less
significant.

Figure 5.57 shows a commercially available data acquisition card for PCs (PCI or ISA
bus). The board has 12-bit resolution 32-channel differential ended or 64-channel single
ended multiplexed A/D converter, 12-bit 2-channel D/A converter, 4-channel digital input,
and 8-channel digital output lines. The maximum sampling rate that is supported by the
board is 333 kHz (333 samples/s).

Example Consider the adjustable gain operational amplifier shown in Figure 5.58.
Such an amplifier may be used between a sensory voltage signal and input channel of an
ADC where ADC channel may have a fixed range, that is ±10 VDC, yet the input voltage
range may vary from one application to another. Hence a programmable gain is needed
in order to best utilize the available resolution and range of the ADC. Assume that the
ADC has ± 10 VDC input voltage range. Determine the resistor values at the feedback
path of the op-amp so that the circuit has the gain of 0.1, 1.0, 10.0, in order to scale a
sensory input voltage range of 0–100 V, 0–10 V, and 0–0.1 V, respectively, to 0–10 V range
of ADC.

The gain of the first op-amp is K1 = −Rf∕Ri, where Ri = 1.0 MΩ. The second op-
amp has simply a negative one gain K2 = −1, hence the overall gain of the two op-amps
is K = K1 ⋅ K2 = Rf∕Ri. Let Ri = 1.0 MΩ. Then it is straightforward to determine the
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FIGURE 5.58: A circuit with two operational amplifiers and selectable gain: by selecting which

switch to connect on the feedback resistor path, the gain of the op-amp circuit is adjusted. Such

circuits are used as the voltage range scaler in ADC input as well as DAC output circuits.

necessary gains,

K =
Rf

Ri
(5.318)

Rf = K ⋅ Ri (5.319)

Rf1 = 0.1 ⋅ 1 MΩ = 100 KΩ for K = 0.1 (5.320)

Rf2 = 1.0 ⋅ 1 MΩ = 1.0 MΩ for K = 1.0 (5.321)

Rf3 = 10.0 ⋅ 1 MΩ = 10 MΩ for K = 10.0 (5.322)

The same circuit may also be used at the output side of a DAC where the standard output
range of a DAC may need to be scaled for the next device.

5.10 PROBLEMS

1. Consider the RC and RL circuits shown in Figure 5.5c–d. Let Vs(t) = 12 VDC, R = 100 kΩ,
L = 100 mH, C = 0.1 μF. Let us assume that initially the current in the circuit and charge capacitor is
zero. Simulate the current and voltage across each component for the case that the switch is connected
to the supply voltage at time zero, and flipped over instantly to B position at time t = 250 μs. Solve
this problem using Simulink® and present the results in five plots including the state of the switch as
a function of time, plus i(t), VL(t), VR(t), VC(t). Experiment with the system response by varying the
circuit component parameters R, C, L. How does increasing R affect the time constant of the system
in RC and RL circuits?

2. Consider a voltage amplifier using a bipolar junction transistor as shown in Figure 5.17. Let
the resistances R1 = R2 = 10 kΩ, and supply voltage Vcc2 = 24 VDC. Assume that the current gain
of the transistor is 100, and the base to emitter voltage drop when it is conducting is 0.7 VDC.
Calculate and tabulate the following results for the following cases of input voltage, Vin = Vcc1 =
0.0, 0.5, 0.7, 0.75, 0.80, 0.85, 0.9, 1.0. The results to be calculated are base current (ib), collector
current (ic), emitter current (ie), and output voltage (Vo) measured between the collector and emitter.
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3. Design an op-amp circuit that will change the offset and slope of an input voltage and provide
an output voltage. Mathematically, the desired relationship between the input and output voltages of
the op-amp circuit is

Vout = K1 ⋅ (Vin − Voffset) (5.323)

For numerical calculations, assume the Vin range is 2.0–3.0 V. The desired output voltage range is
0.0–10 V. An example application where such a circuit may be useful is shown in Figure 5.59.

Sensor

Singnal card

vso

v0

x

vso

xxmax

3.0 V

2.0 V

0

v0

xxmax

10 V

0

FIGURE 5.59: Sensor head

(transducer) and signal conditioner

to adjust the offset voltage and the

gain on the signal generated by the

sensor.

4. Consider the op-amp circuit shown in Figure 5.60. Derive the relationship between the input
voltages Vin1, Vin2, and the output voltage Vout as function of R1, R2, R3, R4, R5. Select values for the
resistors so that the following relationship is obtained,

Vout = 5.0 ⋅ (Vin1 − 3.0 ⋅ Vin2) (5.324)

3

6

FIGURE 5.60: Op-amp circuit for

problem 4.

5. Determine the minimum voltage at the base of the transistor (Vin) that will saturate the transistor
and hence provide the maximum glow from the LED (Figure 5.61). Assume the following for the

v in
10 kΩ

C

E

470 Ω

10 VDC

B

FIGURE 5.61: Figure for problem 5.
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LED and transistor: the forward bias voltage of the LED is Vf = 2.5 V, and the minimum voltage drop
between collector and emitter of transistor is VCE = 0.3 V (i.e., when the transistor is fully saturated),
and the gain of the transistor 𝛽 = 100.

6. Design an op-amp circuit to implement a PD (proportional plus derivative) control where
the proportional gain and the derivative gain are both adjustable. The circuit should have two input
voltages (Vi1(t), Vi2(t) and one output voltage (Vo(t)). The desired mathematical function to be realized
by the op-amp circuit is

Vo(t) = Kp ⋅ (Vi1 − Vi2(t)) + Kd ⋅ d∕dt((Vi1 − Vi2(t))) (5.325)

7. Consider the op-amp circuits shown in Figure 5.62. Derive the input–output voltage relationships.
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FIGURE 5.62: Figure for problem 7.

8. Consider the op-amp circuits shown in Figure 5.63. Determine the output voltage when the input
voltage is Vi = 0.1 V, and the current that flows to the inverting input.

V  = 0.1 V1
100 RR

VO

10 MΩ
+

−

FIGURE 5.63: Figure for problem 8.
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9. Consider a data acquisition system that samples signals from various sensors. Let us assume
the following: there are four sensors to be sampled. The voltage outputs from each sensor are in the
following ranges for sensors 1 through 4: ±10 VDC,±1 VDC, 0 to 5 VDC, and 0 to 2 VDC. Expected
maximum frequency content in each signal is 1 kHZ, 100 Hz, 20 Hz and 5 Hz for sensor 1 through 4,
respectively. The error introduced due to sampling should not be more than ±0.01% (1 part in 10 000)
of the maximum value of the signal. Determine the specifications for a 4-channel ADC (analog to
digital converter) for this application that will meet the requirements. Specifiy the minimum sampling
rate for each channel (according to the sampling theorem) and recommend a practical sampling rate
for each channel.

10. Consider the RL and RC circuits shown in Figure 5.5c, d, respectively. The switch in each
circuit is connected to the supply voltage (A side) and B side at specified time instants. Assume the
following circuit parameters; L = 1000 mH = 1000 × 10−3 H = 1 H, C = 0.01 μF = 0.01 × 10−6 F,
R = 10 kΩ. Let the supply voltage be Vs(t) = 24 VDC. Assume in each circuit, the initial condition
on the current is zero and initial charge in the capacitor is zero. Starting time is to = 0.0 s. At time
t1 = 100 μs the switch is connected to the supply, and at time t2 = 500 μs, the switch is disconnected
from the supply and connected to the B side of the circuit. Plot the voltage across each component
and current as a function of time for the time period of t0 = 0.0 s to tf = 1000 μs.
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CHAPTER 6
SENSORS

6.1 INTRODUCTION TO MEASUREMENT DEVICES

Measurements of variables are needed for monitoring and control purposes. Typical vari-
ables that need to be measured in a data acquisition and control system are:

1. position, velocity, acceleration,

2. force, torque, strain, pressure,

3. temperature,

4. flow rate,

5. humidity.

Figure 6.1 shows the basic concept of a measurement device. The measurement
device is called the sensor. We will discuss different types of sensors to measure the above
listed variables. Figure 6.2 shows an example of sensors used on a construction equipment.
A sensor is placed in the environment where a variable is to be measured. The sensor is
exposed to the effect of the measured variable. There are three basic phenomenon in effect
in any sensor operation:

1. The change in the measured physical variable (i.e., pressure, temperature, displace-
ment) is translated into a change in the property (resistance, capacitance, magnetic
coupling) of the sensor. This is called the transduction. The change of the measured
variable is converted to an equivalent property change in the sensor. The transduction
relationship, that is the relationship between the measured variable and the change in
the sensor material property, is the fundamental physical principle of the sensor oper-
ation. It is desirable that this relationship is repeatable and does not vary with other
environmental variables. For instance, a pressure sensor output voltage as a function
of pressure should not change much due to changes in the ambient temperature.

2. The change in the property of the sensor is translated into a low power level electrical
signal in the form of voltage or current.

3. This low power sensor signal is amplified, conditioned (filtered), and transmitted to
an intelligent device for processing, for example to a display for monitoring purposes
or use in a closed loop control algorithm.

Sensor types vary in the transduction stage in measuring a physical variable. In response
to the physical variable, a sensor may be designed to change its resistances, capacitance,
inductance, induced current, or induced voltage.

In any measurement system, accuracy is a major specification. Let us clarify
the terminology used regarding accuracy. Figure 6.3 shows the meaning of accuracy,
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FIGURE 6.1: The components of a sensor: sensor head, amplifier, power supply, display or

processing unit.

Rotational position 
sensor

Pressure sensor

Rotational position sensor

Engine speed sensor

Temperature sensor
in the engine

FIGURE 6.2: Examples of various types of sensors used on construction equipment. There are

more sensors on modern construction equipment. Only a small set of examples are shown in

this figure. Reprinted Courtesy of Caterpillar Inc.

(a) (b) (c)

FIGURE 6.3: The definitions of accuracy and repeatability: (a) accurate, (b) repeatable, but not

accurate, (c) not repeatable, not accurate. Resolution is the smallest positional change the

arrow can be placed on the target (imagine that the target has many small closely spaced holes

and the arrow can only go into one of these holes).
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FIGURE 6.4: Input–output model of a sensor: steady-state (static) input and output

relationship plus the dynamic filtering effect.

repeatablity, and resolution. Resolution refers to the smallest change in the measured
variable that can be detected by the sensor. Accuracy refers to the difference between
the actual value and the measured value. Accuracy of a measurement can be determined
only if there is another way of more accurately measuring the variable so that the sensor
measurement can be compared with it. In other words, accuracy of a measurement can be
determined only if we know the true value of the variable or a more accurate measurement of
the variable. Repeatability refers to the average error in between consecutive measurements
of the same value. The same definitions apply to the accuracy of a control system as well.
In a measurement system, repeatability can be at best as good as the resolution. Resolution
(the smallest change the sensor can detect on the measured variable) is the property of the
sensor. Repeatability (the variation in the measurement of the same variable value among
different measurement samples) is the property of the sensor in a particular application
environment. Hence, the repeatability is determined both by the sensor and the way it is
integrated into a measurement application.

Let us focus on the input–output behavior of a generic sensor as shown in Figure 6.4.
A sensor has a dynamic response bandwidth as well as steady-state (static) input–output
characteristic. The dynamic response of a sensor can be represented by its frequency
response or by its bandwidth specification. The bandwidth of the sensor determines the
maximum frequency of the physical signal that the sensor can measure. For accurate
dynamic signal measurements, the sensor bandwidth must be at least one order of magnitude
(x10) larger than the maximum frequency content of the measured variable.

A sensor can be considered as a filter with a certain bandwidth and static input–output
characteristics. Let us focus on the static input–output relation of a generic sensor. An ideal
sensor would have a linear relationship between the sensed physical variable (input) and
the output signal. This linear relationship is a function of the transduction and amplification
stage. Typical non-ideal characteristics of a sensor include (Figure 6.5):

1. gain changes,

2. offset (bias or zero-shift) changes,

3. saturation,

4. hysteresis,

5. deadband,

6. drift in time.
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FIGURE 6.5: Typical nonlinear variations of static input–output relationship from the ideal

behavior of a sensor.

The static input–output relationship of a sensor can be identified by changing the
physical variable in known increments, then waiting long enough for the sensor output to
reach its steady-state value before recording it, and repeating this process until the whole
measurement range is covered. The result can be plotted to represent the static input–
output characteristic of the particular sensor. If these non-ideal input–output behaviors are
repeatable, then a digital signal processor can incorporate the information into the sensor
signal processing algorithm in order to extract the correct measurement despite the nonlinear
behavior. Repeatability of the nonlinearities is the key requirement for accurate signal
processing of the sensor signals. If the nonlinearities are known to be repeatable, then they
can be compensated for in software in order to obtain accurate measurement.

In general, a sensor needs to be calibrated to customize it for an application. In any
control system application such as an automated machine in an assembly line or a mobile
equipment, which may involve hundreds of sensors, one of the first steps in implementing
a control system is the sensor calibration. That is to establish the desired input–output
relationship for each sensor such as the relationship shown in Figure 6.5a. If the sensor
exhibits drift in time, then it must also be calibrated periodically. Sensor calibration refers
to adjustments in the sensor amplifier to compensate for the above variations so that the
input (measured physical variable) and output (sensor output signal) relationship stays the
same. The sensor calibration process involves adjustments to compensate for variations in
gain, offset, saturation, hysterisis, deadband, and drift in time.

Figure 6.6 shows a circuit for a resistance type sensor and its signal amplification
using an op-amp. The sensor transduction is based on the change of resistance as a function
of the measured variable (i.e., temperature, strain, pressure). The resistance change is
converted to voltage change which is typically a small value. Then it is amplified by an
inverting type op-amp to bring the sensor signal (voltage) to a practical level. Notice that
the resistor R1 is used to calibrate the sensor for offset (bias) adjustments. The R1 and Rs
act as the voltage divider. The op-amp is in inverting configuration where the resistors R2
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sensor signal amplification using

an op-amp. The sensor

transduction principle is based on
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function of the measured variable.

and R3 determine the gain of the amplifier. It can be easily shown that the output voltage
from the circuit as a function of the sensor resistance is,

Vout = −
R3

R2
⋅

R1(y)

Rs(x) + R1
⋅ Vc (6.1)

where x represents the measured variable, Rs(x) is the resistance of the sensor which varies
as a function of the measured variable, R1(y) represents the potentiometer adjustment of
the R1 as it is connected to the op-amp input to provide the reference voltage. R1(y) is the
resistance amount from the point it is connected to the R2 to the ground connection at point
C. We can use R1(y) to adjust the offset voltage. The sensor gain can further be adjusted by
making R2 or R3 adjustable resistors (potentiometers).

6.2 MEASUREMENT DEVICE LOADING ERRORS

Loading errors in measurement systems are errors introduced to the measurement of the
variable due to the sensor and its associated signal processing circuit. There are two types
of loading errors:

1. mechanical loading error,

2. electrical loading error.

An example of mechanical loading error is as follows. Consider that we want to measure
the temperature of a liquid in a container. If we insert a mercury-in-glass thermometer
in the container, there will be a finite amount of heat transfer between the liquid and the
thermometer. The measurement will stabilize when both temperatures of the liquid and
thermometer are the same. Therefore, the fact that the thermometer is inserted into the
liquid and there is a heat transfer between them has changed the original temperature of
the liquid. Clearly, this mechanical loading error would be very large if the volume of the
liquid were small compared to the size of the thermometer, and would be negligable if the
liquid volume were very large compared to that of the thermometer. Strictly speaking, it
is not possible to perfectly measure a physical quantity since the very act of introducing a
sensor changes the original physical environment. Therefore, every measurement system
has some mechanical loading error. The design question is how to make that error as small
as possible.

The electrical loading error issue exists in electrical circuits used in measurement
systems. Consider the voltage measurement across the resistor in the following figure
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FIGURE 6.7: Electrical loading error in

measurement systems and sensors.

(Figure 6.7). Assume that the measurement device has an internal resistance of Rm. Without
the measurement device, the ideal value of the voltage we want to measure is

V∗
o =

R1

R1 + R2
⋅ Vi (6.2)

Once the measurement device is connected to the circuit at points A and B, it changes
the electrical circuit. The equivalent resistance in between point A and B is

R∗
1 =

R1Rm

R1 + Rm
(6.3)

and the measured voltage across points A and B is

Vo =
R∗

1

R∗
1 + R2

⋅ Vi (6.4)

which is

Vo = Vi
R1Rm∕(R1 + Rm)

R1Rm∕(R1 + Rm) + R2
(6.5)

Notice that as Rm → ∞, Vo = V∗
o . However, if Rm is close to the value of R1, the Vo∕V∗

o
deviates from unity, that is Rm = R1

Vo = Vi
R1

R1 + 2R2
(6.6)

In most measurement systems, the relationship between the Rm and R1 is such that

Rm = 103 ⋅ R1 (6.7)

Consider for simplicity that R1 = R2. The voltage measured (Vo) and the ideal voltage
should have been measured if Rm was infinity (V∗

o ),

Vo = Vi
1000
2001

(6.8)

and the ideal voltage

V∗
o = Vi

1000
2000

(6.9)
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The voltage measurement error percentage due to the electrical loading in this case is

ev =
(1000∕2001) − (1∕2)

(1∕2)
⋅ 100 = 0.0499% (6.10)

For cases where the measurement device input impedance is about 103 times the resistance
of the equivalent two port device whose voltage is measured, the voltage measurement error
introduced due to the electrical loading effect is negligible.

Let us consider a poor case of loading error condition: R1 = R2 = Rm. Then the
mesasured voltage,

Vo = Vi
R1Rm∕(R1 + Rm)

R1Rm∕(R1 + Rm) + R2
(6.11)

= Vi

R2
1∕(2R1)

R2
1∕(2R1) + R1

(6.12)

= Vi
R1∕2

R1∕2 + R1
(6.13)

= Vi
1∕2

1∕2 + 1
(6.14)

= Vi ⋅
1
3

(6.15)

The voltage measurement error due to electrical loading error in this case V0 is and the
ideal voltage is V∗

o

V∗
o = Vi

1000
2000

(6.16)

V0 = Vi
1
3

(6.17)

ev =

(
1000
2000

− 1
3

)
1∕2

⋅ 100 (6.18)

= 1
3
⋅ 100 (6.19)

= 33.33 (6.20)

Therefore, in order to minimize the effect of electrical loading errors due to the circuits
used for the measurement, the measurement device should have a large input resistance
(input impedance). The larger the input impedance, the smaller the electrical loading error
in the voltage measurement.

6.3 WHEATSTONE BRIDGE CIRCUIT

A Wheatstone bridge circuit is used to convert the change in resistance into voltage output.
It is a standard circuit used as part of sensor signal conditioners (Figure 6.8). A Wheatstone
bridge has

1. a power supply voltage, Vi, and

2. four resistances arranged in a bridge circuit, R1, R2, R3, R4.

One of the resistance branches is the resistance of the sensor. The sensor resistance changes
as a function of the measured variable, i.e. RTD resistance as a function of temperature or
strain-gauge resistance as a function of strain.
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FIGURE 6.8: Wheatstone bridge circuit, which is very often used in many different types of

sensor applications as part of the signal conditioner and amplifier circuit of the sensor, to

convert variation in the resistor to voltage.

Let us consider the case where the bridge is balanced and the voltage differential
between points B and C is zero (VBC = 0) and that the current passing through the mea-
surement device (i.e., galvonometer, digital voltmeter, or ADC circuit for a data acquisition
system) is zero (im = 0). Since VBC = 0,

i1R1 − i3R3 = 0 (6.21)

i2R2 − i4R4 = 0 (6.22)

and im = 0,

i1 = i2 (6.23)

i3 = i4 (6.24)

Solving these equations, the following relations must hold for the bridge to be balanced
(VBC = 0 and im = 0),

R1

R2
=

R3

R4
(6.25)

Now, let us examine two different methods for using the Wheatstone bridge circuit in order
to measure the variation in resistance in the form of proportional output voltage.

6.3.1 Null Method

R1 represents the sensor whose resistance changes as a function of the measured variable.
R2 is a calibrated adjustable resistor (either manually or automatically adjusted). R3 and R4
are resistances fixed and known for the circuit. Initially the circuit is calibrated so that the
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balanced bridge condition is maintained and no voltage is observed across points B and C.
Assume that the sensor resistance R1 changes as a function of the measured variable. Then,
we can adjust R2 in order to maintain the balanced bridge condition, VBC = 0,

R1

R2
=

R3

R4
(6.26)

Then, when the VBC = 0, the resistance of the sensor (R1) can be determined since R3, R4
are fixed and known, and R2 can be read from the adjustable resistor,

R1(x) =
R3

R4
⋅ R2(adjusted) (6.27)

Notice that this method of determining the sensor resistance is not sensitive to the changes
in the supply voltage, Vi. But it is suitable only for measuring steady-state or slowly
varying resistance changes, hence slowly varying changes in the measured variable (i.e.,
temperature, strain, pressure). Once R1(x) is known, from the transduction relationship of
the sensor, the measured variable x can be determined (i.e., from the input–output graph or
map of the transduction principle).

6.3.2 Deflection Method

In order to measure time varying and transient signals, the deflection method should be
used. In this case, three legs of the resistor bridge have fixed resistances, R2, R3, R4. The R1
is the resistance of the sensor. As the sensor resistance changes, non-zero output voltage
VBC is measured. For our first derivation, let us assume that the voltage measurement device
has infinite input resistance, Rm → ∞, so that no current flows through it despite a finite
voltage potential across points B and C, VBC ≠ 0, im = 0. For the following derivation, let
Vo = −VBC for output voltage polarity;

i1R1 + VBC − i3R3 = 0 (6.28)

VBC = i3R3 − i1R1 (6.29)

Vo = −i3R3 + i1R1 (6.30)

Since im = 0, i1 = i2 and i3 = i4,

i1 = Vi∕(R1 + R2) (6.31)

i3 = Vi∕(R3 + R4) (6.32)

Then,

Vo = Vi

(
R1

R1 + R2
−

R3

R3 + R4

)
(6.33)

In most Wheatstone bridge circuit applications with sensors, the bridge is balanced at a
reference condition, Vo = 0 and the initial values of the resistance arms are the same,
R1 = R2 = R3 = R4 = Ro. Let

R1 = Ro + ΔR (6.34)

where the ΔR is the variation from the calibrated nominal resistance. If we substitute these
relations, it can be shown that

Vo∕Vi =
ΔR∕Ro

4 + 2ΔR∕Ro
(6.35)
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In general, ΔR∕Ro ≪ 1, and the above relation can be approximated,

Vo∕Vi =
ΔR∕Ro

4
(6.36)

Another convenient way of expressing this relationship is

Vo =
Vi

4Ro
ΔR (6.37)

In Equation 6.20, if R1 = R3 = R4 = R0 is constant, but R2 = R0 + ΔR, the same
output voltage and resistance variation relationship holds except the polarity of the output
voltage would be opposite (negative). Similarly, in Equation 6.20, if R1 = R2 = R4 = R0 is
constant, but R3 = R0 + ΔR, the same output voltage and resistance variation relationship
holds except the polarity of the output voltage would be opposite (negative). If R1 = R2 =
R3 = R0 is constant, but R4 = R0 + ΔR, the same output voltage and resistance variation
relationship holds except the polarity of the output voltage would be positive. This can be
easily shown by making these substitutions in Equation (6.33).

Notice that if the sensor signal conditioner has an ADC converter and an embedded
digital processor, the above approximation is not necessary. The more complicated rela-
tionship can be used in the software for a more accurate estimation of the measured variable
using Equation (6.33 or 6.35).

Now, let us relax the assumption on the measurement device resistance. Let us assume
that it is not infinite, but a large finite value. The result is same as the electrical loading
error condition. If the Rm is much larger than R0, that is 103 times, the error introduced to
the measurement due to non-infinite Rm is negligible.

Example Consider that a RTD type temperature sensor is used to measure the temper-
ature of a location. The two terminals of the sensor are connected to the R1 position of a
Wheatstone bridge circuit. The sensor temperature–resistance relationship is as follows

R = Ro[1 + 𝛼(T − To)] (6.38)

where from the sensor calibration data it is known that 𝛼 = 0.004 ◦C−1, To = 0 ◦C reference
temperature, and Ro = 200Ω at temperature To. Assume that Vi = 10 VDC, and R2 = R3 =
R4 = 200Ω. What is the temperature when the Vo = 0.5 VDC?

Let us assume that the input resistance of the voltage measurement device is infinity,

Vo = Vi ⋅
ΔR∕Ro

4
(6.39)

Find ΔR, then R = Ro + ΔR, calculate T from

R = Ro(1 + 𝛼(T − To)) (6.40)

The resulting numbers are ΔR = 40Ω, T = 50 ◦C.
Let us consider that the input resistance of the output voltage measuring device is

Rm = 1 MΩ, instead of infinite. The resulting measurement would indicate the following
temperature,

Vo = Vi ⋅
ΔR∕Ro

4(1 + Ro∕Rm)
(6.41)

which gives

ΔR = 40 ⋅ 1.0002Ω (6.42)
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and the more accurate tempareture measurement is

T = 40 ⋅ 1.0002∕0.8 (6.43)

= 50 ⋅ 1.0002 (6.44)

= 50.01 ◦C (6.45)

Note that if the input resistance of the measurement device is small compared to the
nominal resistance in the Wheatstone bridge, the measurement error will be much larger.
For instance, if Rm = 1000Ω, the resulting temperature measurement would be

T = 50 ⋅ 1.2 = 60 ◦C (6.46)

which has a 20% error in measurement due to the low input impedance of the measurement
device relative to the impedance of the circuit.

6.4 POSITION SENSORS

There are two kinds of length measurements of interest: (i) absolute position (the distance
between two points), (ii) incremental position (the change in the position). If a sensor
can measure the position of an object on power-up relative to a reference (the distance
of the object from a reference point on power-up), we call it an absolute position sensor.
If the sensor cannot tell the distance of the object from a reference on power-up, but can
keep track of the change in position from that point on, we call it an incremental position
sensor. Examples of absolute position sensors include a calibrated potentiometer, absolute
optical encoder, linear variable differential transformer, resolver, and capacitive gap sensor.
Examples of incremental position sensors include incremental optical encoder and laser
interferometer. Most of the position sensors have rotary and translational (linear) position
sensor versions.

6.4.1 Potentiometer

A potentiometer relates the absolute position (linear or rotary) into the resistance (Fig-
ures 6.9 and 6.10). The resistance change is converted to a proportional voltage change in
the electrical circuit portion of the sensor. Hence, the relationship between the measured

X

Brush

Brush
Resistive
element

Resistive
element

Vr

Vr

(a) (b)

Vout = kVr  x Vout = kVr

FIGURE 6.9: Linear and a rotary potentiometer for position measurement.
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physical variable, translational displacement x or rotary displacement 𝜃, and the output
voltage for an ideal potentiometer is

Vout = k ⋅ Vr ⋅ x (6.47)

or

Vout = k ⋅ Vr ⋅ 𝜃 (6.48)

The sensitivity, k ⋅ Vr of the potentiometer in Equations 6.47 and 6.48 is a function of the
winding resistance and the physical shape of the winding. The range and resolution of
the potentiometer are designed into the sensor as a balanced compromise: the higher the
resolution, the smaller the range of the potentiometer. Due to the brush-resistor contact, the
accuracy is limited. As the contact arm moves over the resistor winding, the output voltage
changes in small discrete steps, which define the resolution of the potentiometer. For very
long length measurements where the distance may not be a straight line, that is 5.0 m curve,
a spring loaded multi turn rotary potentiometer arm is connected to a string. Then the
string moves with the measured curve distance. As the string is pulled, the potentiometer
arm moves around the multi turn resistor. The output voltage is then proportional to the
length of the pulled string. The total distance measured can be any shape. Potentiometers
are considered low cost, low accuracy, limited range, simple, reliable, absolute position
sensors. The typical resistance of the potentiometer is around 1 KΩ per inch. Since there is
a supply voltage, there will be a finite power dissipation over the potentiometer. However,
it is a small amount of power and less than 1 W∕in.

6.4.2 LVDT, Resolver, and Syncro

The linear variable differential transformer (LVDT), resolver, and syncro are sensors which
operate based on the transformer principle of electromagnetism. The key to their operating
principle is that the change in the position of the rotor element changes the electromagnetic
coupling (magnetic flux linkage) between the two windings (Figure 6.11, and Figure 6.12),
primary and secondary windings. One of these windings (typically the primary winding)
is excited with an external AC voltage. As a result, the induced voltage between the two
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windings changes in relation to the position. Hence, we have a well-defined relationship
between the induced voltage and the position. In LVDTs, both windings are stationary, and
a rotor core made of a material with high magnetic permeability couples the two windings
electromagnetically. In rotary LVDTs (resolvers and syncros), the primary winding is
located on the rotor, and the secondary winding on the stator. Either the rotor winding or
the stator windings can be excited externally by a known voltage, and the induced voltage
on the other winding is measured which is related to the position. The operating principles
of a LVDT, resolver, and syncro are shown in Figures 6.11–6.16. Notice that the syncro is
just a three-phase stator version of the resolver.

The LVDT is an absolute position sensor. On power-up, the sensor can tell the
position of the magnetic core relative to the neutral position. The LVDT’s primary winding
is excited by a sinusoidal voltage signal. The induced voltage on the secondary windings has
the same frequency except that the magnitude of the voltage is a function of the position of
the magnetic core. In other words, the displacement modulates the magnitude of the induced
voltage. As the core displacement increases from the center, the magnitude of the voltage
differential between the two stator windings increases. The core material must have a large
magnetic permeability compared to air, such as iron–nickel alloy. A non-magnetic stainless

FIGURE 6.12: Pictures of LVDTs (left) and a resolver (right).
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steel rod is used to connect the core to the part whose displacement is to be measured. The
sign (direction) of the magnitude of the voltage differential is determined by relating the
induced voltage phase to the reference voltage phase. It is a function of the direction of
the magnetic core displacement from neutral position. The primary winding is excited by

Vp(t) = Vr ⋅ sin(wrt) (6.49)

and the voltage differential between the secondary windings is

Vs(t) = k0 ⋅ Vp(t) ⋅ x(t) (6.50)

= k0 ⋅ Vr ⋅ sin(wrt) ⋅ x(t) (6.51)

Once the the Vs(t) is demodulated in frequency, the output signal is presented as a DC
voltage,

Vout(t) = k1 ⋅ x(t) (6.52)

which is proportional to the core displacement.
LVDTs can be used for high resolution position measurement (i.e., 1∕10 000 in res-

olution) but with a relatively small range (up to 10 in range). Excitation frequency of the
primary coil is in the range of 50 Hz to 25 kHz. The bandwidth of the sensor is about 1∕10
of the excitation frequency (Figure 6.12).

The resolver (Figure 6.13) and syncro (Figure 6.16) sensors operate on the same
principle as the LVDT. Resolvers compete with encoders in position measurement applica-
tions. In general, resolvers have better mechanical ruggedness, but lower bandwidth than the
encoders. Resolvers have two stator windings (90 degrees out of phase), whereas syncros
have three stator windings (120 degrees out of phase).

Let us examine the operation of the resolver where we will consider that the rotor
winding is excited externally by a sinusoidal voltage signal. The induced voltage in the
stator windings is measured. The magnitude of induced voltages is a function of the angular
position of the rotor. The induced voltages at the two stator windings are 90 degrees out
of phase with each other since they are mechanically placed at a 90 degree phase angle.
Therefore, the resolver is an absolute rotary position sensor with one revolution range. The
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FIGURE 6.13: Resolver and its operating principle: resolver sensor head and the signal

processing circuit (also called the resolver to digital converter, RTDC).
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FIGURE 6.14: Excitation voltage for the rotor winding and the induced stator voltages. The

induced voltages are shown as a function of time for a constant rotor speed over a period of

one revolution.

angular position changes beyond one revolution are kept track of through digital counting
circuits. The rotor excitation voltage is (generated by an oscillator circuit),

Vr(t) = Vref ⋅ sin(wrt) (6.53)

The induced voltage on the stator windings are (Figure 6.14)

Vs1(t) = k0 ⋅ Vr(t) ⋅ sin(𝜃(t)) = k0 ⋅ Vref ⋅ sin(wrt) ⋅ sin(𝜃(t)) (6.54)

Vs2(t) = k0 ⋅ Vr(t) ⋅ cos(𝜃(t)) = k0 ⋅ Vref ⋅ sin(wrt) ⋅ cos(𝜃(t)) (6.55)

Next, the Vs1, Vs2 are multiplied by sin and cos functions in the RTDC circuit,

Vf1(t) = k0 ⋅ Vr(t) ⋅ sin(𝜃(t)) ⋅ cos(𝛼(t)) (6.56)

Vf2(t) = k0 ⋅ Vr(t) ⋅ cos(𝜃(t)) ⋅ sin(𝛼(t)) (6.57)

Then the output of the error amplifier is

ΔVf (t) = k0 ⋅ Vref ⋅ sin(wrt) ⋅ sin(𝜃(t) − 𝛼(t)) (6.58)

Then, the signal is demodulated to remove the sin(wrt) component by a rectifier and low
pass filter. Then, the signal is fed to an integrator which provides input to the voltage
controlled oscillator (VCO). The output of the VCO is fed to an up-down counter to keep
track of the position. This results in making the up-down counter increase or decrease 𝛼 in a
direction so that sin(𝜃 − 𝛼) approaches zero. The value of the up-down counter is converted
to angle 𝛼 by a DAC as an analog signal to feed the sin and cos multiplication circuit. The
iteration on 𝛼 continues until 𝛼 = 𝜃, at which time the rotor position information is latched
from the up-down counter as digital data. The algorithm finds the angle 𝜃 by iteratively
changing 𝛼. The iteration stops when ΔVf is equal to zero, at which time it means that
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FIGURE 6.15: An example circuit for resolver signal processing. It can be used for a resolver

which has one rotor and two stator windings. AD2S99 chip provides the reference oscillator

signal, and an AD2S90 chip processes the resolver signals for conversion to digital data.

𝜃 = 𝛼. Functionally, the end result is that the output position value presented is proportional
to the rotor angle

Vout(t) = k1 ⋅ 𝜃(t) (6.59)

This circuit can be implemented with integrated circuits AD2S99 programmable oscilla-
tor chip and AD2S90 resolver to digital converter (RTDC) chip by analog devices (Fig-
ure 6.15). The AD2S99 chip is a programmable sinusoidal oscillator. The input supply
voltage is ±5 VDC. It provides the sinusoidal excitation voltage for the primary winding.
The excitation frequency is programmable to be one 2 kHz, 5 kHz, 10 kHz, or 20 kHz. It
accepts the induced voltage signals from the secondary winding pair at the sin and cos pins.
In addition, it provides a synchronous square wave reference output signal that is phase
locked with the sin and cos signal. This signal is used by the AD2S90 chip for converting
the resolver signal to a digital signal. AD2S90 is the main chip that performs the conversion
of the resolver analog signals to digital form. It provides the resulting digital position signal
in two different format: a 12-bit serial digital code and an incremental encoder equivalent
A and B channel signal. In motor control applications, many amplifiers accept the resolver
signal and use it for current commutation. In addition, they output an encoder equivalent
(encoder emulation) signal which can be used by a closed loop position controller. It emu-
lates a 1024-line per revolution incremental encoder A and B channels. When the A and
B channel signals are decoded with ×4, it results in 4096 counts∕rev resolution which is
equivalent to a 12-bit resolution.
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FIGURE 6.16: Syncro and its operating principle.

There are other types of signal processing circuits to extract the 𝜃 angle information
from the resolver phase voltages. For instance, both stator voltages can be sampled at the
same frequency (wr∕(2𝜋) Hz) where the start of the sampling is synchronized to the Vr(t)
by a 90 degree phase angle in order to sample the maximum magnitudes. In other words, by
sampling Vs1, Vs2 at the same frequency as the wr, we achieve demodulation by sampling.
The sampled signals are

Vadc
s1 = Vmag ⋅ sin(𝜃) (6.60)

Vadc
s2 = Vmag ⋅ cos(𝜃) (6.61)

where Vmag is the sampled value of the k0 ⋅ Vref ⋅ sin(wrt) portion of the signal. Then, we
can compute the arctan of the two signals to obtain the angle information,

𝜃 = arctan

(
Vadc

s1

Vadc
s2

)
(6.62)

This method uses two channels of an A/D converter and a digital computational algorithm
for the arctan(⋅) function. Such a circuit for an RTDC (resolver to digital converter) can be
implemented using ADMC401 chip (AD converter) and a AD2S99 oscillator chip (both by
analog devices).

The operating principle of the syncro is almost identical to that resolved. The only
difference is that there are three stator phases with 120 degrees of mechanical phase angle.
Hence, the induced voltages in the three stator phases will be 120 degrees apart,

Vs1 = k0 ⋅ Vref ⋅ sin(wrt) ⋅ sin(𝜃) (6.63)

Vs2 = k0 ⋅ Vref ⋅ sin(wrt) ⋅ sin(𝜃 + 120) (6.64)

Vs3 = k0 ⋅ Vref ⋅ sin(wrt) ⋅ sin(𝜃 + 240) (6.65)

and these signals can be processed to extract the angular position information with circuits
similar to the ones used for resolvers.

Commercial LVDT and resolver sensors are packaged such that the input and output
voltages to the sensor are DC voltages. The input circuit includes a modulator to generate an
AC excitation signal from the DC input. The output circuit includes a demodulator which
generates a DC output voltage from the AC voltage output of the secondary windings.
For instance, LVDT Model -240 (by Trans-Tek Inc.) has a position measurement range in
0.05–3.0 in, 24 VDC input voltage, 300 Hz bandwidth, and an internally generated carrier
frequency of 13 kHz.
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FIGURE 6.17: Pictures of a rotary (a) and a linear encoder (b).

6.4.3 Encoders

There are two main groups of encoders: absolute encoders and incremental encoders.
Absolute encoders can measure the position of an object relative to a reference position
at any time. The output signal of the absolute encoder presents the absolute position in a
digital code format. An incremental encoder can measure the change in position, not the
absolute position. Therefore, the incremental encoder cannot tell the position relative to
a known reference. If absolute position information is needed from incremental encoder
measurement, the device must perform a so called “home-ing” motion sequence in order to
establish its reference position after the power up. From that point on, the absolute position
can be kept track of by digital counting. An absolute encoder does not need a counting
circuit if the total position change is within the range covered by the absolute encoder.

Encoders can also be classified based on the type of position they measure: transla-
tional or rotary. Figure 6.17 shows pictures of linear (translational) and rotary encoders.
Encoders are the most widely used position sensors in electric motor control applica-
tions such as brush-type DC motors, brushless DC motors, stepper motors, and induction
motors. It is estimated that over 70% of all motor control applications with position sensor
use encoders as position sensors.

The operating principles of linear and rotary encoders are identical. In one case, there
is a rotary disk, in the other case there is a linear scale. Figure 6.18 shows the components
of a rotary and a linear incremental and absolute encoder. The main difference between the
rotary and linear encoders is the glass scale with the printed pattern to interrupt the light as
it moves.

An encoder has the following components (Figures 6.19, 6.20):

1. a disk or linear scale with light and dark patterns printed on it,

2. a light source (LED possibly with a focusing lens),

3. two or more photodetectors,

4. a stationary mask.

In the case of an incremental encoder, the disk pattern is a uniform black and opaque
printed pattern around the disk (Figure 6.19). As the disk rotates and the angle changes, the
disk pattern interrupts and passes the light. If the disk is metal (which may be necessary in
applications where the environmental conditions are extreme in terms of vibrations, shock
forces, and temperature), the same principle is used as reflected light instead of pass-through
light in counting the number of incremental position changes. The photodetector output
turns ON and OFF everytime the disk pattern passes over the LED light (Figure 6.19).
Therefore, the change in angular position can be measured by counting the number of
state changes of the photodetector output. Let us assume that there are 1000 lines over the
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FIGURE 6.20: Components and operating principle of a rotary absolute encoder: rotary disk

with absolute position coding in gray scale, LED set, phototransistor set, mask.

disk. Therefore, the photodetector output will change state 1000 times per revolution of
the disk. Each pulse of the photodetector means 360◦∕1000◦ of angular position change in
the shaft. If only one photodetector is used, the change in position can be detected, but not
the direction of the change. By using two photodetectors (usually called A and B channels
of the encoder output), which are displaced from each other by 1/2 of the size of a single
grading on the disk (or an integer number plus 1/2 of the size of a single grading), the
direction of the motion can be determined. If the disk direction of rotation changes, the
phase between the A and B channels changes from +90◦ to −90◦. In addition to the dual
photodetectors A and B, an incremental encoder also has a third photodetector which turns
ON (or OFF) for one pulse period per revolution. This is accomplished by a single slit on
the disk. Using this channel (usually called the C or Z channel), the absolute position of
the disk can be established by a home motion sequence. On power-up, the angular position
of the shaft relative to a zero reference position is unknown. The encoder can be rotated
until the C channel is turned on. This position can be used as the zero reference position
for keeping track of the absolute position.

Finally, each output channel of the encoder (A,B,C) may have a complementary
channel (Ā, B̄, C̄) which is used as protection against noise. Figure 6.21 illustrates how the
complementary encoder output channels can be used to eliminate position measurement
errors due to noise. Notice that for this approach to work, the same noise signal is assumed
to be present on each channel. In short, the complementary channels improve the noise
immunity of the encoder, but this is not a solution for all possible noise conditions.

The linear incremental encoder works in the same principle, except that instead of
a rotary disk, it has a linear scale. Furthermore, the linear scale is stationary and the light
assembly moves.

An absolute encoder differs from the incremental encoder in the printed pattern
on the disk and the light assembly (LEDs and photodetectors). Figure 6.20 shows the
components of an absolute encoder. Notice the coded pattern on the disk. Each discrete
position of the disk corresponds to a unique state of photo detectors. Therefore, at any given
time (i.e., after power-up), the absolute position on the shaft can be determined uniquely.
The encoder can tell us the absolute position within one revolution. Multi turn absolute
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FIGURE 6.21: Use of complementary channel signals Ā, B̄ in conjuction with A and B channels

to cancel noise, hence increasing the noise immunity of the sensor.

encoders are also available. The resolution of the absolute encoder is determined by the
number of photodetectors. Each photodetector output represents a bit on the digitally coded
position information. If the absolute encoder has 8 photodetectors (8-bit), the smallest
position change that can be detected is 360◦∕(28) = 360∕256◦. If the encoder is 12-bit,
the resolution is 360◦∕(212) = 360∕4096◦. For each position, the absolute encoder outputs
a unique code. The coding of an absolute encoder is not necessarily a binary code. Gray
codes are known to have better noise immunity and are less likely to provide wrong reading
compared with binary code.

An encoder performance is specified by:

1. Resolution: number of counts per revolution. This is the number of lines on the disk
or linear scale for incremental encoder. For an absolute encoder with N-bit resolution
(N set of LED and photodetector pairs), there are 2N counts per revoution.

2. Maximum speed: the maximum speed of the encoder can be limited by electrical
and mechanical reasons. The maximum state change capacity of the photodetectors
determines the maximum speed limit set by electrical capability of the encoder. The
frequency output of the encoder (resolution times the maximum speed) must be below
that value. The maximum speed is also limited by the mechanical bearings of the
encoder.

3. Encoder output channels available: A, B, C, Ā, B̄, C̄ for incremental encoders.

4. Electrical output signal type: TTL, open collector or differential line driver type. The
differential line driver type is used for long cables and noisy environments.

5. Mechanical limits: maximum radial and axial loads, sealing for dusk and fluid,
vibration and temperature limits.

Count Multiplication and Interpolation By detecting the phase between A
and B channels of an incremental encoder, the number of counts per line can be effectively
multiplied by 1, 2, or 4. Since A and B channels are 90◦ out of phase, with one cycle of
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line change, we can actually obtain up to four counts by counting the transition in each
channels (Figure 6.22). The quadrature count multiplication (×4) is standard in industry.
For a quadrature incremental encoder the number of counts per revolution is four times the
number of lines per revolution.

If further position resolution improvement is needed beyond the×4 quadrature decod-
ing of what is physically coded to disk, then sinusiodal output photodetectors must be
used. The output of the so called sinusodial encoders are not discrete ON/OFF levels, but
sinusoidal signals as a function of the angular position within one cycle of disk lines (Fig-
ure 6.22). Typical signal voltage level is about 1.0 VDC peak to peak. By sampling the level
of the signal finely, the effective position resolution of the encoder can be increased, that is
by ×1024 using a 10-bit sampling circuit. This type of interpolation requires a specifically
designed interpolation circuit. Notice that the repeatability of the mechanical dimension of
the printed pattern on the disk is ultimately the smallest resolution that can be achieved. The
electronic interpolation improves the resolution by predicting the intermediate positions
through oversampling of a sinusoidal signal. The interpolation based resolution improve-
ment can be easily lost by noise in the sinusoidal output signal. An example of sinusoidal
output linear incremental encoder is Series LR/LS (by Dynapar Corp). The sinusoidal out-
put of the linear encoder can be sampled and interpolated to 250 nm resolution using a
10-bit sampling and interpolation circuit.

Example Consider an incremental encoder with 2500 lines∕rev resolution and a
decoder which uses ×4 decoding logic. Then the resolution of the encoder is
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10 000 counts∕rev. Assume that the photodetectors in the decoder circuit can handle A
and B channel signals up to 1 MHz frequency.

1. Determine the maximum speed the encoder and decoder circuit can handle.

2. If the encoder resolution was 25 000 lines∕rev and the same decoder was used, what
is the maximum speed that could be handled by the decoder circuit?

Since the decoder can handle 1 MHz A and B channel signals, the maximum speed
that can be measured without data over run is

wmax =
1 ⋅ 106 pulse∕s

2500 pulse∕rev
= 400 rev∕s = 24 000 rpm (6.66)

The angular position measurement resolution is 2500 lines∕rev × 4 = 10 000 count∕rev,
then 360∕10 000 degrees∕count, which is the smallest change in angular position that can
be detected.

If the encoder resolution is increased by a factor of 10, then the position measure-
ment resolution is increased by a factor of 10, 360∕100 000 degrees∕count. However, the
maximum speed the decoder can handle is reduced by the same factor,

wmax =
1 ⋅ 106 pulse∕s

25 000 pulse∕rev
= 40 rev∕s = 2400 rpm (6.67)

While the position measurement resolution is improved by a factor of 10, from
360∕10 000 degrees∕count to 360∕100 000 degrees∕count, maximum speed capability is
reduced also by the same factor of 10, from 24 000 rpm to 2400 rpm.

Therefore, if we need to increase the position measurement resolution by increasing
encoder resolution, we reduce the maximum speed measurement capacity if we use the same
decoder circuit. If we want to increase position measurement resolution without losing the
maximum speed measurement capacity, the maximum frequency capacity of the decoder
circuit must be increased by the same factor. Decoder circuits which can handle encoder
signal frequency of up to 2 MHz are common. Decoders up to 50 MHz input frequency
capacity are also available.

6.4.4 Hall Effect Sensors

The Hall effect (named after Edward Hall, 1879) is the phenomenon that semiconductor
and conductor materials develop an induced voltage potential when the material is in a
magnetic field and has a current passing through it. The relationship between the induced
voltage, the current, and the magnetic field strength is a vector relationship (Figure 6.23).
When a sheet of semiconductor (i.e., gallium-arsenide, GaAs) or conductor material has
a current passing through it, and is placed in a magnetic field, a voltage is induced in the

  Hall
sensor

B

Vout

FIGURE 6.23: Principle of Hall effect

and its usage in sensor design.
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direction perpendicular to both the current and the magnetic field vector. If the direction
of the magnetic field or the current changes, so does the direction of the induced voltage.
The induced voltage magnitude is also function of the material type. It is very small for
conductors, but large enough for semiconductors such that this effect is widely used in
sensor designs. The sensor output voltage is function of the magnetic field strength (B), the
current (i) and the material of the sensor,

Vout = Vout(B, i, material) (6.68)

In a sensor application, the current (i) is fixed by the sensor power supply voltage (Vs) and
resistor (Rs). A Hall effect sensor requires an external power supply for the current i and
magnetic field density (B) for it to work. The material of the sensor is also fixed. Then, the
output voltage varies as a function of the magnetic field strength for a given Hall sensor.
In the sensor by design, the measured variable must be arranged such that it changes the
magnetic field strength over the Hall sensor. For instance, the measured variable may be
the position of a magnet relative to the sensor. Similarly, the magnet may be part of the
sensor, and a ferrous metal object entering the field changes the magnetic permeability
(magnetic conductivity) around the sensor, and hence changes the magnetic field density
(B). As a result the output voltage is changed (i.e., Figure 6.24). This principle is also used
in presence sensors which have only two state ON/OFF outputs. Typical voltage levels
produced by the Hall transducer are at the millivolts level, hence must be amplified by an
op-amp for processing in a measurement and control system. The op-amp may amplifiy
the Hall effect sensor voltage linearly to measure analog distance or can convert it to an
ON/OFF output signal for presence sensing. Since the sensing element of the Hall sensor
can be a semiconductor, both the sensing element and digital signal processing circuit
can be integrated into a single silicon chip. For instance AD22151 by Analog Devices is
one such integrated Hall effect sensor. It operates from a 5 VDC power supply and can
operate in an environment with a temperature range of −40 to +150◦C. Such integrated

Rotor
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S

S

N

N

Hall output #1
Hall output #2
Hall output #3

+5 VDC
Ground

FIGURE 6.24: Three Hall effect sensors used to sense commutation positions in a brushless

DC motor.
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FIGURE 6.25: Operating principle of capacitive gap sensor: the presence of the target object

changes the effective capacitance.

Hall effect sensors also include a built-in temperature sensor so that the variations in the
gain of the sensing head as temperature varies can be compensated for. Figure 6.24 shows
an application of Hall effect sensors in position sensing of the rotor of a brushless DC
motor. Brushless DC motors need current commutation, that is the shaping of the desired
current in each phase as a function of rotor position, for proper operation. In trapezoidal
current commutated brushless DC motors, we need to know six ranges of rotor position
in order to properly commutate the current. Three Hall effect sensors, each operating in
ON/OFF modes are used to provide rotor position information for current commutation.
The sensor heads and permanent magnets are arranged such that at any given position, one
or two of the sensors are ON.

6.4.5 Capacitive Gap Sensors

A capacitive gap sensor measures the distance between the front face of the sensor and a tar-
get object. It is a non-contact distance sensor. The target material should have high relative
permittivity1 . Metals, plastics with carbon are good target materials for sensing. The capac-
itance between the sensor and the target material is related approximately (Figure 6.25),

C = 𝜖 ⋅ A
x

(6.70)

where 𝜖 = 𝜅 ⋅ 𝜖0, 𝜖 is the permittivity of the medium, 𝜅 is the dielectric constant of the
medium separating the sensor and target material, 𝜖o is the permittivity of free space, A is
the area of the plates, x is the distance to be measured. Therefore, there is a well-defined
relationship between the distance (gap, x) and the capacitance, C. The effective dielectric
constant 𝜅 between the sensor head and target material is a function of the target material
type (conductive, i.e., iron, aluminum or non-conductive non metal, i.e., plastic). Notice that
since the net capacitance is a function of the target material, the effective sensing distance
varies with different target material types. The excitation circuit for the sensor works
to maintain a constant electric field magnitude between the sensor head and the target
object. As the capacitance changes, the required current to do so changes proportionally.

1 The force, F, between two charged particles, q1 and q2, which are separated from each other by distance r in
free space, is

F = ke
q1 ⋅ q2

r2
(6.69)

where ke = 1∕(4𝜋 ⋅ 𝜖o) = 8.9875 ⋅ 109 N m2∕C2, is called the Coulomb constant and 𝜖o is the permittivity of free
space.
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Hence, there is a relationship between the measurable current effort and capacitance. The
excitation circuit which maintains the constant capacitance by controlling the current uses
a high frequency modulation signal (i.e., 20 KHz modulation frequency).

The resolution of the capacitive gap sensor is typically in the micrometer range
(1 μm = 10−6 m), but it can be made as low as a few nanometers (1 nm == 10−9 m) for
special applications. The range is limited to about 10 mm. The frequency response of specific
capacitive sensors can vary as a function of the sensed gap distance. The bandwidth of a
given sensor varies as a function of the gap measured as a percentage of its total range. The
smaller the gap distance measured relative to the sensor range, the higher the bandwidth of
the sensor. For instance, a non-contact capacitive gap sensor can have 1000 Hz bandwidth
for measuring gap distances within 10% of its range, while the same sensor may have about
100 Hz bandwidth while measuring gap distances around 80% of its range.

Capacitive presence sensors provide only two state ON/OFF output, and sense the
change in the oscillator circuit signal amplitude. When a target object enters the field
sensing distance of the sensor, the capacitance increases and the magnitude of oscillations
increases. A detection and output circuit then controls the ON/OFF state of a transistor.

The capacitive gap sensor can also be used to sense the presence, density, and
thickness of non-conducting objects. The non-conductor materials (such as epoxy, PVC,
glass) which have a different dielectric constant than air can be detected since the presence
of a such material in front of the probe instead of air results in a change in the capacitance.

6.4.6 Magnetostriction Position Sensors

Magnetostriction linear position sensors are widely used in hydraulic cylinders. Figure 6.26
shows the basic operating principle of the sensor. A permanent magnet moves with the
object whose position is to be measured. The sensor head sends a current pulse along a
wire which is housed inside a waveguide. The interaction between the two magnetic fields:
the magnetic field of the permanent magnet and the electromagnetic field of the current
pulse, produces a torsional strain pulse on the waveguide. The torsional strain pulse travels
at about 9000 ft∕s speed. The time it takes for the strain pulse to arrive at the sensor head is
proportional to the distance of the permanent magnet from the sensor head. Therefore, by
measuring the time period between the current pulse sent out and the strain pulse reflected
back, the distance can be measured,

x = V ⋅ Δt (6.71)

where V is the travel speed of the torsional strain pulse which is known, Δt is measured,
and hence the position, x can be determined as the measured distance.

Typical resolution is in the range of 2 μm, and the range can be in the order of 10.0 m.
The bandwidth of the sensor is typically in the 50–200 Hz range and is limited by the
torsional strain pulse travel speed and the range (length) of the particular sensor.

Maximum possible sensor bandwidth, that is the maximum frequency the position
signal is obtained, is determined by the maximum position the sensor can measure and
the travel speed of the wave (about 9000 ft∕s). For instance for a sensor with xmax = 4 ft
measurement range, the maximum bandwidth is

wmax = 1
Δt

= V
xmax

(6.72)

=
9000 ft∕s

4 ft
(6.73)

= 2.25 kHz (6.74)
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FIGURE 6.26: Operating principle of magnetostriction absolute position sensor: an industry

standard sensor used for cylinder position measurement in electro-hydraulic motion control

systems. (a) Operating principle of the sensor; (b) in-cylinder mechanical placement of the

sensor; (c) cut-away picture of a hydraulic cylinder with a magnetostriction sensor.
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However, in practice averaging is used in the position signal processing. In other words,
multiple wave signals are obtained in a row, such as ten samples in a row, and then the
average value of that measurement is presented as one position measurement information.
If averaging is used, the actual bandwidth will be smaller by a proportional amount. In
this case, if five sample averaging is used, the sensor’s maximum bandwidth would be
2.25 kHz∕5 = 450 Hz or if ten sample averaging is used, the sensor’s maximum bandwidth
would be 2.25 kHz∕10 = 225 Hz. The magnetostrictive absolute position sensor is one of
the most rugged position sensing technologies currently available and is widely used in
harsh environment applications, especially with hydraulic cylinders.

6.4.7 Sonic Distance Sensors

Sound is transmitted through the propagation of pressure in the air. The speed of sound in
the air is nominally 331 m∕s at 0 ◦C dry air (343 m∕s at 20 ◦C dry air). Two of the important
characteristics of sound waves are frequency and intensity (amplitude). The human ear can
hear the frequencies in the range of 20 Hz to 20 kHz. Frequencies above this range are
called ultrasonic frequencies.

Sonic distance sensors measure the distance of an object by measuring the time
period between the sent ultrasonic pulse and the echoed pulse (Figure 6.27). The sensor
head sends ultrasonic sound pulses at high frequency (i.e., 200 kHz), and measures the time
period between the sent pulses and the echoed pulses. For instance, it may send a short
pulse of 200 kHz frequency and fixed intensity every 10 ms, where the time period of the
sent pulse is only a few milliseconds. Before a new pulse is sent out, the time instant of the
reflected sound pulse is measured. This process continues periodically, every 10 ms in this
example. Knowing the speed of sound, a digital signal processor embedded to the sensor
can calculate the distance of the object,

x = Vsound ⋅ Δt (6.75)

where Vsound is known, Δt is measured, x is calculated. The range of the sensor can be up to
20 m with a minimum range of 5 cm. Notice that the sonic distance sensor is not appropriate
for very short distance measurements, that is under 5 cm. The frequency response of the
sensor (distance measurement update rate) varies with the distance measured, in general
it can be around 100 Hz. Clearly, sonic sensors cannot be used in high bandwidth servo
positioning applications which require a 1.0 ms or faster position loop update period.
Typical applications of the sonic distance sensor include the roll diameter measurement,
web loop length measurement, liquid level measurement, and box presence measurement
on conveyors (Figure 6.28).

Object

Sensor

A
m

p
li

tu
d
e

Echo pulse

Transmitted
pulse

Transmitted
pulse Time interval

10 ms

200 kHz

FIGURE 6.27: Operating principle of a sonic distance sensor.
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FIGURE 6.28: Applications of of a sonic distance sensor in various manufacturing processes:

(a) liquid level sensing, (b) two-dimension sensing (i.e., box height and width), (c)

one-dimension sensing (i.e., box height), (d) roll diameter sensing, (e) web slack sensing.

6.4.8 Photoelectic Distance and Presence Sensors

Sensors which measure the distance or presence of an object from a reference point using
“light” as the transduction mechanism are collectively called “photoelectric sensors” or
“light sensors.” The light sensors which provide only two discrete outputs (ON/OFF) are
called photoelectric presence sensors (Figure 6.29). The sensor emitter sends a light beam.
The receiver (phototransistor) turns its output either ON or OFF depending on the received
light. The light threshold that separates the ON and OFF states is adjustable by the op-amps
in the electronic circuit of the sensor. The light sensors are immune from the ambient light
variations due to the modulated nature of the emitted light. The light emitting diodes (LED)
are tuned to emit light at high frequency. Figure 6.30 shows the frequency spectrum of light
waves. The phototransistors (receivers) are also tuned to respond to that light frequency
and reject the other frequencies, much like tuning a radio channel. As a result, the sensor
output is very robust against ambient light conditions. If the receiver is across from the
emitter, it is called a through light sensor (or through beam photoelectric sensor). If the
receiver and emitter are on the same sensor head, and the receiver turns ON/OFF its output
based on the amount of reflected light, it is called a reflective light sensor (or reflective
beam photoelectric sensor).

A category of light-based distance and presence sensors uses reflected light intensity
for measurement. The presence sensors have a two state output: ON or OFF, representing
the presence or absence of an object at the target location. Such reflected light based
presence sensors (sensors with ON or OFF output) work on the principle of reflected light
strength. An emitter sends a focused light. The object reflects the light. The reflected light
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Amp Demodulator Timing
 logic
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FIGURE 6.29: Components and operating principle of a through-beam light presence sensor.

Reflective and diffusive versions of this type of sensor can also be used for distance sensing. (a)

Liquid level sensing, (b) part dimension sensing (height and width), (c) part height sensing, (d)

roll diameter sensing, (e) web slack level sensing.
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FIGURE 6.30: Frequency spectrum of light.

is captured on a detector. If the object is within a range of expected distance, the reflected
light strength will be such that the output of the detector is ON. If the object is outside that
range (or the reflectivity of the object is weaker even though it is in the expected distance
range of the sensor), the output of the sensor will be OFF.

Figure 6.31a shows various applications of light-based sensors in presence and dis-
tance sensing applications. The same type of sensor, using the so-called reflected light
triangularization principle, is used in measuring the distance between the sensor head and
the object reflecting the light (Figure 6.31b). The sensor head has a laser emitter and charge
coupled device (CCD) receiver. The emitter sends a laser light, and the reflected light is
captured on the CCD receiver. The location on the CDD array where the reflected light
arrives is a function of the distance of the object from the sensor head. An on-board micro-
controller or DSP makes the necessary geometric calculations to relate the CCD position
information to the object position information based on a simple trigonometric relation.
In order to deal with noise in the signal, the microcontroller typically uses an averaging
method in its calculations. It is common to have a laser based distance sensor with 1.0 m
range, 10 μ resolution, and 4 kHz update rate.

The light sensors have the largest range and resolution ratio. The bandwidth of the
sensor is very high (in the order of a few kHz) and it is not sensitive to the distance measured
due to the high speed of light. They are also very small in physical size and easy to install.

Photoelectric sensors are widely used in industry in the form of “safety light curtains”
(Figure 6.32). A set of emitter–receiver pairs forms a linear line of light beams. When any
portion of the light beam is interrupted by an object passing through, the sensor output
turns ON. Typically, the sensor output is connected to drive a circuit breaker to shutdown
the power to the machine. Notice that the light curtain is formed by a finite number (i.e.,
10 to 100 range) of emitter–receiver pairs. Therefore, the object must be at least as thick as
the light curtain resolution to be detectable. Typical resolution of the light curtain is around
25 mm to 30 mm. Small objects can potentially pass through the light curtain without
interrupting the light.
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FIGURE 6.31: (a) Applications of reflective types of light sensors: presence sensors with

ON/OFF output, and (b) distance sensor using triangularization in a laser sensor.
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FIGURE 6.32: A through-beam emitter–receiver array light sensor used as a safety light

curtain.

6.4.9 Presence Sensors: ON/OFF Sensors

A special class of the position related sensors are those which sense the presence of an
object with a sensing range and provide one of two discrete outputs: ON or OFF. Such
sensors are collectively called presence sensors or ON/OFF sensors.

We have previously discussed the light based sensors which can be used to detect
the presence of an object within the viewing field of the sensor. There are three different
types of light based (photoelectric) presence sensors: through-beam, reflective, diffusive
(Figure 6.33). The sensor has a frequency tuned emitter and a receiver head. Depending on
the receiver light and the adjustable threshold on the receiver head, the output of the sensor
is turned ON or OFF.

Inductive and capacitive proximity sensors are two of the most common non-contact
presence sensors used in industry. Their operating principles are shown in Figure 6.34. The
sensing range of these sensors is in the 1 cm to 10 cm range. Typical maximum switching
frequency of an inductive presence sensor is about 1 ms (1 kHz) and the switching frequency
of a capacitive presence sensor is about 10 ms (100 Hz). Notice that while the inductive
proximity sensors sense only the metal targets, capacitive proximity sensors can sense
non-metallic targets as well.

Target Target
Target

(a) (b) (c)

FIGURE 6.33: Operating principles of photoelectric presence sensors (a) through-beam type,

(b) reflective type, (c) diffusive type.
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FIGURE 6.34: Operating principles of a proximity sensor.

An inductive sensor has the following main components: sensor head (ferrous core
and conductor coil winding around it), oscillating current supply circuit, detection and
output circuit. The oscillating supply circuit establishes an oscillating current, hence an
oscillating electromagnetic field, around the sensor head. When a metallic object enters the
field of the sensor, it changes the electromagnetic field density around the sensor since the
effective magnetic permeability of the surrounding environment changes. The oscillating
electromagnetic field induces eddy currents on the target metallic object. The eddy current
losses draw energy from the supply circuit of the sensor, and hence reduce the magnitude of
oscillations. The detection circuit measures the drop in the oscillation current magnitude,
and switches (turn a ON/OFF) the output circuit transistor. Inductive sensors operate with
electromagnetic fields. Inductive sensors can detect metal objects. For a given inductive
sensor, the detection range is higher for ferrous metals (i.e., iron, stainless steel) than the
detection range for non-ferrous metals (i.e., aluminum, copper). Capacitive sensors operate
with electrostatic fields. The objects sensed by capacitive sensors must have an effect in
changing the electrostatic field through the effective change in capacitance. This is typically
accomplished by changing the dielectric constant around the sensor, hence changing the
effective capacitance. Notice that, as a sensed part enters the field of a proximity sensor
(inductive or capacitive type), the electric field around the sensor head is gradually changed.
The change in the field (electromagnetic field for inductive type, electrostatic field for
capacitive type) strength occurs in proportion to the position of the sensed object. As a
result a threshold value in the sensed change is used to decide present (ON) or not-present
(OFF) decision of the sensor.

An inductive proximity sensor and a gear set is often used as a position and velocity
sensor for applications which require low resolution but very rugged position and speed
sensors (Figure 6.35). As each gear tooth passes by the proximity sensor, the output of
the sensor changes state between ON and OFF. This basically is equivalent to a single
channel encoder. Using a single channel proximity sensor, the change of direction can
not be detected. Therefore, this type of sensor is appropriate for applications where the
rotational direction of the shaft is in only one direction (i.e., engine output shaft rotation
direction is always in the same direction). The speed is determined by the frequency of the
pulses from the proximity sensor.
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FIGURE 6.35: Operating principles of a

proximity sensor (inductive, capacitive, Hall

effect types) and a gear on a shaft to

measure rotary position and speed.

6.5 VELOCITY SENSORS

6.5.1 Tachometers

Construction of a tachometer is identical to the construction of a brush-type DC motor,
except that it is smaller in size since the tachometer is used for measurement purposes,
not for the purpose of converting electrical power to mechanical power like an electric
motor actuator. A tachometer involves a rotor winding, a permanent magnet stator and
commutator-brush assembly (Figure 6.36).

A tachometer is a passive analog sensor which provides an output voltage proportional
to the velocity of a shaft. There is no need for external reference or excitation voltages. Let
us consider the dynamic model of the electrical behavior of a brush type DC motor. Let
the resistance and inductance of the rotor winding be R and L, respectively. The back EMF
constant of the motor (which will be used as tachometer) is Kvw. The dynamic relationship
between the terminal voltage, Vt, current, i in the rotor winding, and the angular speed of
the rotor, w is

0 = L ⋅
d
dt

i(t) + R ⋅ i(t) + Kvw ⋅ �̇�(t) (6.76)

L R

i

SN

Vb emf

Torque

Speed

FIGURE 6.36: Operating principle of a tachometer for speed sensing.
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where the voltage due to back electromotive force is

Vbemf = Kvw ⋅ �̇�(t) (6.77)

If we neglect the effect of inductance, L = 0, then the tachometer relationship can be
approximated

R ⋅ i(t) = −Kvw ⋅ �̇�(t) (6.78)

VR(t) = −Kvw�̇�(t) (6.79)

�̇�(t) = − 1
Kvw

⋅ VR(t) (6.80)

where VR(t) is the voltage across the resistor which can be easily measured (but note that
resistance R varies with temperature), and Kvw is known by design of the tachometer. Then
the speed can be calculated.

By design, tachometers have L and R parameters that result in a small current (i).
In steady-state, the output voltage is proportional to the shaft velocity. The proportionality
constant is a parameter determined by the size of the tachometer, type of winding, and
permanent magnets used in its construction. Ideally, the gain of the tachometer should be
constant, but in reality it varies with temperature (T) and rotor position (𝜃) due to a finite
number of commutators. Hence, the sensor output voltage and angular speed relation can
be expressed as,

Vout(t) = Kvw ⋅ �̇�(t) (6.81)

where

Kvw = Kvw(T , 𝜃) (6.82)

The value of the gain at rated temperature and nominal rotor position is called the Kvwo.
The gain changes as a function of temperature. In addition, due to the finite number of
commutators, the gain has a periodic ripple as a function of rotor position. The frequency of
the ripple is equal to the number of commutators. The ripple due to commutation is reflected
on the output voltage which is generally less than 0.1% of the maximum output voltage.

The parameters that specify the performance of a tachometer are

1. speed to voltage gain, Kvw(V∕rpm),

2. maximum speed, wmax, limited either by the bearings or the magnetic field saturation,

3. inertia of the rotor,

4. maximum expected ripple voltage and frequency.

A typical dynamic time constant of a tachometer is in the range of 10–100 μs.
For very high speed applications, the winding and magnets are designed such that

Kvw(V∕krpm) is a low value, whereas for very sensitive low speed applications, it is
designed such that the Kvw is a high value.

Example Consider a tachometer with a gain of 2 V∕1000 rpm = 2 V∕krpm. It is inter-
faced to a data acquisition system through an analog to digital converter (ADC) which
has 12-bit resolution and ±10 V input range. The sensor specifications state that the ripple
voltage due to commutators on the tachometer is 0.25% of the maximum voltage output.

1. Determine the maximum speed that the sensor and data acquisition system can
measure.

2. What are the measurement errors due to the ripple voltage and due to ADC resolution?

3. If the ADC was 8-bit, which one of the error sources is more significant: ripple
voltage or ADC resolution?



JWST499-c06 JWST499-Cetinkunt Printer: Yet to Come October 9, 2014 8:1 254mm×178mm

364 MECHATRONICS

Since the input to ADC saturates at 10 V, the maximum output from tachometer
should be 10 V. Hence, the maximum speed that can be measured is

wmax =
10 V

2 V∕krpm
= 5 krpm = 5000 rpm (6.83)

The measurement error due to ripple voltage is

Er =
0.25
100

⋅ 10 V = 0.025 V or
0.25
100

⋅ 5000 rpm = 12.5 rpm (6.84)

The measurement error due to the ADC resolution is one part in 212 since ADC has 12-bit
resolution over the full range of measurement (±10 V = 20 V range),

EADC = 20 V
212

= 20
4096

= 0.00488 V or
1

4096
⋅ 10 000 rpm = 2.44 rpm (6.85)

If the ADC is 12-bit resolution, the measurement error is dominated by the ripple voltage.
Measurement error due to ADC resolution is negligable. If the ADC is 8-bit, then the
measurement error due to the ADC resolution is

EADC = 20 V
28

= 20
256

= 0.078 V or
1

256
⋅ 10 000 rpm = 39.0625 rpm (6.86)

In this case, the measurement error due to ADC resolution is larger than the error due to
the ripple voltage of the sensor.

6.5.2 Digital Derivation of Velocity from Position Signal

In most motion control systems, velocity is a derived information from position mea-
surements. Accuracy of the derived (estimated) velocity depends on the resolution of the
position sensor. The velocity can be derived from the position measurement signal either by
analog differentiation using an op-amp circuit or digital differentiation using the sampled
values of the position signal.

The ideal op-amp differentiator has the following input signal to output signal rela-
tionship,

Vout(t) ≈ −K
d
dt

(Vin(t)) (6.87)

where Vin(t) represents the position sensor signal, Vout(t) represents the estimated velocity
signal.

Clearly, digital derivation is more flexible since it allows more specific filtering and
differentiation approximations,

V = ΔX
Tsampling

(6.88)

Velocity Estimation using Encoders at Very Low Speed Motion Appli-
cations An interesting method of velocity estimation in low speed applications using
encoders is to determine the time period between two consecutive pulse transitions in order
to increase velocity estimation accuracy. In very low velocity applications, the number of
pulse changes in an encoder count within a given sampling period may be as low as one
or two counts. If one of the count changes occurs at the edge of the sampling period, the
velocity estimation can be different by 50% whether that count occured right before or
right after the sampling period ended. Notice that typically, Tsampling = 1 ms, and ΔX is 1 or
2 counts in low speed applications. One count variation in the position change, depending
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on when that happens (right before the Tsampling period expired or right after it), can vary
estimated velocity by 100%.

Instead of keeping a fixed time period and counting the number of pulses during
that period to estimate the velocity, we measure the time period between two consecutive
pulses using a high resolution timer, that is using a μs resolution timer/counter. Then, the
estimated velocity is

V = 1[count]∕Tperiod (6.89)

Since the time period measurement is very accurate, the velocity estimation is more
accurate than the first case. Let us assume that we have an encoder with a resolution of
10 000 cnt∕rev (including a ×4 quadrature count multiplication), and that it is connected to
a shaft which rotates at 6.0 rev∕min. Assume that the sampling rate is Tsampling = 1.0 ms.
This results in 60 000 counts∕min or equivalently 1 cnt∕ms.

Let us assume that due to small variations in the velocity, there were two count
changes within one sampling period instead of the normal one pulse, one at the beginning
of the sampling period, and one at the 900 μs mark. The velocity estimation using the fixed
sampling period approach would give

V = 2 cnt∕1.0 ms (6.90)

= 2 cnt∕1.0 ms(60 000 ms∕1 min)(1 rev∕10 000 cnt) (6.91)

= 12 rev∕min. (6.92)

If the second pulse transition did not happen at the 900 μs mark, but beyond the 1.0 ms
sampling period, that is at 1.001 ms, the estimated velocity would have been,

V = 1 cnt∕1.0 ms (6.93)

= 1 cnt∕1.0 ms(60 000 ms∕1 min)(1 rev∕10 000 cnt) (6.94)

= 6 rev∕min. (6.95)

If the velocity was estimated by the time period measurement method, then the instantenous
velocity would be accurately estimated. Let us assume that we measure the time period
between two consecutive pulses using a 1 μs resolution timer/counter. Let us assume that
in one case the measured time period between two pulses is 900 μs and in another case it is
901 μs due to timer/counter resolution. The estimated velocity from both of these cases is

V1 = 1 cnt∕0.9 ms = 6∕0.9 rpm = 6.6667 rpm (6.96)

and the second estimated velocity is

V2 = 1 cnt∕0.901 ms = 6∕0.901 rpm = 6.6593 rpm (6.97)

Clearly, using the time period measurement between two consecutive pulses using a 1 μs
resolution timer/counter results in 0.11% error in velocity measurement. Whereas, counting
the number of pulses during a fixed sampling period can result in velocity measurement
errors as high as 100%.

6.6 ACCELERATION SENSORS

Three different types of acceleration sensors, also called accelerometers, each based on a
different transduction principle, are discussed as follows.

1. An inertial motion based accelerometer, where the sensor consists of a small mass-
damper-spring in an enclosure and mounted on the surface of an object whose accel-
eration is to be measured. The displacement (x) of the sensor inertia is proportional
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to the magnitude of acceleration (Ẍ) of the object provided that the frequency of
acceleration is well within the natural frequency (bandwidth) of the sensor.

Ẍ → x → Vout (6.98)

2. Piezoelectric based accelerometers provide a charge (q) proportional to the iner-
tial force as a result of the acceleration. Piezoelectric materials provide a charge
proportional to the strain which is proportional to the inertial force.

Ẍ → F → q → Vout (6.99)

3. Strain-gauges can be used for acceleration measurement if the sensor can transduct a
strain (𝜖) proportional to the acceleration. Once that is accomplished, the change in
the strain is measured by the change in the strain-gauge resistance and hence as an
output voltage from a Wheatstone bridge and op-amp circuit.

Ẍ → F → 𝜖 → R → Vout (6.100)

6.6.1 Inertial Accelerometers

An inertial accelerometer is basically a small mass-spring-damper system with high natural
frequency. Consider the figure shown in Figure 6.37, which is the concept of an inertial
accelerometer connected to a body whose acceleration is to be measured. Figure 6.38
shows pictures of a number of accelerometers. The dynamic relations between the relative
displacement of the sensor inertia with respect to its enclosure, x, and the acceleration of
the body, ẍbase, are

m ⋅ (ẍ(t) + ẍbase(t)) + c ⋅ ẋ(t) + k ⋅ x(t) = 0 (6.101)

ẍ(t) + (c∕m) ⋅ ẋ(t) + (k∕m) ⋅ x(t) = −ẍbase(t) (6.102)

Notice that if the accelerometer parameters m, c, k are chosen such that the motion of the
accelerometer is critically damped, then the displacement of the accelerometer relative to
its enclosure, x(t), is proportional to the acceleration of the base in steady-state. The speed
of response is determined by the c∕m and k∕m ratios. Let

c∕m = 2𝜉wn (6.103)

k∕m = w2
n (6.104)

Mass
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Input
motion

Object
in motion

m

FIGURE 6.37: Operating principle

of an inertial accelerometer.
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FIGURE 6.38: Pictures of various accelerometers.

The values of m, c, k are chosen such that 𝜉 = 0.7 to 1.0 range, and wn can be chosen up to
a few hundred Hz. The smaller the mass and the stiffer the spring constant of the sensor,
the higher will be its bandwidth.

Let us consider a sinusoidal base displacement and acceleration as a function of time,

xbase(t) = A sin(w t) (6.105)

The resulting acceleration of the base as a result of constant magnitude sinusoidal displace-
ment of the base is,

ẍbase(t) = −A w2 sin(w t) (6.106)

The steady-state response of the displacement of the sensor inertia with respect to its
housing, x(t), is the steady-state solution for

ẍ(t) + (c∕m) ⋅ ẋ(t) + (k∕m) ⋅ x(t) = −ẍbase(t) (6.107)

ẍ(t) + (c∕m) ⋅ ẋ(t) + (k∕m) ⋅ x(t) = A w2 sin(w t) (6.108)

In steady-state,

xss(t) =
A (w∕wn)2 sin(wt − 𝜙)

{[1 − (w∕wn)2]2 + [2 𝜉(w∕wn)]2}1∕2
(6.109)

where

𝜙 = tan−1 2𝜉(w∕wn)

1 − (w∕wn)2
(6.110)

The steady-state displacement of the sensor has the following properties:

1. the sensor displacement has the same frequency as the acceleration of the base,

2. there is a phase shift between the sensor displacement and base acceleration and
the phase angle is a function of acceleration frequency (w) as well as the sensor
parameters (𝜉, wn),

3. the magnitude of the sensor displacement is proportional to the acceleration magni-
tude. However, the proportionality constant is a function of acceleration frequency
(w) as well as the sensor parameters (𝜉, wn).
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The magnitude of the sensor displacement, which is a sinusoidal function, is

|xss(t)| = A (w∕wn)2

{[1 − (w∕wn)2]2 + [2 𝜉(w∕wn)]2}1∕2
(6.111)

There are two different purposes for this type of sensor,

1. If the sensor is intended to be used to measure the acceleration of the base, then
we are interested in the ratio of the magnitude of the response to the magnitude of
excitation, ||||xss(t)

A w2

|||| = (1∕wn)2

{[1 − (w∕wn)2]2 + [2 𝜉(w∕wn)]2}1∕2
(6.112)

2. If the sensor is intended to be used as a seismic instrument (i.e., for earthquake
measurements) and measure the displacement of the base, then we are interested in
the ratio of ||||xss(t)

A

|||| = (w∕wn)2

{[1 − (w∕wn)2]2 + [2 𝜉(w∕wn)]2}1∕2
(6.113)

The magnitude ratio of the sensor displacement to the magnitude of the acceleration for
case (1) as a function of frequency is shown in Figure 6.39. In order to have a proportional
relationship (constant magnitude ratio) between the sensor output and the measured quan-
tity (acceleration in this case) within the frequency range of interest, it is necessary that
(Figure 6.39a)

w ≪ wn ; w in [0, wmax] (6.114)

where wmax is the maximum frequency content of the acceleration which we expect to
measure.

On the other hand, if the sensor is used to measure the displacement of the base, as
in seismic applications, in order to have a proportional relationship (constant magnitude
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FIGURE 6.39: Inertial accelerometer output and input magnitude ratios: (a) sensor output to

base acceleration magnitude ratio, (b) sensor output to base displacement ratio.
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ratio) between sensor output and measured quantity (base displacement in this case), it is
necessary that (Figure 6.39b)

w ≫ wn ; wmin < w < wmax (6.115)

This relationship states that an inertial accelerometer used to measure the seismic displace-
ment should be used in a frequency range that is larger than a certain minimum frequency,
wmin, and that frequency should be at least as large or more than the natural frequency of
the sensor,

wn < wmin < w (6.116)

In other words, the natural frequency of an accelerometer used for seismic displace-
ment measurement should be very small. Since the wn =

√
k∕m, the mass of the seismic

accelerometer should be very large and the spring constant should be small. This explains
the reason for the large size of seismic accelerometers compared to normal accelerometers.

A given inertial acceleration sensor can measure accelerations with a frequency
content below its natural frequency, and displacements with a frequency content above its
natural frequency.

An inertial accelerometer cannot accurately measure seismic displacements that have
a frequency lower than the natural frequency of the sensor. Likewise, an inertial accelerom-
eter cannot measure accelerations that have a frequency content closer to or larger than
the natural frequency of the sensor. Inertial accelerometers used for seismic displacement
measurement must have as small a natural frequency as possible. Inertial accelerometers
used for acceleration measurement must have as large a natural frequency as possible.

Example: Gyroscope Used as an Orientation Angle Sensor Gyroscopes
(also called inertial gyros) are used in ships, airplanes, and space vehicles for measuring
rotational speed and orientation angles of the vehicle. The gyroscope shown in Figure 6.40
is used to measure one orientation angle of the device. The gyro has a rotating rotor which

Spring
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Outer gimbal
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Inner gimbal
Bearing
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Damper

x

x Kx,Cx
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θ Z

FIGURE 6.40: Inertial gyro used to measure the rate of rotation: Inertial gyro construction and

operating principle.
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is typically driven at a constant speed by a DC electric motor. The rotor is supported by
two bearings on the inner gimbal, which in turn is supported by two bearings on the outer
gimbal. The inner gimbal is further connected to the outer gimbal via a pair of springs. The
basic dynamic principle of operation of the gyro is that a rotational rate (angular velocity)
about the z-axis, that is �̇�z(t) results in a proportional angular displacement about the x-axis
in steady-state, that is

𝜃x(t) = K ⋅
d𝜃z(t)

dt
(6.117)

As a result, when this gyro is mounted on a vehicle by securing its outer gimbal to the
vehicle, the angular displacement about the x-axis is a measure of the rotational velocity
about the z-axis. This rotational speed about the z-axis can be integrated over time, given
the initial condition of the angle about the z-axis, to keep track of the orientation of the
vehicle about the z-axis. The dynamic relationship for this gyro is

Jx
d2𝜃x(t)

dt2
+ Cx

d𝜃x(t)

dt
+ Kx𝜃x(t) = Jy ⋅ wy ⋅

d𝜃z(t)

dt
; transient (6.118)

Kx𝜃x(t) = Jy ⋅ wy ⋅
d𝜃z(t)

dt
; steady-state (6.119)

𝜃x(t) =
Jy ⋅ wy

Kx
⋅

d𝜃z(t)

dt
(6.120)

𝜃x(t) = K
d𝜃z(t)

dt
(6.121)

where Jx, Cx, Kx are the rotational moment of inertia of the gyro rotor and its inner gimbal
about the x-axis, the damping coefficient, and the spring constant. Jy is the rotary inertia
of the gyro rotor about the y-axis, wy is the speed of the gyro rotor, which is typically kept
constant by a controlled electric motor.

6.6.2 Piezoelectric Accelerometers

Some materials (such as natural quartz crystal, silicon dioxide, barrium titanite, lead zir-
conate titanate (PZT)), called piezo crystals, produce a charge in response to a force (or
deformation) applied to them. This is called the direct piezoelectric effect. The same materi-
als also have the reverse phenomenon, that is, they produce force in response to an applied
charge. This is called the reverse piezoelectric effect. The Greek word “piezo” means
“to squeeze” or “pressure.” Quartz has excellent temperature stability and shows almost
no decay in its piezoelectric properties over time. PZTs are polarized by applying very
high DC voltages at high temperatures. PZTs show a natural decay in their piezoelectric
properties over time, hence may need to be periodically calibrated or re-polarized.

Piezoelectric accelerometers work on the principle that the acceleration times the
sensor inertia will apply a force on the sensor. Mechanically, the piezo element acts as a very
precise and stiff spring in the sensor design. As a result of the piezoelectric phenomena, the
charge output, hence the output voltage, from the sensor is proportional to the inertial force

ẍ → F → q → Vout (6.122)

q = C ⋅ Vout (6.123)

where q is the charge produced by the piezoelectric material, C is the effective capacitance,
and Vout is the produced output voltage.

A calibrated piezoelectric acceleration sensor has the following input–output rela-
tionship,

Vout = K ⋅ ẍ (6.124)
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FIGURE 6.41: Piezoelectric principle and its usage in force, pressure, and acceleration sensors.

Notice that although the piezo element has a finite stiffness and acts as a stiff spring, the
actual deformation of the piezo element is very small due to its large stiffness. Therefore,
it can be considered almost as if there is no deformation. Piezoelectric based acceleration
sensors have a range as high as 1000 g, with sensor bandwidth up to 100 kHz. The limiting
factor in the frequency response of the sensor is the charge amplifier bandwidth, which is
much slower than the sensor element. The bandwidth of the sensor element plus the charge
amplifier can be up to a few kHz range. Piezoelectric based sensors are most appropriate
for measuring signals that are time varying. They are not appropriate for measuring static
or low frequency signals since the charge due to the load will slowly discharge.

The design principles of piezoelectric based sensors for pressure, force, strain, and
acceleration measurements are very similar. The external force (in the case of a force sensor
it is the force sensed, in case of a pressure sensor it is the pressure times the surface area of
the diaphragm, in the case of acceleration sensor it is the inertial force, msensor ⋅ ẍ) induces
a strain on the piezoelement of the sensor. The output charge is proportional to the strain
(Figure 6.41).

As a example, the accelerometer Model-339B01 by PCB Piezotronics has the fol-
lowing characteristics: voltage sensitivity K = 100 mV∕g, frequency range up to 2 kHz,
amplitude range up to 50 g with a resolution of 0.002 g.

6.6.3 Strain-gauge Based Accelerometers

The operating principle of a strain-gauge based accelerometer is very similar to an inertial
accelerometer. The only difference is that the spring function is provided by a cantilever
flexible beam (Figures 6.42–6.45a). In addition, the strain in the cantilever beam is mea-
sured, instead of the displacement. The strain is proportional to the inertial force, hence the
acceleration. The voltage output from the sensor, proportional to strain, is obtained from
the standard Wheatstone bridge circuit.

ẍ → F → 𝜎 → 𝜖 → ΔR → Vout (6.125)

where F = mẍ, 𝜎 = F∕A, 𝜖 = (1∕E)𝜎, ΔR = G𝜖, m is inertia, A is the cross-sectional area
of deformation, E Youngs’ Modulus of elasticity constant, G the strain-gauge factor.

Vout(t) = K ⋅ ẍ(t) (6.126)

The range of the accelerations this type of sensor can measure is very similar to those of
piezoelectric type accelerometers, that is up to 1000 g. The bandwidth of the sensor can be
as high as a few kHz.
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L   =  N *l0Active length: 

FIGURE 6.42: A typical strain gauge for strain measurement.

6.7 STRAIN, FORCE, AND TORQUE SENSORS

6.7.1 Strain Gauges

The most common strain measurement sensor is a strain gauge. The strain gauge transduc-
tion principle is based on the relationship between the change in length and its resulting
change in the resistance of a conductor. Typical strain-gauge material used is constantan
(55% copper and 45% nickel). A fine wire of strain-gauge material is given a directional
shape and bonded to the part surface using adhesive bonding materials. The resistance and
strain relationship is

ΔR
R0

= G
ΔL
L0

(6.127)

where G is called the gauge factor of the sensor, R0 is the nominal resistance, and L0 nominal
length under no strain conditions. In order to increase the resulting resistance change under
given strain conditions, we need to pack more length, L, into a sensor size. That is the
reason for the many rounds of conductor wire in one direction in the construction of a strain
gauge (Figures 6.42 and 6.43). Ideally, strain is the property at a point on a material and is

3.0 mm

4.0 mm 3

2

FIGURE 6.43: Pictures of typical strain gauges for strain measurement. Adapted from

Omega.com.
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the ratio of change in the length to the total length in that direction,

𝜖 = ΔL
L

(6.128)

The change in the strain-gauge resistance is converted to a proportional voltage using a
Wheatstone brige,

Vout = K1 ⋅
ΔR
R

(6.129)

= K1 ⋅ G ⋅
ΔL
L

(6.130)

= K2 ⋅
ΔL
L

(6.131)

= K2 ⋅ 𝜖 (6.132)

Note that a strain gauge has a finite dimension. It is bounded to the surface of the part over
a finite area. Therefore, the measured strain is the average strain over the area occupied by
the strain gauge. The bonding of the strain gauge to the workpiece is very important for
two reasons: (i) it needs to provide a uniform mechanical linkage between the surface and
sensor in order to make the measurement correctly, (ii) the bonding material electrically
isolates the sensor and the part. The strain gauges themselves have a very high bandwidth.
It is possible to build strain gauge sensors that have almost 1 MHz bandwidth. Using silicon
crystal materials, strain gauge size can be minaturized while having a very large sensor
bandwidth.

6.7.2 Force and Torque Sensors

Force and torque sensors operate on the same principle. There are three main types of force
and torque sensors,

1. spring displacement based force/torque sensors,

2. strain-gauge based force/torque sensors,

3. piezoelectric based force sensors.

Let us consider a weighing station as a force sensor application. If we have a calibrated
spring with a known spring coefficient, Kspring, the load force (for torque measurement, we
would use an equivalent torsional spring) can be measured as displacement,

F = Kspring ⋅ x (6.133)

Using any of the position sensors, the displacement x can be converted to a proportional
voltage, and hence we obtain the force (or torque) measurement,

Vout = K1 ⋅ x (6.134)

= K2 ⋅ F (6.135)

The strain-gauge based force and torque sensors measure the force (or torque) based
on the measured strain. Again, the sensor relies on an elastic sensing component. Typical
force/torque sensors are called load cells. A load cell has built in elastic mechanical
components on which strain gauges are mounted (Figure 6.44). As the load cell experiences
the force (or torque), it deforms a small amount which induces a strain on the sensing
element. The strain is measured by the strain gauge. As a result, since the force/torque to
strain relationship is linear by the design of the load cell, the measurement is proportional
to the force/torque.



JWST499-c06 JWST499-Cetinkunt Printer: Yet to Come October 9, 2014 8:1 254mm×178mm

374 MECHATRONICS

FIGURE 6.44: Various load cells using strain gauges for force and torque measurement.

The other alternative for strain-gauge based force/torque sensor is to mount the strain
gauges directly over the shaft on which we want to measure the force/torque. In some
applications, it is not possible to install a load cell. Force or torque on a shaft must be
measured without significantly changing the mechanical design. Figure 6.45 shows such
force and torque sensing using four strain gauge pairs on a shaft. Notice that most force and
torque sensors use symmetrically bonded strain gauges to reduce the effect of temperature
variations and drift of the strain gauge output.

There are two inherent assumptions in the stain-gauge based force/torque sensing:

1. The strain in the material is small enough such that the deformation is in the elastic
range, and that

𝜖 = 1
E
𝜎 = 1

E
F
A

(6.136)

Strain 
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FIGURE 6.45: Force and torque measurement on a shaft or beam using strain gauges directly

mounted on the part.
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2. The strain gauge is subjected to the same strain. The strain–resistance change rela-
tionship is

𝜖 = 1
G
ΔR
R

(6.137)

where the change in the resistance is converted to an output voltage by a Wheatstone
bridge circuit,

ΔR
R

= 4
Vi

⋅ Vo (6.138)

As a result, the relationship between the strain gauge output voltage and force is

F =
(

4 ⋅ E ⋅ A
Vi ⋅ G

)
⋅ Vo (6.139)

Notice that the stain gauge output voltage to force calibration requires information
about the material (E) on which the strain gauge is bonded, the cross-section area of the
part (A), sensor gauge factor (G), and Wheatstone bridge circuit reference voltage (Vi).

Finally, force can be measured using piezoelectric sensors, similar to piezoelectric
pressure transducers (Figure 6.41). The piezoelectric sensor creates a charge proportional
to the force acting on it. The advantage of this is that it does not introduce an additional
flexibility into the system as part of the sensor. The only elasticity it introduces is the
elasticity of piezoelectric quartz cystal which has a modulus of elasticity in the range of
100 GPa = 100 ⋅ 109 N∕m2. The typical bandwidth of a piezo based force sensor is about
10 kHz.

Example Consider the force measurement using a strain gauge on a shaft under com-
pression (Figure 6.45b). Let us consider that the shaft material is steel. The elastic Young’s
modulus E = 2 ⋅ 108 kN∕m2, and cross-sectional area of the shaft is A = 10.0 cm2. We
have a strain gauge bonded on the shaft in the direction of the tension. The nominal resis-
tance of the strain gauge is R0 = 600Ω, the gauge factor is G = 2.0. The other three legs
of the Wheatstone bridge also have constant resistances of R2 = R3 = R4 = 600Ω. The
reference voltage for the Wheatstone bridge is 10.0 VDC. If the output voltage measured
Vout = 2.0 mV, what is the force?

Notice that the stress–strain relationship, assuming the deformation is within the
elastic range,

𝜎 = F
A

(6.140)

𝜖 = 1
E
𝜎 (6.141)

ΔR
R

= G ⋅ 𝜖 (6.142)

Vout =
Vi

4 ⋅ Ro
ΔR (6.143)

Hence,

Vout =
Vi ⋅ G

4 ⋅ E ⋅ A
⋅ F (6.144)
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The force corresponding to the Vout = 2.0 mV DC is F = 80 000 N. It is also interesting to
determine the change in the strain-gauge resistance for this force measurement,

Vout =
Vi

4 ⋅ Ro
ΔR (6.145)

2 ⋅ 10−3 = 10
4 ⋅ 600

ΔR (6.146)

ΔR = 0.480Ω (6.147)

Notice that the percentage change in the resistance of the strain gauge is

ΔR
R

⋅ 100 = 0.480
600

⋅ 100 = 0.08% (6.148)

Since the gauge factor G = 2, the strain (change in the length of the shaft is)

𝜖 = Δl
l

(6.149)

= 1
G
ΔR
R

(6.150)

= 1
2
⋅ 0.08% (6.151)

Δl
l

= 0.04% (6.152)

Δl = 0.04
100

⋅ l (6.153)

6.8 PRESSURE SENSORS

Absolute pressure is measured relative to a perfect vacuum where the pressure is zero. The
local atmospheric pressure is the pressure due to the weight of the air of the atmosphere at
that particular location (Figure 6.46). Therefore, the local pressure varies from one location

A column of air one square inch
cross section and as high as the 
atmosphere ... 

If we measure the weight of air due
to atmosphere per square inch at sea
level,  it would be about 14.7 pounds. 

Atmospheric pressure is 
therefore 14.7 psia.

Gauge pressure
scale (PSIG)

Absolute pressure
scale (PSIA)
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(Absolute zero pressure) - 14.7 PSIG 0 PSIA

Atmospheric pressure
drops as elevation from
sea level increases

FIGURE 6.46: Absolute pressure, gauge pressure, atmospheric pressure definitions. Adapted

from Bosch-Rexroth.
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Vacuum

Glass tube

Mercury

Atmospheric
pressure

Height of mercury
column 29.92 in

Dish
FIGURE 6.47: Barometer to measure the local

atmospheric absolute pressure.

to another as a function of the height of the location from sea level. Average atmosheric
absolute pressure due to the weight of the air of the atmosphere is 14.7 lb∕in2 = 14.7 psi.
This means that the weight acting over an area of 1 in2 due to the weight of the air in the
atmosphere is 14.7 lb. Therefore, the absolute atmospheric pressure at sea level is nominally
14.7 lb∕in2(14.7 psia).

Pascal’s law states that pressure in a contained fluid is transmitted equally in all
directions. Using this physical principle, a barometer is used to measure absolute pressure.
The pressure acting on the fluid due to the atmosphere at the surface is balanced by
the pressure due to the fluid (i.e., mercury) weight in the tube (Figure 6.47). Using this
measurement method it can be observed that the atmospheric pressure is equivalent to the
pressure applied by a 29.92 in(760 mm) column height of mercury. A column of mercury
with 29.92 in height and 1 in2 cross-section has 14.7 lbs of weight. If water is used in the
barometer instead of mercury, the height of the water in the tube to balance the atmospheric
pressure would be 33.95 in, which produces the same 14.7 lb∕in2 pressure since the density
of water is lower than mercury. Notice that the top of the tube in the barometer must be a
vacuum. In order to establish a vacuum at the top of the tube, the tube filled with mercury or
water is placed upside down in the container filled with mercury. The height of the mercury
will drop until its height is 29.92 in if filled with mercury, or 33.95 in if filled with water,
which generates a pressure of 14.7 psi at the surface level of the container.

The pressure sensed by most pressure sensors is the relative pressure with respect to
the local atmospheric pressure. However, a sensor can be calibrated to measure the absolute
pressure as well (Figure 6.46). If a sensor measures pressure relative to the vacuum pressure,
it is referred to as the absolute pressure and the units denoted as psia. If a sensor measures
pressure relative to the local atmospheric pressure, it is referred to as the relative or gauge
pressure, and the unit used to indicate that is psig. The notation psi refers to psig by standard
convention in notation.
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Notice that the atmospheric absolute pressure varies from the nominal value
(14.7 lb∕in2(14.7 psia)) due to variations in

1. height from sea level,

2. temperature and the resulting variations in air density

patm = patm,0 + Δp(h, T) (6.154)

= 14.7 + Δp(h, T) psia (6.155)

6.8.1 Displacement Based Pressure Sensors

The basic transduction principle in this type of pressure sensor is to convert the pressure
into a proportional displacement, and then convert this displacement to a proportional
electrical voltage. Figure 6.48 shows various concepts of pressure sensors where the pressure
is proportional to the displacement of the sensing element (Bourdon C-tube, bellows,
diaphragm). The motion of the flexible sensing element can be translated into a proportional
voltage by various methods including position sensing, capacitance change, strain change,
and piezoelectric effects. For instance, the Bourdon tube based pressure sensor can be
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FIGURE 6.48: Various pressure sensor concepts: pressure to displacement transduction and

then displacement measurement in order to obtain pressure measurement.
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connected to an LVDT or a linear potentiometer to get a voltage signal proportional to the
pressure.

Δx = kp ⋅ ΔP (6.156)

Vout = kvx ⋅ Δx (6.157)

= (kp ⋅ kvx) ⋅ ΔP (6.158)

= kpv ⋅ ΔP (6.159)

The pressure sensors shown in Figure 6.48 measure the relative pressure between p1 and
p2, that is the pressure difference between them, Δp = p1 − p2. If either p1 or p2 is the
vacuum pressure (absolute zero pressure), then the sensor measures the absolute pressure.

6.8.2 Strain-Gauge Based Pressure Sensor

The pressure induced deformation of the diaphragm is measured by strain gauges on it.
The strain on the diaphragm is proportional to the pressure. The resistance of the strain
gauge changes in proportion to its strain. Using a Wheatstone bridge circuit, a proportional
output voltage is obtained from the strain gauge. The relationship between pressure and
strain gauge voltage output is (Figure 6.49),

Δx = kp ⋅ ΔP (6.160)

𝜖 = k1 ⋅ Δx (6.161)

Vout = k2 ⋅ 𝜖 (6.162)

= k ⋅ ΔP (6.163)

An example of a strain-gauge based differential pressure sensor is the Model P2100
series by Schaevitz Inc. The sensor has two pressure input ports and can measure the
pressure differential between the two ports up to 5000 psi. The natural frequency of the
sensor is 4 kHz for pressures up to 75 psi and 15 kHz for pressures upto 1000 psi. For
instance, such a sensor is appropriate to measure the pressure differential between two
sides of a hydraulic cylinder.
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6.8.3 Piezoelectric Based Pressure Sensor

Piezoelectric based pressure sensors are the most versatile pressure sensor types. The
pressure of the diaphragm is converted to a force acting on the piezoelectric element
(Figure 6.41). The piezoelectric element will generate a voltage proportional to the force
acting on it which is proportional to the pressure. The piezo based pressure sensors can
have bandwidth in the order of kHz range.

The charge produced by the piezoelectric effect as a result of pressure is

q = Kqp ⋅ p (6.164)

and the output voltage is

Vout =
q

C
(6.165)

Then,

Vout =
Kqp

C
⋅ p (6.166)

= K1 ⋅ p (6.167)

6.8.4 Capacitance Based Pressure Sensor

The diaphragm pressure sensing concept can also be used to change the capacitance between
two charged plates inside the sensor. The displacement of the diaphragm results in a
proportional change in capacitance. Using an operational amplifier, reference voltage, and
reference capacitor, the change in the capacitance of the sensor can be converted to a voltage
output signal proportionally (Figure 6.50).

x = K1 ⋅ ΔP (6.168)

C =
K2 ⋅ A

x
(6.169)
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FIGURE 6.50: Capacitive pressure sensor and its operating principle.
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Using the operational amplifier,

Vout = Vs ⋅ (Cs∕C) (6.170)

=
Vs ⋅ Cs

K2 ⋅ A
⋅ x (6.171)

=
Vs ⋅ Cs ⋅ K1

K2 ⋅ A
⋅ ΔP (6.172)

The signal flow relationship for the sensor operation is as follows,

ΔP → x → C → Vout (6.173)

where the pressure differential results in a change in the distance between two plates of the
capacitive sensor which in turn changes the capacitance of the sensor.

6.9 TEMPERATURE SENSORS

Three classes of temperature sensors are discussed below:

1. sensors which change physical dimension as a function of temperature,

2. sensors which change resistance as a function of temperature (RTD and thermistors),
and

3. sensors which work based on thermoelectric phenomena (thermocouples).

Pictures of various RTD and thermocouple type temperature sensors are shown in Fig-
ure 6.51.

6.9.1 Temperature Sensors Based on
Dimensional Change

Temperature is an indicator of the molecular motion of matter. Most metals and liquids
change their dimension as a function of temperature. In particular, mercury is used in
glass thermometers to measure temperature since its volume increases proportionally with
the temperature. Then the glass tube can be scaled to indicate the measured temperature
(Figure 6.52). It has a typical accuracy of about±0.5 ◦C. Similarly, bimetallic solid materials
change their dimension as a function of temperature. As a result, they can be used as a
temperature sensor by converting the change in the dimension of the bimetallic component
into a voltage. However, mercury is rarely used as a temperature sensor element due to its
highly toxic nature and environmental concerns if it is spilled.

FIGURE 6.51: Pictures of various temperature sensors: thermocouples and RTDs.
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FIGURE 6.52: Mercury-in-glass thermometer for

manual temperature measurement. It uses the

transduction principle that the volume of the mercury

expands as a linear function of temperature.

6.9.2 Temperature Sensors Based on Resistance

RTD Temperature Sensors A RTD (resistance temperature detector) temperature
sensor operates on the transduction principle that the resistance of the RTD material changes
with the temperature. Then the resistance change can be converted to a proportional voltage
using a Wheatstone bridge circuit.

A good approximation to the resistance and temperature relationship for most RTD
materials is

R = Ro(1 + 𝛼(T − To)) (6.174)

where 𝛼 is the sensitivity of the material resistance to temperature variation. The construc-
tion of a typical RTD sensor is shown in Figure 6.53. The sensitivity constant 𝛼 for various
materials is shown in Table 6.1.

Resistive
coil

Pyrex tube
( in. O.D.)3

8

Mica cross form

Evacuated
space

1

FIGURE 6.53: Resistance temperature detector (RTD) sensor for temperature measurement.
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TABLE 6.1: RTD temperature sensor
materials and the resistance–
temperature sensitivity coefficient.

Material 𝜶

Aluminum 0.00429

Copper 0.0043

Gold 0.004

Platinum 0.003927

Tungsten 0.0048

RTDs may be used to measure the cryogenic temperature to approximately 700 ◦C
temperature range. Platinum is one of the most common materials used in RTD sensors. The
main advantages of RTD sensors are that the resistance–temperature relationship is fairly
linear over a wide temperature range and the measurement accuracy can be as small as
±0.005 ◦C. Furthermore, the drift of the sensor over time is very small, typically in the range
of less than 0.1 ◦C∕year. As a result, RTDs do not require frequent calibration. A RTD is a
passive device. It has a resistance where the resistance changes linearly with temperature.
One good way of converting the change in resistance to voltage is to use the RTD in a
Wheatstone bridge circuit. The dynamic response of the RTD sensor is relatively slow
compared to other temperature sensors. RTDs can not be used to measure high frequency
transient temperature variations.

Thermistor Temperature Sensors Thermistor sensors are based on semicon-
ductor materials where the resistance of the sensing element reduces exponentially with
the temperature. The typical resistance and temperature relationship for a thermistor is
approximately,

R = Ro ⋅ e
β

(
1
T
− 1

To

)
(6.175)

where 𝛽 is also a function of temperature and a property of the semiconductor material.
The variation in the resistance of a thermistor for a given temperature change is much
larger than the variation in resistance of a RTD sensor. This type of sensor is used for
their high sensitivity, high bandwidth, and ruggedness compared to RTDs. However, the
manufacturing variations in thermistors can be large from one sensor to another. Therefore,
they cannot be used as direct replacements to one another. As a result, each sensor must be
properly calibrated before replacement.

6.9.3 Thermocouples

Thermocouples are perhaps the most popular, easy to use, and inexpensive temperature
sensors. A thermocouple has two electrical conductors made of different metals. The
two conductors are connected as shown in Figure 6.54. The key requirement is that the

T1 T2

Material A

Material B Material B

V
out

Junction 2
Junction 1

FIGURE 6.54: Thermocouple temperature sensor and its operating principle.
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connections between the two conductors at both ends must form a good electrical con-
nection. The fundamental thermoelectric phenomenon is that there is a voltage differential
developed between the open circuit end of the conductor proportional to the temperature of
the one of the junctions relative to the temperature of the other junction. The thermoelectric
phenomena is a result of the flow of both heat and electricity over a conductor. This is called
the Seebeck effect, named after Thomas J. Seebeck who first observed this phenomenon in
1821. The voltage differential measured at the output of the thermocouple is approximately
proportional to the temperature differential between the two points (Vout in Figure 6.54),

Vout ≈ K ⋅ (T1 − T2) (6.176)

Notice that the proportionality constant is a function of the thermocouple materials. The
thermocouple materials refer to the material types used for conductors A and B. Further-
more, it is not exactly constant, but varies with temperature by a small amount.

The proportionality constant is a very good approximation for many types of ther-
mocouples over large temperature ranges. This makes the thermocouples very attractive
sensors due to their linearity over large temperature ranges. The voltage output of the
thermocouple is in the milli Volt (mV) range and must be amplified by an op-amp circuit
before it is used by a data acquisition system.

A thermocouple measures the temperature difference between its two junctions. In
order to measure the temperature of one of the junctions, the temperature of the other
junction must be known. Therefore, a reference temperature is required for the operation
of the thermocouple. This reference can be provided by either ice-water or by a built-in
electronic reference temperature. The measurement error in most thermocouples is around
±1 to 2 ◦C. Different thermocouple material pairs are designated with a standard letter to
simplify references to them (Table 6.2).

In most cases, the output of the thermocouple is processed by a digital computer
system. The reference temperature is provided by a thermistor based sensor as part of the
thermocouple interface circuit of the data aquisition board (DAQ). Multiple thermocouples
can be connected in series to sum the sensor generated signal or in parallel to measure the
average temperature over a finite area. Computer interface cards for thermocouple signal
processing make use of the standard thermocouple tables for the voltage to temperature
conversion for each specific type of thermocouple, instead of using linear approximation to
the voltage–temperature relationship. Such standard reference tables are generated by orga-
nizations such as the National Institute of Standards and Technology (NIST) for different
types of thermocouples.

TABLE 6.2: Thermocouple types and their applications.

Type Material A Material B Applications

E Chromel (90% nickel,

10% chromium)

Constantan (55% copper,

45% nickel)

Highest sensitivity, < 1000 ◦C

J Iron Constantan Non-oxidizing environment,

< 700 ◦C

K Chromel (90% nickel,

10% chromium)

Alumel (94% nickel,

3% manganese, 2%

aluminum, 1% silicon)

< 1400 ◦C

S Platinum and

10% rhodium

Platinum Long term stability, < 1700 ◦C

T Copper Constantan Vacuum environment, < 400 ◦C
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6.10 FLOW RATE SENSORS

There are four main groups of sensors to measure the flow rate of a fluid (liquid or gas)
passing through a cross-sectional area:

1. mechanical flow rate sensors,

2. differential pressure measurement based flow rate sensors,

3. thermal flow rate sensors,

4. mass flow rate sensors.

6.10.1 Mechanical Flow Rate Sensors

There are three major types of mechanical flow rate sensors: positive displacement flow rate
sensors, turbine flow meters, and drag flow meters. Their operating principle is based on
the volume displaced by the fluid flow and drag between the fluid and the sensing element.

Positive Displacement Flow Meters Positive displacement flow meters work
on the same principle as the positive displacement hydraulic pumps and motors (see Chap-
ter 7). The positive displacement pumps (and motors) are so named because they displace a
well-defined fluid volume per revolution. For instance, a gear pump or piston pump sweeps
a fixed amount of volume per revolution. This is called the displacement of the pump in
units of D = Volume∕Revolution. If the rotational speed of the pump is known, wshaft, then
the amount of fluid flow rate (Q)that passes through the pump or motor is determined by

Q = D ⋅ wshaft (6.177)

The same principle can be used as a sensor in positive displacement flow meters (PDFM).
The most popular PDFM is the gear type (Figure 6.55). The flow meter usage has more
similarity to hydraulic motor usage than hydraulic pump usage. The flow force drives the
flow meter. The flow meter is designed such that the hydraulic energy spent in driving the
meter is minimal. Since the displacement of the flow meter (D) is known for a given pump,
if we measure the angular speed of the shaft, then the flow rate can be calculated using the
same equation given above.

FIGURE 6.55: Positive

displacement type flow meters:

gear and lobe type positive

displacement flow meters are

shown.
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FIGURE 6.56: Turbine type flow rate sensor.

The analogy between the tachometer (speed sensor) and DC brush-type electric motor
is similar to the analogy between the positive displacement type flow meters and hydraulic
motors. Both motor and sensor version work on the same principle, except that in sensor
applications the objective of the design is not to convert energy from one from to another
(electric to mechanical or hydraulic to mechanical), but rather to measure speed or flow rate.

Turbine Flow Meters The turbine flow meter (Figure 6.56) has a turbine on a shaft
placed inline with the direction of the flow. As a result of the drag between the fluid flow
and the turbine, the turbine rotates about its shaft.

Flow rate → Turbine speed → Speed sensor → Vout (6.178)

The speed of the turbine is proportional to the flow speed (hence the flow rate) of
the fluid. The linear proportionality constant is an approximate relationship and holds well
at high flow rates. Such flow meters are not suitable for measuring low flow rates. The
speed of the turbine is measured and converted to output voltage using any one of the speed
sensors.

Drag Flow Meters and Vortex Flow Meters The drag based flow meter inserts
a sensing object into the flow so as to pickup drag force from the flow. The drag force is
measured by a strain-gauge based force sensor (Figure 6.57). It turns out that the drag force
is proportional to the square of the speed.

Fdrag =
Cd A 𝜌 u2

2
(6.179)

where Cd is the drag coefficient calibrated for the specific sensor, A is the drag surface of
the sensing object, 𝜌 is fluid density, u is the speed of flow. The transduction principle and
sensor output relationship is as follows,

Flow rate → Drag Force → Strain → Vout (6.180)



JWST499-c06 JWST499-Cetinkunt Printer: Yet to Come October 9, 2014 8:1 254mm×178mm

SENSORS 387

Drag 
element

Supporting flexible
beam Strain gauges

FIGURE 6.57: Strain-gauge based

drag measurement type flow rate

sensor.

A vortex flow meter uses an object inserted into the flow field where the object sheds
vortices as the flow passes over its surface (Figure 6.58). It turns out that the frequency
of the vortex shedding is proportional to the speed of the flow, hence flow rate. Then a
transducer that counts the vortex frequency can provide a proportional output voltage. As
a result, the sensor output voltage can be calibrated to represent the flow rate.

6.10.2 Differential Pressure Flow Rate Sensors

Flow rate sensors based on differential pressure measurements make use of the Bernoulli’s
equation, which is a relationship between the pressure and speed of fluid flow at two
different points. It is estimated that over 50% of all flow rate measuring devices are based
on differential pressure type sensors. Assume that the height of the fluid does not change
relative to a reference plane between the two points. Then the pressure and speed of the
fluid at two separate cross-sections are related by

p1 +
𝜌 u2

1

2
= p2 +

𝜌 u2
2

2
(6.181)

Pitot Tube A pitot tube is a differential pressure measurement sensor which makes use
of the Bernoulli equation for a special case (Figures 6.59, 6.60). The pressure is measured
at two points. At one of the points, the speed of the fluid is zero u2 = 0.

Then, measuring the differential pressure p2 − p1 allows us to calculate the fluid
velocity along its flow stream. Once the fluid velocity is known, assuming that it is the aver-
age fluid speed, the flow rate can be calculated using the cross-sectional area information.

u1 = 2
𝜌

(p2 − p1)1∕2 (6.182)

Drag
element

Flow

Vortex
Pipe wall

FIGURE 6.58: Vortex frequency counting

type flow rate sensor.
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FIGURE 6.59: Pitot tube for

flow rate sensing via diffential

pressure measurement.

Note that Bernoulli’s equation is valid for a compressible fluid flow up to a Mach number
of about 0.2. For higher Mach numbers, the relationship can be modified and the sensor
calibrated to accurately obtain the flow speed as a function of the differential pressure and
Mach number.

As the flow passes around the Pitot tube, vortices are shed as a result of the tube
surface and fluid interaction. The frequency of the vortices is a function of the flow rate
and the pitot tube diameter. A given Pitot tube can experience a certain vortex shedding
frequency around a certain flow rate which may result in exciting the natural frequency of
the Pitot tube. Each Pitot tube sensor specification includes the range of flow rate to avoid
in order to make sure that it is not excited around its natural frequency.

Stagnation
connectionFlow

Static
connection

Stationary
point

Stagnation
point

FIGURE 6.60: Pitot tube sensor picture and typical application.
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FIGURE 6.61: Standard obstruction orifices to measure flow rate via differential pressure

measurements.

Obstruction Orifices Another method of flow rate measurement is to insert a stan-
dard profile obstruction orifice on the pipe where the flow rate measurement is desired
(Figure 6.61). The pressure differential at the input and output side of the standard obstruc-
tion profile is measured and related to the flow rate. There are many different types of
standardized obstruction orifices. The flow rate is related to the differential pressure, cross-
sectional area, and the geometeric shape of the the standard obstruction orifice,

Q = f (p1, p2, A, Geometry of Obstruction) (6.183)

where A is the cross-sectional area. Different obstruction orifice shapes and sizes are
calibrated using a higher accuracy flow rate sensor in order to define the above relationship
for each specific orifice only as a function of the pressure differential. Hence, for a given
obstruction (geometric shape and size is defined), the flow rate as a function of pressure
differential is a calibrated data table,

Q = f (Δp) (6.184)

6.10.3 Flow Rate Sensor Based on Faraday’s
Induction Principle

Faraday’s electromagnetic induction principle is used in some flow rate sensors to measure
the flow rate of an electrically conductive liquid. The fluid must be electrically conductive
for this sensing technique to work.

The basic principle is that if a conductor moves in a magnetic field, there is a
voltage developed across the conductor. This is referred to as the generator principle in
electric motors. The same principle is used to measure the flow rate of a fluid. Given a
fixed electromagnetic field (generated by a permanent magnet or electro-magnet (coil with
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(a) Principle of operation

(b) An application example

Conductive fluid 
flow direction

Magnets

Induced voltage

Sensor inline with flow pipe

FIGURE 6.62: Flow rate sensor based

on Faraday’s electromagnetic induction

principle. B is the magnetic field

strength, V is the velocity of the fluid

flow (flow rate), E is the voltage

developed as a result of B and V . Let B

be constant, then E (induced voltage) is

proportional to V (fluid flow speed).

current passing through it)), and a conductive fluid passing through it at a certain speed,
there will be voltage potential developed in the direction perpendicular to both the magnetic
field and flow vector and the magnitude of the voltage is proportional to the speed (flow
rate) of the fluid (Figure 6.62).

6.10.4 Thermal Flow Rate Sensors:
Hot Wire Anemometer

The most well-known thermal measurement based flow rate sensor is the hot wire anemome-
ter. The basic transduction principle is as follows: there is a heat transfer between any two
objects with different temperatures. The rate of heat transfer is proportional to the tempera-
ture difference between them. In the case of a flow rate sensor, the two objects are the sensor
head and the fluid around it (Figure 6.63). The effective heat transfer coefficient between
the sensor and the fluid is dependent upon the speed of the flow. This relationship is

Ḣ = (Tw − Tf ) (Ko + K1u1∕2) (6.185)

where Ḣ is the heat transfer rate, Tw the temperature of the tungsten wire used by the sensor,
Tf the temperature of the fluid, u is the fluid flow speed, Ko and K1 are sensor calibration
constants.
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FIGURE 6.63: Hot wire anemometer for flow

rate measurement using the thermal heat

transfer principle.

This relationship is used in the hot wire anemometer. A tiny probe with a tunsgten
wire (length in the range of 1 to 10 mm and diameter in the range of 1 to 15 μm) is placed
in the flow field. The resistance of the tungsten probe is proportional to its temperature.

Rw = Rw(Tw) (6.186)

As a current is passed through the tungsten wire, heat is transferred from the wire to
the fluid.

Ḣ = Rw ⋅ i2 (6.187)

The heat transfer rate depends both on the temperature difference and fluid speed. The
tungsten wire current is controlled in such a way that its temperature (and hence resistance)
is held constant. The amount of heat transferred can be estimated from the current and
resistance measurements on the sensor. Assuming that the fluid temperature is also constant
(or measured separately by a temperature sensor), we can calculate the flow speed. In other
words, K0, K1 is known in advance. We assume that the fluid temperate is also known, Tf .
Then, we control the current through the tungsten wire in order to control its temperature,
Tw, and while achieving that we measure Ḣ = Rw ⋅ i2, the heat rate it generates. Hence, we
can calculate the fluid speed u, from which the flow rate can be estimated.

Example applications of a thermal flow rate sensor are shown in Figure 6.64, which
operate based on the “hot film anomometer” principle. The principle is that a flowing gas
transfers heat from a heated probe and the heat transfer rate is proportional to the flow rate
of gas. Then, if a sensor head is heated in a controlled way, we can determine the gas flow
rate based on how much heat is lost.

6.10.5 Mass Flow Rate Sensors: Coriolis Flow Meters

The coriolis flow meter measures the mass flow rate as opposed to the volume flow rate.
Therefore, it is not sensitive to temperature, pressure, or viscosity variation in the fluid
flow. The sensor includes a U-shaped tube, a magnetically excited base which excites the
U-shaped tube at a fixed frequency, that is around 80 Hz (Figure 6.65). The interaction
between the inertial force of the incoming fluid in one arm of the U-shaped tube and the
vibration of the tube creates a force in perpendicular direction to the direction of flow and
the direction of the tube vibration. The forces acting on the two sides of the U-shaped tube
are in opposite directions, which creates a twist torque around the tube. The twist torque,
hence the twist angle of the tube, is proportional to the mass flow rate of the fluid.

The frequency of the twist is the same as the frequency of the tube’s base oscillation.
The output of the twisting motion is measured as an oscillating angular displacement. The
magnitude of the twisting oscillations is proportional to the flow rate.
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FIGURE 6.64: Thermal flow rate sensor head (transducer, or also called a “probe”) and the

signal conditioning/processing unit (which may be packaged together or separately and

connected by a cable). Reproduced with permission from ABB Ltd.
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FIGURE 6.65: Coriolis mass flow rate sensor.
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6.11 HUMIDITY SENSORS

Relative humidity is defined as the percentage ratio of the amount of water vapor in moist
air, versus the amount of water vapor in saturated air at a given temperature and pressure.
Relative humidity is strongly affected by temperature.

The main types of humidity sensors use the capacitance, resistive, and optical reflec-
tion principles in the transduction stage.

Capacitive humidity sensors use a polymer material which changes capacitance as
a function of humidity. The relationship is fairly linear. The sensor is designed as parallel
plates with porous electrodes on a substrate. The electrodes are coated with a dielectric
polymer material that absorbs water vapor from the environment with changes in humidity.
The resulting change in dielectric constant causes a variation in capacitance. The varia-
tion in capacitance is converted to voltage by an appropriate op-amp circuit to provide a
proportional voltage output.

Resistance based humidity sensors use materials on an electrode whose resistance
change as a function of humidity. In general, the resistance–humidity relationship is an
exponential relationship, and hence requires digital signal processing so that the voltage
output is proportional to the measured humidity. Capacitive humidity sensors are more
rugged and have less dependency on the temperature than the resistive humidity sensors.

The chilled mirror hygrometer (CMH) is one of the most accurate humidity measure-
ment sensors. It measures humidity by the dew point method (Figure 6.66). The operating
principle is based on the measurement of the reflected light from a condensation layer which
forms over a cooled mirror. A metallic mirror with good thermal conductivity is chilled
by a thermoelectric cooler to a temperature such that the water on the mirror surface is in
equilibrium with the water vapor pressure in the gas sample above the mirror surface. When
the mirror is chilled to the point that dew begins to form and the equilibrium is maintained, a
beam of light is directed at the mirror surface, and the photodetectors measure the reflected
light. The reflected light is scattered as a result of the dew droplets on the mirror surface.
In order to maintain a constant reflected light, the photodetector output is used to control
the thermoelectric heat pump to maintain the mirror at dew point temperature. Then the
measured temperature is related to the humidity of the gas sample. The resolution of the
CMH humidity sensor is about one part in 100 of its measurement range.

Regulated led
supply

AMP

Chiller
controller

Temperature
sensor

Gas sample

Metallic
mirror

FIGURE 6.66: Humidity

sensor: chilled mirror

hygrometer.
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6.12 VISION SYSTEMS

Vision systems, also called computer vision or machine vision, are general purpose sensors.
They are called the “smart sensors” in industry since what is sensed by a vision system
totally depends on the image processing software. A typical sensor is used to measure a
variable, that is temperature, pressure, length, and so on. A vision system can be used to
measure shape, orientation, area, defects, differences between parts, and so forth. Vision
technology has improved significantly over the past 20 years, to the extent that they are
rather standard “smart sensing components” in most factory automation systems for part
inspection and location detection. Their lower cost makes them increasingly attractive
for use in automated processes. Furthermore, vision systems are now standard in mobile
equipment safety systems to detect obstacles and avoid collisions, especially when used
with radar based obstacle detection systems.

There are three main components of a vision system (Figures 6.67, 6.68),

1. vision camera: this is the sensor head, made of a photosensitive device array such as
charge coupled device (CCD) and optical lens,

2. image processing computer hardware (converts the CCD voltage to digital data) and
software to process the image,

3. lighting system.

The basic principle of operation of a vision system is shown in Figure 6.67. The
vision system forms an image by measuring the reflected light from objects in its field
of view. The rays of light from a source (i.e., ambient light or structured light) strike the
objects in the field of view of the camera. The part of the reflected light from the objects
reaches the sensor head. The reflected light may be passed through an optical lens then to
the CCD. The sensor head is made of an array of photosensitive solid-state devices such as
photodiodes or charge coupled devices (CCD) where the output voltage at each element is
proportional to the time integral of the light intensity received. The sensor array is a finite

Light 
source

High speed
communication
cable

DSP -image processor

(i.e. PC Bus Card)
Camera

Object

May be packaged on the camera as

a stand alone vision system

Host PC

FIGURE 6.67: Different hardware packages of vision systems: sensor and DSP at the same

physical location, or sensor head and DSP are at different physical location and digital data is

transferred from sensor head to the DSP using a high speed communication interface.
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FIGURE 6.68: Components and functions of a vision system.

number of CCD elements in a line (i.e., 512 elements, 1024 elements, etc.) for the so-called
line-scan cameras or a finite array of two-dimensional distribution (i.e., 512 × 512, 640 ×
640, 1024 × 1024) as shown in Figure 6.69. A field of view in the real world coordinates
with dimensions [xf , yf ] is mapped to the [nx, ny] discrete sensor elements. Each sensor
element is called a pixel. The spatial resolution of the camera, that is the smallest length
dimension it can sense in x and y directions, is determined by the number of pixels in the
sensor array and the field of view that the camera is focused on,

Δxf =
xf

nx
(6.188)

Δyf =
yf

ny
(6.189)

where Δxf ,Δyf are the smallest dimensions in x and y directions the vision system can
measure. Clearly, the larger the number of pixels, the better the resolution of the vision
system. A camera with a variable focus lens can be focused to different field of views by
adjusting the lens focus without changing the distance between the camera and field of
view, and hence changing the spatial resolution and range of the vision system.

The light source is a very important, but often neglected, part of successful vision
system design. The vision system gathers images using the reflected light from its field of
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FIGURE 6.69: Vision sensor head types: (a)

line-scan camera where the sensor array is

arranged along a line, and (b) two-dimensional

camera where the sensor array is arranged

over a rectangular area.
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view. The reflected light is highly dependent on the source of the light. There are four major
lighting methods used in vision systems:

1. back lighting, which is very suitable in edge and boundary detection applications,

2. camera mounted lighting, which is uniformly directed on the field of view and used
in surface inspection applications,

3. oblique lighting, which is used in inspection of the surface gloss type applications,

4. co-axial lighting which is used to inspect relatively small objects, such as threads in
holes on small objects.

An image at each individual pixel is sampled by an analog to digital converter (ADC).
The smallest resolution the ADC can have is 1-bit. That is the image at the pixel would be
considered either white or black. This is called a binary image. If the ADC converter has 2-
bits per pixel, then the image in each pixel can be represented in one of four different levels
of gray or color. Similarly, an 8-bit sampling of pixel signal results in 28 = 256 different
levels of gray (gray scale image or colors in the image). As the sampling resolution of pixel
data increases, the gray scale or color resolution of the vision system increases. In gray scale
cameras, each pixel has one CCD element whose analog voltage output is proportional to
the gray scale level. In color sensors, each pixel has three different CCD element for three
main colors (red, blue, green). By combining different ratios of the three major colors,
different colors are obtained.

Unlike a digital camera used to take pictures where the images are viewed later on,
the images acquired by a computer vision system must be processed at periodic intervals
in an automation environment. For instance, a robotic controller needs to know whether a
part has a defect or not before it passes away from its reach on a conveyor. The available
processing time is in the order of milliseconds and even shorter in some applications such
as visual servo applications. Therefore, the amount of processing necessary to evaluate an
image should be minimized.

Let us consider the events involved in an image acquisition and processing.

1. A control signal initiates the exposure of the sensor head array (camera) for a period
of time called exposure time. During this time, each array collects the reflected light
and generates an output voltage. This time depends on the available external light,
and camera settings such as aperture.

2. Then the image in the sensor array is locked and converted to digital signal (A to D
conversion).

3. The digital data is transfered from the sensor head to the signal processing computer.

4. Image processing software evaluates the data and extracts measurement information.

Notice that as the number of pixels in the camera increases, the computational load, and
the processing time, increases since the A/D conversion, data transfer, and processing all
increase with the increasing number of pixels and the resolution of each pixel (i.e., 4-bit,
8-bit, 12-bit, 16-bit). The typical frame update rate in commercial two-dimensional vision
systems is at least 30 frames∕s. Line-scan cameras can easily have frame update rate around
1000 frames∕s.

The effectiveness of a vision system is largely determined by its software capabilities.
That is, what kind of information it can extract from the image, how reliably can it do it, and
how fast can it do it. Standard image processing software functions include the following
capabilities.

1. Thresholding an image: once an image is aquired in digital form, a threshold value of
color or gray scale can be selected, and all pixel values below that value (white value)
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are set to one fixed low value, and all pixel values above that value are set to a high
value (i.e., black value). This turns the image into a binary image. Various detection
algorithms can be run quickly on such an image, such as the edge detection algorith.

2. Edge detection of an object: an edge is detected when a sharp change occurs from
one pixel to another in the gray scale value of the image. Once such a transition is
detected between two pixels in a search direction on the image array, then all the
pixels around the transition pixel are searched to determine the edge boundary.

3. Color or gray scale distribution (also called the histogram of image): this is a plot of
the gray scale distribution of the image, that is how many pixels (y-axis) has a given
gray scale (x-axis).

4. Connectivity of the object (detect discontinuities).

5. Image comparison with a reference image in memory (also called template matching),
that is image system may store a set of “good part” images. A real-time image is
compared to the stored images to determine whether it matches one of the template
images or not.

6. Position and orientation of an object relative to another reference.

7. Dimensions (length, area) of an image: once the boundaries of a part or parts in an
image are detemined, the dimensions and area information can be easily calculated.

8. Character recognition, that is recognizing letters and numerals.

9. Geometric image transformations, that is mathematical operations on the matrix data
of the image to move, rotate, stretch the image.

Example Consider a vision system with 1024 × 1024 pixel resolution. The camera
processes 60 frames per second. The resolution of the the A/D converter system is 8-bit.
What is the amount of data (bytes) processed per second? If the camera is focused into an
surface with 10 cm × 10 cm dimensions, what is the spatial resolution in measurement?

Each pixel holds one byte of data since the ADC converter has 8-bit resolution. The
number of bytes processed per second is equal to the number of data bytes per frame times
the number of frames per second,

N = 1024 × 1024 × 60 (6.190)

= 62 914 560 bytes∕s (6.191)

≈ 63 MB∕s (6.192)

Clearly, the amount of data processed per second is very large in a high resolution camera.
The smallest distances in x and y directions the system can measure are

Δxf =
10 cm
1024

= 0.00976 cm = 0.0976 mm (6.193)

Δyf =
10 cm
1024

= 0.00976 cm = 0.0976 mm (6.194)

which indicates that the vision system can measure dimensions in x and y coordinates with
about 0.1 mm accuracy.

6.13 GPS: GLOBAL POSITIONING SYSTEM

The global positioning system (GPS) is a location measurement system on Earth, based
on signals received from a group of satellites (about 24 satellites) orbiting the Earth at an
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FIGURE 6.70: GPS data: longitude, latitude, and elevation of a receiver on earth, used to

measure the position of the receiver on Earth.

altitude of approximately 20 000 km [11]. GPS provides us with the longitude, latitude, and
elevation data for the GPS receiver placed at any point on Earth as shown in Figure 6.70.2

The trajectories of the locations of the satellites around the Earth are very predictable
and can be determined accurately by the Earth-based control stations. The position of the
satellites is known relative to the fixed locations of the control stations on Earth and is
updated periodically by the control stations, which are operated by the US Department
of Defense (US-DoD). The location of each GPS satellite is transmitted from the control
stations to the satellites, then from the satellites to Earth as a broadcast signal. The GPS
satellites broadcast their position information. An individual GPS receiver on Earth deter-
mines its global position coordinates by processing the received GPS broadcast signals.
GPS receivers are used for positioning, locating, navigating flights and cars, warehouse
management, fleet tracking, mining site management, and surveying applications.

There are three major components to a GPS system:

1. space based orbiting group of GPS satellites,

2. Earth based operational control stations,

3. GPS receiver.

A GPS user needs to only setup the GPS receiver. As GPS receiver units become smaller and
less expensive, there is a growing number of applications for GPS and it has become acces-
sible to virtually everyone. In transportation applications, GPS assists pilots and drivers
in pin-pointing their locations and avoiding collisions. Farmers can use GPS to guide
equipment and control accurate distribution of fertilizers and other chemicals. To facilitate

2 This section is based on the tutorial information provided on GPS technology at the web page www.Trimble.com.

www.Trimble.com
www.Trimble.com
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grading of large areas, GPS controlled earthmoving equipment, including bulldozers, back-
hoes, road graders, excavators, and compactors, can greatly increase productivity during
the land development process.

Applications of GPS can be divided into two major categories:

1. Location and Tracking: The most common and basic use of GPS is the determination
of a location of a receiver on Earth. The GPS signal is used to determine the “where”
(“locating where it is now”) an object is and is it moving (“tracking”). GPS offers
the location data (latitude, longitude, and elevation) for any receiver point on Earth.
Tracking is the process of monitoring the movement of things. The tracked object
must have a GPS receiver to detect its position information, and the ability to transmit
that data to the tracking station. By processing the GPS broadcast signal, a GPS
receiver determines its location on Earth. By transmitting this location information
to a remote control station (i.e., by wireless radio signal transmission), it enables a
tracking capability at a central control location. As a result, a central control station
can received the reported location information from multiple GPS receivers on a fleet,
and keep track of their locations.

2. Navigation and Geospatial Information System (GIS): GIS is a collection of
computer software and geographic data for processing all forms of geographically
referenced information in a database format. GPS is the “sensor” used to measure and
provide the location data to all this geographically referenced information. In other
words, for any point of interest, the “where” information is provided by GPS. The
“what and how” information is provided by the GIS software system. GIS systems
are widely used in surveying (obtaining a digital terrain map of a section of Earth’s
surface) for road building, mining, and farming applications. Apart from locating
a point on the planet, GPS signal processing tools also provide information as to
how to travel from one location to some other location on the planet. GPS provides
navigation information for ships and planes. Given a desired destination, if the current
position of an object can be determined via GPS, then a motion path can be planned.
This planned path can be update in real-time as the object moves closer to the desired
destination. Obstacles along the way or other constraints can be imposed to modify
the planned path.

6.13.1 Operating Principles of GPS

GPS employs about 24 satellites in 20 000 km circular orbits [12]. These satellites are
placed in six orbit planes with four operational satellites in each plane. The satellites orbit
the Earth every 11 hours and 58 minutes. A GPS receiver receives the GPS broadcast signal
and and uses the “trilateration” method to calculate the receiver’s location. A GPS receiver
must be locked on to signals from at least three satellites to determine its location (latitude,
longitude, and altitude). Using a fourth satellite signal allows the GPS receiver to determine
its position more accurately. Due to the synchronization error between the receiver clock
and the atomic clocks on the GPS satellites, the signal from the fourth satellite will not
intersect at an exact point in the trilateration. Then, the GPS receiver firmware searches
for a single correction that can be applied to all four satellite signals that would make the
trilateration algorithm work.

The basic setup of the GPS receiver is shown in Figure 6.71. The signals transmitted
from the satellites are received by the antenna. This signal is then filtered and amplified
using a signal conditioning unit. The conditioned signal is later digitized by an ADC
(analog-digital converter). This digitized signal is then sent to the software block for post
processing. The user position (the GPS receiver position) obtained can be presented in terms
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FIGURE 6.71: GPS receiver product examples. By Stepshep (Own work) [CC-BY-SA-3.0

(http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons.

of longitude, latitude, and elevation. This data can also be used by other electronic control
modules on board the vehicle for computing the actuator commands and control signals.

A list of major GPS received suppliers are given in the references (www.trimble.com,
www.garmin.com, www.novatel.ca, www.magelllangps.com, www.sokkia.com).

Trilateration is the method of determining the relative position of an object using
basic geometry. To understand the concept of trilateration, let us assume that we need to
determine the location of an object on a 2D plane (Figure 6.72).

Let us assume that we have three source (broadcast) signals A, B, C. The location of
these three signal sources A, B, C are known relative to a fixed reference point on Earth.
This information is determined by the Earth based operational control stations and sent to
satellites periodically. Let us assume that the receiver is 10 miles away from source A. This
puts the object on the perimeter of a circle with a center as point A and a radius of 10 miles.
Next, we also know that the object is 20 miles from source B. This puts the object on the
perimeter of circle B, with a center as point B and a radius of 20 miles (Figure 6.72a). Now,
we know that the object is located at one of the two points of the intersection of the two
circles as shown in Figure 6.72a. To decide which of the two points is the true location, we
can define a third circle, for example as being 15 miles away from source C. This defines
the exact two-dimensional (2D) coordinates of the object to be located [X,Y].

This concept of trilateration is extended to determine the location of any object in
three-dimensional space (Figure 6.72b). A GPS receiver measures its distance from three
(3) satellites. If we know that the object is 10 miles from satellite A, we can place the object
on a sphere of 10 miles radius with center as satellite A. If the object also lies 20 miles
from satellite B, we know that the object also lies on a second sphere with a 20 mile radius
centered on satellite B. This puts the object anywhere on the circumference of the circle
formed by the intersection of the two spheres. Then a measurement from a third satellite
C, we get a third sphere, which intersects the circle on two points. The Earth itself acts as
the fourth sphere. Only one of the two possible points will be actually on the surface of the
Earth. Receivers generally look to four or more satellites to improve accuracy and provide
precise altitude (z-coordinate) information.

www.trimble.com
www.trimble.com
www.garmin.com
www.garmin.com
www.novatel.ca
www.novatel.ca
www.magelllangps.com
www.magelllangps.com
www.sokkia.com
www.sokkia.com
http://creativecommons.org/licenses/by-sa/3.0
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FIGURE 6.72: (a) Concept of two-dimensional trilateration method, (b) concept of

three-dimensional trilateration method (Source: Trimble.com).

The distance between a GPS satellite and the GPS receiver is determined by measuring
the amount of time it takes for the radio signal (the GPS signal) to travel from the satellite to
the receiver. In other words it amounts to measuring the time taken for signal transmission
from the GPS satellite to the receiver and calculating the distance by multiplying it with
the signal travel speed. Radio signals travel at the speed of light which is approximately
300 000 km/s.

S = 𝜐 ⋅ t

where S = distance from satellite to receiver, to be determined

𝜐 = velocity of radio signal, which is known, 300 000 km∕s

t = travel time (measured variable) of the GPS signal (6.195)

from the satellite to the receiver (6.196)

The travel time of a GPS signal from a satellite to a receiver on Earth is in the range
of 60–100 ms. This is an inherent time delay in position measurement and its effect on
closed loop control should be considered. Assume that the clocks on the GPS satellites and
the ground receivers are perfectly synchronized. To understand the concept, let us assume
that when a signal is transmitted from the satellite, the “time of transmission” is encoded
in the signal. The receiver records the “receive time” of the signal. Then the travel time is
calculated at the receiver as the difference.

In reality, both the satellite and receiver generate a pseudo-random code. Each satellite
has a unique pseudo-random code. The receiver knows this code for each satellite. The GPS
receiver manufacturers program these known codes into the firmware (embedded software)
on each receiver. By comparing the time difference (phase) between the satellite’s pseudo-
random code received compared to the receiver’s code, we determine the time period it
took to reach us. This gives us the signal travel time from the GPS satellite. However, it
should be noted that all this is possible only if the clock on the receiver and the clock on
the satellite are accurately synchronized.

If the receiver’s clock was perfect, then perfect measurements from three satellites
would intersect at a single point, which is the receiver position. However, with imperfect
measurements, because of imperfect clocks and signal transmission medium (atmospheric)
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distortions, a fourth satellite measurement will not intersect with the first three. The com-
puter on board the receiver looks at the offset from universal time and looks for a single
correction factor for the receiver’s clock that it can make to all the timing values to make all
four measurements intersect at a single point. The measured values from the three satellites
do not intersect at one single point for 2D case (four satellites for 3D case). However,
when the clock correction value is applied to all the three measurements, the measure-
ments from the satellites intersect to locate the object. This correction brings the clock into
“synchronization” with the atomic accuracy clock of the satellites.

6.13.2 Sources of Error in GPS

There are five groups of major sources of error in GPS, briefly discussed below:

1. Clock Errors: Any difference between the GPS satellite based clock and receiver
based clock leads to direct position measurement error.

2. Errors due to Atmospheric Conditions: Earth’s atmosphere refracts the GPS signals
and this causes an error in measurement of distance. Furtheremore, the induced error
will be different between different satellites and the receiver.

3. Errors due to Relative Location of GPS Satellites: The relative location of the
satellites with respect to each other and the receiver also plays an important role in
determining the position measurement accuracy. Good satellite distribution geometry
is obtained when the satellites used for measurement are spread out in space.

4. Multipath Error: The basic concept of GPS assumes that a GPS signal travels
straight from the satellite to the receiver. Unfortunately, in the real world the signal
will also bounce around on the local environment and get to the receiver. The result
is many signals arriving at the receiver, first the direct one, then a bunch of delayed
reflected ones. If the bounced signals are strong enough they can confuse the receiver
and cause erroneous measurements.

6.13.3 Differential GPS

Standard GPS signal accuracy is negatively affected by various atmospheric distortions,
hence reducing the GPS positioning accuracy. The GPS accuracy can be improved by the
so called “differential GPS” (DGPS).

The underlying principle of differential GPS (DGPS) is that any two receivers that
are relatively close together on Earth will experience the same atmospheric errors. Let us
assume that one of the receivers is stationary, and the other receiver may be moving. DGPS
requires that one of the GPS receivers be set up on a precisely known location. This GPS
receiver is the base (reference) station whose location on Earth is precisely known relative
to a reference location on Earth, that is control station. The base station receiver calculates
its position based on satellite signals and compares it to the known location. The difference
is applied to the GPS data recorded by the second GPS receiver. The basic assumption is
that since the base station and receiver are closely located on Earth, any GPS error induced
(i.e., due to atmospheric conditions, multi path, or relative location errors) will be induced
by almost the same amount on both signals received at the base station and the receiver. If
we can determine that induced error using the known location of the base station, then we
can cancel the same amount of error from the signal received by the receiver. The corrected
information can be applied to data on the second receiver and transmitted in real-time in
the field using radio transmitters (Figure 6.73).



JWST499-c06 JWST499-Cetinkunt Printer: Yet to Come October 9, 2014 8:1 254mm×178mm

SENSORS 403

Radio repeater

Base station (Office)

Machine 

GPS satellites

FIGURE 6.73: Differential GPS in real-time operation (Source: Trimble.com).

6.14 PROBLEMS

1. Describe the operating principles and derive the excitation voltage, induced voltage, and output
voltage relationship for the type of rotary variable differential transformer called a syncro (Fig-
ure 6.14). Suggest a signal conditioner circuit design using integrated circuits (ICs) to support the
excitation voltage requirement and process the output signal of the syncro to provide an analog
voltage or digital output signal that is proportional to the angular position of the rotor.

2. Consider a translational (linear) positioning stage driven by a servo motor (Figure 3.3). The travel
range of the table is 50 cm. The required positioning accuracy of the stage is 0.1 μm. a) Provide a list
of possible position sensors for this application, discuss their relative advantages and disadvantages.
What type of sensor is most appropriate for this application? b) Assume that a motor based rotary
incremental encoder is used for position sensing. What should be the resolution of the encoder, if
the ball-screw pitch is 0.5 rev∕mm? If the decoder circuit for the encoder can handle encoder signal
frequency upto 1 MHz, what is the implication of this on the motion limits? c) Assume that the stage
has a tool and that we need to detect the contact between the tool and a workpiece. After detecting the
contact, we need to further move the stage in the same direction by 0.1 mm. What kind of sensor(s)
would be approporiate for this purpose? d) Discuss the advantages and disadvantages of placing the
position sensor on the motor shaft (rotary displacement, angle, sensor attached to motor) or on the
tool (linear displacement sensor attached to tool).
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3. Consider a rotary motion axis and its speed control (i.e., speed control of a spindle of a CNC
machine tool or speed control of a precision conveyor). Assume that both high speed (wmax =
3600 rpm) and low speed wmin = 1 rpm speed control is required with 0.01 rpm regulation accuracy.
a) Determine specifications for a tachometer to meet the speed control requirements. b) Select an
optical incremental encoder and derive speed information from the position pulses digitally. What
is the speed estimation accuracy at minimum speed if the sampling period is 1.0 ms? Show how the
speed estimation can be improved with the time period measurement technique. What is the maximum
pulse frequency of the selected encoder at the maximum speed?

4. Consider the following measurement problems: i) seismic displacement measurement for earth-
quake monitoring, ii) three dimensional (horizontal, vertical, and lateral) acceleration of a car
body during travel, iii) and measurement of the same during an crash test. Discuss the expected
range of frequency content of the signals in each application and select appropriate sensors for the
measurement.

5. Consider the stress and force measurement on a rectangular beam. Assume that a horizontal force
is applied at the tip of the beam, and the other end is clamped to a stationary base (Figure 6.74). A
strain gauge is bonded on the surface at the mid point along the length of the beam in the direction
of the deformation. a) What other information is needed in order to measure the strain, stress, and
external force applied on the beam? b) If the maximum force expected is 1.0 kNt, select a strain
gauge for the measurement with a Wheatstone bridge circuit. Assume the material of the beam is
steel and cross-sectional dimensions (in the direction perpendicular to the force) are 10 cm × 5 cm. c)
Can the same measurement system be used to measure a vertical force? If so, what other information
is needed about the beam?

Force

Strain gauge

Cantilever beam
FIGURE 6.74: Strain, stress, and

force measurement on a

deformable beam under external

load.

6. (a) Consider a strain gauge with nominal resistance of 120Ω. It is glued on the surface of a
structure. The structure deforms nominally 0.001 strain level (𝜖 = Δl∕l = 0.001). Assume
that the gauge factor of the strain gauge is 2.0. Determine the change in the nominal resistance
of the strain gauge under this condition.

(b) Design a circuit to measure the strain as proportional voltage output to a data acquisition
board which has 0–5 V input range. When the strain level is 0.001, the output voltage should
be 5.0 V.

7. Consider the hydraulic motion control system shown in Figure 7.3. It is necessary to measure the
pressure difference between pump output and the valve output. In other words,

Δp = max(pP − pA, pP − pB) (6.197)

which is typically used to control the pump displacement to provide a constant pressure drop across
the valve (called the load sensing pump control method). It is anticipated that the maximum pump
output pressure is 15 MPa and the pressures at point A and B will be lower than that. Select a set
of pressure transducers which will provide the desired measurement range and 1% accuracy over a
frequency range of 0 Hz to 1 KHz.

8. (a) What are the basic temperature measurement principles and main differences between the
following temperature sensors: 1) RTD, 2) thermistor, 3) thermocouple?
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(b) What type of temperature sensor would you recommend for the following cases and why?
1) Temperature measurement of a small volume electronic part with highly transient temper-
ature condition. 2) Temperature measurement of a liquid in a large container.

9. Consider a PC based temperature measurement system. The PC has a data acquisition card that
has 12-bit resolution, and can multiplex 16 channels of analog signals (16-channel, multiplexed ADC
with 12 bit resolution). The ADC card has a gain of 10 which amplifies the thermocouple voltage
before the ADC sampling. The range of input voltage to the board is 0 to 100 mV, which is amplified
to the 0–1.0 V range before the ADC sampling and conversion. Assume that all 16 channels use
J-type thermocouples and that the PC card has a reference junction compensator which provides a
reference temperature equivalent to 0 ◦C. Draw a functional block diagram of this data acquisition
system. What is the voltage input if the nominal temperature is 100 ◦C? What is the voltage input if
the nominal temperature is 200 ◦C? What is the estimated measurement error in units of ◦C, assuming
that the error in reference junction compensator is 0.5 ◦C and the accuracy of the thermocouples is
±0.25 ◦C. In calculating the measurement error, use the worst case scenario where the measurement
errors are additive ( esum =

∑n
i=0 ei). Given the digital value of the voltage conversion by ADC, what

is needed in software to relate the voltage to temperature data? Discuss if this would be different for
different types of thermocouples (i.e., each channel may have a different thermocouple type, J-type,
R-type, B-type, T-type).

10. Faraday’s law of induction states that an electromotive force (EMF) voltage is induced on a
conductor due to changing magnetic flux and that the induced voltage opposes the change in the
magnetic flux. Application of this forms the basis of many electric motors and electric sensors (see
Section 8.2). A back EMF is induced in the conductors moving in a magnetic field established by
the field magnets (permanent magnets or electromagnets (Figure 8.9(d))). As the conductor moves
in the magnetic field, there will be force acting on the charges in it just as there is a force acting on
a charge moving in a magnetic field. Let us consider a constant magnetic field B, a conductor with
length l moving in perpendicular direction to magnetic field vector, and its velocity ẋ (Figure 8.9(d)).
The induced voltage because of this motion is,

Vemf = B ⋅ ẋ ⋅ l (6.198)

This same principle can be used in a flow rate sensor, where the magnetic field B is induced by a
permanent or electromagnet of the sensor, ẋ is the speed of the flow across the cross-sectional area
A. The induced voltage across the moving fluid in the direction perpendicular to both directions of
B and ẋ is proportional to B ⋅ ẋ for a given sensor size. Then, the flow rate can be calculated from
Q = A ⋅ ẋ. The fluid must be electrically conductive for this principle to work. a) Sketch the design of
a magnetic flow rate sensor based on this principle. b) Find a magnetic flow rate sensor on the web
and identify its operating characteristics (i.e., minimum conductivity of the fluid, maximum flow rate
it can measure, accuracy and bandwidth).
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CHAPTER 7
ELECTROHYDRAULIC MOTION
CONTROL SYSTEMS

7.1 INTRODUCTION

In hydraulic systems, the power transmission medium is pressurized hydraulic fluid. If
the control of the pressurized fluid flow is done by electrical means, then they are called
electrohydraulic (EH) systems. If the control of the fluid is done by a combination of
mechanical and hydraulic mechanisms, then they are called hydro-mechanical systems.

Figure 7.1 shows the essential components used in an electrohydraulic system. In
electronically controlled hydraulic systems, the operator input devices are connected to
sensors which generate the command signal to the electronic control module (EMC), which
then controls the valves and pumps/motors. The main components of a EH system are:

1. engine or electric motor (mechanical power source),

2. pump (mechanical to hydraulic power conversion), along with oil reservoir, filter,
heat exchanger, relief valve),

3. main valve (for controlling, “metering,” the flow into the actuator),

4. hydraulic cylinder or motor (actuator),

5. sensors (position, velocity, pressure, flow rate),

6. electronic control module (ECM),

7. operator input devices (connected to integrated sensors which are then connected to
the ECM),

8. other items, such as accumulators, safety or special function valves, hoses.

The concept of a hydraulic system is shown in Figure 7.2. The basic components of a
electrohydraulic motion control system are shown in Figure 7.3. A closed loop controlled
version of a single axis EH control system is shown in Figure 7.4 where sensors at the
valve, cylinder, and application tool may be included as part of a closed loop digital control
system. Hydraulic systems deal with the supply and control of fluid pressure, flow rate and
flow direction.

The mechanical power source (usually an internal combustion engine in mobile
equipment or an electrical induction motor in industrial applications), hydraulic pump, and
reservoir form the so called hydraulic power supply unit. The tank (reservoir) acts as the
hydraulic fluid supply and reservoir for the return lines. The volumetric size of the reservoir
is typically 3 to 5 times the gallons/minute (gpm) flow rate of the pump, that is if the
pump is rated at 10 gpm, the reservoir size can be in the 30–50 gallons range. The “pump”
converts the mechanical power received from the mechanical power source into hydraulic
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FIGURE 7.1: Components of an electrohydraulic control system: input devices (joysticks),

electronic control module (ECM), hydraulic tank, accumulators, pumps, motors, cylinders,

valves, hoses and filters. Reproduced with permission from Parker Hannifin.

power in the form of pressurized fluid at its outlet port. The pump is the heart of a hydraulic
system. If the pump fails, no hydraulic power can be transmitted to the final actuators. In
industrial applications, an electric motor is typically used to provide mechanical power to
the pump, whereas the internal combustion engine is the mechanical power source to drive
the pump in mobile equipment applications. Figure 7.5 shows two common examples of
hydraulic power units for industrial applications. The JIC style is one of the most common
hydraulic power units. The main benefit of the design is its simplicity and easy access to
main components for servicing. The main drawback of it is the fact the pump inlet port is
at a higher elevation than the fluid in reservoir. This may lead to a cavitation problem at the
pump inlet port. The overhead design eliminated the cavitation problem to a large extent.
In addition, the pump may be submerged in the reservoir so that the circulation of fluid in
the reservoir also helps cool the pump. However, the submerged style makes servicing of
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“Power conversion”
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"Power control"
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FIGURE 7.2: Concept of a hydraulic power system: the main functional components needed

are 1. mechanical power source device, 2. mechanical to hydraulic power conversion device, 3.

hydraulic power control device, 4. hydraulic to mechanical power conversion device.
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FIGURE 7.3: Symbolic representation of the components of an electrohydraulic motion

system for one axis motion: hydraulic power unit (pump and reservoir), valve, actuator,

controller. Since there are no sensors used for the control decision, this is an open loop control

system. It is also called an operator in the loop control system.

the pump more difficult. There are other types of hydraulic power units, such as L-shaped,
vertically mounted motor on reservoir, and T-shaped reservoir.

The valve is the key control element. A valve is used to control (also called modulate or
throttle or meter) the fluid flow. The valve is the metering device. The flow can be regulated
in terms of its rate, direction, and pressure. The type of the valve used and the “control
objective” that drives the valve vary from application to application. The most common
form is a proportional flow control valve. The valve is controlled by a solenoid or torque
motor where the current in the windings generates a proportional spool displacement. The
spool displacement opens the metering ports, and hence controls the flow rate. The valve
amplifier (considered as part of the controller block in Figure 7.3) provides the amplified
version of the low power command signal from the controller. A proportional valve (or
a proportional hydraulic control component) is a device which provides an output that is
proportional to the input. For instance, an electrohydraulic proportional flow control valve

Valve sensor

Actuator sensor

Process sensor 

Power supply &
amplifier

Machine

Hydraulic 
actuator

Motor  Pump

Tank

Electrohydraulic servo system
Operator commands

Valve

FIGURE 7.4: Basic components of a closed loop controlled electrohydraulic motion system for

one axis motion (pump, valve, cylinder, controller, sensors).
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(a) (b)

FIGURE 7.5: Hydraulic power units for industrial applications which include electric motor,

pump, reservoir, filtration, heat exchanger. a) JIC style hydraulic power unit where the pump is

on top of the reservoir and must have good suction in the inlet pipe in order to avoid cavitation

in the pump input port. b) Overhead reservoir where the lowest level of oil is at a higher

elevation than the pump. This design is less likely to have a cavitation problem. The pump can

also be submerged in the reservoir which helps its cooling, but it is more difficult to service.

provides a flow rate (output) which is proportional to the current command signal to its
solenoid driver. An electrohydraulic proportional pressure control valve provides a pressure
at the output port (output) which is proportional to the electrical command signal (input) to
its solenoid drivers. Such a valve, including the solenoid and driver circuit, is considered a
proportional device. In practice, the input–output relationship of devices are hardly ever a
perfectly proportional linear relationship, but are close to it. The actuator, power delivery
component, of the EH motion system can be either a linear cylinder or a rotary hydraulic
motor. For steady-state considerations, the speed of the actuator is proportional to the
flow rate.

Hydraulic circuits can be represented using one of three forms (Figure 7.6). Picto-
rial or cut-away representations of components and their interconnections are useful in
physically understanding how each component works and visualizing the flow path. How-
ever, the engineering standard is to use the symbolic representation of the components as
shown in Figure 7.6c. With symbols, we simplify the process of drawing and representing
information about components even though they do not graphically display the physical
construction or size of the component. This is generally the case in all engineering circuit
drawings including electrical circuits, where symbols are used to represent components
and their input–output relationship as opposed to conveying their physical construction
information. Therefore, it is very important for an engineer to understand the physical con-
struction and the operating principles of hydraulic components, as well as their symbolic
representations in order to be able draw, read, and properly interpret circuit diagrams.

Applications of hydraulic motion control systems include:

1. Mobile equipment, such as construction equipment, that generates its power from
an internal combustion engine, and delivers power to work tools via pressurized
hydraulic fluid using pump, valve, and cylinder/motor components.

2. Industrial factory automation applications:
(a) presses (punch presses, transfer presses),
(b) injection molding machines,
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(a) - Picture representation of hydraulic circuit components

(b) - Cut-away representation of hydraulic circuit components

(c) Symbolic representation of hydraulic circuit components

PM

FIGURE 7.6: Hydraulic circuit diagrams can be represented in three different forms for

communicating information: (a) pictorial representation of the components in the circuit and

their connections to each other, (b) cut-away view of the components and their connections to

each other, (c) symbolic representation (this is the standard engineering representation) of the

components and their connections to each other.
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(c) sheet metal thickness control drives in steel mills,
(d) winches and hoists.

3. Civil and military aircraft flight control systems and naval ships:
(a) primary flight control systems that involve the motion of wing surfaces, rudder,

and elevator,
(b) secondary flight control systems that involve spoilers and and trim surfaces,
(c) engine fuel rate delivery control systems.

4. Military ground vehicles:
(a) turret motion control,
(b) hydrostatic traction drive systems.

Guidelines for Understanding a Hydraulic Circuit Hydraulic circuit dia-
grams are the standard engineering tools used to describe a hydraulic circuit. A hydraulic
circuit diagram shows the connections between various hydraulic, mechanical, and elec-
trical components using lines for connections and standard symbols for components such
as pumps, valves, and cylinders. At first glance, a real hydraulic circuit diagram may look
very complicated. However, a systematic approach to reading it is useful. It is not unusual
to spend multiple days studying a given hydraulic circuit in order to fully understand it.
The following general guidelines (ten point guidelines) are recommended in interpreting a
given hydraulic circuit diagram:

1. Identify the main hydraulic power supply: hydraulic oil reservoir along with its filters
and heat exchangers, pump (or pump group), possibly line relief valve, and power
source (i.e., electric motor or engine).

2. Identify the main hydraulic actuators: cylinders and motors.

3. Identify the main flow control valves that connect the pump supply to the actuators;
the type of valve (ON/OFF, proportional, servo), open center/closed center, pressure
compensated or not and so on.

4. Identify the safety valves (relief valves) in the supply side and on the actuator (line)
side (i.e., line relief valves, cross-over relief valves).

5. Determine the main hydraulic power flow paths from pumps to valves, then to the
actuators, and return lines from actuators to valves and back to tanks.

6. If a pilot control circuit exists, identify the pilot control pump supply and return
lines, its hydraulic oil reservoir and oil conditioning components, as well as the pilot
control valves.

7. Then identify the pilot control valves which take either a mechanical motion signal
from an operator input device or from a digital computer as the command signal,
and convert it to an amplified pilot pressure to actuate the main valve. If the main
valve is single stage (i.e., low flow rate applications), then the operator control signal
may be connected directly to the main flow control valve without a pilot stage. The
“pilot” signals represent the “control” signals to the main power stage. The word
“piloting” is used to describe the low power control signal that goes into the main
power stage control elements, that is main valves. In large power applications, the
electrical control signals (first stage of control) are amplified to pilot hydraulic control
signals (second stage of control) which are then used to actuate (control) the main
stage components.

8. Identify the operator generated (or automatically generated or remote by an electronic
control module (ECM)) command signal sources, that is levers, joysticks, steering
wheels, pedals.



JWST499-c07 JWST499-Cetinkunt Printer: Yet to Come October 9, 2014 8:41 254mm×178mm

ELECTROHYDRAULIC MOTION CONTROL SYSTEMS 413

9. Identify the sensors, and the logic by which they are used in the control decisions:
electrical sensors are interfaced to an electronic control module. Mechanical sensing
mechanisms and hydraulic sensing lines are directly used in a hydro-mechanical
control logic in the circuit. For instance, the load sensing control of a pump can be
implemented either as a hydro-mechanical control or a digital control.

10. Determine any hydro-mechanically built-in priority and over-ride type logic in the
circuit. Then, study the control logic software used to digitally control the hydraulic
system.

The control of an EH motion system may involve the control of the valves, the
pump and the motor. Furthermore, the control logic may be based on “open loop” or
“closed loop” concepts. If a human operator is in the loop, a fixed displacement pump with
variable input speed (i.e., variable engine speed) controlled by an operator pedal, and a
valve actuated proportional to the operator lever input (open loop control) is sufficient. The
operator would adjust the pump input speed with pedal, and hence controls the hydraulic
supply power. At the same time, the operator controls the valve shifting with a lever based
on his/her observations, and hence modulates the delivery to the actuator. In automated
systems, closed loop control of the valve and pump may be necessary. The design of a
electro-hydraulic motion control system involves the following steps,

1. Specifications: the first step in any design is to specify the requirements that the
system must meet, that is performance, operating modes, fail-safe operation.

2. System concept design: given the specifications, an appropriate system design concept
must be developed, that is it is an open circuit hydraulic or closed circuit hydraulic
system, open loop or closed loop controlled.

3. Component sizing and selection: the proper component types and sizes must be
selected. Component sizing requires power calculations to make sure the size of
components is properly matched and that they have the capacity in terms of power,
pressure, and flow rate to meet the performance requirements.

4. Control algorithm design: in computer controlled EH systems, there is always a
controller hardware and real-time control software involved in control of the system.

5. Modeling and simulation: if necessary, the EH system hardware and control algorithm
may be modeled and simulated off-line on a computer to predict the performance of
the overall system.

6. Hardware test: finally, a prototype system must be built and the operation of the EH
system, under the control of the designed control algorithm and hardware, must be
tested. If the desired performance objectives are not met, the design process is iterated
for refinements.

Measured variables in an EH system for control purposes may include the following:

1. load position and speed measured at the actuator (cylinder) and/or load end,

2. load pressure measured as pressure differential at the actuator ports or at the outlet
ports (A & B) of the valve,

3. load force or torque,

4. spool displacement,

5. flow rate,

6. pump output pressure,

7. pump displacement,

8. pump speed.
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FIGURE 7.7: Safety valves typically added to a hydraulic motion system: pump side relief

valves and load side relief valves (line-to-tank relief valves, cross-over relief valves), and check

valves to limit the flow in a line to one direction only (i.e., flow is allowed from P to A or B ports,

but not back to P port from A or B ports).

These measured quantities may be used in real-time as part of a closed loop control
algorithm. Intermediate variables can be derived from the measured variables and regulated.
For instance, if the flow rate and load pressure are measured, the output power can be
calculated. Then it can be used to implement a closed loop control algorithm on the desired
output power. Hence, the EH control system would operate so as to track a commanded
output power level.

Figure 7.7 shows possible safety related additions to a typical hydraulic motion
system. In general, every hydraulic circuit should include safety relief valves to protect the
lines against excessive pressures at both (i) pump side and (ii) actuator (line) side. Typical
pressure safety valves designed into the system are as follows:

� pump pressure relief valve which limits the maximum output pressure of the pump,
� line relief valve which opens the line to the tank if the line pressure exceeds a set limit,

and/or cross-over relief valves which open one side of the actuator to the other side if
the pressure differential between the two sides of the actuator exceeds a certain level.

ON/OFF valves are used in applications where the controlled flow is only needed
to be turned ON or OFF. In this type of application, the actual speed is determined by
the supply and load conditions. The spool position is controlled to one of two discrete
positions: one position to completely block the flow (OFF position) and one position to
fully open the orifice for flow (ON position). Proportional and servo valves are used on
variable control applications where the valve spool position, and hence the opening of
the orifice area, is controlled “proportionally,” not just “fully ON” or “fully OFF,” but in
proportion to the command signal. Proportional and servo valves are used in applications
where variable speed, position, or force control is needed. The orifice opening area versus
the spool position function of the proportional and servo valves, especially around the
null-position, is an important factor in closed loop control performance.
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If there is only a finite number of desired speed or force control levels, this may be
accomplished by a few ON/OFF valves in parallel at a lower cost and with simpler design.
For instance, if an application requires only ON/OFF action, a single flow control valve
between the hydraulic supply line and actuator is needed. If the application requires three
different speed levels in addition to zero speed, for example 0%, 33.33, 66.66%, and 100%
of maximum speed capacity, we can accomplish this with two ON/OFF valves connected
in parallel between the hydraulic supply and actuator lines. Valve 1 would be sized to
have a flow rate capacity of 1∕3 of the maximum flow rate and valve 2 would be sized to
have a flow rate capacity of 2∕3 of the maximum flow rate needed to support the desired
100% actuator speed. Then, by turning ON/OFF both or either one of the valves, we can
realize one of these three different speed ranges. Clearly, ON/OFF valves have limited
flow metering capabilities. However, they do provide simpler and low cost motion control
solutions in discrete speed or flow rate control applications.

Accumulators The accumulator serves as a pressurized fluid storage component.
The accumulator is the hydraulic analogy of an electrical system batterry or capacitor. It
can help the control system in two ways in the transient response,

� maintain the hydraulic line pressure in case of a sudden drop on the hydraulic line
pressure due to a sudden increase in demand or decrease in the the pump output,

� it can provide a damping effect and shock absorber function in case of large pressure
spikes, that is as a result of suddent load changes.

On the other hand, an accumulator also reduces the open loop natural frequency of the
EH system as a result of the reduced stiffness of fluid (smaller effective bulk modulus due
to elasticity of the accumulator and increased fluid volume). As a result, the maximum
bandwidth the control system can achieve is lower. There are three main types of accumu-
lators: weight loaded, spring loaded, and hydro-pneumatic types. Hydro-pneumatic type
accumulators use dry nitrogen as the compressed gas.

There are three major designs of hydro-pneumatic accumulators which are catego-
rized in terms of the way hydraulic pressure and pressure storage components interact
with each other: (i) piston type, (ii) diaphragm type, and (iii) bladder type (Figure 7.8).
An accumulator is rated with the hydraulic fluid volume it can store (also called working
volume), maximum and minimum operating pressures, precharge pressure, and maximum
shock pressure it can tolerate. The compression ratio of an accumulator is the ratio between
maximum and minimum operating pressure.

An accumulator can be sized either based on a required discharge volume and to limit
the maximum pressure due to shocks. For a given discharge volume (Vdisch), the required
accumulator size (volume of the accumulator, Vacc) can be determined as follows,

Vacc = Vdisch ⋅
pmin
ppre

/[
1 −

(
pmin
pmax

)1∕n
]

(7.1)

where ppre, pmin, pmax are precharge pressure of accumulator, minimum and maximum line
pressure, n is an empirical number between 1.2 to 2.0.

The precharge pressure is about 100 psi less than the minimum line pressure
requirement,

ppre = pmin − 100 psi (7.2)

After the accumulator is precharged, the line, which has a pressure presumably between
minimum and maximum pressure, charges the accumulator. Fluid flows into the accumulator
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FIGURE 7.8: (a) Three different types of hydro-pneumatic accumulators: bladder type,

diaphragm type, and piston type [13], and (b) various operating conditions of an accumulator

(from left to right): 1) empty (uncharged), 2) precharged, 3) line pressure exceeds the precharge

pressure and fluid flows into the accumulator, 4) line pressure is at maximum and accumulator

is filled with fluid to its design capacity and the line relief-valve should open, 5) line pressure

drops below the current accumulator gas pressure and fluid flows out of the accumulator, 6)

line pressure is at its minimum and the accumulator has discharged all of its designed

discharge volume. Reproduced with permission from Parker Hannefin.

until the pressure rises to the maximum pressure setting, at which point the relief valve
opens. When the stored pressure in the accumulator is larger than the line pressure, that
is due to sudden pressure drop in the line, the fluid flows from the accumulator to the
line. This continues until the accumulator pressure reaches the minimum pressure setting,
at which point the poppet valve would be closed. When the line pressure exceeds the
accumulator pressure, fluid again flows into the accumulator and charges it. The pressure
in the accumulator is limited to be between minimum and maximum pressure settings,

pmin ≤ pacc ≤ pmax (7.3)

Whenever pacc ≤ pline, the accumulator is charged, and whenever pacc ≥ pline, the accumu-
lator is discharged. When pacc = pmin ≥ pline, the poppet valve closes (or in case of a piston
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type accumulator, the end of travel is reached). When pacc = pmax < pline, a system relief
valve opens to protect the accumulator.

Typically, the accumulator volume is about three, four or more times the discharge
volume. In general, the higher the dynamic response requirements, the larger the accu-
mulator size is relative to the discharge volume. The full discharge volume of a typical
accumulator can be discharged within a few hundred milliseconds. For instance, consider
a piston type accumulator with a discharge volume of 20 l, and that it can discharge at
3600 l∕min at 3000 psi pressure differential between the accumulator and the line pressure.
Therefore, the accumulator would discharge at 60 l∕s rate and the full volume would be
discharged within about 1∕3 s. Bladder and diaphragm type accumulators have a slightly
faster response time than the piston type due to less friction between moving parts.

Figure 7.8b shows six selected conditions of a bladder type accumulator. In the first
figure, the accumulator is empty both on the fluid and gas side. In the second figure,
accumulator has been precharged with dry nitrogen gas to the precharge pressure, ppre. The
third figure shows the case when line pressure (pline) exceeds the precharge pressure and
fluid starts to fill-in the accumulator. The fourth figure shows the condition when the line
pressure reaches its maximum value, pline = pmax, and the line relief valve should open. The
fifth figure shows the condition that the line pressure drops below the accumulator pressure,
pmin ≤ (pline < pacc) ≤ pmax, and accumulator pressure adds fluid to the line. Finally, the
sixth figure shows the condition when accumulator pressure reaches the minimum pressure,
pmin, setting. For a correctly sized accumulator in a hydraulic circuit and under proper
circuit operating conditions, the operation of the accumulator should cycle between the
minimum and maximum pressure setting without opening the line relief valve (the third and
sixth state shown in Figure 7.8b). If the minimum operating pressure is lowered without
correspondingly lowering the precharge pressure, the accumulator will operate between
second and third states in Figure 7.8b. This condition can lead to accumulator failure due
to the contact between the bladder and poppet valve assembly. Therefore, the line pressure
should not be allowed to drop below the minimum operating pressure of the accumulator.
Otherwise, the accumulator operates between conditions two and six in the figure, which
is not the intended, nor a desirable, operating condition.

In most circuits, the accumulator is placed on the pump side of the circuit, as close
as possible to the valve in order to provide the best dynamic response. However, in some
circuits the accumulator may be placed on the actuator side (cylinder or hydraulic motor)
side of the circuit between the valve and the actuator. For example, let us consider an
application where the external load changes so quickly (i.e., shock load, such as those
experienced in rock crushing drives in mining applications) that neither the main valve nor
the line pressure relief valve can act fast enough to limit the pressure on the circuit. In such
a case, an accumulator is placed between the valve and the cylinder to absorb the suddenly
rising pressure. In such applications, the minimum operating pressure of the accumulator
should be higher than the normal operating pressure of the line so that it would be inactive
during normal operating pressure ranges except when the shock load occurs.

Very small volume (i.e., 1 to 10 in3) bladder type accumulators (also referred to as
in-line hydraulic shock absorbers) are also used between the valve and cylinder to limit the
maximum pressure, which is beyond the normal operating range of the line pressure. The
purpose of such tiny accumulators is to absorb very small volumes of fluid which would
otherwise cause very large pressure spikes.

Pressure sensors and the control valve should be placed to the cylinder ports as
close as possible in forcel (or pressure) control applications. Pressure waves travel in oil
at about 4.5 ft∕ms. In other words, a 45 ft distance between actuation (valve) and sensing
point (pressure sensor) would lead to a 10 ms pure time delay in the control system. This
would severely limit the closed loop bandwidth capability of the system. This is an example
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of actuator-sensor non-colocation and the resulting transport delay (pure time delay) in a
control system.

Example Consider a hydraulic motion system where an accumulator is to be selected.
Let the maximum and minimum line pressures be 3000 psi and 90% of that (2700 psi),
respectively. Let n = 1.4 nominally for the nitrogen gas. Let the discharge volume to be
1 gallon. Calculate the necessary accumulator volume.

Let the precharge pressure to be 90% of the minimum pressure. Hence

ppre = 0.90 ⋅ pmin = 0.9 ⋅ 2700 = 2430 psi (7.4)

Using the empirical formula, the accumulator volume required,

Vacc = 1.0 ⋅
2700
2430

∕(1 − (2700∕3000)1∕1.4) (7.5)

= 15.32 gallons (7.6)

An accumulator size of 20 gallons is a good design choice for this case.
Let us further consider that we allow a larger pressure variation for the accumulator

operation, with the same amount of discharge volume needed. Then it is expected that the
required accumulator size will smaller since larger pressure variation is allowed. Let pmax =
3000 psi, pmin = 2000 psi, ppre = 0.9 ⋅ pmin = 1800 psi, Vdisch = 1.0 gallon. The required
accumulator volume, based on the empirical formula,

Vacc = 1.0 ⋅
2000
1800

∕(1 − (2000∕3000)1∕1.4) (7.7)

= 4.41 gallons (7.8)

An accumulator size of 5 gallons is a good design choice for this case.

Filtration Filtration removes the solid particles from the hydraulic fluid. Filters may
be located at the suction line, pressure line, return line or drain line (Figure 7.9). In addition,
there could be a dedicated loop for continuous filtration of the fluid in the reservoir. This is
called kidney loop filtration. If the pump is the most sensitive element in the circuit against
dirt, the filter is placed at the inlet port of the pump between the reservoir and the pump. In
this case it is important to maintain a pressure differential across the filter in order to avoid
cavitation at the pump inlet port. If the valve is the most sensitive component (i.e., servo
valve), then the filter is placed between the pump outlet port and the valve. Notice that such
a filter must be rated to handle the maximum pressure and flow rate it is exposed to.

A filter has replaceable elements to remove particles above a rated size, such as
3-micron. As a safety measure, each filter usually has a parallel bypass valve (pressure
switch). In case the filter becomes clogged due to excessive dirt accumulation before a
scheduled filtering element replacement, the pressure build up in the clogged filter will open
the bypass valve, and allow the flow to continue albeit it may not be filtered. Unfiltered
fluid and the resulting dirt is perhaps the most common cause of component failure in
high performance hydraulic servo systems where the servo components have precision
manufacturing tolerances. The three most important specifications for a filter are:

1. minimum size of the particles it can filter (i.e., 10-micron, 5-micron),

2. maximum pressure it can withstand (i.e., in supply line or in return line),

3. maximum flow rate it can support.

Some Hydraulic Circuit Concepts Figure 7.10a shows a simple hydraulic sys-
tem where the hydraulic power is provided by the lever motion. In this case, the lever is
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FIGURE 7.9: Filter locations in a hydraulic circuit: (a) filter in suction line, (b) filter in pressure

line at the pump output, (c) filter in return line to the tank, (d) filter in case drain line, (e) kidney

loop filtration. There is generally a by-pass check valve in parallel with the filter in order provide

a flow path in case the filter is clogged up.

moved by an operator. As the lever moves up, due to the pressure differences, check valve
1 opens and check valve 2 closes. Hence, the lever sucks the fluid from the reservoir. In the
down stroke, check valve 1 closes and check valve 2 opens. The pressure between the lever
side and cylinder side are almost equal. Hence, the force is multiplied by the area ratio,
while the speed of linear travel of the load and lever is divided by the same ratio. This is
the result of conservation of power.

Figure 7.10b shows a simple hydraulic system where the source of hydraulic power
is a fixed displacement gear type pump. Input mechanical power to the pump is provided
by an electric motor. An operator controls the flow to the cylinder by a manually actuated
valve. Notice that the valve is open-center type which means that the flow circulates from
pump port to tank port when the valve is in neutral position.
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FIGURE 7.10: (a) Manually powered hydraulic cylinder. The pumping power and flow

metering is controlled by the manual power provided to the lever arm. The flow rate is

determined by the travel of the pumping action and rate of cycles per unit time. (b) Electric

motor powered hydraulic system. The pump is a fixed displacement type gear pump type. Flow

rate is controlled manually by the valve lever.

Figure 7.11 shows the components of a hydraulic circuit for the motion of a cylinder
of an excavator. The power source is the internal combustion engine, the hydraulic pump
is mechanically geared to the engine crankshaft for the mechanical power source. The
directional valve is a manually controlled type.

Similarly, Figure 7.12 shows the components of an electrohydraulic circuit for the
motion of a rotary hydraulic motor for a service truck. The hydraulic motor receives power
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FIGURE 7.11: A manually operated hydraulic circuit for the cylinder motion of an excavator

linkage. The main directional valve is actuated via a mechanical pedal by an operator.
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FIGURE 7.12: An electrohydraulic closed loop speed control system example for a service

truck.
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FIGURE 7.13: Multi degrees of freedom (multi function) hydraulic circuit. This example shows

a parallel connection of two hydraulic actuator-valve circuits to supply lines. The valves are

generally of closed center type in this configuration. The pump may be a variable or fixed

displacement type (most likely variable displacement type).

from the pump, which receives its power from the engine, and its speed is controlled by a
directional flow control valve and operator input switch. Notice that the hydraulic motor
speed is closed loop controlled using a tachometer speed sensor as the feedback signal.

A multi function (multi degrees of freedom motion) hydraulic power based motion
system is shown in Figure 7.13. In general one pump is used (large enough to support all
functions), and a valve-actuator pair is used for each function. This figure shows a parallel
connection of the each hydraulic valve-actuator pair to the pump and tank lines. In some
applications, multiple circuits may have series connections, where a preceeding circuit
has priority over the following circuits. Such implementation is necessary when it is not
practical to provide a large enough pump to support the full load of each circuit and one
of the circuits is more important than the others. One such implementation is used in the
implement (bucket) hydraulic circuit for wheel type loaders. The valve-cylinder pair for
lift and tilt motion are connected in series (Figure 7.14). The pump is not large enough to
support both functions at their maximum flow capacity. The tilt circuit is connected ahead
of the lift circuit. As a result, if the tilt valve is shifted to its maximum displacement, the
tilt cylinder gets the maximum flow, and the remaining small amount of flow is passed to
the lift circuit through the tilt valve. Such a hydraulic circuit is said to have tilt function
priority over lift function.

All of the electrohydraulic circuit examples given above circulate the flow from
reservoir to pump, to valve, then to the actuators and back to the reservoir. Such hydraulic
systems are called open circuit systems. There are also the so called closed circuit hydraulic
systems, such as those used in hydrostatic transmissions. A hydraulic circuit is called closed
circuit if the main flow in the power line circulates in a closed line with small leakage and
replenishment of fluid from the reservoir. Figure 7.15 shows the hydraulic circuit and
its components for a typical closed circuit transmission. There are three major fluid flow
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FIGURE 7.14: Multi degrees of freedom (multi function) hydraulic circuit. This example shows

a series connection of two hydraulic actuator-valve circuits to supply lines. Valves are

necessarily open-center type in order to supply the circuits in the serial connection when an

earlier valve is in neutral position. The valves closer to the pump have priority over the ones

that are connected later in the series circuit. The pump may be of variable or fixed

displacement type.

circuits: the main flow loop between the pump and motor, the charge loop which supplies
replenishment flow to the main loop as well as supply pressurized flow power used to
actuate the pump displacement, and finally the the drain loop which sends the leakage
flow through the components to the reservoir. The pump control types are discussed in
more detail later. Suffice it to say that the pump displacement can be controlled to regulate
various variables, such as pump output pressure, flow rate. The power necessary to actuate
the main pump displacement control system is provided by the charge pump. The control
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FIGURE 7.15: A typical closed circuit hydrostatic transmission circuit. Reproduced with

permission from Danfoss Power Solutions.
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of pump displacement is performed by the control valve which is actuated based on the
control objective. In closed circuit hydraulic circuits, ideally there is no leakage nor need
for replenishment fluid. In reality, it is desirable to have a certain amount of leakage. It is
through the leakage and the replenishment circuits that fluid under high pressure is removed
from the main loop, cooled by the heat exhanger, cleaned by filters and reinjected back
into the main loop. Therefore, the leakage and charge pump relenishment is an essential
part of all practical closed circuit hydraulic systems. In fact, the leakage rate is planned
into the circuit design and regulated at a planned rate by a so called loop flushing valve.
A typical system also includes various pressure relief valves between different sides of
hydraulic lines.

The pump is a variable displacement type bidirectional pump. By changing the direc-
tion of fluid flow, the direction of speed of the hydraulic motor is changed. By controlling
the pump, the flow rate and hence the speed of the hydraulic motor, is controlled. Similarly,
if the pump is controlled to maintain a certain pressure, the torque output at the hydraulic
motor is controlled.

A hydraulic system can be categorized in terms of the power source used to control
the hydraulic valve. That is the actuation power used to move the spool. There are four
major valve actuation methods (Figure 7.16):

1. mechanically direct actuated valve,

2. electrically direct actuated valve,

Pump

Reservoir

Control lever

Actuator

Valve

Engine

Engine

Main pump

Reservoir

Control lever

Actuator

Pilot valve

Main valve

Pilot pump

Sensor ECU Amp

P.S. / battery

Engine
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Actuator

Main valve

Control lever
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Main pump

Reservoir Actuator

Pilot valve

Main valve

Pilot pump

Sensor ECU Amp

P.S. / battery

Control lever

(a) (c)

(b) (d)

FIGURE 7.16: Hydraulic valve control methods: (a) mechanically direct actuated valve

(single-stage valve), (b) electrically direct actuated valve (single-stage valve), (c) mechanical

plus pilot hydraulics actuated valve (two-stage valve), (d) electrical plus pilot hydraulics

actuated valve (two-stage valve).
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3. mechanical plus pilot hydraulics actuated valve,

4. electrical plus pilot hydraulics actuated valve.

The focus in the classification is the source of actuation power for shifting the valve spool.
In mechanically controlled valves, the operator pushes a lever which is connected to the
main spool via a mechanical linkage. This is used in relatively small size mobile equipment
applications. The same concept is extended to large size machine applications by using an
intermediate pilot pressure circuit to actuate the main valve. The motion of the pilot valve
is still controlled by direct mechanical motion of the lever. The pilot valve is essentially a
proportional pressure reducing valve. It has a constant pilot pressure supply port and a tank
port. The output pilot pressure is proportional to the lever displacement at a value between
the tank port pressure and pilot supply port pressure. The main valve spool is shifted in
proportion to the output pilot pressure.

Finally, if the spool displacement power comes from the electromagnetic force which
is generated by an electric current in the solenoid winding, then it is an electrically controlled
valve. Such hydraulic systems are called electrohydraulic (EH) systems. The EH valves
may be single stage for small power applications or multi stage for large power applications.
In multi stage EH valves, the electrical current in the solenoid moves the first stage valve
spool (pilot spool), and then the motion of the pilot spool is amplified via a pilot output
pressure line to move the main valve spool. In short, pilot-actuated multi stage valves may be
controlled by the mechanical connection to the control lever (mechanically controlled multi
stage hydraulic valve (Figure 7.16b)) or by an electrical actuator (electrically controlled
(EH) multi stage valve, Figure 7.16d).

7.2 FUNDAMENTAL PHYSICAL PRINCIPLES

In this section we briefly review the fundamental principles of physics that govern hydraulic
circuits. Namely, we discuss the Pascal’s law and Bernoulli’s equation.

Pascal’s Law Pascal observed that a confined fluid transmits pressure in all directions
in equal magnitude. The implication of this observation is illustrated in Figure 7.17. The
pressures on both sides on the hydraulic circuit are equal to each other.

p1 = p2 (7.9)
F1

A1
=

F2

A2
(7.10)

F2 =
A2

A1
⋅ F1 (7.11)

A1 A2Fluid

F1 = p1 . A1 F2 = p2 A2

Same p;
p1 = p2

FIGURE 7.17: Fundamental principles of fluid flow in hydraulic circuits: Pascal’s law.
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By using a smaller weight on side one, we can move a much larger weight on side two. The
circuit acts like a force multiplier. The conservation of energy principle also requires that

Energy In = Energy Out (7.12)

F1 ⋅ Δx1 = F2 ⋅ Δx2 (7.13)

F1 ⋅ Δx1 = F1 ⋅
A2

A1
⋅ Δx2 (7.14)

A1 ⋅ Δx1 = A2 ⋅ Δx2 (7.15)

Δx2 =
A1

A2
⋅ Δx1 (7.16)

which confirms the conservation of fluid volume. As an analogy, this hydraulic circuit acts
like a gear reducer. That is, neglecting the loss of energy due to friction, the energy is con-
served (input energy equal to output energy) and the force is increased while displacement
is reduced.

Conservation of Mass: Continuity Equation The principle of conservation
of mass in hydraulic circuits is used between any two cross-section points (Figure 7.18).
Assume that the mass of the fluid in the volume between the two points does not change.
Then, the net incoming fluid mass per unit time is equal to the net outgoing fluid mass per
unit time,

ṁin = ṁout (7.17)

Q1 ⋅ 𝜌1 = Q2 ⋅ 𝜌2 (7.18)

If the compressibility of the fluid is negligable, then 𝜌1 = 𝜌2, then the continuity
equation for a non-compressible fluid flow between two cross-sections

Q1 = Q2 (7.19)

Conservation of Energy: Bernoulli’s Equation Consider any two cross-
section points in a hydraulic circuit (Figure 7.18). It can be shown that the conservation of
energy principle leads to Bernoulli’s equations. If there is no energy added or taken from

Zero elevation reference plane

P1

P2

Q

Q W

1 2

W  

h1
h2

v1

v2

FIGURE 7.18: Fundamental principles of fluid flow in hydraulic circuits: conservation of mass

and energy (Bernoulli’s equation).
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the flow and frictional losses are neglected, Bernoulli’s equation can be expressed in its
standard form as

h1 +
p1

𝛾1
+

v2
1

2g
= h2 +

p2

𝛾2
+

v2
2

2g
(7.20)

where h1, h2 are the nominal height of the fluid from a reference point, p1, p2 are the
pressures, v1, v2 are the velocities, 𝛾1, 𝛾2 are the weight densities at points 1 and 2, g is the
gravitational acceleration (9.81 m∕s2 = 386 in∕s2). If the fluid compressibility is neglected,
then 𝛾1 = 𝛾2.

If there is energy added between the two points (i.e., by a pump), Ep, or energy taken
(i.e., by an motor), Em, and if we take energy losses due to friction into account as El,
Bernoulli’s equation can be modified as

h1 +
p1

𝛾1
+

v2
1

2g
+ Ep − Em − El = h2 +

p2

𝛾2
+

v2
2

2g
(7.21)

where the added or removed energy terms (Ep, Em, El) are energy units per unit weight
of the fluid. The energy unit is equal to force times the displacement. Energy per unit
weight is obtained by dividing that unit by weight (weight = m ⋅ g) which has force units.
Hence, Ep, Em, El have effective units of length. The energy stored in the fluid has three
components: kinetic energy due to its speed, potential energy stored due to its pressure, and
potential energy stored due to gravitational energy due to the elevation of the fluid. Quite
often, the change in energy due to the change in height between two points is negligable
and the h1 and h2 terms are dropped from the above equations in hydraulic circuit analysis.

Viscosity of Hydraulic Fluid Viscosity is the resistance of a fluid to flow (Fig-
ure 7.24). It is a measure of how thick the oil is and how hard it is to move it. There are two
definitions of viscosity: kinematic and dynamics (or absolute viscosity). Dynamic viscosity,
𝜇, is defined as the ratio between the force necessary to move two mechanical surfaces
relative to each other at a certain velocity when they are separated by a viscous fluid,

F = 𝜇
A
𝛿

ẋ (7.22)

where A is the surface area filled by the fluid between two pieces, 𝛿 is the fluid film
thickness, ẋ is the relative speed between two pieces (also it is the shear rate of fluid).
Kinematic viscosity, 𝜐, is defined relative to the dynamic viscosity as

𝜐 = 𝜇

𝜌
(7.23)

where 𝜌 is the mass density of the fluid. Kinematic viscosity of a given fluid is measured as
the time period it takes for a standard volume of fluid to flow through a standard orifice. The
absolute viscosity is obtained by multiplying the kinematic viscosity with density of the
fluid. There are many different standards for measuring the kinematic viscosity. The Saybolt
Universal Seconds (SUS) measure is the most commonly used standard. The SUS viscosity
measure of a fluid indicates the amount of time (in seconds) it takes for a standard volume
of fluid to flow through a standard orifice, called a Saybolt Viscosimeter, at a standard
temperature (i.e., 40 ◦C or 100 ◦C). Other standards used for viscosity index are SAE (i.e.,
SAE-20, SAE-30W) and ISO standards. In general, the SUS viscosity of a hydraulic fluid
should be within 45 to 4000 SUS.

The hydraulic fluid viscosity varies as function of temperature, especially during
the startup phase of operation [14]. Therefore, the oil temperature must be kept within a
certain range. Air-to-oil or water-to-oil heat exchangers are used to control the temperature
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of the hydraulic fluid. The heat exchanger transfers heat between two separate fluids (i.e.,
hydraulic fluid and water, or hydraulic fluid and air). If the heat is transferred from the
hydraulic fluid to the other fluid (i.e., to cold water), it functions as a cooler. If the heat is
transferred from the other fluid (i.e., from hot water) to the hydraulic fluid, it is used as a
heater. In most applications, the hydraulic fluid needs to be cooled. However, in very cold
environment temperatures, it is necessary to heat the hydraulic fluid instead of cooling it. A
typical heat exchanger uses a temperature sensor in the hydraulic fluid reservoir in order to
control the temperature in closed loop control mode. A regulator (analog or digital) controls
a valve (which modulates the flow rate of the second fluid) based on the temperature sensor
signal and the desired temperature value. In general, the viscosity of oil increases (oil gets
thicker and resists flow more) as temperature decreases. As the oil viscosity increases, the
flow rate of pumps reduces due to the fact that oil is less fluid and the suction action of the
pump cannot pull-in as much oil.

Bulk Modulus Bulk modulus, 𝛽, represents the compressibility of the fluid volume,
and is defined as

𝛽 = −
dp

dV∕V
(7.24)

where the negative sign indicates that the volume gets smaller as the pressure increases. The
bulk modulus has the same units as pressure. It is an indication of the stiffness of the fluid.
The higher the bulk modulus of the fluid is, the less compressible it is. It is also a function
of pressure and temperature. The nominal value of bulk modulus for hydraulic fluids is
around 𝛽 = 250 000 psi. Entrapped air in fluid can drastically reduce the bulk modulus
of a hydraulic line. Hence, the hydraulic circuit becomes softer and the system motion
bandwidth gets slower. Therefore, it is important to take care in design and operation of
hydraulic circuits that there is no entrapped gas in the hydraulic fluid lines. The overall
system would lose its stiffness significantly.

Example Consider a hydraulic fluid with bulk modulus of 𝛽 = 250 000 psi, a nominal
volume of V0 = 100 in3. If the fluid is compressed from atmospheric pressure level to the
2500 psi level, find the change in the fluid volume.

Since,

𝛽 = −
dp

dV∕V0
(7.25)

Then,

dV = −
V0 ⋅ dp

𝛽
(7.26)

= −100 ⋅ 2500
250 000

(7.27)

= −1 in3 (7.28)

= 1%V0 (7.29)

which shows that a typical hydraulic fluid will contract about one percent in volume under
a 2500 psi increase in pressure. The negative sign indicates that the volumetric change is a
decrease.

Entrapped gas (i.e., air) in hydraulic oil significantly reduces the effective bulk
modulus of the hydraulic fluid. The more entrapped gas there is, the lower the bulk modulus
will be. For instance, consider this example with entrapped air in the hydraulic fluid such
that the bulk modulus is 1∕2 the previous case without entrapped gas. For the same load
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conditions, the change in the volume of the fluid would be twice (x2) as much as the
previous case. If this was a hydraulic cylinder, the change in hydraulic volume due to load
and finite bulk modulus of the fluid would result in a change in the cylinder piston position.

Δl ⋅ Acyl = ΔV (7.30)

Δl = ΔV
Acyl

(7.31)

For the second case, the piston position change is twice as large as the first case simply due
to entrapped gas in the hydraulic fluid and its resulting effect in lowering the bulk modulus.

As the effective bulk modulus increases, the hydraulic stiffness increases, hence the
frequency content of the pressure in the line increases, but the volumetric change (hence the
cylinder position change) decreases for a given load condition. Similarly, as the effective
bulk modulus decreases, the hydraulic stiffness decreases, hence the frequency content of
the pressure in the line decreases, but the volumetric change increases for a given load
condition.

If this volume of fluid is inside a hydraulic cylinder with with cross-sectional area
of Acyl = 10 in2, the nominal height of the piston would be h = 10 in. The change in the
volume due to pressure would result in a corresponding change in the height of the fluid
since we can assume that the cylinder cross-sectional area does not change,

ΔV = A ⋅ Δh (7.32)

1 in3 = 10 in2 ⋅ Δh (7.33)

Δh = 0.1 in (7.34)

7.2.1 Analogy Between Hydraulic and Electrical
Components

An analogy between the components used in a hydraulic circuit and an electrical circuit is
shown in Figure 7.20. Notice the fact that for the majority of electrical circuit components,
there is a corresponding hydraulic component for the same functionality. The electrical
circuits have voltage, current, resistors, capacitors, inductors, and diodes. The hydraulic
circuits have pressure, flow, orifice restriction, accumulators, and check valves. However,
it should be noted that there are three main differences between hydraulic and electrical
circuits:

1. The flow-pressure (P, Q) relationship is nonlinear, whereas the current-voltage (i, V)
relationship is linear,

Q = K(xs)
√
ΔP (7.35)

i = (1∕R) V (7.36)

where xs is the displacement of the valve spool, K(xs) represents the effective ori-
fice area and discharge coefficient function as a function of xs, ΔP is the pressure
differential across the valve, and R is electrical resistance, V is voltage potential.
Resistance (R) to current and hydraulic resistance (RH) to fluid flow are similar. The
RH is a function of orifice area opening and its geometry. In the above flow–pressure
relationship, the K(xs) is equivalent inverse resistance to flow and function of the
orifice opening (xs).

2. The medium (fluid or electrons) of power transmission is compressible in hydraulic
systems, and its properties vary among different fluids.
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3. Voltage is a relative quantity, there is no absolute zero voltage. However, there is
absolute zero pressure, which is the vacuum condition.

The capacitor (C) and accumulator (CH) analogy is as follows,

V = 1
C ∫ i(t) ⋅ dt p = 1

CH ∫ Q(t) ⋅ dt (7.37)

where CH is determined by the volume and stiffness of the accumulator, which has the
units of Length5∕Force (i.e., m5∕Nt as a result of volume∕pressure = [m3]∕[Nt∕m2]). The
capacitance of a hydraulic circuit is defined as the ratio of volumetric change to pressure
change.

dp(t)
dt

= 1
CH

⋅ Q(t) (7.38)

CH = Q(t)
dp(t)∕dt

(7.39)

=
(dV∕dt)

(dp∕dt)
(7.40)

= dV
dp

(7.41)

For a given volume of fluid, V , and bulk modulus, 𝛽, capacitance is

CH = V
𝛽

(7.42)

The inertia of moving fluid in a pipe acts like an inductor. Consider a pipe with cross-
sectional area A, length l, mass density of fluid 𝜌, pressures at the two ends p1, p2, and flow
rate Q through it. Assume the following,

1. the friction in the pipe is neglected,

2. the compressibility of the fluid in the pipe is neglected.

The motion of the fluid mass in the pipe can be described as,

(p1 − p2) ⋅ A = m ⋅ ẍ (7.43)

= (𝜌 ⋅ l ⋅ A) ⋅
Q̇
A

(7.44)

where m = 𝜌 ⋅ V = 𝜌 ⋅ l ⋅ A, and Q = ẋ ⋅ A. The pressure and flow relationship is

p1 − p2 =
(
𝜌 ⋅ l
A

)
⋅ Q̇ (7.45)

p1 − p2 = L ⋅ Q̇ (7.46)

where the hydraulic inductance is defined as L = 𝜌 ⋅ l∕A. Notice the analogy between
pressure, flow rate, and hydraulic inductance versus the voltage, current, and self inductance,

Δp(t) = L ⋅
dQ(t)

dt
(7.47)

ΔV(t) = L ⋅
di(t)
dt

(7.48)
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d

l

Q
0

FIGURE 7.19: Hydraulic circuit where sudden

closure of valve results in pressure spikes due to

the inertia of the moving fluid.

Similarly, the diode and the check valve analogy is that they allow flow of electricity
and fluid in one direction, and block it in the opposite direction,

io = ii Vi ≥ Vo (7.49)

= 0.0 Vi < Vo (7.50)

Qo = Qi pi ≥ po (7.51)

= 0.0 pi < po (7.52)

where ii, io are input and output current, Vi, Vo are input and output voltage, repectively.
Similar notation applies for Qo, Qi, pi, po for flow rate and pressure.

Example Consider the hydraulic circuit shown in Figure 7.191 . The dimensions of
the pipe are shown in the figure, d = 20 mm, l = 10 m. Assume that there is a constant
flow rate in steady-state, Q0 = 120 l∕min = 2 l∕s = 0.002 m3∕s. The mass density of fluid
is 𝜌 = 1000 kg∕m3. Then, the valve closes suddenly, over a period of Δt = 10 ms, which
results in a pressure spike. This phenomenon is also known as water hammering. Assume
that the relief valve does not open.

The change in pressure due to the inertial deceleration of the fluid due to sudden
closure of the valve is determined by

Δp = p1 − p2 = L ⋅ Q̇ (7.53)

= 𝜌 ⋅ l
A

Q0

Δt
(7.54)

= 1000 ⋅ 10
𝜋(0.02)2∕4

0.002
0.01

(7.55)

= 0.2
𝜋

108 Nt∕m2 (7.56)

= 20
𝜋

MPa = 6.36 MPa (7.57)

Notice that in this example we neglected the pressure change due to the compressibility of
the fluid. A long pipe (inductor equivalent) and accumulator (capacitor equivalent) pair can
be used as the LC filtering effect on the pressure in hydraulic circuits.

7.2.2 Energy Loss and Pressure Drop in Hydraulic
Circuits

Anytime there is a pressure drop and flow in a hydraulic circuit, there is energy loss. The lost
energy is converted to heat at the loss point. Recall that hydraulic power is equal to pressure
difference times the flow rate between two points. Hence, the energy differential between

1 Courtesy of Mr. Daniele Vecchiato.
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FIGURE 7.20: Analogy between hydraulic circuit components and electrical circuit

components.

two points over a period of time is pressure differential times the total flow between the
two points. In a typical hydraulic circuit, hydraulic fluid leaves the pump at a high pressure.
There are pressure drops at the transmission pipes, valves, and actuators (Figure 7.21a).
This means energy is lost during the transmission of fluid from pump to the load. In order
to maximize the utilization of hydraulic power, and hence increase the efficiency of the
hydraulic system, pressure drops between the source (pump) and load should be minimized.

Power12 = ΔP12 ⋅ Q12 (7.58)

Energy12 = ∫
t2

t1

ΔP12(t) ⋅ Q12(t) ⋅ dt (7.59)

Pressure drop along hydraulic pipes is a function of the following parameters:

1. viscosity of the fluid, which is highly a function of temperature,

2. pipe diameter,

3. pipe length,

4. number of turns and bend in the pipe circuit,

5. surface roughness inside the pipes,

6. flow rate.

Manufacturers provide empirical data tables for pressure drop estimation as a function of
the above parameters.

Another common “rule of thumb” in hydraulic circuit design is that the linear speed
of the fluid should be kept below about 15 ft∕s in order to minimize excessive pressure drop.
Hence, the pipe diameter should be selected such that in order to support the maximum
flow rate, the linear speed of the fluid should not exceed 15 ft∕s.
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FIGURE 7.21: Hydraulic pressure and power loss in a hydraulic circuit: (a) pressure drop

across different components in a hydraulic circuit, (b) an example circuit where pressure drop

in each valve results in power loss in the form of heat.

Example Consider the example hydraulic circuit shown in Figure 7.21b. Assume that
the pump input speed (win) is constant, and hence the output flow is constant, Qp =
120 l∕min = 2 l∕s. The pressure relief valve (valve 1) is set to a constant pressure value,
prelief = 2 MPa = 2 × 106 N∕m2. Assume that the flow metering valve (valve 2) is sized to
handle a maximum of 1∕2 of total pump flow, Qv,max = 0.5 ⋅ Qp. Let us assume that the
cylinder head-end cross-sectional area is Ahe = 0.01 m2 and the load force is Fl = 10 000 N.
Determine the total heat loss rate at the two valves under this operating condition in
steady-state.

The heat loss rate is the pressure drop times the flow rate across each valve. Since
the main flow valve (valve 2) can handle only half of the pump flow, the other half has to
go through the pressure relief valve (valve 1).

Qv1 = 0.5 ⋅ Qp = 1.0 l∕s = 10−3 m3∕s (7.60)

Qv2 = Qv1 (7.61)
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The pressure drop across valve 1 is the same as the pump outlet pressure since the output
port of valve 1 is connected to the tank. The pressure drop across valve 2 is the input
pressure (ps) minus the load pressure, pl.

Δpv1 = ps − pt = ps = 2 × 106 N∕m2 (7.62)

Δpv2 = ps − pl = 2 × 106 − 100 000
0.01

= 1 × 106 N∕m2 (7.63)

The total heat loss rate is

Ploss = pv1 ⋅ Qv1 + pv2 ⋅ Qv2 (7.64)

= 2 × 106 ⋅ 1.0 × 10−3 N∕m2 ⋅ m3∕s + 1 × 106 ⋅ 1.0 × 10−3 N∕m2 ⋅ m3∕s (7.65)

= 2000 W + 1000 W (7.66)

= 3000 W (7.67)

which indicates that in this case the heat loss over the relief valve is twice as much as the
heat loss over the main flow valve. Since the total power output of pump is

Ppump = ps ⋅ Qp = 2.0 × 106 ⋅ 2.0 × 10−3 N∕m2 ⋅ m3∕s (7.68)

= 4000 W (7.69)

The efficiency of the overall hydraulic circuit is 25%. Only 25% of the hydraulic power
generated by the pump is delivered to the load. The rest is wasted at various pressure
drop components. This example also illustrates one of the drawbacks of fixed displacement
pumps. They have low efficiency. Since pump outputs flow at a constant rate as a function
of input shaft speed regardless of the hydraulic flow demand, unused flow must be dumped
(wasted) over the relief valve.

Figure 7.22 shows the list of ANSI/ISO standard symbols used for describing
hydraulic components in circuits. Readers should get familiar with the symbols in order to
comfortably interpret hydraulic circuits.

Example Consider a hydraulic cylinder with 10 in bore diameter, 10 in full stroke
length, and 5 in rod diameter. The cylinder is supplied by a hydraulic pump and flow
is controlled by a valve. The cylinder is to make a full stroke extend motion in 7.5 s,
wait for 7.5 s, make the retract motion again in 7.5 s, and wait for 7.5 s. This defines a
complete repetative cycle (Figure 7.23). The minimum line pressure required is 1500 psi
and maximum line pressure is 3000 psi. Select a pump size based on the average flow rate
requirement, then select a bladder type accumulator to meet the above requirements.

The average flow rate that is needed from the pump is the total volume traveled during
a full cycle divided by the cycle time,

Qave =
(Vcylup

+ Vcyldown
)

tcycle
(7.70)

where tcycle = 7.5 + 7.5 + 7.5 + 7.5 s = 30 s. The cylinder volume is

Vcylup
= 10 ⋅ (𝜋∕4)(102) = 785 in3 (7.71)

Vcyldown
= 10 ⋅ (𝜋∕4)(102 − 52) = 589 in3 (7.72)

Qave = (785 + 589)
30

= 45.8 in3∕s (7.73)

The pump is selected to provide the average flow rate. Let us assume that the pump will
provide the Qave flow rate. During the time period when the cylinder is extending and
retracting, the pump will not be able to support the flow volume needed. The difference
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Pumps Valves (types)

Valves
(method of actuation)

Miscellaneous units

Motors and Cylinders

Single acting cylinder

Double acting cylinder

Single end rod cylinder

Double end rod cylinder

Adjustable cushion
Advance only

Differntial piston

Electric motor

Accumalator, spring
loaded

Accumalator,
gas charged

Heater

Cooler

Temperature
controller

Filter strainer

Pressure switch

Pressure indicator

Temperature indicator

Direction of shaft
rotation

Assume arrow on
near side of shaft

Hydraulic motor
fixed displacement

Hydraulic motor
variable displacement

M

Hydraulic pump
fixed displacement

unidirectional

Hydraulic motor
variable displacement

unidirectional

Spring

Manual

Push button

Push pull lever

Pedal or tradle

Mechanical

Detent

Check

On/off
(manual shut-off)

Pressure releif
with drain

Pressure reducing
with drain

Flow control - adjustable
non-compensated

Flow control - adjustable
Temperature & pressure
compensated

Two position
Two connection

Two position
Three connection

Two position
Four connection

Three position
Four connection

Two position
In transition

Valves capable of
proportional positioninng

Pressure compensated

Solenoid, single winding

Reversing motor

Pilot pressure
remote supply

Pilot pressure
internal supply

Lines

Line, working (main)

Line, pilot (for control)

Line, liquid drain

Flow, direction of

hydraulic

pneumatic

Lines crossing

Lines joining

Lines with fixed
restriction

Lines (flexible)

Station, testing,
measurement or power
take-off

Temperature cause or
effect

Reservoir

vented

pressurized

Line, to reservoir
above fluid level

Line, to reservoir
below fluid level

M

FIGURE 7.22: ANSI/ISO standard symbols for hydraulic components. These component

symbols are used in the schematic circuit design of hydraulic systems.
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FIGURE 7.23: A hydraulic circuit with a fixed displacement pump, main valve, cylinder, and

accumulator. The desired cyclic motion profile is shown below the figure. The pump is sized for

average flow requirement, and the accumulator is sized to support the peak flow requirement.

has to be made up by the accumulator. The discharge volume needed from the accumulator
during up and down motion is the difference between the volume of fluid needed and the
volume of fluid the pump can provide,

Vdisch = (Vcylup
+ Vcyldown

) − (Qave ∗ (7.5 + 7.5)) (7.74)

= 687 in3 (7.75)

The necessary accumulator size is calculated from the empirical formula, where we will
assume a precharge pressure of 90% of minimum pressure, and n = 1.4. Then,

Vacc = 687 ⋅
1

0.9
∕(1 − (1500∕3000)1∕1.4) (7.76)

= 1954 in3 = 8.5 gallon (7.77)

Selecting a 10 gallon accumulator would be a good choice with sufficient safety margin for
the needed volume. During the part of the cycle when there is no motion in the cylinder, the
pump flow is used to recharge the accumulator. It is important to check that the pump flow
and charge time available are sufficient to recharge the accumulator for continuous cyclic
operation. The pump can charge the following volume when the cylinder is in waiting mode,

Vcharge = 45.8 in3∕s ∗ 15 s (7.78)

= 687 in3 (7.79)
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FIGURE 7.24: Viscosity of various hydraulic oils as a function of temperature. Notice the

nonlinear scale in the y-axis. In all cases, as temperature increases, viscosity decreases. At a

given temperature, different hydraulic oils have different viscosity. Higher viscosity increases

the friction losses (hence reduces the efficiency of the hydraulic power system), but reduces

leakage. Reproduced with permission from Parker Hannifin.

For a good design, Vcharge ≥ Vdisch. Due to the symmetric ratio in the cycle times and cylinder
head-end and rod-end diameters, as well as the pump size selection, Vcharge = Vdisch in this
example. It may be better to select a slightly bigger pump, such as Qave = 50 in3∕s, which
would provide an extra capacity for the pump to be able to charge the accumulator. In this
case Vcharge > Vdisch, which is a desirable result in design.

7.3 HYDRAULIC PUMPS

The functional block diagram and operating principle of a pump are shown in Figure
7.25a–d. The pump is the device used to convert mechanical power to hydraulic power.
A positive displacement pump concept is shown in Figure 7.25b–d. During the in-stoke
p3 < p1, oil is sucked in from the “tank.” During the out-stroke p3 ≥ p2, oil is pushed
out to the load. Notice that p3, pump output pressure, is determined by the load pressure
p3 ≈ p2 = pload + pspring. If there is no load resistance, then the pump cannot build up
pressure. In a hydraulic system including pump-valve-cylinder-tank, the pressure difference
between the pump outlet port and tank is determined by the pressure drop on the valve and
the load pressure created by the cylinder and load interaction. In this concept figure, the
check valves control the direction of the flow. The line relief valve (Figure 7.25d) limits
the maximum allowed line pressure as protection and returns the flow back to the tank if
the line pressure tries to exceed a set limit. Hence, the relief valve assures that the line
pressure stays less than or equal to maximum relief pressure set, p3 ≤ pmax. Notice that
during the in-stroke, the volume is expanding. Similarly, during the out-stroke, the volume
is contracting. This phenemenon provides the suction and pumping action for the pump.
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PumpMechanical
power

Hydraulic
power

Hydraulic
fluid inlet

(a)

(b)

(c)

(d)

P2

P2

P2

P1

P1

P1

l

T

T

P3 > P1

P3 < P1

P3 = P2 + Pspring

≤ PmaxP3

P3

P3

P3

Pmax

FIGURE 7.25: Concept of a positive

displacement pump: (a) pump input–output

block diagram, (b) in-stroke (suction), (c)

out-stroke (pumping), (d) pressure limiting

valve.

The volume spanned by the piston per stoke of the pump is called the “pump displacement
per stroke.” If that volume is fixed (not adjustable) for a given pump, the pump is called
a fixed displacement pump. If that volume is adjustable, the pump is called a variable
displacement pump. If the pump is of fixed displacement type, the flow volume pumped per
stroke is fixed. Therefore, the only way to control the flow rate is to control the rate of the
stroke (mechanical input speed). If the pump is of variable displacement type, the flow rate
can be controlled by either input speed and/or by adjusting the displacement of the pump
per stroke.

7.3.1 Types of Positive Displacement Pumps

Different types of positive displacement pumps are briefly discussed below (Figrue 7.26)
and the differences among them are pointed out.

(i) Gear Pumps Gear pumps work by the principle of carrying fluid between the tooth
spaces of two meshed gears (Figure 7.27). One of the two shafts is the drive shaft, called the
drive gear, and the other, driven by the first, is called the driven or idler gear. The pumping
chambers are formed by the spaces between the gears, enclosed by the pump housing and
the side plates. The gear pump is always unbalanced by design since the high-pressure
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Positive
displacement

Gear Vane Piston

Radial Axial

Pumps

Negative 
displacement
(centrifugal)

FIGURE 7.26: Hydraulic pump categories: Positive displacement pump types: gear, vane,

piston (radial and axial).

side pushes the gear towards the low-pressure side. The relation between the driven and
driving shaft causes imbalance that will have to be taken up by the bearings. Gear pumps
are always of fixed displacement type. Despite these drawbacks gear pumps are popular
because of their simplicity, low cost, and robustness. The unmeshing of gears around the
inlet port creates a low pressure and results in the suction action. Similarly, the squeezing
action of the gears on the fluid between the teeth and pump housing as well as when the
meshing between teeth begins around the outlet port results in the increased pressure at the
outlet port. The flow rate is determined by the input shaft speed of the pump and its fixed
displacement. The pressure is determined by the load as long as it is not too high to the
point of stalling the input shaft or breaking the pump housing. However, as the pressure
increases, the leakage increases. Hence, the flow rate versus pressure curve drops down a

Volume on this 
side decreases as teeth 
mesh and pressure
increases

Idler gear

Driven gear
(by input shaft)

Volume in this side 
increases as teeth unmesh
and pressure decreases

Pump casing

Inlet port

Outlet port

FIGURE 7.27: Gear pump cross-section views: two-dimensional cross-sectional view.

Reproduced with permission from Eaton. Copyright 1999 Eaton. All Rights Reserved.
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Displacement
volume
adjustment

Outlet port

Bias piston

Mechanical input shaft

Pressure
compensator

Control
piston

Inlet port
Cam ring

FIGURE 7.28: Vane pump: cross-section. Reproduced with permission from Eaton. Copyright

1999 Eaton. All Rights Reserved.

little bit as output pressure increases. Ideally, if there is no leakage, the flow rate would be
independent of the pressure.

(ii) Vane Pumps Vane pumps are known to operate more quietly than gear pumps
and used to have a cost benefit over piston pumps. More recent development has made
piston pumps both quieter and cheaper so they now totally dominate the market for mobile
hydraulics. A variable displacement vane pump is shown in (Figure 7.28). It works on the
principle that oil is taken in on the side with an increasing volume and the vanes connected
to the rotor then push the oil in to the part of the pump with decreasing volume, therefore
increasing the pressure of the oil before it reaches the outlet port. The so-called cam ring is
eccentrically mounted compared to the rotor of the pump, making the design unbalanced.
Changing the position of the cam ring in relation to the rotor changes the displacement
of the pump. The cam ring rests on a control piston on one side and the other side has a
bias piston. By changing the pressure in the control piston (Figure 7.28) the displacement
of the pump is changed. A control piston is used to adjust the pump displacement. The
maximum displacement is set by the displacement volume adjustment that limits the travel
of the bias piston.

(iii) Radial Piston Pumps A radial piston pump (Figure 7.29) is built on a rotating
shaft with the cylinder block rotating on the outside. As the piston follows the outer housing
of the pump on slippers, the offset from the central position creates the pumping motion.
The pistons maintain contact with the outer ring at all times. The input shaft rotation axis
is perpendicular to the plane of axes along which the pistons slide. The porting in the pivot
pin allows intake at low pressure into the cylinder (from the inner diameter side) as the
cylinder block passes by and pressurizes outflow as the cylinder block passes the outlet
port (through the inner diameter side). The number of pistons, diameter of the pistons, and
the length of their stroke determine pump displacement. The piston and cylinder sleeves
are manufactured and custom fitted to high tolerances for each pump. Radial piston pumps
are built so that more than one port discharges fluid at the same time and more than one
port is open to intake at the same time. This design attempts to reduce cyclic flow rate and
pressure pulsation in the output flow as a function of rotor angular position per revolution.
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Slipper
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Stroke ring

Retaining ring

Displacement
control

Inlet port

Maximum
displacement
setting

Cylinder block

Control journal

FIGURE 7.29: Radial piston pump: cross-section. Reproduced with permission from Eaton.

Copyright 1999 Eaton. All Rights Reserved.

Typical radial piston pumps provide output pressure up to about 350 bar, and flow rates of
200 lpm.

(iv) Axial Piston Pumps Axial piston pumps are the most widely used pump types
in mobile hydraulic applications. There are two major types:

� inline piston pumps (Figure 7.30),
� bent-axis axial piston pump (Figure 7.31).

Outlet chamber

Swash plate

Cylinder Inlet chamber

Input shaft

Pilot valve for
control piston

Swash plate
control unit

FIGURE 7.30: Inline-axis axial piston pump (variable displacement) cross-sectional view.



JWST499-c07 JWST499-Cetinkunt Printer: Yet to Come October 9, 2014 8:41 254mm×178mm

442 MECHATRONICS

Piston

Drive shaft flange

Mechanical
input shaft

Drive shaft

Piston rod
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control

Inlet port

Outlet port
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Case
drain

FIGURE 7.31: Bent-axis axial piston pump: variable displacement type. Reproduced with

permission from Eaton. Copyright 1999 Eaton. All Rights Reserved.

The only difference between them is the orientation of the rotation axis of the pistons
with respect to the input shaft. In the case of the inline piston pump, the mechanical input
shaft and piston rotation axes are inline, whereas in the case of the bent-axis type, they are
not inline. Varying the angle of the swash plate in the pump changes the displacement. The
typical range of swash plate angle rotation is about 15◦. The displacement of the pump is
controlled by controlling the swash plate angle between its limits, that is between 0 and
15◦. The oil is pushed into the pump through the intake side of the port plate, sometimes
called the kidney plate because of the shape of the ports. The cylinders are filled when they
pass the inside area and the oil is pushed out on the other side of the kidney plate. When
the cylinders travel along, the swash plate pushes the trapped oil towards the kidney plate
and therefore raises the pressure. When the swash plate is perpendicular to the rotation
axis, the displacement is zero. Then, the pump is in its stand-by position and does not
provide any flow. More accurately, at stand-by the pump provides flow only to compensate
for leakage flow. It is this capability (adjustable displacement) that accounts for the energy
saving potential of variable displacement pumps by providing adjustable flow rate based
on demand.

Axial piston pumps can be fixed displacement or variable displacement, unidirectional
or bidirectional, and may have over-center control (Figure 7.32). In a fixed displacement
pump, the swash plate angle is constant. In a variable displacement pump, the swash plate
angle can be varied by a control mechanism. A unidirectional pump is intended to be
driven by an input shaft in either a clockwise or counter-clockwise direction. If the pump
has the so called over-center control capability, which is the ability to change the swash
plate angle about its neutral position in either direction, the pump output flow direction
can be changed by the over-center control even though input shaft speed direction is same.
A bidirectional pump can be driven by an input shaft in either direction and the flow
direction changes with the input speed direction. An analogous operating principle applies
for hydraulic motors. In the case of motor, the output is the shaft rotation and input is the
fluid flow. A unidirectional motor is intended to receive flow in one direction and rotate
in one direction only. Bidirectional motors can receive flow in either direction, hence can
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FIGURE 7.32: Axial piston pump and motor: components and operating principles. (a)

unidirectional pump function, (a) and (b) over-center controlled pump functionality, (a) and (c)

bidirectional pump functionality, (d) unidirectional motor function, (d) and (e) over-center

contolled motor functionality, (d) and (f) bidirectional motor functionality.

provide output shaft rotation in either direction. Over-center control allows the motor output
speed direction to be changed even though the input flow direction does not change.

7.3.2 Pump Performance

A variable displacement pump provides the most flexibility, but with additional control
complexity. In this case, the input speed of the pump can be left to be determined by
other conditions (i.e., operator may control engine speed for other considerations, such
as vehicle travel speed), and the desired pump output is controlled by manipulating the
swash-plate angle. The swash-plate actuation logic may be based on regulating the flow
rate, output pressure, or other variables of interest (Figure 7.33). Figure 7.34 shows the
typical steady-state performance characteristics of a pump in terms of its size and efficiency.
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FIGURE 7.33: Control system block diagram for a variable displacement pump. The pump can

be controlled to regulate the output pressure, flow, or other derived variable. The control

element is the swash plate angle positioning mechanism of the pump.
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efficiency as a function of its operating pressure range at different input shaft speeds.
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The primary performance measures of a pump are specified by the following
parameters:

1. displacement in in3∕rev which defines the size of the pump, Dp(𝜃),

2. rated flow, Qr, at rated speed and rated pressure,

3. rated pressure, pr,

4. rated power (derived quantity from rated pressure and rated flow),

5. dynamic response bandwidth of the pump displacement control system if the pump
is the variable displacement type.

The secondary peformance specifications include:

1. efficiency: volumetric, mechanical, and overall,

2. maximum speed,

3. weight,

4. noise level,

5. cost.

The volumetric efficiency (𝜂v) refers to the ratio of the output fluid flow to the volumet-
ric displacement of the pump. It is a measure of the leakage in the pump. Mechanical
efficiency (𝜂m) refers to the losses due to factors other than leakage, such as friction and
mechanical losses. The overall efficiency (𝜂o) refers to the ratio of the output hydraulic
power to the input mechanical power of the pump. Let the units of each term be as follows,
Dp m3∕rev, wshaft rev∕s, p N∕m2. These efficiency measures are functions of the pressure
and speed of the pump,

𝜂v =
Volumeout

Volumedisp
(7.80)

=
Qout

Dp ⋅ wshaft
(7.81)

and

𝜂m =
Power∗out

Powerin
(7.82)

=
pout ⋅ Dp ⋅ wshaft

T ⋅ wshaft ⋅ (2𝜋)
(7.83)

=
pout ⋅ Dp

2𝜋 T
; for Dp in units of m3∕rev (7.84)

and

𝜂o =
Powerout

Powerin
=

pout ⋅ Qout

T ⋅ wshaft
(7.85)

= 𝜂v ⋅ 𝜂m (7.86)

Notice that if the unit of Dp is in m3∕rad, then mechanical efficiency would be defined as

𝜂m =
pout ⋅ Dp

T
; if Dp unit is m3∕rad (7.87)

The difference in the definition of the mechanical and overall efficiency is the definition
of output power. The mechanical efficiency defines the output power as the power if there
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were zero leakage, that is 100% volumetric efficiency. The overall efficiency takes into
account both the leakage and other mechanical efficiency.

One of the main operational concerns is the noise level of the pump. The noise due to
cavitation can be very serious. Low pressure levels at the pump input may result in allowing
air bubbles to enter the pump inlet port. Under high pressure, the bubbles collapse which
leads to high noise levels. Therefore, some pumps may require higher than normal levels of
inlet port pressure, that is so called boost inlet pressure using another small pump (called
charge pump) between the main pump and tank. Cavitation may also be caused by too high
hydraulic fluid viscosity, as a result, the pump is not able to suck in enough fluid. This may
happen especially in cold start-up conditions. Heaters may be included in the pump inlet to
limit the fluid viscosity.

Example Consider a pump with fixed displacement Dp = 100 cm3∕rev and following
nominal operating conditions: input shaft speed wshaft = 1200 rpm, torque at the input shaft
T = 250 Nt ⋅ m, the output pressure pout = 12 MPa, and output flow rate Qout = 1750 cm3∕s.
Determine the volumetric, mechanical, and overall efficiencies of the pump at this operating
condition.

𝜂v =
Qout

Dp ⋅ wshaft
(7.88)

=
1750 cm3∕s

100 cm3 ⋅ 20 rev∕s
= 87.5% (7.89)

𝜂m =
pout ⋅ Dp

T
(7.90)

=
12 × 106 N∕m2 ⋅ 100 × 10−6 m3∕rev

2 ⋅ 𝜋 ⋅ 250
= 76.4% (7.91)

𝜂o = 𝜂v ⋅ 𝜂m (7.92)

= 0.875 ⋅ 0.764 ⋅ 100% = 66.85% (7.93)

Notice that if any of the efficiency calculations results in being larger than 100%, it is an
indication that there is an error in the given information or measured variables since the
efficiencies cannot be larger than 100%. In order to confirm the results, let us calculate the
input mechanical power to the pump and output hydraulic power from the pump.

Powerin = T ⋅ wshaft (7.94)

= 250 N ⋅ m ⋅ 20 rev∕s ⋅ 2𝜋 rad∕rev (7.95)

= 31.41 N ⋅ m∕s = 31.41 kW (7.96)

Powerout = pout ⋅ Qout (7.97)

= 12 ⋅ 106 N∕m2 ⋅ (1750 cm3∕s) ⋅ (1 m3∕106 cm3) (7.98)

= 12 ⋅ 1750 N ⋅ m∕s (7.99)

= 21 ⋅ 103 N ⋅ m∕s = 21 kW (7.100)
Powerout

Powerin
= 21

31.41
(7.101)

= 66.85% (7.102)

= 𝜂v ⋅ 𝜂m (7.103)

= 𝜂o (7.104)

Example Consider the hydrostatic transmission shown in Figure 7.35. Assume that
the pressure drop across the connecting hydraulic line is 200 psi. The pump variables and
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FIGURE 7.35: Hydraulic circuit with a

hydraulic pump and hydraulic motor.

motor variables are shown in the table below, along with the volumetric and mechanical
efficiencies.

Pump Motor

Dp = 10 in3∕rev Dm = 40 in3∕rev

𝜂v = 0.9 𝜂v = 0.9

𝜂m = 0.85 𝜂m = 0.85

wp = 1200 rpm wm = ?
pp = 2000 psi pm = ?
Qp = ? Qm = ?
Tin = Tp = ? Tout = Tm = ?
PumpPower in = ? MotorPowerout = ?

Let us first focus on the pump and its input power source. The net flow rate from the
pump at the given input speed is

Qp = 𝜂v ⋅ Dp ⋅ wp (7.105)

= 0.9 ⋅ 10 ⋅ 1200 in3∕rev ⋅ rev∕min (7.106)

= 10 800 in3∕min (7.107)

The input torque required to drive the pump is

𝜂0 = 𝜂v ⋅ 𝜂m =
PumpPowerout

PumpPowerin
(7.108)

=
pp ⋅ Qp

Tp ⋅ wp
(7.109)

Tp = 1
𝜂0

⋅ pp ⋅
Qp

wp
= 1
𝜂0

⋅ pp ⋅ Dp (7.110)

= 1
0.9 ⋅ 0.85

2000 lb∕in2 ⋅ 10 800 in3∕min ⋅ 1 min
60 s

20 ⋅ 2𝜋 rad∕s
(7.111)

= 3744.8 lb ⋅ in (7.112)

and the input power that must be supplied to the pump is

PumpPowerin = Tp ⋅ wp (7.113)

= 3744.8 ⋅ 20 ⋅ 2𝜋 rad∕s ⋅
1 HP

6600 lb ⋅ in∕s
(7.114)

= 71.3 HP (7.115)

Now let us focus on the motor. The pump output pressure and flow is connected
to the motor. We assumed that there is a 200 psi pressure drop in the hydraulic line
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and no leakage in the transmission line. Hence, the input pressure and flow rate to the
motor are

pm = pp − 200 psi = 1800 psi (7.116)

Qm = Qp = 10 800 in3∕min (7.117)

The volumetric efficiency of the motor indicates that less than 100% of the input flow
is converted to displacement,

𝜂v =
Qa

Qm
(7.118)

Qa = 𝜂v ⋅ Qm = 0.9 ⋅ 10 800 = 9720 in3∕min (7.119)

and we can determine the output speed of the motor,

Qa = 𝜂v ⋅ Qm = Dm ⋅ wm (7.120)

wm =
Qa

Dm
= 243 rpm (7.121)

The output power of the motor is determined from the ratio of its input power and output
power, given the overall efficiency of the motor,

𝜂o = 𝜂v ⋅ 𝜂m =
Tm ⋅ wm

pm ⋅ Qm
(7.122)

Tm =
𝜂o ⋅ pm ⋅ Qm

wm
(7.123)

=
0.9 ⋅ 0.85 ⋅ 1800 lb∕in2 ⋅ 10 800 in3∕min

243 rev∕min ⋅ 2𝜋 rad∕rev
(7.124)

= 61 200∕(2𝜋) lb ⋅ in = 9740 lb ⋅ in (7.125)

Hence, the mechanical power delivered at the output shaft of the motor is

MotorPowerout = Tm ⋅ wm =
(61 200∕(2𝜋)) ⋅ 243 ⋅ 2𝜋

6600
= 37.55 HP (7.126)

7.3.3 Pump Control

The pump control element is the actuation mechanism that controls the angular position
of the swash plate. The mechanism which controls the swash plate angle is called the
compensator or the pump controller.

A pump control system has the following components (Figure 7.33),

1. One or a pair of small control cylinders (also called displacement pistons) used to
move the swash plate.

2. A proportional valve which meters flow to the control cylinders, and is controlled by
electrical or hydro-mechanical means for a certain control objective (i.e., constant
pressure output from the pump, load sensing pump).

3. Sensor or sensors (either hydraulic pressure sensing lines or electrical sensors) used
to measure the variables of interest, such as pressure, flow rate, position.

4. A controller (i.e., a digital electronic control module (ECM) or a hydro-mechanical
control logic configured to control the proportional valve) used to implement the
control logic (i.e., if pump is controlled to provide a constant output pressure).
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The swash plate angle is limited to the range

𝜃min ≤ 𝜃 ≤ 𝜃max (7.127)

where 𝜃min is the minimum and 𝜃max is the maximum angular displacement of the swash
plate. If the pump has two output ports, it is called a bidirectional pump. Output flow is
directed to one or the other port by the swash plate angle control. Such pump control is
referred to as over-center pump control. If the swash plate displacement is on one side of
the center, output flow is in one direction. If the swash plate displacement is on the other
side of the center, then output flow is in the opposite direction. Hence the flow direction can
be changed by pump control alone in a closed-circuit hydraulic systems such as hydrostatic
transmission applications.

Figure 7.38b shows the logical relationship between the load-sensing valve and
pressure limiting valve. The same control is shown in Figure 7.39 as a cross-sectional view
of a variable displacement piston pump with a load sensing control valve and a pressure
limit valve. If the order of the two valves were swapped (load sensing valve and pressure
limiting valve in Figure 7.38), the pump would not be able to destroke when the cylinder
hits a load that it can not move (stalled load condition). Therefore, it is important to note that
the pressure limiting valve is placed between the load sensing valve and swash plate control
piston. For further discussion, if we eliminate the load sensing valve and signal, and connect
the pressure limiting valve to pump output and tank ports as well as the swash plate control
piston port (three port connection), the pump control becomes a pressure regulating (also
called pressure-compensated or pressure controlled) pump where the output pressure of
the pump is set by the spring (Figure 7.36). In almost all hydro-mechanical pump controls,
the preloads on the springs are adjustable by a screw, which allows the user to adjust
the desired pressure limit and load-sensing pressure differential. Typical load pressure
differential setting (the pump output pressure minus the load pressure feedback signal) is
about 150 psi to 200 psi range in construction equipment applications.

In most pumps, the maximum and minimum swash plate angles can be mechanically
adjusted by a set screw. In hydro-mechanically controlled pumps, the pressure feedback
signals are provided by hydraulic lines with orifices. The command signal (i.e., desired
output pressure) is implemented by an adjustable spring and screw combination. The
actuator which moves the swash plate is called the control cylinder or control piston. In some
pumps, the actuator provides the power to move the swash plate in both directions under
the control of the proportional valve, whereas in others, the actuator provides power for one
direction and the power for the other direction is provided by a preloaded spring. In most
cases, at startup the preloaded spring will move the swash plate to maximum displacement.
As the output pressure of the pump builds up, the compensator mechanism (proportional
valve and control piston) provides control power to reduce the swash plate angle.

Pump control, that is the control of the pump displacement (Dp(𝜃)) which is a function
of the swash plate angle, may be based on different objectives such as (Figure 7.33)

1. pressure compensating and limiting,

2. flow compensated,

3. load sensing,

4. positive flow control (matched flow supply and demand),

5. torque limiting,

6. power limiting.

Among different pump control methods, pressure compensated valve control and
load sensing valve control are the two most common methods.
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(1) Pressure compensated pump control: control the pump displacement such that
the actual pump output pressure (Ps) is regulated about a desired pump output pressure
(Pcmd),

𝜃cmd = 𝜃offset + K ⋅ (Pcmd − Ps) (7.128)

where 𝜃cmd is the commanded (desired) swash plate angle, 𝜃offset is the offset value of the
swash plate angle, K is the proportional gain for the pressure regulator. For simplicity, we
illustrate a proportional control logic here. Clearly, more advanced control logic can be
implemented in the relationship between the desired variables, measured variables, and the
output of the controller.

This type of pump control is called a pressure compensated pump control, and
provides constant pressure output. The flow rate will be determined by whatever is needed
to maintain the desired pressure, up to the maximum flow capacity (Figure 7.37a). The
commanded pressure does not have to be constant and typically can be set between a
minimum and a maximum value for a given pump. As the flow rate increases, the regulated
pressure tends to reduce a little in hydro-mechanically controlled pumps. But this effect
can be eliminated by software control algorithms in digitally controlled pumps. When the
external load is so large that it cannot be moved, the pump under pressure compensated
control will provide the desired regulated output pressure at almost zero flow rate. This is
called the dead head condition.

Figure 7.36 shows the hydraulic diagram for a pressure-compensated pump control
system. The valve has a spring through which the desired output pressure is set by preloading
the spring. The pump output pressure is compared to that pressure setting by the valve.
Based on the difference, either the pump or the tank ports are connected to the control
piston line to up-stroke or down-stroke the swash plate of the pump. When ps = pdesired
with a certain error margin, where the allowed error margin is defined by the overlapped
part of the orifice opening of the valve, the output flow to the control piston is zero and
the pump’s swashplate maintains that angular position. If the pump output pressure is less
than the desired pressure setting, the valve moves to the left and the control piston port
is connected to the tank, hence as the flow moves out from control piston to tank, the
swash plate stokes up, which should result in increased output flow and increased pump
pressure. If the pump pressure is higher than the desired pressure setting, the valve moves
to the right, connecting the control piston port to the pump pressure port. As the flow goes
from pump port into the control piston, the swash plate destrokes, and the pump output
flow decreases as does the pump output pressure. As a result, the pump output pressure
is regulated to be equal to the desired pressure setting by the preloaded spring. Typical
hydro-mechanical pump controls have a pressure control valve where the preloads on the
springs are adjustable by a screw, which allows the user to adjust the desired pressure. If the
desired output pressure is variable (i.e., based on operator command or control logic), then
the preloaded spring is replaced by a remote pilot pressure which is variable and controlled
by operator commands or control logic.

Pressure limiting control is established by feeding back the pressure in the outlet to
a check valve. When a preset pressure limit value is reached, the check valve opens to let
oil in to the control piston and therefore destroke the pump swash plate to lower the output
pressure. Pressure limiting is installed, as a safety mechanism to make sure that the pump
does not output a pressure higher than the maximum allowed pressure for the system.

(2) Flow compensated pump control: control the pump displacement such that the
actual pump output flow rate (Qp) is regulated about a desired pump output flow rate (Qcmd),

𝜃cmd = 𝜃offset + K ⋅ (Qcmd − QP) (7.129)
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FIGURE 7.36: Hydraulic circuit diagram for a pressure compensated (pressure controlled)

variable displacement piston type pump using a pressure regulating valve. (a) Symbolic

representation of the pressure control valve. (b) Hydraulic circuit diagram of the pressure

control valve and variable displacement piston pump. The desired pressure setting can either

be adjusted by the screw-spring to a constant value, or through a remote pilot pressure control

mechanism for variable pressure regulation applications.

The flow-pressure curves for a flow compensated pump control look as shown in
(Figure 7.37b). In order to maintain a stable output flow, the mechanical input speed of the
pump may also have to be above a minimum value.

(3) Load compensated (load sensing) pump control: control the pump displacement
such that the difference between the actual pump output pressure and the load pressure is
regulated about a desired differential pressure (Figure 7.38),

𝜃cmd = 𝜃offset + K ⋅ (ΔPcmd − (Ps − PL)) (7.130)
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pressure regulated, (b) flow regulated, (c) flow regulated with pressure limit or pressure

regulated with flow limit.

where ΔPcmd is the desired pressure differential, Ps is the pump outlet pressure, PL is
the load pressure, which is the larger of the two pressures sensed from the two ports of
the actuator (cylinder or hydraulic motor ports A and B). Typical values of ΔPcmd are
in the range of 10 bar to 30 bar. Notice that since this so-called load compensated (or load
sensing) pump control method maintains a constant pressure differential across the valve,
the speed of the cylinders is independent of the load (as long as maximum pump output
pressure limit is not reached) and proportional to the valve spool displacement. This can
be seen by examining the flow equations for a valve. The pump supplies the necessary
flow (up to its saturation value at maximum displacement) in order to maintain the desired
pressure differential between the pump outport pressure and the load pressure. Most load
sensing pump control mechanisms also include a valve to limit the pump output pressure
to a maximum value set by a spring loaded valve. This valve output flow is zero until the
pump pressure exceeds the maximum pressure limit.

Load sensing control is used to reduce energy waste when the pump is not needed to
operate at full system pressure and flow rate. It requires load pressure sensing and pump
output pressure sensing. Based on these two signals, the swash plate angle is controlled
by a valve and piston mechanism. Figure 7.38 shows a load sensing pump control system
with completely hydro-mechanical components. This system uses a completely hydro-
mechanical sensing, feedback, and actuation mechanism to perform a closed loop control
function on the swash plate angle in order to regulate a constant pressure drop across the
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valve. There are no electrical sensors nor digital controls involved. The load sensing valve
controls the flow rate to the control piston in proportion to the difference between the pump
outlet pressure (Ps) and the load pressure (PL). As the pressure difference Ps − PL gets
larger (i.e., PL is lower), the flow from the load sensing valve to control piston increases.
The movement of the control piston to the left reduces the swash plate angle, hence the
pump output flow rate and the pump outlet pressure. This reduces the Ps. If the pressure
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difference Ps − PL gets smaller (i.e., PL is larger), the flow rate from the load sensing valve
gets smaller, hence the control piston moves to the right to increase the swash plate angle.
This in turn increase the pump output (pressure and flow) to increase the Ps.

Maintaining a constant pressure drop across the valve for all load conditions up to the
maximum pump outlet pressure limit makes the flow rate through the valve proportional
to its spool displacement regardless of the load pressure as long as maximum pump outlet
pressure is not reached. This gives good controllability since the flow rate through the
valve, and hence the cylinder (actuator) speed, will be proportional to the displacement
of the directional spool regardless of the load. Load sensing is usually mounted together
with pressure limiting devices. The swash plate is controlled so that the pressure difference
between the pump output pressure and load is maintained at a constant value. Hence, this
type of control increases or decreases the pump output pressure depending on the load, up
to a maximum limit set by the pressure limiting valve.

The combination of the load sensing valve and pressure limiting valve is referred as
the load sensing valve (also called the load sensing compensator valve, Figures 7.38, 7.39).
The load sensing compensator has four ports: pump output pressure input, load pressure
input, tank port, and output port to swash plate control piston. The pressure limiting valve
overrides the load sensing valve control only when the pump outlet pressure reaches a pre-
set limit set by the spring in the pressure limiting valve. When ps > plimit (i.e., the directional
valve is in metering position and the load is very large), the flow from the pressure limiting
valve to control piston will de-stroke the swash plate, and reduce the output pressure.
Furthermore, if the cylinder has reached its travel limit and the directional valve is not
in neutral position, pump output pressure will reach its limit but it will also de-stroke to
almost zero flow. This is called the high pressure cut-off condition. Otherwise, the load
sensing valve controls the swash plate angle and the pressure limit valve does not make a
change in the swash plate angle control as long as the pump output pressure is less than
the maximum limit. The pump output pressure is constantly fed to the bias piston and to
the valves for the load sensing and pressure limiting. The bias piston puts the pump at
maximum displacement until no flow is restricted by the actuator or the directional valve

Load pressure
signal: Pl

Pump pressure: Ps

Pressure 
limiting valve

Load sensing 
valve

Large 
actuator

Yoke pad

Swash plate

Drive 
shaft

Small actuator 
& bias springTank
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FIGURE 7.39: Cross-sectional component drawing of a variable displacement axial piston

type pump and its load sensing control system components (load sensing valve and pressure

limiting valve, Source: Sauer-Danfos.com).
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of the system that will create a pressure at the discharge port of the pump. The pressure
downstream the directional valve is fed back via a shuttle valve that always gives the highest
pressure of the two sides of the actuator.

Although not shown in the figure, the load sensing shuttle valve is enabled by a
check valve only when the directional control valve is not in the neutral closed center
position. When in the neutral position, the cylinder is stationary and there is no connection
between pump and cylinder ports. Therefore, the pump does not need to be concerned with
supporting the load. As a result, the signal from the shuttle valve is blocked and the holding
pressure of the load is not fed back to the pump control. In the neutral position of directional
control valve, the pump will go to its low pressure stand-by condition. The load sensing
signal line is connected to the tank line. As a result, pump output pressure is controlled to
a value which is the tank pressure plus the pressure differential.

Figure 7.39 shows a cross-section drawing of a variable displacement axial piston
type pump along with its two valves (load sensing valve and pressure limiting valve). The
pump and load sensing control valve pair are generally packaged together. For the variable
displacement pump to function, the load pressure feedback line must be connected to the
proper location associated with the load.

Figure 7.40 shows a two-axis hydraulic circuit with a variable displacement axial
piston pump which has load sensing hydro-mechanical controls. Notice that the load sensing

Variable displacement
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Filter
Heat exchanger

Reservoir

Multi-section
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control valve

Pump pressure

Servo pressure

Actuator pressure

Load sense pressure

Actuator return pressure
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Double -acting cylinder

Bi-directional
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FIGURE 7.40: Two axis hydraulic motion control system: the pump is a variable displacement

axis piston pump with a load sensing control (implemented hydro-mechanically), a linear

cylinder, a bidirectional gear motor, and two manually controlled proportional valves. Pump

and tank port connections to two proportional valves are not shown in the figure for simplicity.

Reproduced with permission from Danfoss Power Solutions.
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control valve on top of the pump has three ports: load pressure sensing port, pump output
pressure sensing port, and output port to control the swash plate angle of the pump. The
load pressure is the maximum of the two pressures sensed between the cylinder axis and
rotary gear motor. Flow to each actuator is regulated by a manually operated proportional
flow control valve. Two flow control valves are typically built on a single frame valve block
with internal porting for P and T ports between them. Internal porting may connect P and
T lines to each valve either in a parallel or series connection. P and T connections are now
shown in the figure. Each valve has built-in ports to sense the maximum pressure at its
output ports. Using two resolver valves, maximum pressure is fed back to the pump control
valve. In this configuration, the smallest load pressure signal that can be fed back to the
control valve is the tank pressure, which is shown as one of the inputs to the resolver valve
next to the valve that controls the cylinder.

(4) Positive flow control (PFC) of pump: control the pump displacement such that it
matches the flow demand of the line. Let Qp be the flow demand by the line, and weng is
the input shaft speed of the pump. The necessary pump displacement to provide the desired
flow rate can be calculated from the pump performance characteristics,

QP = weng ⋅ DP(𝜃) (7.131)

𝜃 = D−1
P (QP∕weng) (7.132)

It is desirable to implement the PFC algorithm without a flow rate sensor. Therefore, let us
generate the desired pump displacement based on the predicted flow demand and using the
pump map,

QPcmd = QP(xs1, xs2,…) (7.133)

where (xs1, xs2,…) are the spool displacements of multiple valves supplied by the pump.
The desired pump displacement is determined as (an offset value is added to account for
initial nominal operating point),

𝜃cmd = 𝜃offset + D−1
p (QPcmd∕weng) (7.134)

Notice that in order to implement the PFC method, we need the pump map function
D−1

P (QP, wend) for the specific valve or valves supplied by the pump. The accuracy of this
pump map is important since mis-match between the flow demand and flow supply can
result in serious dynamic performance degradations. The price paid for the increased energy
efficiency benefit of the PFC closed center EH systems is the increased complexity of the
control algorithm.

Torque limiting and power limiting controls are implemented in pumps to prevent
them from stalling when both high pressure and high flow rate occur in the system at the
same time. In a mobile application the stalling will occur when the pump requires more
power than the diesel engine can output and this will eventually bring the diesel engine to
a dead stop. Torque limiting destrokes the pump to the point where the diesel engine is not
stalled, but simply accepts the available power from the engine instead of overloading it.

Transient Response of the Pump If the delay associated with the dynamic
response of the pump displacement controller is to be taken into account, instead of assum-
ing that the pump displacement is equal to the commanded pump displacement, a first or
second-order filter dynamics should be included in the pump model,

𝜃 = 1
(𝜏p1s + 1)(𝜏p1s + 1)

⋅ 𝜃cmd(s) (7.135)

where 𝜏p1 and 𝜏p2 are the time constants of the dynamic relationship between the pump
displacement command and the actual pump displacement. This effective time constant of
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the pump dynamics is very critical in closed-center EH systems (closed center valve and
variable displacement pump EH systems). The reason is the fact that the bandwidth of the
main flow control valve is much faster than the bandwidth of the pump control. During
any kind of valve closure, if the valve reaches the null position (hence almost zero flow
demand) much faster than the pump can de-stroke, the pump flow will have no place to
go and result in very large pressure spikes. This will most likely blow the pressure relief
valves and result in low performance operation.

A mathematical model of a pump can be derived based on

1. the physical principles of fluid and inertial motion, or

2. based on the input–output (I/O) relationship using empirical data and modeled as a
static gain (possibly nonlinear) plus dynamic filter effects.

Input variables of the pump are:

1. swash plate angle (or equivalent control element variable), and

2. input shaft speed.

And output variables of interest are:

1. outlet pressure,

2. outlet flow rate.

Some of the non-ideal characteristics of hydraulic pump (and motors) are:

1. Variation of displacement as a function of rotor position within one revolution. Since
there is a finite number of fluid cavities (cylinder-piston pairs in a piston pump), the
displacement has ripple as a function of the rotor position and number of piston–
cylinder pairs (this is in principle the same as the commutation ripple in a brush-type
DC motor).

2. Every hydraulic pump, valve, motor, and cylinder has leakage and it increases with
the pressure.

7.4 HYDRAULIC ACTUATORS: HYDRAULIC CYLINDER
AND ROTARY MOTOR

The translational cylinder and rotary hydraulic motor are the power delivering actuators in
translational and rotary motion systems, respectively. The basic functionality of the actuator
is to convert the hydraulic fluid power to mechanical power, which is the opposite of the
pump function (Figure 7.41). Unidirectional pumps and motors are optimized to work in one
direction in terms of reduced noise and increased efficiency. Bidirectional hydraulic pumps
and motors have symmetric performance in either direction. In general, a pump can operate
both in pumping or motoring mode. Similarly, a hydraulic motor can operate in motoring
or pumping mode. However, there are exceptions. Some pump designs incorporate check

Hydraulic
power

Motor/
cylinder

Mechanical
power

FIGURE 7.41: Hydraulic actuator

functionality: convert hydraulic

power to mechanical power. The

hydraulic cylinder converts hydraulic

power to translational motion power,

the hydraulic motor converts it to

rotational motion power.
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valves in their design which makes it impossible for them to operate in motoring mode.
Similarly, some motor designs are such that the hydraulic motor cannot operate in pumping
mode even under over-running (regenerative) load conditions (Figure 7.32).

An over-center motor means that when the swash plate is moved in the opposite
direction relative to its neutral position, the direction of the output shaft speed of the motor
changes even though the input–output hydraulic ports stay the same. An over-center pump
means that when the swash plate is moved in the opposite direction relative to its neutral
position, the direction of the hydraulic fluid flow changes (input port becomes output port,
and output port becomes input port), while the direction of the mechanical input shaft speed
stays the same.

Given the displacement (Dm, fixed or variable) of a rotary hydraulic motor, the motor
output speed (w) is determined by the flow rate (Q) input to it,

w = Q∕Dm (7.136)

Similarly, for linear cylinders, the same relationship holds by analogy,

V = Q∕Ac (7.137)

where w is the speed of motor, V is the speed of cylinder, Dm is the displacement of the
motor (volume∕rev), Ac is the cross-sectional area of the cylinder. If we neglect the power
conversion inefficiencies of the actuator, the hydraulic power delivered must be equal to
mechanical power at the output shaft, for the rotary motor

Q ⋅ ΔPL = w ⋅ T (7.138)

and for the cylinder

Q ⋅ ΔPL = V ⋅ F (7.139)

where ΔPL is the load pressure differential acting on the actuator (cylinder or motor)
between its two ports (A and B), T is the torque output, F is the force output. Hence, the
developed torque/force, in order to support a load pressure ΔPL, is

T = ΔPL ⋅ Dm (7.140)

F = ΔPL ⋅ Ac (7.141)

If the rotary pump and motor are the variable displacement type, and an input–output
model is desired from the commanded displacement to the actual displacement, a first or
second-order filter dynamics can be used between the Dm and Dcmd,

Dm(s) = 1
(𝜏m1 ⋅ s + 1)(𝜏m2 ⋅ s + 1)

Dcmd(s) (7.142)

There are applications which require extremely high pressures with a small flow rate which
cannot be directly provided by a pump. In these cases, pressure intensifiers are used. The
basic principle of the pressure intensifier is that it is a hydraulic power transmission unit,
like a mechanical gear. Neglecting the friction and heat loss effects, the input power and
output power are equal. The only function it performs is that it increases the pressure while
reducing the flow rate. It is the analog of a mechanical gear reducer (increases the output
torque, reduces the output speed). Figure 7.42 shows a pressure intensifier in a hydraulic
circuit. The ideal power transmission between B and A pressure chambers means,

PowerB = PowerA (7.143)

FB ⋅ Vcyl = FA ⋅ Vcyl (7.144)

pB ⋅ AB ⋅ Vcyl = pA ⋅ AA ⋅ Vcyl (7.145)

pB ⋅ AB = pA ⋅ AA (7.146)



JWST499-c07 JWST499-Cetinkunt Printer: Yet to Come October 9, 2014 8:41 254mm×178mm

ELECTROHYDRAULIC MOTION CONTROL SYSTEMS 459

Pump (low p)

Directional
control valve

A

B Low pressure

High pressure

To load

P PA
AA

A

B
B

=

FIGURE 7.42: Pressure intensifier circuit.

Notice that the intensified pressure in the forward cycle of the cylinder is equal to the area
ratios between the cylinder head-end and the intensifier ram (i.e., 10),

pA

pB
=

AB

AA
(7.147)

During the forward stroke, the pressure in chamber A is amplified by the area ratios defined
by the above equation. During the retraction stroke, the intensifier and rod-end of the
cylinder are filled with hydraulic fluid and are not considered a work cycle.

Example Consider a pump that supplies Qp = 60 l∕min constant flow to a double acting
cylinder. The cylinder bore diameter is d1 = 6 cm and rod diameter d2 = 3 cm. Assume the
rod is extended through both sides of the cylinder. The load connected to the cylinder rod
is F = 10 000 Nt. The flow is directed between the pump and the cylinder by a four way
proportional control valve. Neglect the pressure drop and losses at the valve. Deterimine the
pressure in the cylinder, velocity, and power delivered by the cylinder during the extension
cycle. Assuming 80% overall pump efficiency, determine the power necessary to drive
the pump.

We need to determine ΔpL, V , and P for both the extension and retraction cycle. Let
us determine the areas of the cylinder.

Ac =
𝜋
(
d2

1 − d2
2

)
4

= 𝜋(62 − 32)
4

cm2 = 19.63 cm2 (7.148)

= 19.63 × 10−4 m2 (7.149)

The pressure during the extension stroke that must be present as differential pressure
between the two sides of the cylinder in order to support the load force,

F = ΔpL ⋅ Ac (7.150)

ΔpL = F
Ac

= 10 000
19.63 × 10−4

(7.151)

= 5.09 × 106 N∕m2 = 5.09 MPa (7.152)

The linear velocity is determined by the conservation of flow,

Q = Ac ⋅ V (7.153)

V = Q
Ac

=
60 l∕min 10−3 m3∕l ⋅ 1 min∕60 s

19.63 × 10−4 m2
(7.154)

= 0.509 m∕s (7.155)
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V < 15 ft/sline

V
rev

V
fwdd rod

dline

dhe

Q

FIGURE 7.43: Maximum cylinder speed in forward and reverse direction, given the maximum

linear speed of fluid flow (15 ft∕s) and dimensions of the cylinder and connecting lines.

The power delivered to the load by the cylinder, is

Powerm = F ⋅ V = ΔpL ⋅ Q (7.156)

= 10 000 Nt ⋅ 0.509 m∕s = 5090 W = 5.09 kW (7.157)

and the necessary pump power rating is

Powerp = 1
𝜂o

⋅ Powerm (7.158)

= 1
0.8

⋅ 5.09 kW = 6.36 kW (7.159)

Example Consider a double acting cylinder and its hydraulic lines connecting to its
ports (Figure 7.43). Let us assume that the maximum linear speed of fluid in the transmission
lines is to be limited to 15 ft∕s in order to reduce flow turbulance and the resulting flow
resistance. Calculate the forward and reverse speed of the cylinder that can be achieved for
different values of the line diameter, rod diameter, and cylinder head-end diameter. Assume
the rod diameter is half of the cylinder inner diameter. Consider the line diameters for
dline = 0.5 in, 0.75 in, 1.0 in, 1.5 in, and dhe = 4.0 in, 6.0 in, 8.0 in (see Table 7.1)

From flow continuity,

Q = Aline ⋅ Vline = Ahe ⋅ Vfwd in forward motion (7.160)

= Are ⋅ Vrev in reverse motion (7.161)

where, we limit Vline = 15 ft∕s. Then,

Vfwd =
Aline

Ahe
⋅ Vline (7.162)

Vrev =
Aline

Are
⋅ Vline =

Ahe

Are
⋅ Vfwd (7.163)

TABLE 7.1: Cylinder speed (forward and reverse direction in units of in∕s) for
different values of the line pipe diameter and cylinder diameter. It is assumed that
the rod diameter is half of the cylinder inner diameter. The linear line speed of fluid
is limited to 15 ft∕s.

dline

dhe 0.5 0.75 1.0 1.5

4.0 (3.75, 5.0) (8.44, 11.25) (15.0, 20.0) (33.75, 45.0)

6.0 (1.67, 2.23) (3.75, 5.0) (6.67, 8.89) (15.0, 20.0)

8.0 (0.94, 1.25) (2.11, 2.81) (3.75, 5.0) (8.44, 11.25)
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If we focus on the case where the cylinder inner diameter is twice the rod diameter,

Vfwd =
𝜋dline

2∕4

𝜋dhe
2∕4

⋅ Vline (7.164)

Vrev =
dhe

2

dhe
2 − dre

2
⋅ Vfwd (7.165)

= 4
3
⋅ Vfwd (7.166)

7.5 HYDRAULIC VALVES

Valves are the main control components in hydraulic circuits. They are the metering com-
ponent for the fluid flow. The metering of the fluid is done by moving a spool to adjust the
orifice area. There are two main valve output variables of interest which can be controlled
by the spool movement:

1. flow (rate and direction) and

2. pressure.

If the movement of the spool is determined in order to maintain a desired pressure,
the valve is called a pressure control valve. If the movement of the spool is determined in
order to maintain a desired flow rate, it is called a flow control valve. If the flow direction
is changed between three or more ports, they are called directional flow control valves.

If the spool position of the valve is controlled only to two discrete positions, they are
called ON/OFF valves (Figure 7.44). If the spool position of the valve can be controlled to
be anywhere between fully open and fully closed position (i.e., in proportion to a signal),
then they are called proportional valves. The ON/OFF type valves are used in applications
which require discrete positions, that is open the door and close the door. Here, we are
interested primarily in proportional and servo control valves.

A valve is sized based on three major considerations:

1. flow rating: the flow rate it can support at a certain pressure drop across the valve port
when it is fully open (i.e., maximum flow at 1000 psi pressure drop for servo valves,
at 150 psi for proportional valves),

2. pressure rating: the rated pressure drop across the valve and the maximum supply
port pressure,

3. speed of response: the bandwidth of the valve from current signal to spool displace-
ment.

The main differences between ON/OFF valves and proportional valves are as follows,

1. Solenoid design: in proportional valves, the gain of the current–force relationship is
fairly constant in the travel range of the solenoid, whereas in ON/OFF valves, the
main thing is to generate the maximum force and the linearity current–force gain
relationship is not important.

2. Centering spring constant in proportional valves tends to be larger than than the
comparable size ON/OFF valves.

3. While the valve body of a proportional and ON/OFF valve may be almost identical,
the spool designs are different. The proportional valve spools are carefully designed
with desired orifice profiles to proportionally meter the flow.
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FIGURE 7.44: Valve categories: (a) number of ports (also called ways): two port (or two-way),

three port, four port valves, (b) two, three, and four port valves with two, three, and four

position configurations, (c) same valves with proportional flow metering capability

(proportional valves), (d) normally closed, normally open conditions, that is the flow condition

of the valve, when it is in default condition, (e) three port valve with various discrete positions,

(f) various flow conditions when a four port valve is in the center position (closed center,

tandem center, open center, float center), (g) actuation method of the valve: manual, pilot,

solenoid or the combinations of them.

Most proportional valve geometries are designed so that the flow is approximately propor-
tional to the spool displacement under a constant pressure drop across the valve.

Valves can be categorized according to the following:

1. number of ports, that is two, three, four ports,

2. number of discrete positions of the spool, that is one, two, or three discrete positions
or ability to position the spool proportionally within its travel range,

3. flow condition of the valve at the center position, that is open center, closed center,

4. actuation method of valve, that is manual, electric actuator, pilot actuated, or a
combination of them.

5. metering element type: sliding spool, rotary spool, poppet (or ball),
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6. main control purpose of valve: pressure or flow rate,

7. mounting method of the valve into the circuit: stand alone body, multi function inte-
grated valve block, subplate mounting, manifold block, stacked (sandwich) block. The
mounting standards specify the mechanical dimensions of the ports, their locations
as well as screw holes on the mounting plate. Mounting standards are specified by
NFPA, ISO, and DIN. NFPA standards are referred to with letter D, and DIN standards
are referred to by NG, ISO standards are referred to by CETOP. Equivalent standard
specifications are DO3/NG6/CETOP 03, D05/NG10/CETOP 05, D07/NG16/CETOP
07, D08/NG25/CETOP 08, D010/NG32/CETOP 10.

7.5.1 Pressure Control Valves

Pressure control valves involve two or three port connections. The spool which controls the
orifice area is actuated based on a sensed pressure. Relief valves, pressure reducing valves,
counterbalance valves, sequence valves, brake valves are examples of pressure control
valves (Figures 7.45–7.50). Relief valves limit the maximum pressure output of the valve
by venting the flow to tank. In a mechanical relief valve, a spring sets the maximum pressure.
In an EH controlled relief valve, the current level of the solenoid sets the maximum pressure,
hence an EH controlled relief valve can be used to control a variable line pressure. There
are two major types of pressure relief valves: direct and indirect acting (Figure 7.46). In a
direct acting relief valve, the relief pressure is set by the spring. The line pressure directly
acts on the area of the poppet spool. When the line pressure exceeds the set pressure, the
poppet moves up and opens the line to tank.

pline ⋅ Apoppet ≤ kspring ⋅ xspring; valve closed (7.167)

pline ⋅ Apoppet ≈ kspring ⋅ xspring; valve open (7.168)

pline ≈ pspring = (kspring ⋅ xspring)∕Apoppet; (7.169)

where xspring = xpreload + Δxspring

The indirect acting relief valve uses an intermediate orifice and spring between the
poppet valve section and the line pressure. The function of the orifice in the indirect pressure
relief valve is as follows: when the set pressure of the pilot stage is exceeded (spring 2 in
Figure 7.46), the poppet spool opens and flow crosses the orifice. The role of the orifice is
effectively to create a pressure drop between A and B locations, and hence allow the flow to

(b) (c)

Drill

M

Clamp

(a)

M

FIGURE 7.45: Pressure relief valve applications in a hydraulic circuit: (a) unloading valve,

(b) sequence valve, (c) counter balance valve.
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FIGURE 7.46: Pressure relief valve: (a) direct acting, (b) indirect acting, (c) line pressure, set

relief pressure, and flow rate to tank relationship in steady state (ideal case and actual case

shown).

overcome the preload of spring 1 to open the main relief line. When the poppet valve opens,
the line pressure is relieved to the tank not through the poppet valve orifice, but through a
separate orifice on the side. The poppet section has a small (or almost zero) leakage flow to
tank. Compared to the direct acting relief valve, the indirect acting valve operation is less
sensitive to flow rate, is more stable, but has a slightly slower response due to the orifice.
It is not unusual that a direct acting relief valve can operate in a high frequency open and
close motion due to pressure spikes in the line, hence resulting in valve failures in a matter
of minutes in large power applications.

Poppet valves are commonly used as pressure regulators or pressure relief valves
(Figure 7.47). The main components of a poppet valve are: poppet (spherical ball or conical
shaped), seat, valve body, and poppet actuator which may include a spring. Poppet valves
are easy to manufacture, have lower leakage and are insensitive to clogging by dirt particles
compared to other types of spool valves. As a result, poppet valves are often used in load-
holding applications to minimize leakage and hence movement of the load. Depending on
the flow rate supported by the valve, it may be actuated directly by a solenoid for small
flow rate valves or via a secondary pilot stage amplification of actuation force for large
flow rate valves. Poppet valves are used as screw-in cartridge valves with manifold blocks.
A poppet valve performance is rated in terms of its maximum operating pressure (pmax),
rated flow through the valve at a given pressure drop across it (Qr at Δpv). In recent years,
poppet valves have been developed as proportional flow control valves. However, since
the valve actuation force directly acts against the dynamic flow forces, the dynamic stable
control of the valve is a difficult task. The cross-sectional shape of the poppet and its seat
make a significant difference in flow forces and proportional flow metering ability of a
poppet valve.

Pressure reducing valves maintain an output pressure which is lower than the input
pressure by venting the excess flow to tank or limiting the orifice area based on desired and
actual output pressure sensing. Figure 7.48 shows the basic design, symbol, and steady-
state input–output relation of the valve. When the output pressure is less than the output
pressure set by the spring, the spool does not move. Output pressure is very close to the
input pressure.

pout ⋅ Aout < Fspring,0 (7.170)



JWST499-c07 JWST499-Cetinkunt Printer: Yet to Come October 9, 2014 8:41 254mm×178mm

ELECTROHYDRAULIC MOTION CONTROL SYSTEMS 465

Valve
actuator

force

Pilot
supply

Tank

Pilot valve

Control
chamber

Valve
body

Poppet

P
2

P
1

Seat

Main inport

Main outport

FIGURE 7.47: Poppet valve construction: valve body and orifice seat, poppet, control chamber

with a mechanism to control the pressure or direct actuation of the poppet.

As the output pressure increases due to the increase in the input pressure or load, the spool
force due to the pressure feedback will increase and start to move the spool against the
spring until the spring force balances the output pressure feedback force,

pout ⋅ Aout ≈ kspring ⋅ xspring = Fspring (7.171)
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FIGURE 7.48: Pressure reducing valve: (a) valve design, (b) valve symbol, (c) steady-state

input and output pressure relationship. Notice that only the output pressure is fed back to affect

the movement of the spool and hence the metering orifice. Input pressure ideally does not

affect the force on the spool as a result of the way the flow is routed around the spool.
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FIGURE 7.49: Pressure compensator valve: (a) symbol with pressure feedback and spring

pressure, (b) input and output pressure relationship in steady state, (c) input, output, and

spring pressure relationship over time.

As the spool moves, it restricts the flow orifice between the input and output port. Eventually,
when the output pressure is high enough to further move the spool to close off the orifice
between the input and output ports, the output pressure is limited to the maximum value set
by the spring and orifice design of the valve. The valve then regulates within the vicinity
of this point and maintains a constant output pressure which is set by the spring as long as
the input pressure is larger than the set (desired output) pressure.

A modified version of the same valve concept (pressure reducing valve) is used as an
adjustable pressure reducing valve in lever or solenoid operated pilot valves. Figure 7.50
shows a modification of the pressure reducing valve. The base of the spring is moved by
a lever (or an electric actuator in the case of an EH type pressure reducing valve), hence
changing the set spring pressure. Therefore, the output pressure will be proportional to the
lever displacement as long as the input pressure is larger than the set pressure. A pair of
such pressure reducing valves is used as the pilot stage in two-stage proportional valves.
In mechanically actuated versions, a lever moves a pair of pressure reducing valves. In
forward motion of the lever, one of the pilot valves is actuated, in reverse motion the other
is actuated. Similarly, in an EH conrolled version, each pressure reducing valve is actuated
by a solenoid based on lever command. The net result of such a valve is that the output
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P

(c)
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P
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FIGURE 7.50: Lever controlled pilot valve: a pressure reducing valve modified to be used as a

pilot valve. The output pressure is always smaller or equal to the input pressure. The output

pressure is proportional to the lever displacement, Ppilot,c ∝ xL, while Ppilot,c ≤ Ppilot,s. (a) Valve

design concept, (b) symbol, (c) inport and outport pressures and control lever relationship. The

lever movement sets the desired output pressure. The feedback from the output pressure to the

spool moves to balance that and regulate to the set pressure.
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pressure is proportional to the lever displacement with its maximum value being the input
pilot pressure. This output pressure is then used to shift the main spool against a centering
spring in order to generate a main spool displacement that is proportional to the lever
displacement.

In pilot valve applications, the input pressure is the pilot supply pressure (ppilot,s),
and output pressure is the pilot control pressure (ppilot,c) which is used to shift the spool of
a larger flow control valve,

ppilot,c = (kspringxspring)∕Aout ≤ ppilot,s (7.172)

≈ K ⋅ xspring ≤ ppilot,s (7.173)

A different version of the pilot valve has two inports: pilot pressure supply and tank ports.
The output pilot control pressure is regulated by the lever motion to be between the tank
pressure and pilot supply pressure.

Spring force is due to preloaded displacement (xpreload) plus the displacement during
pressure regulation, Δxv,

Fspring = kspring ⋅ (xpreload + Δxv) (7.174)

While

Aout ⋅ pout ≤ kspring ⋅ xpreload (7.175)

the valve orifice is fully open with negligible restriction and

pout ≈ pin (7.176)

When,

Aout ⋅ pout > kspring ⋅ xpreload (7.177)

The force balance to define the position of the spool

Aout ⋅ pout = kspring ⋅ (xpreload + Δxv) (7.178)

pout = pin − Kvp ⋅ Δxv (7.179)

where the last equation states that as the valve spool moves, Δxv, due to increased output
pressure, the orifice restriction increases (orifice starts to close, gets smaller), and the output
pressure becomes less than the input pressure due to a pressure drop across the smaller
orifice. The gain between the spool displacement and pressure drop, Kvp, is large and
typically much larger than the spring constant, Kvp ≫ kspring. This means that the movement
of a spool makes a large difference in the output pressure but not much change in the
spring force. If we eliminate the Δxv in the above equations, we can obtain a steady-state
relationship between input and output pressures, which can be shown to be

Aout ⋅ pout = kspring ⋅
(

xpreload +
1

Kvp
⋅ (pin − pout)

)
(7.180)(

Aout +
kspring

Kvp

)
⋅ pout = kspring ⋅ xpreload +

kspring

Kvp
⋅ pin (7.181)

pout ≈
kspring

Aout
⋅ xpreload (7.182)

pout ≈ ppreload (7.183)

by approximating kspring∕Kvp ≈ 0.0.
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Note that xspring = xpreload + Δxv and xpreload is adjusted by the lever motion. As
the operator moves the lever, xpreload changes, hence ppreload changes. This means that the
output pressure,

ppilot,c = pout = ppreload(xl) (7.184)

≈ K ⋅ xl (7.185)

changes as a function of lever displacement, where xl is the lever displacement. This valve
functions as a proportional pressure control valve using a pressure reducing valve. The
output pressure limits are defined by the pilot supply pressure and tank pressure, and the
actual value of the output pressure is proportional to the lever displacement,

ptank ≤ [ ppilot,c = pout = ppreload(xl) ] ≤ ppilot,s (7.186)

taking on a value between pilot supply pressure (ppilot,s) and tank pressure (ptank).
A pressure compensator valve that maintains a constant pressure drop between its

input and output ports is shown in Figure 7.49. Force balance between feedback pressures
and spring determines the steady-state position of the spool

pout = pin − pspring = pin − kspring ⋅ (xpreload + Δxv) (7.187)

and the spool position effect on the output pressure due to the change in orifice opening
(notice the difference between this equation and the similar equation for pressure reducing
valve),

pout = pin − Kvp ⋅ Δxv (7.188)

If we eliminate the Δxv from the above two equations to find a steady-state relationship
between input and output pressure, it can be shown that(

1 −
kspring

Kvp

)
pout =

(
1 −

kspring

Kvp

)
pin − kspring ⋅ xpreload (7.189)

pout ≈ pin − kspring ⋅ xpreload ; Kvp ≫ kspring (7.190)

Hence, the valve spool will move to regulate the output pressure to maintain the following
relationship,

pin − pout = kspring ⋅ xpreload (7.191)

If pin increases, pout has to increase in order to maintain the force balance. This is accom-
plished by the small movements of the valve spool.

An unloading valve is a pressure relief valve where the pilot pressure which activates
the valve to open comes from a line past the valve. For instance, a fixed displacement pump
may need to charge an accumulator which maintains a line pressure. When the accumulator
pressure exceeds the pump output pressure, the pilot pressure opens the relief valve, the
check valve closes, and the pump flow is sent to the tank without having to work against
the load, hence the name unloading valve (Figure 7.45a).

A sequence valve is a pressure relief valve used in a circuit to make sure that a
hydraulic line does not open until a certain pressure requirement at another location is met
(Figure 7.45b). For instance, a pressure relief valve can be used to open or close a hydraulic
line between two points based on the pressure feedback from another third location in the
circuit. Until the pressure in the third location reaches a preset value, the line between
location one and two is blocked. Such a valve may be used between a single directional
control valve and two cylinders: clamp and drill cylinders. The objective is that the drill
cylinder should not move until the clamp cylinder pressure reaches a certain value. This
is accomplished by a pressure relief type sequence valve between the drill cylinder and
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Inport 2

Shuttle
piston

Inport 1

(a)

Pi1 Pi2

(b)

P0 = max (P  ,   P   i2   

Outport

i1
)

FIGURE 7.51: A shuttle valve is used as a maximum function. It selects the larger of the two

pressures at its input ports and feeds it to its output port.

directional control valve output line. The control signal for the sequence valve comes from
the pressure in the clamp cylinder. When the directional valve opens, the flow first goes to
the clamp cylinder since the sequence valve makes the flow path to the drill cylinder have
more resistance. When the clamp cylinder extends and pressure in the line increases, then
the sequence valve opens and guides the flow to the drill cylinder. It should be noted that the
sequence of motion between the two cylinders is based on pressure sensing, not based on
position. Therefore, if the pressure increases in the clamp cylinder for some reason before
the actual clamping operation is done, the drill cylinder will still actuate.

The counterbalance valve (also called load holding valve) is a pressure relief valve. It
does not open until a desired pressure differential is met in order to avoid sudden movements
(Figure 7.45c). They are used in load lowering applications such as lift trucks and hydraulic
presses. The valve can be used to control the back pressure between the cylinder and tank
port so that the speed of the cylinder does not move uncontrollably due to large load, but is
controlled by the valve on the cylinder to tank line.

The so-called shuttle or resolver valves are commonly used as selector valves in
hydraulic circuits (Figure 7.51). The valve has two input ports and one output port. The
output port has the larger of the two input port pressures,

po = max(pi1, pi2) (7.192)

7.5.2 Example: Multi Function Hydraulic Circuit
with Poppet Valves

Figure 7.52 (also see Figure 7.13) shows the hydraulic circuit schematics of the bucket
control for the wheel loader model L120 by Volvo. The load sensing signal is used in the
same way to control the pump displacement. That is the maximum load pressure signal is
resolved by use of a series of shuttle valves, and the resulting pressure is used to control the
displacement of the pump. The maximum load signal is determined by comparing the load
signals from the bucket hydraulics and steering hydraulic system (the steering hydraulic
system is not shown in the figure). That way, the pump is able to support the circuit with
the most demanding load.

The tilt and lift valves are closed-center, proportional flow control valves (MV1,
MV2). The lift valve also has a so-called float position which is used when the bucket is
riding on the ground surface and desired to track the natural contour of the ground. At the
float position, both sides of the cylinder are connected to the tank. This way, the cylinder
follows the natural contour of the ground surface. The shuttle valve (SV1) is used to actuate
the main valve spool to the float position when the command signal is larger than a certain
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set value. Also shown in the figure is the so called ride control or boom suspension circuit
which reduces the oscillations transmitted to the machine frame between road surface and
lift cylinder.

The flow between each service port (A and B) of the main flow control valve and
the cylinder ports (head-end and rod-end) passes through a poppet valve. There are two
poppet valves per valve–cylinder pair, one for each of the valve–cylinder port connection.
Poppet valves provide a leakage free sealing on a line. Unlike a spool type valve, where
some leakage is inevitable, poppet valves are excellent for leakage free sealing. In this
configuration, the poppet valves are used as load holding valves, that is when the main
flow valve is in neutral position, the poppet valve blocks the flow and seals the line. Thus,
the load does not drift in position due to leakage problems. Hence, for lift and tilt circuits
combined, there are four poppet valves (PV1, PV2, PV3, PV4). The spool displacement of
the poppet valve is controlled by a pilot valve (PPV1, PPV2, PPV3, PPV4). When a pilot
control pressure from the lever operated pilot (PMV1) valve acts on the main spool (MV1),
it also acts on the pilot valve (PPV1) which then actuates the poppet valve.

7.5.3 Flow Control Valves

Flow rate through an orifice or restriction is a function of both the area of opening and the
pressure differential across the orifice,

Q = K ⋅ A(xs) ⋅
√
Δp (7.193)

where Q is the flow rate, Δp is the pressure drop across the valve, A(xs) is the valve
orifice opening area as function of spool displacement xs, and K is a proportionality
constant (discharge coefficient). Non-compensated flow control valves set the orifice area
only by moving a spool based on a command signal. Figure 7.53a shows a needle valve
used as a flow control valve where the needle position is manually adjusted. The orifice
area is approximately proportional to the needle position. If the input or output pressure
change, the flow rate changes for a set needle position in accordance with the above orifice
equation.

If it is desired that the flow rate should not change with pressure variations, the stan-
dard flow control valve can be modified with a pressure compensator spool and orifice. Such
a valve is called pressure compensated flow control valve. There are two types of pressure
compensated flow control valves: the restrictor type and by-pass type (Figure 7.53b,c).

There are two spool and two orifice areas in a pressure compensated flow control
valve: one pair is the needle–orifice pair which sets the nominal orifice opening. Another
pair modulates the second orifice opening based on input–output pressure feedback signals
in order to maintain a constant pressure drop across the needle–orifice area. As a result,
a constant flow rate is maintained at a constant setting of the needle even though input
and output pressure may vary (since the second spool would compensate for it) as long
as valve operating conditions do not reach saturation. This type is called a restrictor type
pressure compensated flow control valve since flow is regulated against pressure variations
by adding restriction in the flow line (Figure 7.53b). The valve regulates the pressure drop
(tries to maintain it at a constant value) across the needle orifice.

Another type is the by-pass type where an orifice opening by-passes excess flow to
the tank port as a function of pressure feedback signal. The output pressure is maintained at
the load pressure plus the spring due to pressure, that is pout = pl + pspring (Figure 7.53c).

Notice that the desired flow rate is set by the main orifice opening which is shown in
the figures as being controlled by a manually moved needle-screw. This mechanism can also
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Adjustable needle valve orifice
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FIGURE 7.53: Flow control valves: (a) needle type flow control valve, (b) pressure

compensated needle type flow control valve, (c) by-pass type pressure compensated flow

control valve. The needle position may be manually or remotely controlled.

be proportionally controlled by an electric actuator, such as a proportional solenoid, which is
the case in many pressure compensated EH flow control valves (see www.HydraForce.com).

In a pressure compensated valve, a compensator spool moves in proportion to the
difference between two pressure feedback signals. It is also called adjustable pressure
compensated flow control valve. In the so-called pre-compensator valve configuration, one
pressure is fed back from the output of the compensator valve and the other pressure is
fed back from the output of the flow control valve (Figure 7.54). In the so-called post-
compensator valve configuration, one pressure feedback is from the input pressure to the
compensator valve, and the other pressure feedback is from the load pressure (Figure 7.55).

The objective of the compensator valve is to maintain a constant pressure drop across
the main flow control valve. Hence, when the main flow control valve spool is at a certain
position, the flow rate across it would not be affected by the pressure variations at the pump
supply or load side as long as the pressure variations do not reach the saturation levels. The
function of compensator valve is to add restriction (pressure drop) in a hydraulic circuit. It
is the analogy for variable resistance in series with another resistance in electrical circuits.
A directional flow control valve in series with a pressure compensator valve is called
a pressure compensated directional flow control valve or just a pressure compensated
directional valve. Compensator valves are used in

1. circuits where load is variable and that the flow rate should not vary as a function of
the load as long as the valve is not saturated (fully open or fully closed), and

2. multiple parallel hydraulic circuits where all circuits share the same pump supply
pressure, but the load pressure in each cylinder may be different. If a compensator

www.HydraForce.com
www.HydraForce.com
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FIGURE 7.54: Pre-compensator valve configuration. A compensator valve is used to maintain

a constant pressure drop across an orifice. This is accomplished by adding hydraulic resistance

(pressure drop) in a circuit. A pre-compensator valve uses two pressure feedback signals for its

control: the compensator output port pressure signal and the output of the flow control valve

following the compensator valve (i.e., maximum of two pressures of the cylinder if the flow

control valve is connected to a cylinder). The pressure drop regulated across the main flow

control valve is proportional to the spring constant of the pre-compensator valve. (a)

Component cross-section circuit diagram, (b) symbolic circuit diagram, (c) pressure

relationships.

valve is not used, most of the flow will go the valve which has the lowest load, and
other circuits will get very little flow. In order to provide equal flow on demand to
each circuit regardless of the load pressure in other circuits, a compensator valve is
used in each circuit to add additional restriction (hence pressure drop, just as a larger
load would do) in the circuit so that all circuits effectively see the same load pressure.

The pressure relationship in Figure 7.54 is as follows,

ps ≥ pfb1 ≥ pfb2 (7.194)

Compensator
valve

max (PA/B,1 , PA/B,2 )

PS

PS

PA/B,1PA/B,2

Pressure feedback signal
from load of other
circuits

PS

Cylinder

Tank

Pump P A
B

Main valve T

Kspring

P
l

FIGURE 7.55: Post-compensator valve configuration. The two pressure feedback signal

sources are the input pressure signal to the compensator valve and the load pressure. In multi

circuit configurations, the load signal is the maximum of all load signals among circuits.
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that is the outlet pressure of compensator valve is smaller or equal to the input pressure, and
similarly, the output pressure of the flow control valve is smaller or equal to the pressure at
its input. The pfb2 pressure is determined by the load conditions downstream. The task of
the compensator pressure is to maintain a constant pressure differential between the input–
output ports of the main flow control valve, labeled as the adjustable orifice in Figure 7.54,

Δpset = pfb1 − pfp2 (7.195)

by controlling the intermediate pressure pfb1 through the movement of the compensator
valve spool,

kspring ⋅ (xpreload + Δxcs) = pfb1 ⋅ A1 − pfb2 ⋅ A2 (7.196)

pfb1 = ps − Kvp ⋅ Δxcs (7.197)

where Δxcs is the spool displacement of the compensator valve. Again, if we eliminate the
Δxcs from the above equations, and note that Kvp ≫ kspring, and let A1 = A2 for simplicity,
it can be shown that

kspring

KvpA1
⋅ (ps − pfb1) = (pfb1 − pfb2) −

kspring

A1
⋅ xpreload (7.198)

pfb1 ≈ pfb2 +
kspring

A1
⋅ xpreload (7.199)

where the left hand-side of the above equation is approximated as zero since
kspring

Kvp
≈ 0.0.

If load pressure pfb2 increases, so does the pfb1 by reducing the pressure drop relative to
ps, in order to maintain a constant pressure drop across the main flow control valve as long
as pfb1 ≤ ps. When pfb1 = ps, if pfb2 continues to increase, the compensator valve saturates
and cannot maintain the pressure differential. If the load pressure (pfb2) is so large that the
pressure differential between ps and pfb2 is less than the desired pressure differential, then
the compensator valve modulation saturates and it tries to do its best by making pfb1 as
close as possible to ps (minimizes the restriction). Hence, when supply pressure is constant
and the load pressure increases to a level so large that the desired pressure differential
between two ports is not possible, the compensator valve fully opens, trying to minimize
the pressure drop,

pfb1 ≈ ps (7.200)

ΔPv ≈ ps − pfb2 ≤ ΔPset (7.201)

This is the condition where pump pressure supply has reached its maximum (saturation)
level and load pressure is very high.

The post-compensator configuration (Figure 7.55) uses two pressure feedbacks to its
spool: input port pressure feedback to one side and output (i.e., maximum load) pressure
feedback to the other side.

The spool movement of the compensator valve is controlled by the following rela-
tionship (Figure 7.55),

kspring ⋅ (xpreload + Δxcs) = pc ⋅ A1 − pl ⋅ A2 (7.202)

pc = ps − Kvp ⋅ Δxcs (7.203)
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where pc is the pressure at the input port of the compensator valve, pl is the load pressure
feedback signal. Again, if we eliminate the Δxcs from the above equations, and note that
Kvp ≫ kspring, and let A1 = A2, (kspring∕Kvp) ≈ 0.0, it can be shown that

pc = pl +
kspring

A1
⋅ xpreload (7.204)

which is the same relationship as the previous case. However, there are functional differ-
ences between pre-pressure compensators and post-pressure compensators in multi function
circuits. In post-pressure compensated systems, the pump is controlled to maintain a margin
pressure (pressure difference) between the pump output pressure and load pressure,

ps = pl + Δpmargin (7.205)

The pressure differential across the main flow control valve is

ps − pc = pl + Δpmargin −
(

pl +
kspring

A1
⋅ xpreload

)
(7.206)

ps − pc = Δpmargin −
kspring

A1
⋅ xpreload (7.207)

which shows that the pressure drop across the main flow control valve is independent of the
load pressure. It is important to emphasize that pressure compensator valves are primarily
used to balance the flow distribution in multiple parallel hydraulic functions supported by
a single pump.

In short, the compensator valve adds restriction (pressure drop) between the pump
line and the output line (A or B) as a function of the difference between the pump pressure
and the load pressure.

In multiple circuits, a set of shuttle valves are used to select the maximum load
pressure among all circuits. The maximum load pressure is needed for two purposes: (i)
to control the pump displacement so that the pump is able to support the circuit with
the most load (worst case scenario), (ii) to control multiple compensator valves and try
to equalize the flow distribution among circuits. There are two major types of pressure
compensation in multi function circuits: the pre-compensator type and post-compensator
type (Figures 7.56, 7.57).

Figure 7.56 shows a multi function hydraulic circuit supplied by a variable dis-
placement pump. Each circuit has a pre-compensated valve along with the proportional
directional flow control valve. Each compensator valve uses two pressure feedbacks to
regulate the pressure differential across the main valve ahead of it. The pressure feedback
signal for each compensator valve is local to that circuit: output pressure of the compen-
sator and load pressure of the cylinder (maximum pressures of cylinder sides A and B are
selected by a shuttle valve). Finally, the pump displacement is controlled by the maximum
load pressure among all circuits so that the pump runs at a displacement that can support
the largest load among all circuits.

Figure 7.57 shows a similar multi circuit. The only difference is the location of
the compensator valves: in post-compensator configuration. In each circuit, the sources of
the two pressure feedbacks to the compensator valve are not all local: one of the pressure
feedbacks is the pump pressure line which is the input line pressure to the post-compensator
and the second load pressure feedback is the maximum load pressure among all circuits.
Hence, in the post-compensated configuration, the load pressure feedback (the second
pressure feedback) to each compensator valve is determined by the rest of the circuits. It
is always the maximum of all load pressures. The same maximum load pressure signal is
used to control the pump displacement.
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FIGURE 7.56: Pre-compensator valve configuration in a multi function hydraulic circuit. The

pump is of the variable displacement type. Each function is connected to the supply line in

parallel. Each compensator valve uses two pressure feedback signals for its control: the

compensator output port pressure signal and the load pressure signal (i.e., maximum of two

pressures of the cylinder it is controlling). Each compensator uses its own circuit’s load

pressure signal as feedback. In multi function circuits, the pump is controlled by the maximum

of all load pressure signals among multiple circuits. When the pump saturates (maximum flow

capacity is reached), the flow will go to the circuit with the lowest load pressure, and the

circuits with higher load pressures will get lower or no flow.

Tank
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FIGURE 7.57: Post-compensator valve configuration in a multi function hydraulic circuit. The

pump is of the variable displacement type. Each function is connected to the supply line in

parallel. Each post-pressure compensator valve uses two pressure feedback signals for its

control: the input port pressure to it and the maximum of all the load pressures among multiple

circuits. Therefore, one of the two pressure feedback signals to a post-compensator valve may

originate from a different circuit in multi circuit applications. The same pressure signal is used

for the pump control. Post-pressure compensator valves are used to equalize the flow

distribution among multiple circuits. When the pump is saturated, all circuits gets

proportionally less flow (unlike the pre-compensated case). For instance, the hydraulic

implement lift and tilt circuits of John Deere wheel loader model 644H (Figure 7.61) use the

same type of post-compensators along with each proportional directional flow control valve.
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Under non-saturated conditions, the performances of pre-compensated and post-
compensated configurations of multi circuit hydraulic systems are very similar. When the
pump capacity is saturated, the post-compensator configuration backs-off the flow-demand
from each line proportionally and tries to maintain even flow delivery based on demand
to each circuit. Whereas in pre-compensated multi circuits, when the pump saturates, the
circuit which has the largest load pressure gets less flow and may eventually get zero flow.
In three or more function circuits, the higher load pressure circuits get progressively less
flow and only the lowest pressure circuit gets most of the flow. The orifice in the pressure
feedback line from the load has increased the dampening effect (in addition to the added
hydraulic resistance) so that high frequency pressure spikes are filtered from the feedback
signal to the compensator valve.

The pressure compensated flow control valves work on the basic operating principle
of maintaining constant flow despite pressure variations. Examining Equation 7.193 shows
that for a given spool displacement, the flow rate will change as a function of pressure
differential across the valve which may vary as a function of load and supply pressure
variations. The basic principle is to change the valve opening A(xs) by shifting the spool
as a function of pressure feedback. As a result, the effective spool displacement is not only
a function of the current but also the pressure drop. Hence, if the pressure drop increases,
feedback moves the spool to reduce the orifice area. Similarly, if the pressure drop reduces,
feedback moves to increase the orifice area. The end result is to maintain an almost constant
flow for a constant current signal under varying load conditions. The feedback mechanism
to shift the spool as a function of pressure drop can be implemented by hydro-mechanical
or electronic means. Normally, a pressure compensated flow control valve is implemented
with two valves in series: one valve is the proportional directional flow control valve and
the other valve is the pressure compensator valve. Examples of such implementations are
shown in Figures 7.55–7.57. It should be noted that if two pressure sensors were available at
the input and output ports of the proportional valve, the solenoid current could be controlled
to perform the function of the second valve, while at the same time metering the flow. In
other words, the control algorithm that decides on the solenoid current to shift the spool can
take not only the desired command signal but also the two pressure signals into account.
Hence, we can implement a pressure compensated flow control valve using a solenoid
controlled proportional valve, two pressure sensors, and digital control algorithm.

The Need for Pressure Compensation in Multi Function Circuits
When a load-sensing pump is used used to supply two or more parallel hydraulic cir-
cuits, the flow distribution between the circuits is load dependent (Figure 7.58). More flow
will go to the circuit with lower load resistance. Load check valves in each circuit are used
to make sure that the load does not drive the flow back to the pump when the load pressure
is larger than the supply pressure. Let us assume that both circuits have the same valve size
and cylinders. The flow across each valve is given by

Qv1 = Cd ⋅ Av1(xv1) ⋅
√

ps − pl1 (7.208)

Qv2 = Cd ⋅ Av2(xv2) ⋅
√

ps − pl2 (7.209)

where

Qs = Qv1 + Qv2 ; for ps < prelief (Qrelief = 0.0) (7.210)

Since the valves are the same size, and assuming that both valve spools are displaced to
the same value (same valve orifice openings), Cd Av1(xv1) = Cd Av2(xv2), the flow rate that
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FIGURE 7.58: An example illustrating the need for pressure compensator valves in multi

function parallel circuits.

goes into each cylinder depends on the load pressure. More flow will go to the circuit with
the smaller load pressure, and the flow ratio is

Qv1

Qv2
=

√
ps − pl1√
ps − pl2

(7.211)

For instance, let ps = 3000 psi, pl1 = 2000 psi, pl2 = 1000 psi, same size valves, and same
valve spool displacement in each circuit. The flow rate distribution betwen the two
circuits is

Qv1

Qv2
=

√
3000 − 2000√
3000 − 1000

= 1√
2

(7.212)

If the load condition changes, the flow rate will change: let ps = 3000 psi, pl1 =
1000 psi, pl2 = 2000 psi, and same size valves and valve spool displacement in each circuit.
The flow rate distribution betwen the two circuits under this load condition is

Qv1

Qv2
=

√
3000 − 1000√
3000 − 2000

=
√

2
1

(7.213)
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Even though the commands to each valve do not change, the flow rate to each circuit, and
hence the speed of each cylinder, will vary due to the variation in the load in each circuit.

If it is desired to modify circuit design so that the flow rate distribution between
circuits is independent of the load, the pressure drop across each valve must be same even
if the load pressures are different,

ps − pl1 = ps − pl2 (7.214)

Under this condition, flow rate distribution to each circuit is independent of the load
difference between the circuits and would be controlled by specific spool displacement of
each valve (xv1, xv2). When both valves are same size and have the same displacement, flow
rate distribution would be equal, 50% each of total flow, or Qv1 = Qv2, Qs = Qv1 + Qv2.
When load pressures are different (pl1 ≠ pl2), the equal pressure drop across the valve for
each circuit can be accomplished by:

1. Adding restriction to the circuit which has the lower load so that the total hydraulic
load seen by the valve is the same as the load on the other circuit. This means adding
“positive hydraulic resistance” to the circuit with lower load.

2. Removing restriction from the circuit which has the higher load so that the total
hydraulic load seen by the valve is same as the load on the other circuit. This means
adding “negative hydraulic resistance” to the circuit with higher load.

The second option is not physically possible. Negative hydraulic resistance cannot be added
to a hydraulic circuit. Therefore, in order to equalize the effective hydraulic resistance
(making the total pressure drop equal in each circuit), we need to add hydraulic resistance
into the circuit which has lower load.

The electrical analogy of this concept is shown in Figure 7.59a. Consider that we
have a constant voltage supply (analogy of pump), and two parallel resistors (analogy of
valve-cylinder of each circuit). The current (analogy of flow rate) is divided between the
two circuits as follows,

i = i1 + i2 (7.215)

i1 = V
Rv1

(7.216)

i2 = V
Rv2

(7.217)

i

(a)

v

i1

i2

R v2

R v1

i

(b)

v

i1

i2

R v2

R v1

R c2

R c1

FIGURE 7.59: (a) Electrical analogy for a

two function hydraulic circuit. (b) Same

analogy with adjustable resistors in each

path to control the current (flow rate)

distribution between the two parallel paths.
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In order to make current division to each path equal, i1 = i2, the resistance in each path
must be the same, Rv1 = Rv2. This can be accomplished by adding an adjustable resistor in
each path (Figure 7.59b), where Rc1, Rc2 are adjustable resistors. If Rv1 > Rv2, we can make
Rc1 = 0.0, Rc2 = Rv1 − Rv2 to make the current in each path equal. Similarly, if Rv1 < Rv2,
we can make Rc1 = Rv2 − Rv1, Rc2 = 0.0 to make the current in each path equal,

i = i1 + i2 (7.218)

i1 = V
Rv1 + Rc1

(7.219)

i2 = V
Rv2 + Rc2

(7.220)

If we make, Rv1 + Rc1 = Rv2 + Rc2, then i1 = i2, even if Rv1 ≠ Rv2.
The same concept can be accomplished in hydraulic circuits by adding an adjustable

orifice (“hydraulic resistor”) in series with each circuit. There are two methods for this:

1. pre-pressure compensated valves,

2. post-pressure compensated valves.

In multi function circuits as shown in Figure 7.60, both pre- and post-pressure compensated
circuits provide the same behavior until the pump saturates or relief pressure is reached.
Figure 7.60a shows a circuit with pre-pressure compensation. Figure 7.60b shows the
post-pressure compensated circuit. We assume that both circuits have the same pump,
same valves and cylinders and pressure compensator valves, except that the location of the
pressure compensator valves and their feedback control signals are different. The pump is
controlled in load-sensing mode and has the same margin pressure for both circuits.

Consider the pre-pressure compensated case, and the pump is not saturated. Let us
assume that the preload setting in the pressure compensator valves are equal, psp1 = psp2.
The pre-pressure compensator valve spools move to control the restriction (adding hydraulic
resistor from zero to infinity by opening and closing the compensator valve orifice by spool
movement) so that the pressure difference across the main valve is constant. In other words,
the pressure compensator valves work to maintain the following relationship as long as
they are not saturated (fully closed or fully open),

pcp1 − pl1 = psp1 (7.221)

pcp2 − pl2 = psp2 (7.222)

Since flow rate across the main valves is determined by the following relationships,

Qv1 = Cd Av1(xv1)
√

pcp1 − pl1 = Cd Av(xv1)
√

psp1 (7.223)

Qv2 = Cd Av2(xv2)
√

pcp2 − pl2 = Cd Av(xv2)
√

psp2 (7.224)

which shows that the flow rates are independent of the load pressures (pl1, pl2). Instead, the
flow rates Qv1 and Qv2 are functions of psp1 and psp2, which are the pressure settings by the
preloaded springs in the pressure compensator valves, respectively. Notice that pc1 − pl1 is
the pressure drop across main flow control valve number one, and pc2 − pl2 is the pressure
drop across main flow control valve number two, and they are equal to the preload pressure
setting of the pre-pressure compensator valves, psp1, psp2, respectively. If they are equal by
design, psp1 = psp2, then the pressure drop across each main valve is regulated to that same
value as long as saturation is not reached. Hence, the flow rate distribution between the
circuit is load independent. The flow rate distribution is controlled by the spool position of
the main flow control valves.
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FIGURE 7.60: (a) Pre-pressure compensated multi function parallel hydraulic circuit, (b)

post-pressure compensated multi function parallel hydraulic circuit.
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Consider the case when the pump saturates, ps = pmax, pump output pressure cannot
increase anymore. Let us assume that the load pressures are such that pl1 > pl2 and pl1
increases to a value that is very close to the ps. Since ps cannot be increased anymore, and
pl1 is defined by the load, the compensator simply cannot increase the pressure differential
between the two, since (pc1 − pl1) < (ps − pl1) < psp1. In the meantime, the compensator
in circuit two still works to maintain the pressure differential because the load is very low
in that circuit and the (pc2 − pl2) = psp2 < (ps − pl2). So as a result, less flow will go to the
circuit with higher load since the net pressure drop available across the main flow control
valve of that circuit is lower. Eventually, if ps − pl1 = 0.0, that is pl1 = ps, the flow rate
to circuit one will be zero, while flow to the other circuit will continue in proportion to
the main valve opening. In summary, in pre-pressure compensated parallel multi circuit
hydraulic sytems, when the pump saturates, flow distribution to the highest load circuit will
eventually be reduced to zero, then the flow to the next highest load circuit will be reduced
to zero, while other circuits will continue to get the flow.

In post-pressure compensated systems (Figure 7.60b), the flow rate distribution is the
same as in the pre-pressure compensated case, when the pump is not saturated.

Qv1 = Cd Av1(xv1)
√

ps − (p∗l + psp1) (7.225)

Qv2 = Cd Av2(xv2)
√

ps − (p∗l + psp2) (7.226)

psp1 = pcp1 − p∗l (7.227)

psp2 = pcp2 − p∗l (7.228)

p∗l = max(pl1, pl2) (7.229)

Notice that both post-pressure compensator valves use the maximum load signal among
multi circuits as its feedback signal (p∗l ), unlike the pre-pressure compensator valves where
each circuit uses its own load signal as its feedback signal. Since psp1 = psp2 by the preload
settings of the compensator valves, flow rate distribution is independent of the load. When
the pump saturates, the ps − pcp1 = ps − pcp2 will still be equal, because from the above
equations we have the same pl

∗ and psp1 = psp2. When the pump saturates, the pressure
differential between the ps − pcp1 = ps − pcp2 cannot be made as large as the case when the
pump is not saturated. However, as the load pressure gets closer to the pump pressure, the
pressure drop across each of the main flow control valves in the top and bottom circuits is
still the same. As a result, the flow rate will be reduced in each circuit by the same ratio.
When the pump saturates, as load pressure increases in one of the circuits, flow rate to each
circuit is reduced by the same ratio because the same term√

ps − pcp1 =
√

ps − pcp2 (7.230)

(because psp1 = psp2, hence pcp1 = pcp2) defines the flow rate equations for both circuits.
Hence, the flow rate does not go to zero for the circuit with higher load. This is the main
functional difference between pre- and post-pressure compensated load sensing hydraulic
systems.

7.5.4 Example: A Multi Function Hydraulic Circuit using
Post-Pressure Compensated Proportional Valves

Figure 7.61 (also see Figure 7.13) shows the hydraulic circuit schematics of the bucket
control for the wheel loader model 644H by John Deere. This circuit serves as a good
example of post-pressure compensated proportional flow control valves. The figure shows
only the hydraulic system relevant to control the bucket (lift, tilt, and auxiliary functions).
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FIGURE 7.61: Hydraulic system circuit diagram for the bucket motion of the John Deere wheel

loader model 644H: only the hydraulic circuit for bucket motion is shown. Hydraulic circuits for

the steering, brake, and cooling fan are not shown. The pump is of the variable displacement

axial piston type. The main flow control valves are connected to the hydraulic supply in parallel

configuration. They are closed-center type and post-compensated for pressure drop.

The rest of the hydraulic circuit for the machine (steering, brakes, cooling fan drive) is not
shown. The key features of this hydraulic circuit are

1. the pump is of variable displacement type and controlled by a load sensing hydraulic
mechanism,

2. the valve–cylinder pairs for each function are of closed center type and are connected
to the hydraulic supply lines (P and T) in parallel configuration,

3. each proportional directional main flow control valve has a post-compensator valve
in order to maintain constant pressure drop across each main valve.

The hydraulic circuits (steering, implement hydraulics, and brake hydraulics) are
supplied by a single variable displacement axial piston pump. The pump is controlled by
a load sensing hydraulic circuit. Since the same pump supports multiple hydraulic circuits
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which may have different loads, it is necessary to sense all loads and use the highest load
signal in control of the pump. Therefore, the pump displacement is determined by the
maximum load pressure signal among the steering circuit (not shown in the figure), boom
circuit, bucket, and auxiliary circuits. The selection of the maximum load pressure is made
by a series of shuttle valves.

The valve–cylinder pair for each function is connected in parallel configuration to
the pump and tank lines. Furthermore, each directional flow control valve (proportional
type) is accompanied by a post-compensator valve. As discussed in Figure 7.57, the post-
compensator valve works to maintain a constant pressure drop across the main valve so that
the function speed is proportional to the lever command regardless of the load as long as
the load is not so large as to saturate the pump. The load pressure feedback is the maximum
load pressure among all circuit load pressures. This selection is made by a series of shuttle
valves. Notice that due to the load sensing signal needed for the compensator, the main
valve has three additional lines (in addition to the P,T, A, B main lines): two of them are
for the input and output of the compensator valve connection and one of them is the load
pressure sensing line for feedback control of the compensator. In addition, there are two
pilot pressure ports, one for each side of the spool, which come from the pilot valves. The
check valve and fixed orifice in parallel with it between the pilot control valve signal to the
main valve spool on both sides have the effect of dampening the pressure oscillations on
the pilot control line and result in smoother operation of the main valve.

The pilot pressure supply for the main valve control of the implement hydraulic
is derived from the output of the main pump pressure using a pressure reducing valve.
The output of the pressure reducing valve is a constant pilot supply pressure. The pilot
valves allow the operator to control the pilot output pressure to the main valves. For each
function (lift, tilt, auxilary) there are two pilot valves. Each valve has two inports (pilot
pressure supply port and tank pressure port) and one output port (output pilot pressure
used to control the main valve). The output pilot pressure is approximately proportional to
the mechanical movement of the lever controlled by the operator. As the operator moves
the lever, that is to lift the bucket, the pilot valve connected to the lift lever sends pilot
pressure (proportional to the lever displacement) to the main valve spool’s control port.
The main valve spool is spring centered and its displacement is proportional to the pilot
pressure differential between the two sides (one side is at the tank pressure, the other side is
modulated by the pilot valve output). Hence, if we assume a constant pressure drop across
the main valve, the cylinder speed will be proportional to the main spool displacement
which is in turn proportional to the lever displacement. In approximate terms, the cylinder
speed is proportional to the lever displacement.

7.5.5 Directional, Proportional, and Servo Valves

Directional flow control valves are categorized based on the following design characteristics
(ISO 6404 standard):

1. Number of external ports: two-port, three-port, four-port. Number of ports refer to
to the plumbing connections to the valve which can be 2, 3, 4 or more. A four port
valve connects the pump and tank (P, T) ports to two load ports (A, B) (Figure 7.44).

2. Number of discrete or continuously adjustable spool positions: ON/OFF two-position,
ON-OFF three position, proportional valves.

3. Neutral spool position flow characteristics: open center where one or more ports are
connected to the tank (i.e., P to T, A to T, B to T, A and B to T, P and A to T, P and B
to T) or closed center where all ports are blocked. Closed center valves are generally
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FIGURE 7.62: Closed center EH motion system for one axis motion: the valve is the closed

center type, the pump is the variable displacement type.

used with variable displacement pumps, whereas open center valves are used with
fixed displacement pumps (Figures 7.3, 7.62).

4. Number of actuation stages: single-stage, two-stage and three-stage valve spool
actuation.

5. Actuation method: referring to the first stage actuation whether by mechanical lever
(manual), electrical actuator (i.e., solenoid, torque motor, linear force motor), or by
another modulated pilot pressure source.

The “servo” valve and “proportional” valve names both refer to controlling the spool
displacement of the valve proportional to the command signal (i.e., solenoid current). A
servo valve has a custom matched spool and sleeve, machined to higher tolerances than the
spool for a proportional valve. A proportional valve has a spool and valve body. The fitting
clearance between the spool–sleeve of servo valves is in the range of 2–5 microns, whereas
the clearance between the spool and body of the proportional valve is in the range 8–15
microns or more. For all practical purposes, the only differences between these two types
of valves are that

� Servo valves use feedback from the position of main spool to decide on the con-
trol signal (i.e., the feedback may be implemented by completely hydro-mechanical
means or by electrical means), whereas proportional valves do not use main spool
position feedback. However, it should be pointed out that more and more proportional
valves have started to use spool position feedback in recent years. As a result, the dif-
ferentiation between servo and proportional valves based on spool position feedback
has started to disappear.

� Servo valves generally refer to higher bandwidth valves.
� Servo valves provide better gain control around the null position of the spool. As

a result, servo valves can provide higher accuracy positioning control. The average
deadband in servo valves is in 1 to 3% of maximum displacement, whereas it can be
as high as 30 to 35% in proportional valves.

Otherwise, their construction and control are very similar.
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The performance specifications of a proportional directional EH valve includes:

1. Flow rating at a certain standard pressure drop (i.e., 180 l∕min at a standard pressure
drop across the valve, when the valve is fully open. The standard pressure drop for
the flow rating of the servo valves is 1000 psi and of proportional valves is 150 psi).

2. Maximum and minimum operating pressures, pmax, pmin.

3. Maximum tank line pressure, pt,max.

4. Number of stages (single stage, double stage, triple stage).

5. Control signal type: manual, pilot pressure, or electrical signal controlled.

6. Pilot pressure range (ppl,max, ppl,min) and pilot flow (Qpl) required if pilot pressure is
used.

7. Open center or closed center type spool design.

8. Linearity of current–flow relationship at a constant pressure drop (Figure 7.77).

9. Symmetry of current–flow relationship between plus and minus side of current.

10. Nominal deadband.

11. Nominal hysterisis.

12. Maximum current from the amplifier stage if solenoid operated (and PWM frequency
and dither frequency if used).

13. Bandwidth of the valve at a specified supply pressure (wv Hz) or rise time for a step
command change in flow at a certain percentage (i.e., 25%) of maximum flow rate.

14. Operating temperature range.

The specifications for the electronic driver (power supply and amplifier circuit) include:

1. Input power supply voltage (i.e., 24 VDC nominal, or ±15 VDC) and current rating
to the drive power supply section.

2. Control signal type and range (i.e., ±10 VDC, ± 10 mA, or 4 to 20 mAmp, analog or
PWM signal),

3. Recommended dither signal frequency and magnitude (i.e., less than 10% of rated
signal at a higher frequency than the valve bandwidth) in order to reduce the effect
of friction between the spool and valve body.

4. Feedback sensor signal type (if any for a driver which uses local valve spool position
feedback to control the spool position).

For flow rates under 20 to 50 gallon∕min (gpm), a single stage direct actuated valve
is generally sufficient. For flow rate ranges between 50–500 gpm, a two stage valve is
used. For flow rates over 500 gpm, typically a three stage valve is used. In a single stage
valve, the electrical current sent to the solenoid (or linear torque motor), which creates
electromagnetic force, directly forces the main spool and moves it (Figure 7.63). Multi
stage valves (two or three stage) use pilot pressure (which is a lower pressure than the main
supply line pressure) to amplify the electrical actuator signal to shift the main spool. This
provides a very large amplification gain between the first stage electrical actuator signal
and second stage pilot force. This gain cannot be matched by any direct drive electric motor
technology currently. The large pilot stage gain generated shifting power also makes the
valve less sensitive to main stage contamination problems since the large shifting pressure
of the pilot stage is very likely to able to force through contamination problems. However,
the contamination problem is more likely to occour at the pilot stage of the valve since the
orifices at the pilot stage are much smaller than those in main stage.
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FIGURE 7.63: Single stage EH valve: two solenoids directly move the valve spool. Courtesy

Moog Inc.

There are three main types of two-stage valve designs:

1. spool-spool (double spool) design,

2. double nozzle flapper design, and

3. jet pipe design.

In a two stage valve, the electrical current moves an intermediate spool, which then amplifies
power using the pilot pressure line to move the second main spool (Figure 7.64). In multi
stage valve cases, the valve is so large that the electrically generated force by the solenoid
(or electric actuator) is not large enough to move the main spool.

The same concept applies to the three stage valves (Figure 7.65) where there are three
spools in the valve, the first two acting as the amplifiers to move the final third stage main
valve spool. The great majority of valves used in mobile equipment applications are two
stage valves. From a control system perspective, the functionality of single stage and multi
stage valves are the same: input current is translated proportionally into the main spool
displacement (with some dynamic delay effects, of course) which is then proportional to
the flow rate under constant pressure drop across the valve.

Notice that the second stage spool position (main spool) of a two-stage valve is
integral of the first stage spool position (pilot spool) if there is no feedback from the main
spool position to the pilot spool position. A two-stage spool valve is basically a single stage
direct acting valve connected to a second valve spool. The second valve can be viewed
as a small cylinder connected to a single-stage valve. Therefore, the current–main spool
displacement relationship is not proportional, but an integral relationship.

xmain(s) = 1
s

Kmp ⋅ xpilot(s) (7.231)

= 1
s

Kmi ⋅ isol(s) (7.232)
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In order to make the current–main spool displacement a proportional relationship, like the
case in a single stage valve, there has to be a “feedback mechanism” on the main spool
position. The pilot spool position is determined by the solenoid force and the feedback from
the main spool position. The feedback from the main spool to pilot spool may be in the
form of a mechanical linkage, spring, pressure, or in the form of an electronic sensor signal
to a controller. Let us consider a two stage valve which uses pressure feedback between
the pilot and main stage (Figure 7.64). The pressure feedback from the main spool position
acts like a balancing spring against the solenoid force

xmain(s) = 1
s

Kmp ⋅ xpilot(s) (7.233)

xpilot(s) = Kpi ⋅ isol(s) − Kpf ⋅ xmain(s) (7.234)

xmain(s) =
Kmp ⋅ Kpi

s + (Kpf ⋅ Kmp)
⋅ isol(s) (7.235)

This feedback mechanism can be implemented either by hydro-mechanical means or by
using spool position sensor and closed loop control algorithms.

Let us discuss how this feedback is physically accomplished by hydro-mechanical
means (Figure 7.64). When solenoid B is activated, its corresponding force pushes directly
against the pilot spool to open the pilot port A to pilot pressure supply. The pressure built
up in the chamber on the right side of the main spool is also directly fed back to the end
cap (A) of the pilot spool. When the pressure in the end cap equals or exceeds the force
from the solenoid in B, the spool shifts back and closes the opening to pilot supply. The
solenoid–feedback combination will now hold a pressure in port A that is proportional to
the input current to the solenoid. The main spool maintains its spring-centered position until
the pressure in the end gap is equal or exceeds the force in the centering spring. The main
spool will shift to a metering position (if the deadband region is passed). This movement
will cause port A to increase its volume and hence the pressure will drop. This pressure
drop will cause the feedback force in the pilot spool to drop allowing the pilot spool to shift
open to supply pressure to once again reach the pressure that corresponds to the solenoid
input. When the current to the solenoid is cut, the pilot spool will shift back to open to
tank and lower the pressure back to tank pressure. Accordingly, the main spool will shift
back because of the force in the centering spring until the whole valve is back to neutral
position. In summary, the pilot spool moves in proportion to the solenoid current, then the
built-up pressure in pilot port moves the main spool. The same pilot pressure is fed back
to the pilot spool end caps. In steady-state, the main spool is at a position that the spring
force balances the built-up pilot pressure. The built-up pilot pressure is proportional to the
solenoid current. The pilot spool returns to neutral position (closed) after the transients
when a constant current is applied and the main spool reaches the proportional position.
Without the pressure feedback to the pilot spool end caps, under constant current, the pilot
spool would shift a constant amount, and the main spool position would keep increasing
as an integral of the pilot spool, and hence that of the solenoid current. The key to making
the current and main spool position proportional in steady-state is the pressure feedback
between the main spool and pilot spool end caps.

There are also two-stage proportional valves where the main spool is shifted by two
pressure reducing valves, one on each side (Figure 7.66). Such valves are widely used
in construction equpment applications (Figures 7.52, 7.117). A pair of pressure reducing
valves acts as a pilot valve for the main stage. The output pressure of the pilot valve
is proportional to the lever displacement or solenoid current. A proportional main spool
displacement is developed as a result of the balance between the pilot pressure output of
the pressure reducing valve and the centering spring of the main spool. The input–output
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pressure) as a result of the centering springs. (a) Mechanically actuated pilot valves (for

instance, this type of valve is used on Komatsu wheel loader model WA450-5L for its bucket
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relations in two stage proportional valves where the first stage is a pair of pressure reducing
valve are as follows,

ppc =
Kpi

(𝜏pis + 1)
⋅ isol (7.236)

xmain = 1
Kspring

Amain ⋅ ppc (7.237)

=
Kpi Amain

Kspring (𝜏pis + 1)
⋅ isol(s) (7.238)

where ppc is the pilot pressure output from the pressure reducing pilot valves to the main
spool end caps, isol is the solenoid current, xmain is the main spool displacement, Kspring
is the centering spring constant of the main spool, Amain is the cross-sectional area of the
main spool at the end caps where the pilot control pressure acts, 𝜏pi is the time constant
of the transient response between. Notice that each pilot control valve (pressure reducing
pilot valve) may be controlled electrically by a solenoid or manually by a mechanical
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FIGURE 7.67: Two-stage proportional valve with two pressure reducing valves at the pilot

stage in line with the main spool. Pilot stage output is a proportional pressure to the solenoid

current. The main spool displacement is proportional to the pilot control pressure as a result of

the centering spring. The feedback between the main spool and pilot spools (one on each side

of main spool) has mechanical springs in addition to the hydraulic feedback.

lever (Figure 7.50). In the mechanically actuated pilot valve version, the pressure reducing
pilot valve pair is mounted right under the operator control lever. The output pilot control
pressure line is then routed to the main valve which is likely to be closer to the cylinder.
In the electrically controlled version (EH version), the main valve and the pilot valve
along with solenoid pair can all be located at the same location and control signals from
the operator lever sent to the solenoids electrically. Therefore, the EH version has fewer
transient delays associated with the pilot control pressure transmission.

A variation of the two-stage proportional valve with pressure reducing pilot valve
pair is shown in Figure 7.67. The differences between the two versions (Figure 7.66 and
Figure 7.67) are as follows:

1. The pilot valve pair (pressure reducing valve pair) is in line with the main spool and
there is a mechanical spring feedback between the pilot stage spools (one on each
side of main spool) in addition to the hydraulic pressure feedback.

2. The main spool is actuated by reducing the pilot control pressure on one side as
oppose to increasing it in the previous version. In order to move the main spool to
left, the solenoid on the left side is energized and pilot pressure is dropped to a lower
value proportionally on that side. Hence, the main spool moves to the left until the
centering spring on the left side balances the forces on both sides. When the current
to the solenoid is reduced, the pilot control pressure increases and pushes back the
main spool to neutral position. The operation for shifting the main spool to the right
follows a similar relationship.

3. The centering springs follow the main spool to the pilot side but not into the main
spool body side. As a result, when the main spool shifts to left, it works against only
the centering spool on the left side. When it shifts to right side, it works against only
the centering spool on the right side.
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FIGURE 7.68: Double nozzle flapper type two-stage servo valve – the most popular two-stage

servo valve type. Courtesy Moog Inc.

The double nozzle flapper design is the most common two-stage servo valve used
in high performance applications. This is the most accurate, but expensive, type of servo
valve. Stage 1 is the torque motor plus the double nozzle flapper mechanism, stage 2 is the
main valve spool. Figure 7.68 shows the cross-sectional picture and operating principle of a
two-stage double nozzle flapper type valve. A torque motor is a limited rotation permanent
magnet electric motor with a coil winding. The direction of the current in the winding
determines the direction of the torque generated. The permanent magnet strength and air
gap between the armature and the winding determines the current to torque gain. Hence,
the current magnitude determines the torque magnitude. The armature and flexure tube are
mounted around a low friction pivot point about which they rotate as the motor generates
torque. When current is applied to the torque motor winding, the permanent magnet armature
rotates in the direction based on the current direction, and by an amount proportional to
the current magnitude. The flexure sleeve allows the armature–flapper assembly to tilt.
As a result, the nozzle at the tip of the flapper is changed and hence a different pressure
differential is created between the two sides. The pressure on the side of the nozzle where
the flapper is closer gets larger. This pressure differential moves the main spool and along
with it the feedback spring until the pressure is balanced on both sides of the flapper at the
double nozzle point. At this time, the main spool is positioned in proportion to the input
current. The input current is translated proportionally into the main spool displacement.
Notice that due to the small nozzles at the double nozzle and flapper interface, the filtration
of the fluid at the pilot stage is very important in order to avoid contamination related
failures of the valve operation at the pilot stage.

The jet pipe valve design is very similar to the double nozzle flapper design, except
that the pilot stage amplification mechanism is different (Figure 7.69). Stage 1 is the torque
motor plus the jet pipe nozzle and two receiver nozzles. Stage 2 is the main spool. The pilot
pressure is fed through the jet pipe nozzle which directs a very fine stream of fluid to two
receivers. When the current in the torque motor is zero (null position), the jet pipe directs
this very fine stream of “jet” flow equally to both receivers and there is a balance between
the two control ports holding the main spool in null position. When the current is applied,
the torque motor deflects the armature and the jet pipe proportionally. As a result, the jet
pipe directs different amounts of fluid stream to two receivers, and hence creates a pressure
differential in the control ports (two sides of the main spool). This pressure differential
moves the main spool until the pressure differentials in the control ports are stabilized. The
feedback from the main spool movement to the jet pipe is provided either mechanically by
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spool position, (b) electrical sensor feedback of main stage spool position, (c) enlarged view of

the jet pipe and receiver nozzles. In steady-state, the current of the torque motor is proportional

to the main spool displacement. Courtesy Moog Inc.

a flexure spring between the nozzle and the main spool position or electrically by a spool
position sensor (typically an LVDT) and a closed loop spool position control algorithm
used to determine the torque motor current (Figure 7.69).

In general, the jet pipe design has lower bandwidth, requires lower manufacturing
tolerances, and is able to tolerate more contamination compared with the double nozzle
flapper servo valve. The jet pipe pilot stage can support a larger pilot force than the double-
nozzle flapper valves, and hence tend to be used in large valves more often. In high flow
rate applications (i.e., 1500 l/min), a double nozzle flapper or jet pipe valve is used as a
pilot stage of a three-stage servo valve. In modern three-stage proportional or servo valves,
the position loop on the main spool (third stage) is generally closed using an electrical
position sensor. Notice that in both types of servo valves, the pressure for the hydraulic
amplification stage can be provided either from a separate pilot pressure supply source
or can be derived from the main supply line pressure using a pressure reducing valve or
orifice. Filtration of the fluid, especially in the hydraulic amplifier stage (pilot stage), is
very important since the nozzle and receivers have very small diameter dimensions and are
prone to contamination. Flow orifices in the main stage spool are rather large and less prone
to contamination. Therefore, filtration of the fluid is most important for the pilot stage.

Single-stage servo direct drive valves (DDV) currently support up to about
150 l∕min (lpm) flow rate (i.e., Moog D633 through D636 series). Two-stage jet pipe
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servo valves support flow rates up to about 550 lpm at 70 bar pressure drop across the valve
(i.e., Moog D661 through D664 series). A three-stage valve where the first two stage is
either a double nozzle flapper or jet pipe type servo valve can support up to 1500 lpm flow
rate (i.e., Moog D665 and D792 series).

Cartridge valves are designed to be assembled on a manifold. A manifold can be made
of a single cartridge valve (single function manifold) or multiple valves (multi function
manifold) which is generally the case. A manifold block may typically hold multiple
cartridges and other types of valves (Figure 7.70, and Figure 7.71). Cavity sizes (diameter,
depth, tread) on the manifolds are standardized so that cartridge valves from different
manufacturers can be used interchangeably.

Cartridge valves can be categorized in terms of different criteria as follows:

1. Mechanical connection to the manifold:
(a) Screw-in type which is installed by screwing valve threads into manifold cavity

threads.
(b) Slip-in type which is installed in the manifold by a bolted cover to the manifold.

Screw-in type cartridge valves support flow rates up to about 150 lpm, and slip-in
types support flow rates above 150 lpm. The slip-in type has the advantage over
the screw-in type in that it does not squeeze the ports and hence achieves better
repeatability in the assembly. There are seven standard slip-in cartridge valve
sizes (specified by ISO 7368 and DIN 24342) where the nominal valve port
diameter is 16, 25, 32, 40, 50, 63, and 100 mm, supporting flow rates in the range
of 200–7000 lpm at about 5 bar pressure drop across the valve.

2. Metering component:
(a) Spool type: the flow metering element can be a spool similar to a standard spool

valve-body assembly. Spool type cartridge valves can be two-way, three-way,
four-way or more.

(b) Poppet type: the flow is controlled by a poppet and its seat. Poppet type car-
tridge valves are typically two-way valves. Cartridge valves use O-rings on the
stationary component of the valve body in order to seal the valve ports from each
other and minimize leakage. O-rings also help increase the damping effect on
the valve, but add hysteresis to the valve input current–flow characteristics.

http://www.hydraforce.com
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FIGURE 7.71: (a) Manifold block for valve mounting and internal piping: examples of manifold

blocks, and a manifold block with valves mounted on it. (b) Sandwich style mounting blocks:

typically used to integrate a directional or proportional valve function with additional functions

such as relief valve, check valve, and pressure reducing valve functions. Reproduced with

permission from Parker Hannifin.

3. Valve actuation methods:
(a) Directly actuated by a solenoid with ON/OFF or proportional control.
(b) Two-stage actuation with the pilot pressure in the final actuation stage being

proportional to the first stage command signal. The command signal may be
generated by manual controls or solenoid.

(c) Three-stage actuation for very large flow rate applications.

In general, a manifold base plus a set of cartridge valves results in integrated hydraulic
valve systems with low leakage and reliable operation. Cartridge valves can perform the
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directional flow and pressure control valve functions (i.e., proportional flow metering,
pressure relief, check valve, unloading valve).

Cartridge valves for small flow rates can be directly actuated by a solenoid. Cartridge
valves for large flow rates typically use a two-stage actuation mechanism which includes a
first-stage electrical actuator and a second-stage pilot amplifier. For instance, let us consider
a proportional spool type cartridge valve (Figure 7.70). The valve has three ports: inlet port
(main input pressure, i.e., pump supply), tank port, and output port. The output port pressure
is regulated to be somewhere between the inlet and tank port pressures. It is essentially a
pressure reducing valve. The outlet pressure is regulated to a value between the two limit
pressures (inlet and tank pressures) by the pilot stage presssure. The pilot stage supply
pressure is obtained by a pressure reducing valve section from the main inlet pressure. The
actual pilot pressure in the pilot control chamber is regulated by the poppet ball which
is controlled by the solenoid. Therefore, the solenoid current regulates a pilot chamber
pressure proportional to it which in turn positions the main stage spool proportional to the
pilot pressure with the balancing force from the spring. The output pressure is proportional
to the main spool position, hence to the solenoid current.

For very large cartridge valves, the valve actuator may take the form of a double
nozzle flapper or jet pipe valve as the pilot stage. Such a valve can support very high flow
rates (i.e., up to 9600 lpm by the Moog DSHR series). However, the addition of a pilot stage
servo valve along with poppet position feedback makes the cost of the valve significantly
higher than the cost of proportional spool-type valves. Screw-in cartridge valves provide
check, relief, flow, pressure, and direction control functionalities for two, three, four or
more port configurations.

The recent design of the direct drive valve concept uses electrical actuators with
higher power density to directly shift the main spool of a two-stage valve. The valve then
becomes a single stage with the flow capacity of a two-stage valve. The electrical actuator
is either a rotary motor (hybrid permanent magnet stepper motor or bushless DC motor
coupled with a rotary to linear motion conversion mechanism, i.e., helical cam, ball-screw),
or a direct drive linear electric motor (i.e., linear force motor, linear brushless DC, linear
stepper motor). The main benefit of the direct drive valve is that it eliminates the pilot
pressure stage between the electrical actuator (solenoid in current designs) and the main
spool motion. Due to power density and cost, current applications are still limited to valves
with low flow rates. As the power density of electric actuators (permanent magnets and
power amplifiers) gets larger and costs gets lower, the application of direct drive valve
technology is likely to increase in the coming years.

7.5.6 Mounting of Valves in a Hydraulic Circuit

In hydraulic motion systems, a set of valve functions can be machined into a single manifold
block (Figure 7.71). The manifold block, a set of cartridge valves, as well as other non-
cartridge valves provide a very reliable and leakage free design for hydraulic valve groups.
The manifold block provides the hydraulic connections from P and T ports to different
valves internally. The hydraulic plumbing functions between P and T and service ports
(A1, B1, A2, B2, etc.) are machined into the block. For instance, in a multi function circuit,
parallel or series hydraulic connection of valve ports to P and T lines can be machined
into the manifold. For each function, there is a valve (typically a screw-in cartridge valve)
that controls (meters) the hydraulic flow between the ports. Technically, a single P port
and T port is sufficient for the whole manifold block. There are as many A and B ports as
there are the number of valve functions used. Furthermore, the manifold block is machined
to accomodate open-center or closed-center functions by selectively plugging certain flow
orifices on the manifold. Check valves, relief valves, and filter connections can also be built
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into the manifold design. The main advantages of the manifold block approach to multi
valve hydraulic circuits instead of individual valves are

� the manifold block modularizes and simplifies hydraulic plumbing in installation and
maintenance,

� it reduces leakage and can support higher pressure circuits,
� their compact size.

The manifold block port locations and sizes are standardized by ISO-4401 standards (i.e.,
ISO-4401-03, -05, -06, -07, -08, - 10 specify different number of ports, sizes, and locations
for external connections). These are also refered as CETOP-03,… , CETOP-10 standards.
For pressures up to 3000 psi, aluminum manifolds, and for higher pressures (5000 psi)
cast iron manifolds are recommended. In addition to manifold blocks, valves are also made
with stackable standard mounting plates which makes connecting supply and tank lines
between valves easier.

Other mounting methods for hydraulic plumbing are sub-plates, inline bar mani-
folds, mounting plates, valve adaptors, and sandwich style mounting plates . In particular,
sandwich style mounting is typically used to integrate a directional or proportional valve
and a number of relief, check, and pressure reducing functions in one stack. Sandwich type
mounting plates also have DIN, ISO, and NFPA standard interface dimensions.

7.5.7 Performance Characteristics of Proportional
and Servo Valves

The spool and orifice geometry around the null position is an important factor in servo
valve performance. The spool may be machined so that at null position it overlaps, zero-
laps, or underlaps the flow orifices. The zero-lapped spool is the ideal spool, but difficult
to accomplish due to tight manufacturing tolerances. The overlapped spool results in a
mechanical deadband between the current and flow relationship. The underlapped spool
provides a large gain around the null position (Figure 7.72).

The deadband helps reduce the leakage in a valve, and hence allows the actuator to
hold position better in open loop control in neutral position. In operator controlled open-
loop speed control applications, where the speed of the actuator is desired to be proportional
to the operator command signal which is proportional to the valve spool displacement, the
deadband is quite often a desirable feature of the valve. Because small changes in the
operator command due to human motion resolution or vibrations in the environment (hence
the small changes of the valve spool position around neutral position) are desired to not
create any motion, so that operator hand vibrations do not create unintended motion. On
the other hand, in closed loop position or force or velocity control applications, the valve
deadband acts as a nonlinearity and delay in the system response. This limits the closed loop
control system bandwidth. The gain of the valve (flow rate divided by the spool displacement
under a constant pressure drop condition across the valve) about null-position is zero if
there is a finite deadband, that is 5 or 10% of total valve spool travel. Likewise, the gain
of under-lapped spools is higher than those of zero-lapped or over-lapped spools. Hence,
the closed loop system stability and dynamic performance of an electrohydraulic motion
control system will be different for valves with different null-position characteristics. In a
closed loop control system, having a different null-position gain for a valve is equivalent to
having a different loop gain in the root locus analysis of the closed loop system. Different
gains will result in different stability margins and closed loop pole locations.

Figure 7.73 shows various valve spool position-orifice area characteristics. The spool
position versus the orifice area opening is directly determined by the way the valve is
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designed and machined. It is a mechanical geometric property of the valve. Let us assume
that the spool actuation mechanism (i.e., solenoid or solenoid motion amplified by a pilot
stage) generates a spool displacement proportional to the control (current) signal to the
solenoid and that the pressure drop across the valve is constant. Then, the current signal to
flow-rate relationship would have the same shape as the spool position versus the orifice
area opening function. In closed loop precision position and force regulation applications,
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the valve operates mostly in the vicinity of the null-position. However, the valve also
operates in its full range of spool displacement when it is commanded to make a fast, large
displacement or force changing motion. As a result, the valve spool position versus orifice
opening area function of a valve for the full range of spool displacement is important. In ideal
proportional and servo valves, this relationship is linear as shown in Figure 7.73a. Many
open loop applications, especially the ones with an operator in the loop, use valves with
deadband, as shown in Figure 7.73b. Other applications require valve spool geometry with
dual gain, as in Figure 7.73c and d or nonlinear gain, as in Figure 7.73e. It is the application
requirement that dictates the type of valve that should be used. Furthermore, the spool
position versus orifice area opening curve does not have to be symmetric between positive
and negative direction of the spool displacement, as in Figure 7.73f. For instance, injection
molding applications commonly require valves with non-symmetric spool geometry. It is
important to note that the nonlinear relationship in the valve spool geometry (i.e., nonlinear
function of orifice opening as a function of spool displacement, Figure 7.73e) can be inverted
in real-time valve control software so that the command signal to flow rate relationship
can be made linear by effectively using a control gain that is inversely proportional to
the valve spool position-flow rate gain. In other words, we can achieve the steady-state
valve characteristics shown in Figure 7.73a by using a valve shown in Figure 7.73e plus
a real-time control algorithm that adjusts the current signal to the valve in a way that is
inversely proportional to the actual valve gain. The transient response would be a little
different due to the control algorithm and spool motion transient delays. The adjustable
gain in the control algorithm is calculated as the ratio of the desired gain (Figure 7.73a)
divided by the actual valve gain (Figure 7.73e) at the current signal level. This is referred
to as the inverse valve gain compensation in control.

The null-position is defined as the position of the spool where the pressure versus
spool position curve (ΔPL versus xs orΔPL versus i) goes through zero value at the pressure
axis. A null position test is conducted on a valve by fully blocking the ports between P-T
and A-B. The null position of a valve is usually adjusted mechanically under a zero current
condition. The mechanical adjustment of the null position may be provided by an adjustable
screw on the valve which is used to move the spool around the neutral position by a small
amount. This is part of the valve calibration procedure.

Null position performance is highly dependent upon the machining tolerances of the
spool lands, sleeve and valve orifices, pressure, and temperature. Even high accuracy servo
valves exhibit variation in their flow gain as a function of input current (under constant
pressure drop) in the null-position vicinity. Recall that the flow is function of spool position
and pressure,

Q = Q(xspool,ΔPv) (7.239)

The valve characteristics around the null-position are represented by flow gain, pressure
gain, flow-pressure gain (also called the leakage coefficient). The flow gain

Kq = 𝜕Q
𝜕xspool

(7.240)

can vary between 50 to 200% of the nominal gain within the ±2.5% of maximum current
value. The pressure gain of a valve is defined as the rate of change of output pressure as a
function of solenoid current when output ports (A, B) are blocked (Figure 7.74),

Kp =
𝜕PL

𝜕xspool
(7.241)
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The flow-pressure gain is defined as

Kpq =
𝜕QL

𝜕Pspool
=

Kq

Kp
(7.242)

The output pressure under this condition reaches the supply pressure very quickly. For
a under-lapped spool, the output pressure reaches the supply pressure within 1 to 2% of
maximum current. For zero-lapped spools, the same results are achieved within about 3
to 4% of maximum current. The over-lapped spool has similar behavior to that of the
zero-lapped spool after it passes over the deadband region where the pressure gain is zero
(Figures 7.72, 7.74). The pressure gain of a valve around its null-position is very important
in servo position control applications since it strongly affects the stiffness of the positioning
loop against external forces.

It is important to note that the null spool position is affected by the variations in supply
pressure and temperature. The variation in null-position as a function of supply pressure
and temperature is called pressure null shift and temperature null shift, respectively.

At the null-position, if the valve connects the pump port to the tank port and hence
continues to circulate the fluid between pump and tank, even though the load does not
require any, it is called a open-center valve (Figure 7.3). If the valve blocks the flow from
pump to tank at null position, it is called a closed-center valve (Figure 7.62). An actual
closed-center valve still exhibits some open-center characteristics due to leakage. Notice
that an open-center valve can be used with a fixed displacement pump (Figure 7.3). The
control task is simpler, but the system is not energy efficient since it continuously circulates
flow in the system even if the load does not require it. A closed-center valve requires
a variable displacement pump so that when the valve is at null-position, the pump is de-
stroked to stop the flow or provide just enough flow to make up for the leakage (Figure 7.62).
It is energy efficient since it provides pressurized fluid flow on demand and shuts it off
when there is no demand. The control task is a little more complicated since both valve
and pump must be controlled and coordinated to avoid large pressure spikes (i.e., closing
the valve to null-position but keeping the pump running at high displacement will result in
pressure spikes in the system and will most likely blow relief valves). Because of this, some
degree of open-center characteristics is built into the valve, circulating a small percentage
of its rated flow at null-position in order to simplifiy the coordinated control of valve and
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pump and increase system fault tolerance against the control timing errors between valve
and pump.

The output flow, Q, from a valve is a function of orifice area (Avalve) and pressure
differential across the port (ΔPvalve). The orifice area is a function of the spool displacement
(xspool) and the geometric design of the spool–orifice geometry. The spool displacement is
proportional to the solenoid current (isol). Hence,

Q = Q(Avalve,ΔPvalve) (7.243)

where,

Avalve = Avalve(xspool) (7.244)

xspool = Kix ⋅ isol (7.245)

Let us consider a proportional valve, with a flow rating of Qnl at maximum current, imax,
and no-load conditions (all of the supply pressure is dropped across the valve). Then the
flow rate at any pressure drop (ΔPvalve) and solenoid current (isol) can be expressed as
(Figure 7.75 and 7.103a type valve)

Q∕Qnl = (isol∕imax)
√
ΔPvalve∕Ps (7.246)

= (isol∕imax)
√

1 − (ΔPl∕Ps) (7.247)

where the pressure drop across the valve is difference between the pump and tank pressure
(net supply pressure) minus the load pressure (Figure 7.75),

ΔPvalve = Ps − Pt − ΔPl (7.248)

= Ps − Pt− ∣ PA − PB ∣ (7.249)

= (Ps − PA) + (PB − Pt) or (7.250)

= (Ps − PB) + (PA − Pt) (7.251)
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FIGURE 7.75: Test setup for measuring the flow, load pressure, and solenoid current

relationship. In order to measure the flow-current relationship (approximate performance

number to represent this relationship is flow gain, Kp), set the load pressure to a standard

value. A standard way of measuring the flow-current relationship for servo and proportional

valves is: set Ps − PT to a standard value (i.e., 1000 psi for servo valves, 150 psi for proportional

valves), connect port A to port B directly (hydraulic short circuit, ΔPL = 0), hence pressure drop

across the valve ΔPv = Ps − PT − ΔPl = Ps − PT. If Ps − PT cannot be set to a standard desired

value, then connect port A and port B with an adjustable restriction (ΔPl ≠ 0) so that the

pressure drop across the valve is a standard value.
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Let us assume that the supply pressure is constant. When the load pressure is constant, the
flow rate is linearly proportional to the current in the solenoid. Similarly, for a constant
solenoid current (equivalently a constant spool orifice opening), the flow rate is related
to the load pressure with a square root relationship. As the load pressure increases, the
available pressure drop across the valve decreases and hence the flow rate decreases. When
the load pressure is the same as the tank pressure, all of the supply pressure is lost across
the valve and maximum flow rate is achieved, which is called the no-load flow. However,
the flow at the output of the valve has no pressure to exert force or torque to the actuator
(cylinder or rotary hydraulic motor). Therefore, in a good design, part of the supply pressure
is used to support the necessary flow rate across the valve, and part of it is used to provide
a load pressure to generate actuator force/torque,

Ps − Pt = ΔPvalve + ΔPl (7.252)

In practice, a valve flow rating (Qr) is given at a standard pressure drop across the
valve (ΔPr = 1000 psi for servo valves and 150 psi for proportional valves) when the spool
is fully shifted. The flow rate of the valve (Q) for a different pressure drop (ΔPvalve) across
the valve when the spool is fully shifted can be obtained approximately by

Q = Qr ⋅
√
ΔPvalve∕ΔPr (7.253)

For valve measurements, Ps and Pt are set to constant values, and pressure drop is set
to a number of discrete values (Figure 7.75). For each value of the load pressure (ΔPL),
current (i) is varied from zero to maximum value (imax), and flow rate (Q) is measured.
The results are plotted as valve flow rate, load pressure, and current relationship as shown
in Figure 7.76 for a fixed Ps and Pt values. In Figure 7.76, the valve deadband is clearly
observed.

The flow–current–pressure relationship given above neglects the leakage flow in the
valve. Servo and proportional valves used in precise positioning applications generally
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constant pressure drop is more linear compared to those of proportional valves.
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have critically lapped (almost zero-lapped) spools, hence have measurable leakage at zero
spool displacement. When the current is zero and the spool is nominally at null-position,
as the pressure drop across the valve is increased, the leakage flow increases. Taking this
fact into account, the flow–current–differential pressure relationship can be expressed as
(Figure 7.78a, i = 0 curve)

Q∕Qnl = (i∕imax)
√

1 − (ΔPL∕Ps) − Kpq ⋅ (ΔPL∕Ps) (7.254)

where the last term accounts for the leakage when the spool is around the null-position,
Kpq is the leakage coefficient. For different values of constant current, flow versus the
load pressure curves are shown in Figure 7.78a. When the load pressure equals the pump
pressure, the flow rate is the leakage flow at all values of spool displacement. Let us focus
on the flow–current–differential pressure relationship around the two extreme conditions:

1. no-load condition, ΔPL = 0, and

2. blocked-load condition.
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FIGURE 7.78: (a) Valve flow–current–differential pressure drop relationship, (b) no-load

flow-current and blocked load–pressure–current relationship.
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The blocked-load condition data plotted in Figure 7.78b is also conveyed in Figure 7.78a.
The data for the port pressure versus current (Figure 7.78b) is same as the data on Fig-
ure 7.78a for flow rate equal to zero cases (Q = 0) for different values of i and ΔPL. These
are the data points obtained for ΔPl and i along the x-axis intersections. The data for the
no-load flow versus current on Figure 7.78b is obtained from Figure 7.78a for zero values
of load pressure, ΔPL = 0. These are the data points obtained for Q and i along the y-axis
intersection.

The current versus the no-load flow, and the current versus the pressure drop across the
valve when the load is blocked are shown in Figure 7.78b. Notice that the Kq is the no-load
case current-to-flow gain (or flow gain), and Kp is the blocked load case current-to-pressure
gain (or pressure gain). The flow-pressure gain (leakage coefficient) is Kpq = Kq∕Kp.

Some of the non-ideal characteristics of a proportional valve are illustrated in Fig-
ure 7.77. They are

� deadband due to friction between the spool and sleeve, and leakage,
� hysteresis due to the magnetic hysteresis in the electromagnetic circuit of the solenoid

(or torque motor), and
� zero-position current bias due to manufacturing tolerances in the spool and feedback

spring.

In fact, the source of deadband and hysteresis in the valve cannot be exactly separated into
friction and magnetic hysteresis. It is their combined effects that create the deadband and
hysteresis in the valve input–output behavior.

Valve control can be based on regulating flow, pressure, or both. The control variable
of an EH valve is the current. The transient response relation between the control signal
(solenoid current command) and flow rate (or spool displacement) for a valve is character-
ized by small signal step response and frequency response (magnitude and phase between
current command for an EH valve) and output signal (flow rate or spool displacement) as
a function of frequency (Figure 7.79). The frequency response of a valve is also a function
of the magnitude of the input signal as well as the supply pressure. The frequency response
is typically measured under no-load conditions. Notice that the small signal step response
of a servo valve is in the order of a few milliseconds and the bandwidth in the order of a
few hundred Hertz. As the valve flow rating gets larger, the bandwidth of a given valve
type gets smaller. The dynamic bandwidth between the electric actuator (solenoid, torque
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motor, or linear force motor) current and the main spool displacement is determined by
two factors:

1. the bandwidth of the electric actuator,

2. the bandwidth of the pilot amplification stage (in direct drive valves, there is no pilot
stage).

For a given valve, as the pilot stage supply pressure increases, the bandwidth of this stage
also increases slightly.

The pilot stage may be supplied either by an external pilot pump or derived internally
from main line pressure. When the pilot supply is derived internally from the main line, the
flow goes through a pressure reducing valve in order to regulate a constant pilot pressure
supply so that the pilot pressure does not fluctuate with the supply pressure (i.e., if the main
pressure supply is a load sensing pump, as the load varies, the main supply pressure varies).
The pilot supply would vary by a small amount as the supply pressure varies. However, if
the modulating bandwidth of the pressure reducing valve is much higher than the main valve
and the actuator, the transient effect of such variation in the pilot pressure is insignificant.
For instance, when the pilot pressure is derived from a main line pump which is controlled
using load sensing feedback, the lowest stand-by pressure setting of the pump should be
above a certain minimum value to make sure the pilot supply is properly maintained.

Pressure Regulating Servo Valves A servo valve can be locally controlled to
regulate the load pressure. Figures 7.80 and 7.81 show two types of valves controlled
to regulate the load pressure: one is a completely mechanical pressure feedback system
(Figure 7.80), the other includes a sensor and an embedded digital controller (Figure 7.81).
Under a constant solenoid current condition, the main spool is positioned in steady-state
such that

ΔP12 = Kpi ⋅ isol (7.255)

ΔPAB ⋅ Afb = ΔP12 ⋅ A12 (7.256)

Valve spool with
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To actuator
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FIGURE 7.80: Pressure controlled valve with hydro-mechanical means of feedback control

(Series 15 servo valve by Moog Inc). The pressure differential between the output ports A and

B, which is the pressure differential applied to the load, is proportional to the current applied to

the torque motor.
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FIGURE 7.81: Pressure and flow controlled valve with electrical means of control actuation.

where ΔP12 is the pilot pressure differential acting on spool area A12, ΔPAB is the load
pressure differential between the two ports A and B, and Afb is the cross-sectional area of
the spool where the load pressure differential acts. The objective for a pressure control valve
is to provide an output pressure differential that is proportional to the solenoid current, as
achieved by this valve,

ΔPAB =
A12

Afb
⋅ Kpi ⋅ isol (7.257)

In general, the dynamic characteristics of an EH system with a pressure control valve are
highly dependent on the load dynamics.

The digitally controlled version of the valve can easily be modified in software to
implement a flow control plus a programable pressure limit control logic (Figures 7.81,
7.82). Once the spool position and pressure sensors are available, the spool actuation of the
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FIGURE 7.82: Pressure-flow control algorithm block diagram.
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valve can be controlled to achieve either flow or pressure regulation by simply selecting
a different software mode. The trend in valve technology is to implement the mechanical
control mechanisms by mechatronic control components, that is instead of using hydro-
mechanical control mechanisms, use electrical sensors, actuators, and embedded digital
controllers.

7.6 SIZING OF HYDRAULIC MOTION SYSTEM
COMPONENTS

Let us consider the component sizing problem for a one-axis hydraulic motion control
system shown in Figure 7.83. The question of component sizing is to determine the size
of the

1. pump(s),

2. valve(s) which includes main flow control valves, pilot valves, as well as safety
valves,

3. hydraulic motor(s) and/or cylinder(s),

4. the size of the hydraulic tank volume,

5. filtration circuit and filters,

6. hydraulic pipe diameters and their routing (minimizing bends and length),

7. hydraulic oil cooler if needed.

Over-sizing of components results in lower accuracy, lower bandwidth, and higher cost.
Under-sizing of components results in lower than required power capacity.

As a rule of thumb, a servo valve size should be selected such that the pressure drop
at the valve at maximum flow should be about 1∕3 of the supply pressure. In general, such

T

Dm

Pv
=   P  -  P -   s   T

FIGURE 7.83: Component sizing for a one-axis EH motion system: pump, valve, cylinder (or

rotary hydraulic motor) sizing for given load requirements.
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a balanced distribution of supply pressure between valve and load is possible in servo valve
applications. In proportional valve applications, especially in large construction equipment,
the pressure drop across the valve can be much less than 1∕3 of the supply pressure. In
such applications, precision motion control is not critical. It is desirable that more of the
hydraulic power is delivered to the load and less is lost in the process of metering it. If the
valve is sized too large and the pressure drop across it is not large enough, the flow will not
be modulated well until the valve almost closes. As a result, resolution of the motion control
will be low. If the valve is too small, it will not be able to support the desired flow rates or
the pressure drop across it will be too large. The valve is the flow metering component. It is
desirable to have a good resolution in metering the flow. In general, the higher the metering
resolution required, the higher the pressure drop that must exist across the valve. Higher
pressure drops lead to higher losses and lower efficiency. Therefore, metering resolution
and efficiency are two conflicting variables in a hydraulic control system. A good design
targets an acceptable metering resolution with minimal pressure drop.

There are two main variables which determine the component size requirements:
required force and speed. Another way of stating that is required pressure and flow rate.
Based on these two requirements, supply (pump) and actuator (cylinder and motors) are
sized. The valve, which modulates and directs the flow, is sized to handle the flow rate and
pressure required. The control question in hydraulic systems always involves the control of
flow rate and direction, and/or the pressure.

In general, the load speed requirement dictates the flow rate, and the load force/torque
requirement dictates the operating pressure. Consider a cylinder as the hydraulic actuator. A
given load force/torque requirement can be met with different pressure and cylinder cross-
sectional areas. For instance, in order to provide a certain force, many pressure and cylinder
area combinations are possible, F = p ⋅ A. Similarly, a given load speed requirement can
be met with different combinations of flow rate and cylinder cross-sectional areas, Q =
V ⋅ A. The trend in industry is to use higher operating pressures which result in smaller
components. However, high pressure circuits require more frequent maintanence and have
a lower life cycle.

The application requirements typically specify the load conditions in terms of three
variables: the no-load maximum speed (wnl for a rotary actuator or Vnl for a translational
actuator) and speed at rated load (wr at Tr or Vr at Fr). For rotary and linear system the
specifications are, respectively,

{wnl, (wr, Tr)} or {Vnl, (Vr, Fr)} (7.258)

Recall that the relationships between the hydraulic variables and mechanical variables
for the actuator (hydraulic rotary motor or hydraulic linear cylinder) are,

w = Q∕Dm or V = Q∕Ac (7.259)

T = ΔPL ⋅ Dm or F = ΔPL ⋅ Ac (7.260)

where ΔPL is the pressure difference between the two sides of the actuator (two sides of the
cylinder), Dm is the hydraulic motor displacement (volumetric displacement per revolution),
Ac is the cross-sectional area of the cylinder (assuming it is a symmetric cylinder).

When the load force (or torque) is specified, the total force output from the actuator
should include the force to be exerted (Fext) on the external load (i.e., pressing force in
a press or testing application), plus the force needed to accelerate the total moving mass
(cylinder piston, rod, and load inertia, m ⋅ ẍ), and finally some force needed to overcome
friction, (Ff ),

F = FL = m ⋅ ẍ + Ff + Fext (7.261)



JWST499-c07 JWST499-Cetinkunt Printer: Yet to Come October 9, 2014 8:41 254mm×178mm

ELECTROHYDRAULIC MOTION CONTROL SYSTEMS 509

Estimating the friction force, Ff , is rather difficult. One common way to take it into account
is to use a safety factor, SF, as follows,

F = FL = SF ⋅ (m ⋅ ẍ + Fext) (7.262)

where SF is the safety factor (i.e., SF = 1.2). For rotary actuators, analogous relation-
ships hold,

T = TL = SF ⋅ (J ⋅ �̈� + Text) (7.263)

where J is the total mass moment of inertia of rotary load, �̈� is angular acceleration, Text is
the torque to be delivered to the load. The flow–current–pressure differential relation for a
proportional or servo valve which is positioned between the pump supply line and load line,

Q∕Qnl = (i∕imax)
√

1 − (ΔPL∕PS) (7.264)

= (i∕imax)
√

(ΔPv∕PS) (7.265)

where ΔPL is the load pressure (i.e., in the case of a linear cylinder this is the pressure
difference between the two sides of the cylinder, and in the case of a rotary hydraulic motor
this is the inport and outport pressure differential). In other words, ΔPL is the pressure
differential between the A and B ports of the valve. ΔPv = PS − ΔPL − PT is the pressure
drop across the valve, PS is supply pressure from pump, PT tank return line pressure. Quite
often, PT is taken as zero pressure. Qnl is the flow through the valve when it is fully open
(i = imax) and the pressure drop across the valve is PS. When there is no-load, all of the
supply pressure is dropped across the valve. In order to determine the flow rate (Qr) of a
valve at a particular pressure drop (PS − ΔPL) when it is fully open, we set i = imax in the
above equation,

Qr∕Qnl =
√

1 − (ΔPL∕PS) (7.266)

=
√

(ΔPv∕PS) (7.267)

A proportional valve is rated in terms of its flow rate capacity in catalogs for a pressure
drop of ΔPv = 150 psi across the valve. A servo valve is rated for ΔPv = 1000 psi.

Component Sizing Algorithm 1

Step 1: Determine the performance specifications based on load requirements:

{wnl, (wr, Tr)} or {Vnl, (Vr, Fr)}

Step 2: Pick either displacement per unit stroke for the actuator (Dm or Ac) or the supply
pressure, Ps. Let us assume we pick the displacement (Dm or Ac). This selection
specifies the actuator size (hydraulic motor or cylinder).

Step 3: Calculate Qnl, Qr,ΔPL using Equations 7.259 and 7.260 for the specifications.

Qnl = Dm ⋅ wnl Qnl = Ac ⋅ Vnl (7.268)

Qr = Dm ⋅ wr Qr = Ac ⋅ Vr (7.269)

ΔPL = Tr∕Dm ΔPL = Fr∕Ac (7.270)

Step 4: Assume i = imax, calculate the Ps from Equation 7.266. Add 10–20% to the Ps as
a safety factor.

Qr∕Qnl =
√

1 − (ΔPL∕PS) (7.271)

Step 5: Given the calculated value of Qnl, and given the operating input shaft speed of the
pump win which is determined by the mechanical power source device driving the
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pump (i.e., electric motor in industrial applications, internal combustion engine
in mobile applications), calculate the pump displacement requirement, Dp, using
Equation 7.259. Select the proper pump given Qnl, Ps, Dp.

Dp = Qnl∕win (7.272)

Step 6: Given the calculated Qnl, Ps, Qr, calculate the rated flow for the valve, Qv, at
its rated pressure ΔPv for i = imax using Equation 7.266. Notice that rated flow
for a valve is defined at a standard pressure drop across the valve (i.e., typically
ΔPv = 1000 psi for servo valves, ΔPv = 150 psi for proportional valves) and at
the fully shifted spool position (i = imax). Select the proper valve size based on
the calulated Qv and assumed ΔPv.

Qv = Qnl

√
ΔPv∕PS (7.273)

In summary, the load conditions determine the specifications:

� Given {wnl, (wr, Tr)} (for linear actuator {Vnl, (Vr, Fr)}).
� As design choices, pick Dm hydraulic motor displacement (for linear actuator Ac

cylinder cross-sectional area) and pick ΔPv valve pressure rating.
� Then calculate the rest of the sizing parameters: Qnl, Qr,ΔPL, Ps, Dp, Qv, which are

the size requirements for pump, valve, and motor/cylinder using Equations 7.259,
7.260, 7.266.

Component Sizing Algorithm 2

Step 1: Determine the performance specifications based on load requirements:
{wnl, (wr, Tr)} or {Vnl, (Vr, Fr)}

Step 2: Pick either displacement per unit stroke for the actuator (Dm or Ac) or the supply
pressure, Ps. Let us assume we pick pump pressure, Ps.

Step 3: Pick the pressure differential to be delivered to the actuator to drive the load
ΔPL, calculate hydraulic motor displacement (Dm) or cylinder cross-sectional
area (Ac).

Dm = Tr∕ΔPL Ac = Fr∕ΔPL (7.274)

Step 4: Calculate Qnl from Equation 7.259 and Qr at ΔPL, Ps and i = imax from Equation
7.266.

Qnl = Dm ⋅ wnl Qnl = Ac ⋅ Vnl (7.275)

Qr = Qnl

√
1 − (ΔPL∕Ps) (7.276)

Step 5: Given the calculated value of Qnl, and given the operating input shaft speed of
the pump win, calculate the pump displacement requirement, Dp, using Equation
7.259. Select the proper pump given Qnl, Ps, Dp.

Dp = Qnl∕win (7.277)

Step 6: Given the calculated Qnl, Ps, Qr, calculate the rated flow for the valve, Qv, at its
rated pressure ΔPv. Select the proper valve size based on the calulated Qv and
assumed ΔPv.

Qv = Qnl

√
ΔPv∕Ps (7.278)
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In summary, the load conditions determine the three specifications:

� Given {wnl, (wr, Tr)} (for linear actuator {Vnl, (Vr, Fr)}).
� As design choices, pick Ps hydraulic pump rated pressure output and pick ΔPL load

pressure differential.
� Then calculate the rest of the sizing parameters: Dm, Dp, Qnl, Qr,ΔPL, Qv, which are

the size requirements for pump, valve and motor/cylinder.

Notice that the pump and motor displacement and pressure ratings are available in
standard sizes, such as

Dp, Dm = 1.0, 2.5, 5.0, 7.5 in3∕rev (7.279)

Ps = 3000–5000 psi (7.280)

Similarly, the valves are available at standard rated flow capacity (measured at ΔPv =
1000 psi and at maximum current i = imax for servo valves) such as

Qv = 1.0, 2.5, 5.0, 10 gpm. (7.281)

Based on the calculated sizes and safety margins, one of the closest sizes for each component
should be selected with appropriate safety margin.

Example Consider a single axis EH motion control system as shown in Figure 7.85,
which may be used for a hydraulic press. The system will be controlled in one of two
possible modes:

� Mode 1: closed loop speed control where the commanded speed is obtained from
a programmed command generator or from the displacement of the joystick. The
cylinder speed is measured and a closed loop control algorithm is implemented in the
electronic control unit (ECU) which controls the valve.

� Mode 2: closed loop force control where the force command is obtained from a pro-
grammed command generator or from the displacement of the joystick. The cylinder
force is measured using a pair of pressure sensors on both ends of the cylinder.

In order for the operator to tell the ECU which mode to operate (speed or force)
and from where to obtain the command signals, there should be two two-position discrete
switches. Switch 1 OFF position means speed control mode, and ON position means
force control mode. Switch 2 OFF position means the source of the command signal is
programmed into the ECU, ON position means the joystick provides the command signal
(Figure 7.84).

Select the proper components (components with appropriate technology such as
variable displacement or fixed displacement pumps, ON/OFF or proportional or servo
valves), and the proper size (calculate component size requirements) for pump, valve, and
cylinder in order to meet the following specifications:

1. Maximum speed of the cylinder under no load conditions is Vnl = 2.0 m∕s.

2. Provide an effective output force of Fr = 10 000 Nt at the cylinder rod while moving
at the speed of Vr = 1.5 m∕s.

3. The desired regulation accuracy of the speed control loop is 0.01% of maximum
speed.

4. The desired regulation accuracy of the force control loop is 0.1% of maximum force.
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FIGURE 7.84: Control system components and circuit diagram for a single axis EH control

system which operates in two modes using closed loop control: (i) speed mode, (ii) force mode.

In addition, select an operator input device (joystick for motion command) with
the proper sensor, electronic control unit (ECU) with the necessary analog–digital signal
interfaces, position and force sensors on the cylinder for closed loop control (Figure 7.85).

The range and resolution requirements for the measured variables determine the
sensor and ECU interface requirements (DAC and ADC components). Let us assume that
the maximum speed will be mapped to a maximum analog sensor feedback signal (i.e.,
10 VDC), and the required accuracy is 0.01% of the maximum value which is 1 part in
10 000. In general, the measurement resolution should be at least 2 to 3 times better than
the required regulation (control) accuracy. Therefore, we need a speed sensor with a data
acquisition component that will have 1 part in 30 000 resolution. Let us assume that we
have selected a magnetostrictive position sensor (also called temposonic sensor) from which
speed information is digitally calculated. The output of the sensor can be scaled so that it
gives 10 VDC when the speed is at 2.0 m∕s. The sensor nonlinearity should be better than
0.01% of the maximum range. In addition, the analog to digital converter (ADC) must be at
least 16-bit resolution in order to give a sampling resolution of better than 1∕30 000 parts
over the whole range (Figure 7.85).
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FIGURE 7.85: Components and block diagram of a single axis electrohydraulic motion control

system. The controller is a programmable embedded computer.
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The command signal (either in speed or force control mode) is obtained either
from a real-time program or joystick. The real-time program can command motion to any
accuracy desired, for example 1 part in 10 000 depending on the data type used in the control
algorithm. If two-byte signed integers are used and scaled to cover the whole range, the
commanded signal resolution can be 1 part in (215 − 1). If four-byte signed long integers
are used in the servo control algorithm and numbers are scaled to cover the whole motion
range, the commanded signal resolution can be 1 part in (231 − 1).

If the command signal is obtained from the joystick sensor, it is important to note that
a human operator cannot command motion without shaking his/her hand better than 1% of
the maximum displacement range of the joystick. Therefore, the resolution requirements
of the joystick command are much smaller. Even if we provided a high resolution sensor
and ADC, the human operator cannot actually change the command in finer resolutions
than about 1 part in 100. Therefore, an 8-bit ADC converter with an analog speed sensor
that can provide 10 VDC with an accuracy of 1% is sufficient. If an incremental encoder is
used for the sensor, an encoder with 512 lines∕rev also would have the sufficient range and
resolution for the command signal.

The ECU should have resources in the following areas:

1. Speed of the CPU (microprocessor or DSP chip) in order to implement the control
logic fast enough. Generally, this is not a problem with the current state of art.

2. Memory resources to store control code and sensory data for control purposes as well
as for off-line analysis purposes (ROM or battery-backed RAM for program storage,
RAM for real-time data storage and program execution).

3. I/O interface circuit: analog to digital converter (ADC), digital to analog converter
(DAC), interface for discrete I/O (DIO), encoder interface, PWM signal input, and
output interface. Notice that the ECU does not have to have all of these types of
I/O interface, only the types required by the the selected sensor inputs and amplifier
outputs.

4. Interrupt lines and interrupt handling software. Interrupts are key to the operation of
most real-time systems, even though this application may be solved without use of
interrupts.

In general, the higher the resolution (number of bits) of the ADC and DAC converter circuit,
the better it is. If the programming is to be done for the servo loop by the designer, then it is
preferable to have the ECU based on a microprocessor or DSP which has a C-compiler so
that we can use a high level programming language to implement the servo control loops
and use integer, long integer, or floating point data types. If we have to program the ECU
in assembly language, then we have to manage the data and its size explicitly. In general,
the speed, memory, and signal interface resources of the ECU are not limiting factors in
the design.

Let us assume that the valve rating is specified for ΔPv = 1000 psi (6.8948 MPa =
6.8948 × 106 Pa = 6.8948 × 106 Nt∕m2 pressure drop), and that the input shaft speed at the
pump is win = 1000 rpm. Following the component sizing algorithm, let us pick a cylinder
diameter size, dc = 0.05 m, which determines the cross-sectional area, Ac. Using Equations
7.259–7.260, calculate the Qnl, Qr, and ΔPL,

Ac = 𝜋d2
c∕4 = 0.0019635 m2 ≈ 0.002 m2 (7.282)

Qnl = Vnl ⋅ Ac = 240 l∕min (7.283)

Qr = Vr ⋅ Ac = 180 l∕min (7.284)

ΔPL = Fr∕Ac = 5 × 106 Nt∕m2 = 5 MPa (7.285)
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Assume i = imax, and using Equation 7.266, calculate Ps and add 10% safety margin
to it. Then calculate the necessary servo valve flow rating,

Qr∕Qnl =
√

1 − (ΔPL∕Ps) (7.286)

ΔPL∕Ps = 1 − (Q2
r ∕Q2

nl) = (Q2
nl − Q2

r )∕Q2
nl (7.287)

Ps =
Q2

nl

Q2
nl − Q2

r

⋅ ΔPL (7.288)

= 11.42 MPa = 1658 psi (7.289)

Qv = Qnl

√
ΔPv

Ps
(7.290)

= 240 ⋅
√

1000∕1658 l∕min (7.291)

= 186 l∕min (7.292)

where we assumed a pressure drop of 1000 psi across the valve for its flow rating. Since
we know the maximum flow rate needed and the input speed to the pump, we can calculate
the pump displacement, Dp, from Equation 7.259,

Dp = 0.140 l∕rev (7.293)

In summary, the following component sizes are required: cylinder with bore diameter dc =
0.05 m (bore cross-sectional area Ac = 0.002 m2), valve with flow rating of Qv = 200 l∕min
or higher at 1000 psi pressure drop, and pump with displacement Dp = 0.140 l∕rev and
output pressure capacity of Ps = 2000 psi or higher value.

Finally, an amplifier with proper power supply is needed to drive the valve. An
amplifier type which has a current feedback loop is preferred so that the current sent to the
solenoid is maintained proportional to the signal from the ECU regardless of the variations
in the power supply or solenoid resistance as a function of temperature. A commercial
amplifier has tunable parameters to adjust the input voltage offset, gain, and maximum
output current values (i.e., Parker BD98A or EW554 series amplifiers for servo valves
plus a ±15 VDC power supply, such as Model PS15, which provides a DC bus voltage of
±15 VDC up to 1.5 Amp to the amplifier using a regular 85–132 VAC single phase line
power). Similarly, if a variable displacement pump is used and the valve that controls the
pump displacement is EH controlled, we would need an another amplifier-power supply
matched to the size of the pump control valve. Notice that if the EH motion axis was to
be controlled only through the joystick inputs, and no programming was necessary, the
closed loop control algorithm can be implemented with analog OP-AMP circuits in the
amplifier and the need for the ECU can be eliminated. The drive can have a PID circuit
where the command signal from the joystick sensor and the feedback signal from the
cylinder motion connects to the the input of the OP-AMP circuit (Figure 7.86). The error
signal output of the OP-AMP is amplified as a current signal to the solenoids. However, the
software programmability of the motion system is not possible in this case. One such drive
is the Parker Series EZ595 used together with a Series BD98A amplifier, where the EZ595
implements the PID function and interfaces and BD98A implements the voltage to current
amplification function.

List of components selected for this design:

1. Pump and Reservoir: Oil Gear model PVWH-60 axial piston pump, with a pressure
rating of 2000 psi, and flow rate of 60 gpm when driven by an electric motor (i.e., AC
induction motor) at 1800 rpm. The reservoir should handle 150 gallons (3 to 5 times
the rated flow capacity per minute of the pump) of hydraulic fluid, fitted with filters
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FIGURE 7.86: Components and block diagram of a single axis electrohydraulic motion control

system. The controller is an analog op-amp which implements a closed loop PID control

between the operator command, sensor signal, and valve-drive command.

in both return line and pump input line from the reservoir, as well as a cooler and
pressure relief valve.

2. Cylinder: Parker industrial cylinder (“Series 2H”) with 2.0 in bore, 40 in stroke, with
threaded rod end for load connection, with base lugs mounting options at both ends,

3. Valve: MOOG servo valve model D791, rated flow upto 65 gpm at 1000 psi pressure
drop across the valve when the valve is fully open, equivalent first-order filter time
constant is about 3.0 ms.

4. Valve Drive (Power Supply and Amplifier): MOOG power supply and amplifier circuit
matched to the servo valve: MOOG model “snap track” servo valve drives.

5. Sensors: Position sensor: linear incremental encoder. DYNAPAR series LR linear
scale, range 1.0 m, 5.0 μ (0.0002 in) linear resolution, maximum speed 20 m∕s, fre-
quency response 1 MHz, quadrature output channels A, B, C, Ā, B̄, C̄.

Pressure sensor: differential pressure sensor, Schaevitz series P2100, up to
5000 psi line pressure, and up to 3500 psi differential pressure, bandwidth in the
15 KHz range. Pressure sensors can be placed on the valve manifold.

6. Controller: PC based data aquisition card (National Instruments: NI-6111) with I/O
interface capabilities for encoder interface, two channels of 16-bit DAC output, two
channels of 12-bit ADC converter, 8 channels of TTL I/O lines. The control logic can
be implemented on the PC and the data aquisition card is used for the I/O interface.

7. Operator Input–Output Devices: Joystick and Mode Selection Switches (Switch 1
and 2). One degree of freedom joystick with a potentiometer position sensor and
analog voltage output in the 0 to 10 VDC range – Penny and Giles model JC 150 or
ITT Industries model AJ3.

Example As an extension of the previous example, let us assume that we have selected
two sensors for the hydraulic cylinder (Figure 7.87):

1. a position sensor (i.e., an absolute encoder or an incremental encoder plus two
discrete proximity sensor to indicate mechanical travel limits and establish an absolute
reference position: ENC1, PRX1, PRX2), and

2. a pair of pressure sensors which measure the pressure at both ends of the cylinder
(P1, P2).

It is desired that the actuator is to operate in programmed mode and ignore the
joystick input. The objective is that the actuator is to approach the load at a predefined
speed until a certain amount of pressure differential is sensed between P1 and P2 signals.
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FIGURE 7.87: Control system components and circuit diagram for a single axis EH control

system which operates in two modes using closed loop control: 1. speed mode, 2. force mode.

The position range of the actuator around which that is expected is known. When a certain
pressure differential is sensed, the control system is supposed to automatically switch to
force (pressure) regulation mode, maintain the desired pressure until a certain amount of
time is passed or another discrete ON/OFF state sensor input is high. Let us assume that
we will use the time period option to decide how long to apply the pressure. Then reverse
the motion, and return to the original position under a programmed speed profile. Such EH
motion control systems are used in mechanical testing of products, injection molding, nip
roll positioning, and press applications.

(i) Modify the design of the EH system used in the previous example.

(ii) Draw a block diagram of the control logic and closed loop servo algorithms for both
position and force servo modes. Suggest ways to make a “bumpless transfer” between
the two modes.

There are two closed loop control modes: 1. position servo mode where the actual
position is sensed using an encoder (ENC, PRX1, PRX2) and the desired position is
programmed, 2. force servo mode where the force information is derived from the measured
differential pressure (P1 and P2). The desired force profile (constant or time varying) is pre-
programmed and its magnitude can be changed for each product. Therefore, we need two
servo control algorithms (i.e., of PID type). Each loop has its commanded signal (desired
position or desired force) and feedback signal (encoder signal or differential pressure sensor
signal). At the power-up, the cylinder makes a home search motion sequence in order to
find an absolute reference position (also called home position) so that every cycle is started
from the same position. Using an absolute encoder, the controller can read the current
position at power-up, and command the axis to move to the desired position for the home
reference (using the position servo loop). If an incremental encoder is used, then an external
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FIGURE 7.88: Real-time control algorithm for the EH control system using both position and

force feedback and implement a “bumpless mode transfer.”

ON/OFF sensor (i.e., proximity or photoelectric sensor) can be used to establish the absolute
reference.

Once the starting position is accurately established after power-up (home motion
sequence is completed), the system is to operate in position servo mode, followed by a
force servo mode and then followed by position servo mode again to return to the starting
position. Therefore, all that is needed is the logic to decide when to switch between the two
modes (Figure 7.88).

Let us assume that we have the parameters for motion, and the I/O registers mapped
to variables as follows,

Given: Programmable motion parameters

vd−fwd desired forward motion speed

ad−fwd desired forward motion acceleration

vd−rev desired reverse motion speed

ad−rev desired reverse motion acceleration

xmin minimum value of cylinder position where pressure is expected to rise

xmax maximum value of cylinder position where pressure is expected to rise

tpress time period for which to apply pressure.

I/O signal registers:

Enc accumulated encoder counts since the end of home cycle

P1 pressure sensor signal 1

P2 pressure sensor signal 2

Prx1 ON/OFF sensor used to establish home reference

Prx2 ON/OFF sensor used to establish end of force cycle

DAC digital to analog converter register.
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Below is a pseudo-code for the control algorithm,

Home_Motion_Sequence() ;
while(true)
{

1. Wait until cycle start command is received, or
trigger signal is ON or a pre-defined time
period expires,

2. Enable position servo mode and move forward
with desired motion profile,

3. Monitor pressure differential and switch mode
if it reaches above a certain value when
cylinder position is within the defined limits,

4. Operate in force servo mode until the pre-defined time
period expired,

5. Then swicth to position servo mode and command
reverse motion to home position.

}

void function PID_Position(x_d, v_d)
{

static float K_p = 1.0, K_d = 0.0, K_i=0.01 ;
static float u_i = 0.0 ;
static Scale = 1.0 ;

u_i = u_i + K_i * (x_d - Scale * ENC) ;
DAC = K_p * (x_d - Scale * ENC) + u_i ;

return ;
}

void function PID_Force(F_d)
{

static float K_pf = 1.0, K_df = 0.0, K_if=0.01 ;
static float u_if = 0.0 ;
static float A1= 0.025, A2=0.0125 ;

u_if = u_if + K_if * (F_d - (P1*A1-P2*A2)) ;
DAC = K_pf * (F_d - (P1*A1-P2*A2)) + u_if ;

return ;
}

7.7 HYDRAULIC MOTION AXIS NATURAL FREQUENCY AND
BANDWIDTH LIMIT

As a general “rule of thumb,” a control system should aim to limit the bandwidth of the
closed loop system (wbw) to less than 1∕3 of the natural frequency (wn) of the open loop
system,

wbw <
1
3

wn (7.294)

Otherwise, too large closed loop control gains will result in closed loop instability or a
very lightly damped oscillatory response, therefore, it is important to estimate the open
loop natural frequency of a given EH motion axis. The most significant factors affecting
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the natural frequency of an EH axis are the compressibility of the fluid (its spring effect)
and the inertial load on the axis. The fluid spring effect is modeled by its bulk modulus and
fluid volume. The lowest natural frequency is approximated as

wn =
√

K∕M (7.295)

where M is the total inertia moved by the axis. For varying load conditions, the worst case
inertia should be considered. The spring coefficient, K, of the axis is approximated by

K = 𝛽

(
A2

he

Vhe
+

A2
re

Vre

)
(7.296)

where, A and V represents cross-sectional area and volume, he and re subscripts refer to the
head-end and rod-end of the cylinder, respectively. The fluid bulk modulus, 𝛽 is defined as

𝛽 = −ΔP
ΔV∕V

(7.297)

The typical range of values for 𝛽 is 2 to 3 ⋅ 105 psi.
It is important to note that entrapped air in hydraulic fluid reduces the effective

bulk modulus very significantly, whereas dissolved air has very little effect. Furthermore,
bulk modulus is a function of the temperature, and generally reduces with increasing
temperature. For mineral oil type hydraulic fluid, bulk modulus is about 30 × 104 psi at
50 ◦F, and reduces to about 15 × 104 psi at about 200 ◦F temperature [14].

The Vhe and Vre are functions of cylinder position, hence the effective stiffness is
a function of the cylinder position. The natural frequency of the axis varies as a function
of the cylinder stroke. The minimum value of the natural frequency is around the middle
position of the cylinder stroke. Unless advanced control algorithms are used, closed loop
control system gains should be adjusted so that the closed loop system bandwidth stays
below 1∕3 of this open loop natural frequency. In general the natural frequency of the valve
is much larger than the cylinder and load hydraulic natural frequency. Therefore, the valve
natural frequency is not the limiting factor in closed loop performance of most applications.

When the open loop system and load dynamics has low damping, the closed loop
system bandwidth using position feedback is severly limited due to the low damping ratio,
that is to much lower values than the 1∕3 wn, where wn is the open loop system natural
frequency. Therefore, it is necessary to add damping into the closed loop system in order
to achieve higher closed loop bandwidth. This can be achieved in two ways:

1. By-pass the leakage orifice at the valve between two sides of the actuator. This,
however, has two drawbacks: 1. it wastes energy, 2. the static stiffness of the closed
loop system against load disturbance is reduced.

2. Velocity and/or pressure feedback in the valve control.

The standard pressure compensated flow control valve increases the effective damping in
the closed loop system by modifying the pressure-flow characteristics of the valve. The fact
that the valve affects flow as a function of pressure, that is a constant times the pressure,
it indirectly affects the velocity since flow rate and actuator velocity are closely related.
Hence, the feedback in the form of velocity or pressure adds damping. However, the cost is
the reduced static stiffness of the closed loop system. The pressure feedback alone makes the
pressure-flow (PQ) characteristics of the valve linear, which has the effect of increasing the
damping.
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Example Let us consider an electrohydraulic (EH) motion axis with the following
parameters for the cylinder and load.

Ahe = 2.0 in2 (7.298)

Are = 1.0 in2 (7.299)

L = 20 in (7.300)

W = 1000 lb (7.301)

Let us consider the natural frequency at the mid-stroke point,

Vhe = Ahe ⋅ L∕2 = 20 in3 (7.302)

and

Vre = Are ⋅ L∕2 = 10 in3 (7.303)

Let us approximate the bulk modulus of hydraulic fluid to be 2.5 × 105 psi. The weight of
the rod and load W = 1000 lb, hence the mass, M = W∕g = 1000 lb∕386 in∕s2. The open
loop natural frequency of the EH axis when the cylinder is at mid-stroke point is

wn =
√

K∕M (7.304)

M = 1000
386

lb∕(in∕s2) = 2.59 lb∕(in∕s2) (7.305)

K = 2.5 ⋅ 105 ⋅
(

22

20
+ 12

10

)
lb∕in2 (in2)2∕in3 (7.306)

= 7.5 ⋅ 104 lb∕in (7.307)

Then,

wn =
√

K∕M (7.308)

=
√

7.5 ⋅ 104∕2.59 (lb∕in)∕(lb − s2∕in) (7.309)

= 170 rad∕s (7.310)

= 27 Hz (7.311)

Therefore, a closed loop controller should not attempt to reach a bandwidth higher than

wbm < (1∕3 ⋅ wn) = 9.0 Hz (7.312)

This particular EH motion axis cannot accurately follow cyclic small motion commands
with a frequency higher than 9.0 Hz.

7.8 LINEAR DYNAMIC MODEL OF A ONE-AXIS HYDRAULIC
MOTION SYSTEM

Linear dynamic models assume that the hydraulic system operates about a nominal oper-
ating condition, that is the valve is operating about the null position with small movements
(Figure 7.64). Figure 7.80 shows a block diagram of a closed loop electrohydraulic (EH)
control system. Figures 7.81, 7.89, and 7.90 shows a closed loop position control (position
servo control) version of the system. Figure 7.82 shows a closed loop force control (force
servo loop) version of the system. Figure 7.91 shows a one-axis EH motion system where
the load pressure is regulated by the control element instead of the load position.
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FIGURE 7.89: Block diagram of a closed loop controlled one-axis electrohydraulic motion

system.

The following simplifying assumptions are made for the linear dynamics model of
the hydraulic system.

1. The valve dynamics and its nonlinear flow rate–current–pressure relationship is
approximated with a linearized flow rate–current relationship (Kq). Notice that this
assumption is accurate only to the extent that the orifice area versus spool displace-
ment geometry of the valve is linear and that the pressure drop across the valve is
constant.

2. The pump pressure is assumed to provide a constant pressure drop across the valve,
to justify the above approximation ((ps − pl) is constant).
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FIGURE 7.90: (a) Components, and (b) linear block diagram model of a postion servo

controlled one axis electro-hydraulic motion system.
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FIGURE 7.91: (a) Components, and (b) linear block diagram model of a force (load pressure)

servo controlled one-axis electrohydraulic motion system.

3. Leakage flow rate in the valve is also modeled as a linear relationship between load
pressure and leakage flow rate (Kpq).

4. Fluid compressibility is neglected.

5. The load inertia and cylinder inertia are neglected.

6. Compliance of the actuator to base mounting, and compliance of the actuator to
load connection are neglected for closed position controlled hydraulic system model
(Ks ⟶ ∞, Ka ⟶ ∞). In a closed loop force control system, the combined effect
of all the compliances (Ks, Ka, Kl) are taken into account with the Kt term.

In the linear block diagram models, the symbols have the following physical meaning:

Ksa is the amplifier command voltage to current gain,

Kq is the valve solenoid current to flow rate gain,

Kp is the pressure gain,

Kpq is the leakage gain,

Ac is the cylinder cross-sectional area (assumed to be equal areas on both sides),

Kfx is the position sensor gain,

Kfp is the pressure sensor gain,

Qc is the compliance flow.
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7.8.1 Position Controlled Electrohydraulic Motion Axes

The controlled output, position (x), is determined by the commanded position (xcmd) signal
and load force (Fd). Using basic block diagram algebra, the transfer function from xcmd and
Fd to x can be calculated using the linear models for each component,

X(s) = 1
Ac ⋅ s

⋅
(

Kq ⋅ i(s) −
(Kpq

Ac

)
⋅ Fd(s)

)
(7.313)

X(s) = 1
Ac ⋅ s

(
Kq ⋅ Ksa ⋅ (Xcmd(s) − Kfx ⋅ X(s)) (7.314)

−
(Kpq

Ac

)
⋅ Fd(s)

)
(7.315)

(Ac ⋅ s + Ksa ⋅ Kq ⋅ Kfx) ⋅ X(s) = Ksa ⋅ Kq ⋅ Xcmd(s) −
(Kpq

Ac

)
⋅ Fd(s) (7.316)

X(s) = +
(Ksa ⋅ Kq∕Ac)

s + (Ksa ⋅ Kq ⋅ Kfx∕Ac)
⋅ Xcmd(s) (7.317)

−
Kpq∕A2

c

s + (Ksa ⋅ Kq ⋅ Kfx∕Ac)
⋅ Fd(s) (7.318)

Using the last expression for the transfer function and the final value theorem for Laplace
transforms, we can determine the following key characteristics of the closed loop position
control system.

� Steady-state position following error in response to a step position command and no
disturbance force condition, Xcmd = Xo∕s and Fd(s) = 0

lim
t→∞

x(t) = lim
s→0

s ⋅ X(s) (7.319)

= lim
s→0

s ⋅
(Ksa ⋅ Kq∕Ac)

(s + (Ksa ⋅ Kq ⋅ Kfx∕Ac)
⋅ Xo∕s (7.320)

= (1∕Kfx)Xo (7.321)

When a constant displacement is commanded and there is no disturbance force, the
actual position will be proportional to the commanded signal by the feedback sensor
gain. By scaling the commanded signal, the effective ratio between the desired and
actual position can be made to be unity. In other words, the output position is exactly
equal to the commanded position in steady-state when the commanded position is a
constant value.

� What is the maximum steady-state position error in response to a ramp command
signal

Xcmd(s) = V0∕s2 (7.322)

Fd(s) = 0 (7.323)

The tracking error transfer function is

Xe(s) = Xcmd(s) − KfxX(s) (7.324)

= Xcmd(s) −
Kfx ⋅ Ksa ⋅ Kq∕Ac

s + (Ksa ⋅ Kq ⋅ Kfx∕Ac)
⋅ Xcmd(s) (7.325)

= s
(s + Kfx ⋅ Ksa ⋅ Kq∕Ac)

⋅ Vo∕s2 (7.326)
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Using the final value theorem, it can be determined that the steady-state position
following error while tracking a ramp position command (constant speed command) is

lim
t→∞

Xe(t) = lim
s→0

s ⋅ Xe(s) (7.327)

= 1
(Ksa ⋅ Kq ⋅ Kfx∕Ac)

⋅ Vo (7.328)

� Another important characteristic is the closed loop stiffness of the positioning system.
What is the steady-state change in position if there is a constant disturbance force
acting on the system, Fd(s) = Fdo∕s, Xcmd(s) = 0.0, Kcl = Fdo∕X? Using the final
value theorem,

X(s) = −
(Kpq∕A2

c)

s + (Ksa ⋅ Kq ⋅ Kfx∕Ac)
⋅ Fd(s) (7.329)

lim
s→0

s ⋅ X(s) = −s ⋅
(Kpq∕A2

c)

s + (Ksa ⋅ Kq ⋅ Kfx∕Ac)
⋅ Fd0∕s (7.330)

x(∞) = (Kpq∕A2
c)∕Kvx ⋅ Fdo (7.331)

Fdo

x(∞)
= Kcl (7.332)

The closed loop steady-state stiffness is

Kcl =
Kvx ⋅ A2

c

Kpq
(7.333)

=

Ksa⋅Kq⋅Kfx

Ac
⋅ A2

c

Kpq
(7.334)

=
Ksa ⋅ Kq ⋅ Kfx ⋅ Ac

Kpq
(7.335)

The leakage coefficient for servo valves is approximately

Kpq = 0.02 ⋅
Qr

PS
(7.336)

Hence, the stiffness of the closed position control servo with such a valve is approxi-
mately,

Kcl = 50 ⋅ Kvx

A2
c ⋅ PS

Qr
(7.337)

which clearly indicates the effect of the leakage coefficient on the closed loop stiffness.

It is important to recall that the natural frequency of the electrohydraulic system and
its load imposes an upper limit on the closed loop system bandwidth. The position servo
control system described above has approximately the closed loop bandwidth (closed loop
transfer function pole) equal to Kvx and the value of it is limited by the natural frequency
of the system due to stability considerations,

wbw = Kvx ≤ 1
3
⋅ wn (7.338)

The characteristics of the valve around its null position significantly affects the
steady-state positioning accuracy of the closed loop system.
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Example Consider a single axis electrohydraulic motion control system as shown in
Figure 7.90 and its block diagram representation in Figure 7.89. We assume that the cylinder
is rigidly connected to its base and load. Let us consider the small movements of the valve
around its null position, that is a case that is maintaining a commanded position. Determine
the cylinder positioning error for the following conditions:

1. the amplifier gain is Ksa = 200 mA∕10 V = 20 mA∕V,

2. the valve gain around the null position operation, Kq = 20 (in3∕s)∕200 mA =
0.1 (in3∕s)∕mA,

3. the cross-sectional area of the cylinder is Ac = 2.0 in on both sides (rod is extended
to both sides),

4. the sensor gain is Kfx = 10 V∕10 in = 1 V∕in,

5. the deadband of the valve is 10% of the maximum input current, idb = 0.1 ⋅ imax =
0.1 ⋅ 200 mA = 20 mA.

As long as the error magnitude times the gain of the amplifier is less than the deadband,
there will not be any flow through the valve and no position correction will be made. Only
after the error times the amplifier gain is larger than the deadband of the valve will there be
flow through the valve and correction to the position error. Hence, the error in the following
range is an inherent limitation of this system, since it does not result in any flow or motion
in the system,

Xe,max ⋅ Ksa = idb (7.339)

Xe,max =
idb

Ksa
(7.340)

= 20 mA
20 mA∕V

(7.341)

= 1 V (7.342)

which is 10% of the total displacement range.
Any positioning error less than that value, while maintaining a commanded position

(by the regulating motion of the valve around the null-position), is inherently not corrected,

Xe ≤ Xe,max (7.343)

≤ idb

Ksa
(7.344)

≤ 1 V (7.345)

which is equal to 1.0 in in physical units since Kfx = 1 V∕in.
Notice that if the amplifier gain is increased, say by 10, the positioning error due to

the same valve deadband is reduced by the same factor.

Xe ≤ idb

Ksa
= 20 mA

200 mA∕V
= 0.1 V (7.346)

which is equal to 0.1 in in physical units since Kfx = 1 V∕in.
In order to ensure that positioning error due to the valve deadband is less than a

desired value, the amplifier gain should be larger than a minimum value as follows,

Ksa ≥ idb

Xe,max
(7.347)

≥ 20 mA
Xe,max V

(7.348)
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However, the amplifier gain cannot be made arbitrarily large due to the closed loop band-
width limitations set by the natural frequency of the open loop system,

f1(idb, emax) ≤ Ksa ≤ f2(wwb) (7.349)

wbw = Kvx =
Ksa ⋅ Kq ⋅ Kfx

Ac
≤ 1

3
⋅ wn (7.350)

which indicates that the lower limit of the amplifier gain is set by the deadband and
desired positioning accuracy, and the upper limit is set by the open loop bandwidth of the
hydraulic axis.

7.8.2 Load Pressure Controlled Electrohydraulic
Motion Axes

Let us also consider the same EH motion system, except that this time the closed loop
control objective is to control the load pressure. The load pressure is measured as the
differential pressure between the two output ports of the valve. We will assume that the
pressure dynamics between the valve output ports and the actuator ports is negligable
(Figure 7.91). The commanded signal represents the desired load pressure, ΔPcmd. Using
basic block diagram algebra, the transfer function from the commanded load pressure and
the external load speed to the load pressure can be obtained as

ΔP(s) =
Kt

Ac

Qc

Ac

1
s
⋅ (Kq ⋅ i(s) − Kpq ⋅ ΔPL(s) − Ac ⋅ Vl(s)) (7.351)

Notice that the internal leakage term due Kpq ⋅ ΔP(s) is relatively small for servo valves
and can be neglected in the analysis. Assuming the leakage term is neglected, the closed
loop transfer function can be expressed as

ΔPL(s) = +

(
Kt ⋅ Qc∕A2

c

)
⋅ KsaKq)(

s + KfpKsaKqKtQc∕A2
c

) ⋅ ΔPcmd(s) (7.352)

−
(KtQc∕Ac)(

s + KfpKsaKqKtQc∕A2
c

) ⋅ Vl(s) (7.353)

In terms of command signal and output signal relationship, the transfer function behavior
of the force servo is similar to the position servo. In the above linear models, the only
dynamics included is the integrator behavior of the actuator. The transient response of the
valve from current to flow is not modeled. Experimental studies indicate that the transient
response of the proportional or servo valve from current to flow can be approximated by
a first-order or a second-order filter depending on the accuracy of approximation needed.
The transient response model of a valve is then,

Qo(s)

i(s)
=

Kq

(𝜏v1s + 1)(𝜏v2s + 1)
(7.354)

where 𝜏v1 and 𝜏v2 are the two time constants for the second-order model. One of them is
set to zero for a first order model.

Remark The flow rate through an orifice, that is valve, is expressed in two different
common equation forms,

Q(t) = Cd ⋅ A(xv) ⋅
√
Δp(t) (7.355)

Q(t) = Qr ⋅
A(xv)

Amax
⋅

√
Δp(t)

pr
(7.356)
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The first form of the equation is the classic orifice equation relating the pressure differential
across the orifice, orifice area, and discharge coefficient to the flow rate. The second form
relates the flow rate for a given valve based on the valve ratings as percentage of the rated
flow. The second form of the flow rate equation is more useful in practice since for a
given valve, its performance ratings are measured and given by the manufacturer (or can
be determined experimentally):

Qr, pr, Amax (7.357)

Then for a given orifice opening A and pressure differential across the valve Δp, we can
find the flow rate across the valve.

7.9 NONLINEAR DYNAMIC MODEL OF ONE-AXIS
HYDRAULIC MOTION SYSTEM

A nonlinear dynamic model for a single axis linear hydraulic motion system, where the
actuator is a cylinder, is discussed below. The same identical equations apply for a rotary
hydraulic motion system, where the actuator is a rotary hydraulic motor, with analogous
parameter replacements. The fluid compressibility is also taken into account in the model
(Figures 7.3 and 7.90). Let us consider the motion of the piston-rod-load assuming they
are rigidly connected to each other. Using Newton’s second law for the force–motion
relationships of the cylinder and the load,

(i) Extension motion:

m ⋅ ÿ = PA ⋅ AA − PB ⋅ AB − Fext; 0 ≤ y ≤ lcyl (7.358)

and the pressure transients in the control volumes on both sides of the cylinder,

ṗA(t) = 𝛽

(Vhose,VA + y(t) ⋅ AA)
(QPA(t) − ẏ(t) ⋅ AA) (7.359)

ṗB(t) = 𝛽

(Vhose,VB + (lcyl − y(t)) ⋅ AB)
(−QBT(t) + ẏ(t) ⋅ AB) (7.360)

ṗP(t) = 𝛽

Vhose,pv
(QP(t) − QPA(t) − QPT(t) − Qr(t)) (7.361)

where

QP = wpump ⋅ Dp(𝜃sw) (7.362)

QPT = Qr ⋅
APT(xs)

APT,max
⋅
√

(PP − PT)∕Pr (7.363)

QPA = Qr ⋅
APA(xs)

APA,max
⋅
√

(PP − PA)∕Pr (7.364)

QBT = Qr ⋅
ABT(xs)

ABT,max
⋅
√

(PB − PT)∕Pr (7.365)

Qr = Qr(prelief , pp) (7.366)

(ii) Retraction motion:

m ⋅ ÿ = PA ⋅ AA − PB ⋅ AB − Fext; 0 ≤ y ≤ lcyl (7.367)
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and the pressure transients in the control volumes on both sides of the cylinder,

ṗA(t) = 𝛽

(Vhose,VA + y(t) ⋅ AA)
(−QAT(t) − ẏ(t) ⋅ AA) (7.368)

ṗB(t) = 𝛽

(Vhose,VB + (lcyl − y(t)) ⋅ AB)
(QPB(t) + ẏ(t) ⋅ AB) (7.369)

ṗP(t) = 𝛽

Vhose,pv
(QP(t) − QPB(t) − QPT(t) − Qr(t)) (7.370)

where

QP = wpump ⋅ Dp(𝜃sw) (7.371)

QPT = Qr ⋅
APT(xs)

APT,max
⋅
√

(PP − PT)∕Pr (7.372)

QPB = Qr ⋅
APB(xs)

APB,max
⋅
√

(PP − PA)∕Pr (7.373)

QAT = Qr ⋅
AAT(xs)

AAT,max
⋅
√

(PB − PT)∕Pr (7.374)

Qr = Qr(prelief , pp) (7.375)

where the design parameters and variables for the hydraulic system are,

m – inertia,

AA, AB – cylinder head-end and rod-end cross-sectional area,

𝛽 – bulk modulus of hydraulic fluid due to its finite stiffness,

Vhose,pv – volume of the hose between pump and valve,

Vhose,AV – volume of the hose between valve and cylinder side A,

Vhose,BV – volume of the hose between valve and cylinder side B,

lcyl – the travel range of the cylinder,

Dp – flow rating of the pump (Volume/Revolution),

Qr – rate flow at rated pressure Pr when valve is fully open,

Pr – rate pressure,

APA(xs), APB(xs), AAT(xs), ABT(xs), APT(xs) – valve flow areas as a function of
spool displacement, between pump, cylinder, and tank,

APA,max, APB,max, AAT,max, ABT,max, APT – maximum value of valve flow areas
when valve is fully open between pump, cylinder, and tank,

QP, QPT, QPA, QPB, QAT, QBT – flow rate from pump, pump-to-tank, pump-to-
cylinder and cylinder-to-tank,

xs – valve spool displacement,

𝜃sw – swash plate angle, 𝜃sw0 constant value of swash plate angle,

y – cylinder displacement,

PP, PA, PB, PT – pressure at pump, head-end, rod-end and tank,

wpump – speed of the pump,

prelief – the line relief pressure setting on the relief valve.

Relief Valves Relief valves are used to limit the pressure in hydraulic lines, and hence
protect the lines against excessive pressure. The maximum pressure limit of relief valve is
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adjustable. Let us assume that the maximum pressure is set to pmax,p for the pump side,
and to pmax,l for the line side. If PP > pmax,p, PP = pmax,p; the pump side relief valve opens
and limits the maximum output pressure of the pump. If either of the cylinder side lines’
pressure exceeds the relief valve settings, PA, PB > pmax,l, PA, PB = pmax,l; the cylinder
side relief valve opens.

If the relief valve is modeled to take all excess flow between the supply and flow that
goes through the main valve as soon as the pump pressure reaches the relief pressure (ideal
relief valve model, see Figure 7.41c),

Qr(t) = Qr(prelief , pP(t)) (7.376)

= QP(t) − (QPA(t) + QPT(t)) ; for pP = prelief and up motion (7.377)

= QP(t) − (QPB(t) + QPT(t)) ; for pP = prelief and down motion (7.378)

= 0.0 ; for pP(t) < prelief (7.379)

then, when p = prelief , the fluid compressibility effect on the pump-valve side is effectively
cancelled, since this type of relief valve model enforces that there is no net fluid volume
change in the hose volume between pump and valve. In other words, the right hand side
of Equation 7.297 (or Equation 7.305) would be zero when p = prelief , which effectively
cancels the fluid compressibility. Fluid compressibility is still taken into account when
p < prelief .

A more realistic relief valve model (non-ideal relief valve model) includes a small
increase in the pump pressure and the ability to dump the flow as a function of the difference
between its input pressure (pump pressure) and relief pressure with a high gain,

Qr(t) = Qr(prelief , pP(t)) (7.380)

= Krelief ⋅ (pP(t) − prelief) ; for pP(t) ≥ prelief (7.381)

= 0.0 ; for pP(t) < prelief (7.382)

where Krelief is a high gain approximating the behavior of the relief valve (see Figure 7.41c,
where this equation is an approximation to the “actual” relief valve behavior). With this
model, flow through the relief valve is determined by the pressure relationships and it
does not cancel the right hand side of the pressure dynamics Equation 7.297 or 7.305
for pP(t) ≥ prelief . Therefore, this type of relief valve model does not cancel the fluid
compressibility effect on the pump-valve side for pP(t) ≥ prelief .

The non-compressible fluid condition can always be imposed in any section of the
hydraulic circuit by setting the left hand side of the pressure dynamics equations for
pP(t), pA(t), pB(t) equal to zero.

Further accuracy can be added to the relief valve model by including its transient
dynamic response between pump pressure and and the flow rate through the relief valve,
that is using a first (or second) order filter model,

if pP(t) ≥ prelief (7.383)

𝜏relief
dQr(t)

dt
= −Qr(t) + Krelief ⋅ (pP(t) − prelief ) (7.384)

else (7.385)

Qr(t) = 0.0 (7.386)

end (7.387)

where 𝜏relief is the time constant of the relief valve response when modeled as a first-order
filter, Qr(t0) initial condition would be needed to integrate this equation over time.
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Further detail can be added to the relief valve dynamics by modeling it as a second-
order filter, which means the inertial effects of the relief valve spool are taken into account.

if pP(t) ≥ prelief (7.388)

d2Qr(t)

dt2
= −2𝜉wn

dQr(t)

dt2
− w2

n ⋅ Qr(t) + Krelief ⋅ (pP(t) − prelief) (7.389)

else (7.390)

Qr(t) = 0.0 (7.391)

end (7.392)

where 𝜉 and wn represent the damping ratio and natural frequency of the second-order
dynamic model for the relief valve.

Directional Check Valves In many EH motion applications, it is not desirable to
allow flow from the cylinder back to the pump which can happen if PA > PP or PB > PP.
This is accomplished by a one directional load check valve on each line. The load check
valve closes to prevent back flow from cylinder to pump. During extension, if PA > PP,
then QPA = 0.0; During retraction, if PB > PP, then QPB = 0.0.

Open-Center EH Systems An “open-center” EH system has a fixed displacement
pump and an open-center valve, where there is an orifice between pump and tank and the
pump displacement is constant,

APT(xs) ≠ 0 (7.393)

QP = wpump ⋅ Dp(𝜃sw0) (7.394)

Closed-Center EH Systems A “closed-center” EH system has a variable displace-
ment pump and closed-center valve, where there is no orifice directly between pump and
tank, and the pump displacement is variable,

APT(xs) = 0; (7.395)

QP = wpump ⋅ Dp(𝜃sw) (7.396)

Dynamic Model of an Accumulator The accumulator state at any given instant
of time is defined by two variables: accumulator pressure and fluid volume in the accumula-
tor, pacc(t), Vacc(t). The operating parameters of the accumulator are precharge, minimum,
and maximum pressures (ppre, pmin, pmax) and the maximum discharge volume of the accu-
mulator (the fluid volume difference in the accumulator between minimum and maximum
pressures, that is Vdisch). If we assume that the flow between the line and accumulator
follows the same relationship as the flow through an orifice or valve, and that the pressure
changes linearly as a function of the change in volume, the dynamic state of the accumulator
can be described by the following equations,

If Vacc(t) ≤ 0.0 and pline(t) ≤ pacc(t) (7.397)

Qacc(t) = 0.0 (7.398)

else (7.399)

Qacc(t) = sign(pline(t) − pacc(t)) ⋅ Kacc ⋅
√|pline(t) − pacc(t)| (7.400)

end (7.401)
dpacc(t)

dt
=
(

pmax − pmin
Vdisch

)
⋅ Qacc(t) (7.402)

dVacc(t)

dt
= Qacc(t) (7.403)
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where the initial conditions of the accumulator pressure pacc(t0) and fluid volume in the
accumulator Vacc(t0) should be specified, Kacc is the flow rate gain across the valve between
the accumulator and the line. Then, the dynamic behavior of the accumulator state (its
pressure and fluid volume at any given time) can be predicted by solving the initial value
problem.

As an analogy to electrical systems, the capacitance Cacc of the accumulator (as an
energy storage device) is defined as

Cacc =
(

Vdisch

pmax − pmin

)
(7.404)

similar to electrical capacitance defined as C = (∫ i(t)dt)∕V = Q∕V , where fluid volume
in the accumulator is analogous to the electron charge accumulated in a capacitor, and
pressure is analogous to voltage.

Notice that the sign function and absolute value of the pressure differential in the
flow rate equation expresses that flow can flow into the accumulator from the line or from
accumulator to the line. The pressure pline is the line pressure connected to the accumulator.
If the accumulator is placed on the pump-valve side, this can be taken as the pump pressure.
Likewise, if the accumulator is connected to the cylinder-valve side, then the line pressure
is the pressure of the corresponding cylinder line.

In summary, the accumulator design variables and operating variables are as follows:
The accumulator is designed to operate within the range of [pmin, pmax] pressure, with
initial precharge pressure of ppre, and accumulator discharge volume capacity Vdisch and
total accumulator volume Vacc,g. Given the accumulator valve flow gain Kacc, and initial
conditions of the accumulator volume and pressure, (Vacc(t0), pacc(t0)), and the line pressure
condition pline(t), the state of the accumulator can be calculated using the above flow rate
(Qacc(t)) volume (Vacc(t))and pressure (pacc(t)) relations.

� pmax – maximum operating pressure, above which the line relief valve should open.
� pmin – minimum operating presssure, below which the bladder would start to contact

the accumulator valve and is not desirable.
� ppre – precharge pressure is the gas (i.e., nitrogen) pressure in the accumulator before

having any fluid on the liquid side.
� Vacc,g – accumulator volume at the gas side at precharge condition (this is also the

total accumulator volume).
� Vdisch – accumulator discharge volume, the maximum fluid the accumulator can

discharge.
� Kacc – flow coefficient of the accumulator poppet valve.
� Qacc(t) – flow rate in or out of the accumulator to/from the line.
� Vacc(t), Vacc(t0) – liquid volume in the accumulator and its initial condition value.
� pacc(t), pacc(t0) – pressure in the accumulator and its initial condition value.
� pline(t) – line pressure, the pressure of the hydraulic circuit line the accumulator is

connected to.

Summary of Hydraulic Equations The algebraic sum of flow rate in and out of
a cross-section (a node) is equal to zero. This is the analogy of Kirchoff’s current law: the
algebraic sum of currents at a node is zero.∑

Qin −
∑

Qout = 0 (7.405)∑
iin −

∑
iout = 0 (7.406)
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The algebraic sum of pressure differentials in a closed path of a hydraulic circuit is zero,
flow rate in and out of a cross-section (a node) is equal to zero. This is the analogy of
Kirchoff’s voltage law: the algebraic sum of voltage differentials in a closed circuit is zero∑

ΔPi = 0 (7.407)∑
ΔVi = 0 (7.408)

Inertance (inertia) of the hydraulic fluid is neglected in most cases since it is small com-
pared to hydraulic pressure force. The only exception is in sudden valve opening/closing
conditions where high frequency dynamics is desired to be captured, such as the water-
hammering problem.

1. Flow rate: Q(t), through an orifice area, A, and pressure differential across the orifice
ports, p1 − p2, discharge coefficient of the orifice, Cd

Q(t) = Cd ⋅ A(xv) ⋅
√

p1(t) − p2(t) (7.409)

= Qr ⋅
A(xv)

Amax
⋅
√

(p1(t) − p2(t))∕pr (7.410)

where for SAE 19 fluid, Cd = 0.0582, area unit is mm2, pressure unit is kPa, and flow
rate unit is l∕min.

2. Pressure change: (dp(t)∕dt) of a compressible fluid in a finite volume (V(t)) due to
net in–out flow rate difference (Qin(t) − Qout(t)),

dp(t)
dt

= 𝛽

V(t)
⋅ (Qin(t) − Qout(t)) (7.411)

where 𝛽 is the bulk modulus. If the fluid is considered incompressible, then the net
flow difference must be equal to zero in and out of the volume considered.

3. Pump flow rate: Qp(t) as function of displacement, Dp(t), input shaft speed, wshaft(t),
volumetric efficiency, 𝜂v,

Qp(t) = 𝜂v ⋅ Dp(t) ⋅ wshaft(t) (7.412)

Torque input of the pump (Tshaft(t)) is

Tshaft(t) = Dp(t) ⋅ pp(t)∕𝜂m (7.413)

where pp(t) is the pressure developed at the pump output to overcome the load
(assuming zero input port pressure), 𝜂m is the mechanical efficiency of the pump.

Mechanical efficiency is defined as the ratio power output to power input
(assuming 100% volumetric efficiency), whereas volumetric efficiency is the ratio of
output volume of the fluid pumped to input volume spanned by the pump pistons

𝜂m =
Pout

Pin
=

pp(t) ⋅ Dp(t) ⋅ wshaft(t)

Tshaft(t) ⋅ wshaft(t)
=

pp(t) ⋅ Dp(t)

Tshaft(t)
(7.414)

𝜂v =
Vout

Vin
=

Qout ⋅ Δt

Dp(t) ⋅ wshaft(t) ⋅ Δt
=

Qout

Dp(t) wshaft(t)
(7.415)

4. Motor flow rate: Qm(t), as function of displacement, Dm(t), input shaft speed, wout(t),
volumetric efficiency, 𝜂v,

Qm(t) =
Dp(t) ⋅ wout(t)

𝜂v
(7.416)
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Torque output of the motor (Tm(t)) is

Tm(t) = 𝜂m ⋅ Dm(t) ⋅ pm(t) (7.417)

where pm(t) is the pressure differential developed at the motor input–output ports.

5. Cylinder motion: speed and flow rate, as well as the force–pressure relationship
(neglecting inertia effects and fluid compressibility)

Qc(t) = Ac ⋅
dy(t)

dt
(7.418)

Fc(t) = Ahe ⋅ phe(t) − Are ⋅ pre (7.419)

where y(t) is the cylinder displacement, Ac is the cylinder cross-sectional area, Qc
flow rate into the cylinder, Fc force generated due to pressure difference on both sides
of the cylinder.

6. Leakage flow through a clearance:

Qleak(t) = f (Δp(t)) ≈ Kleak ⋅ Δp(t) (7.420)

7. Pressure drop: across pipes and hydraulic hoses obtained from standard tables as
constant pressure drop as a function of the hose parameters, fluid viscosity (𝜇) and
flow rate (Q)

Δp = f (𝜇, Q, l, d, 𝜃, RF) (7.421)

where l, d, 𝜃, RF are hose length, hose diameter, bending angle (if hose is not a straight
line), and roughness factor.

Example: Modeling Hydraulic Circuits Consider the hydraulic circuit shown
in Figure 7.92. Part (a) of the figure shows the hydraulic circuit in symbolic form. Part (b)
shows the shape and dimensions of the pipes and fittings which can be used in pressure loss
estimation. Part (c) shows the various operating conditions considered and simulated for
the circuit. In varying complexity, we will analyze this circuit and simulate its operation.

The hydraulic oil is SAE 10W, operating at a nominal temperature of T = 25 ◦C.
The pump, main valve (valve 1), and relief valve (valve 2) are connected to the circuit via
straight pipes, a T-connector, and a right-angle (90◦) elbow connector.

Given hydraulic fluid viscosity, 𝜇 (which is determined by the hydraulic fluid type
and temperature), the geometric parameters (length and diameter, l, d), surface roughness
(roughness factor, RF, of the pipes), and shape of the connectors (straight, T-connector,
right-angle elbow connector), and nominal flow rate; we can estimate the approximate
pressure loss in each section of the pipe,

ploss = f (𝜇, Q, l, d, RF, Shape) (7.422)

where for each section of the connectors this formula can be applied, as follows (Fig-
ure 7.93).

Although the pressure losses are not constant, and are a function of the flow rate and
temperature, and hence change as the flow rate and temperature change, it is a reasonable
approximation to use constant values based on nominal flow rate values in the analysis. In a
simulation for very detailed accurate prediction purposes, the dependence of pressure loss in
the lines as a function of flow rate can be modeled and simulated. However, in the analysis
below, we will use the constant pressure drop estimation based on nominal flow rate,
for a given constant nominal operating temperature condition. In a given application, the
hydraulic fluid type and nominal operating temperature are known as constant. The pressure
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FIGURE 7.92: An example hydraulic circuit: (a) pump, main valve, relief valve, (b) including

the pipe and fitting information for pressure drop estimation, (c) simulated conditions.

loss is estimated as a function of flow rate for different geometric (d, l, bend shapes) and
surface roughness parameters (RF). Hence, the above general functional relationship is
expressed as follows for a given fluid type and nominal operating temperature (i.e., SAE
10 W at 25 ◦C),

ploss = f (Q, l, d, RF, Shape) (7.423)

and this data is given as numerical graphs or data tables by hydraulic fittings and pipe
suppliers (Figure 7.93).
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Flow rate (gpm)

Pressure drop (psi)

Diameter 4

2

5

6
8

Teat fluid
Mobil DTE 25 (HYD, Oil)
200 SUS @ 105° F
Specific gravity = 0.873

10

12
14

16
20

100

10

2.3

1

.1 1 5 10 100

FIGURE 7.93: Pressure drop (loss) in pipes and fittings (turns, elbows, T-connections,

cross-connections) as a function of fluid viscosity, pipe diameter and length, flow rate, fitting

shape, and pipe inner surface roughness). There are similar graphs available from hydraulic

pipe and fiting manufacturers based on measured data. Reproduced with permission from

Parker Hannifin.

For the pressure drop from pump output to the input of the main valve,

ploss−1−3 = ploss(Q, l, d, RF, straight pipe 1) (7.424)

+ploss(Q, l, d, RF, T connector) (7.425)

+ploss(Q, l, d, RF, straight pipe 3) (7.426)

For the pressure drop from pump output to the input of the relief valve,

ploss−1−2 = ploss(Q, l, d, RF, straight pipe 1) (7.427)

+ploss(Q, l, d, RF, T connector) (7.428)

+ploss(Q, l, d, RF, straight pipe 2) (7.429)

For pressure drop from output of the relief valve to tank

ploss−4−5 = ploss(Q, l, d, RF, straight pipe 4) (7.430)

For pressure drop from output of the main valve to tank

ploss−6−7 = ploss(Q, l, d, RF, straight pipe 6) (7.431)

+ploss(Q, l, d, RF, Right angle connector) (7.432)

+ploss(Q, l, d, RF, straight pipe 7) (7.433)

For each section, the pressure losses can be estimated as a constant value once the
nominal flow rate and geometric properties of the piping are determined using the look-up
tables and graphs provided by pipe-fitting suppliers.

Therefore, for the rest of the analysis, if we know the pressure at the pump output
(ps(t)) and the tank (return reservoir) pressure (pt), we can determine the pressures at the
relief valve input and output, main valve input and output. That way, we estimate the flow
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rate across the valves more accurately as a function of the pressure difference across them,
compared to the case where the pressure loss (drop) along the piping is neglected.

p2 = ps − ploss−1−2 (7.434)

p3 = ps − ploss−1−3 (7.435)

p4 = pt + ploss−4−5 (7.436)

p6 = pt + ploss−6−7 (7.437)

In short, the pressure drop can be considered as:

1. zero (neglected), or

2. estimated as constant throughout the whole simulated condition as a function of a
constant nominal viscosity, and flow rate, and geometric properties, or

3. can be estimated as a variable as a function of the variable flow rate and viscosity
(which varies with temperature).

For this example, the length and diameters of the straight pipes and connectors are as
follows,

l1 = l2 = l3 = l4 = l5 = l6 = 100 mm (7.438)

d1 = d2 = d3 = d4 = d6 = d7 = 10 mm (7.439)

The nominal flow rate from the pump is

Qp(t) = Dp(t) ⋅ wshaft(t) (7.440)

The input shaft speed to the pump is constant for all the cases considered for simulation,

wshaft(t) = 2000 rpm (7.441)

The nominal pump flow rate is

Qp(t) = Dp(t) ⋅ wshaft(t) (7.442)

= 5 ml∕rev ⋅ 2000 rev∕min (7.443)

= 10 l∕min = 10∕60 ⋅ 10−3 m3∕s (7.444)

Given this information, and the pressure drop data graphs provided by pipe-connector
suppliers, specific to the used pipes and fittings, we can estimate the nominal (constant)
pressure drops.

The displacement of the pump is different as a function of time for the different
simulation cases considered (Figure 7.92c). The relief valve reacts to the line pressure. If
the line pressure is below the maximum pressure setting, then the valve is fully closed.
When the line pressure reaches the maximum pressure value, the relief valve opens to
full orifice opening position within a small increment of the pressure above the maximum
pressure setting. The line pressure causes the relief valve spool position to change. Due to
the preset load in the spring, the spool does not move until the line pressure reaches the
maximum pressure setting (determined by the preset load on the spring). When the line
pressure reaches the maximum pressure and a little above, the relief valve spool moves
quickly to fully open the valve. Let us assume the relief valve spool position to orifice area
is a linear relationship plus saturation, as shown in the figure (Figure 7.92c, Case (3)). If we
model the relief valve position as being instantaneously determined by the line pressure, we
can model it as a static relationship between line pressure and relief valve spool position.
Notice that the valve orifice opening is zero until the line pressure reaches the maximum
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pressure setting. Then it moves to fully open position within a small increase of pressure
above the maximum pressure setting.

xr(t) = Kpx ⋅ (ps(t) − pmax) ; for ps(t) > pmax (7.445)

= 0.0 ; else (7.446)

Ar(t) = Kar ⋅ xr(t) ; for xr(t) > 0 (7.447)

= 0.0 ; else (7.448)

For a certain value of pressure above maximum pressure, ps(t) − pmax = Δpra, the relief
valve will be fully open, that is Ar(t) = Ar,max. Given the performance specifications for the
relief valve, we would know Ar,max and Δpra. Then,

Kar ⋅ Kpx =
Ar,max

Δpra
(7.449)

If we wanted to model the inertial dynamics of the relief valve, then the relationship
is a differential equation,

mr ẍr(t) + cr ẋr(t) + kr xr(t) = Afb ⋅ (ps(t) − pmax) (7.450)

Ar(t) = Kar ⋅ xr(t) ; for xr(t) > 0 (7.451)

= 0.0 ; else (7.452)

where pmax = kr ⋅ xpreload∕Afb, maximum pressure setting is defined in the circuit by the
preload on the relief valve spring. In steady-state, the relief valve spool displacement is

xr(∞) =
Afb

kr
⋅ (ps(t) − pmax) (7.453)

Ar(∞) = Kar ⋅
Afb

kr
⋅ (ps(t) − pmax); for xr(t) > 0 (7.454)

In addition, when the relief valve is fully open at the pressure p(t) = pmax + Δpra, the orifice
area would saturate to Ar,max. Hence,

Kar ⋅
Afb

kr
=

Ar,max

Δpra
(7.455)

The dynamics of the main valve is not modeled as an inertia–force relationship in this
example. Rather, we assume that the spool displacement of the main valve is specified as a
function of time, and the dynamics of the actuation mechanism and the valve are neglected.
Various conditions of the main valve orifice opening (Av(t)) are specified below for the
simulated conditions. The consideration of the inertial dynamics of the main valve is left
as an exercise for further study of this example.

The governing equations for flow rate across each component (pump, relief valve,
main valve) are as follows (pressure losses are not included since it is discussed above and
their inclusion is very simple)

Qp(t) = Dp(t) ⋅ wshaft(t) (7.456)

Qr(t) = Qrr ⋅ (Ar(t)∕Ar,max) ⋅

√
ps(t) − pt

Δprr
(7.457)

Qv(t) = Qvr ⋅ (Av(t)∕Av,max) ⋅

√
ps(t) − pt

Δpvr
(7.458)
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where Qrr, Qvr are rated flow rates for relief valve and main valve, Ar,max maximum orifice
opening of the relief valve, Av,max maximum orifice opening of the main valve, Δprr rated
pressure difference above the maximum line pressure for the relief valve to open fully, Δpvr
rated pressure differential across the valve used to measure the rated flow through the main
valve. In practice, it is more common to use the rated flow equations instead of the one with
orifice coefficients.

Let the parameters of the relief valve be

Kar = 10.0 (7.459)

Kpx = 0.01 (7.460)

Afb = 1.0 mm2 (7.461)

kr = 100 kN∕mm (7.462)

mr = 0.1 kN∕(mm∕s2) (7.463)

cr = 100 kN∕(mm∕s) (7.464)

Ar,max = 100 mm2 (7.465)

Qrr = 200 ml∕s = 200 ⋅ 10−6 m3∕s (7.466)

pmax = 20 000 kPa (7.467)

Δpra = 1000 kPa (7.468)

Δprr = pmax = 20 000 kPa (7.469)

Notice that these parameters indicate that when ps(t) − pmax = Δpra = 1000 kPa, the relief
valve will be fully open, xr = 10, Ar = 100 = Ar,max.

Let the parameters of the main valve be:

Av,max = 100 mm2 (7.470)

Qvr = 200 ml∕s = 200 ⋅ 10−6 m3∕s (7.471)

Δpvr = 6895 kPa = 1000 psi (7.472)

The tank pressure is

pt = 100 kPa (7.473)

The bulk modulus and volume of the fluid in the space between pump and two valves are,

𝛽 = 1.5 ⋅ 109 Pa = 1.5 ⋅ 106 kPa (7.474)

Vhose = 𝜋(d2∕4) ⋅ (l1 + l2 + l3) = 0.001 m3 (7.475)

Initial conditions for the dynamic models are as follows. For relief valve spool position and
velocity,

xr(t0) = 0.0 (7.476)

ẋr(t) = 0.0 (7.477)

and for line pressure

ps(t0) = pt (7.478)

In all of the simulated cases, we are interested in the following variables and their
interaction,

1.Dp(t), 2.wshaft(t), 3.Qp(t), 4.Qv(t), 5.Qr(t), 6.Av(t), 7.Ar(t), 8. ps(t) (7.479)
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Simulated Case 1: Constant pump displacement, variable main valve opening.

Dp(t) = 4 ml∕rev = 4 ⋅ 10−6 m3∕rev (7.480)

wshaft(t) = 2000 rev∕min (7.481)

Av(t) = 10.0; t < 1.0 (7.482)

= 10.0 + 40.0 (t − 1.0); 1.0 <= t < 2.0 (7.483)

= 50.0; 2.0 <= t < 3.0 (7.484)

= 50.0 − 40.0 (t − 1.0); 3.0 <= t < 4.0 (7.485)

= 10.0; 4.0 <= t < 5.0 (7.486)

The fluid compressibility in the volume between pump, relief valve, and main valve is
neglected. Then, we have the net flow rate in and out of this volume as equal to zero,

Qp(t) − Qr(t) − Qv(t) = 0 (7.487)

The relief valve is modeled as a static spool displacement–pressure relationship
(inertial dynamics is not modeled). These equations can be solved over time for the
given simulation conditions above. Notice that if the line pressure does not reach the
maximum pressure setting of the relief valve (if ps(t) <= pmax), then the relief valve
will be closed and Qr(t) = 0.0, then Qp(t) = Qv(t), which results in the following
equation for the pump pressure,

ps(t) = pt +
(

Qv(t)

CdAv(xv(t))

)2

(7.488)

= pt +
( Qp(t)

CdAv(xv(t))

)2

(7.489)

= pt +
( Dp ⋅ wshaft

CdAv(xv(t))

)2

(7.490)

The same relationship can be derived using the rated flow equations,

ps(t) = pt +
(

Qv(t)

Qvr

Av,max

Av(xv(t))

)2

⋅ Δpvr (7.491)

= pt +
(Qp(t)

Qvr

Av,max

Av(xv(t))

)2

⋅ Δpvr (7.492)

= pt +
(Dp(t) ⋅ wshaft(t)

Qvr

Av,max

Av(xv(t))

)2

⋅ Δpvr (7.493)

The above solution is valid for ps(t) < pmax. If ps(t) ≥ pmax, then we must solve
for a ps(t) iteratively from Qv(t) and Qr(t) equations such that Qp(t) − Qr(t) − Qv(t) =
0. For this case the solution is, for ps > pmax

ps(t) = pt +
(

Qv(t)

CdAv(xv(t))

)2

= pt +
( Qp(t)

CdAv(xv(t))

)2

(7.494)

= pt +

(
(Dp ⋅ wshaft)

2

C2
d(A2

v(xv(t)) + Ar(xr(t))2

)
(7.495)
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The same relationship can be derived using the rated flow equations,

ps(t) = pt +

[(
Qvr(t)

Av

Av⋅max

)2

⋅
1

Δpvr
+
(

Qrr(t)
Ar

Ar,max

)2

⋅
1

Δprr

]
⋅ Q2

p(t) (7.496)

In this case, there is a constant supply of flow from the pump. Since the main
valve is initially open a small amount, the line pressure increases quickly in order to
force the incoming flow rate through the valve. As the main valve gradually opens
more, the line pressure gradually drops since a lower pressure differential is needed
to pass the same flow rate through a larger orifice area. If the line pressure had to
increase beyond the maximum pressure setting of the relief valve in order to pass the
supplied flow rate through the main valve, then the relief valve would have opened.

In Simulink®, we simply impose the conservation of flow condition equation,
and let the iterative algorithm solve for ps(t) using algebraic constraint equation solver,
Qp(t) − Qr(t) − Qv(t) = 0, instead of evaluating these explicit solution equations for
ps(t) (Figure 7.94).

Simulated Case 2: Variable pump displacement, variable main valve opening
(Figure 7.95). The same conditions as in the previous case except that the pump
displacement is specified as function of time as follows. The dynamics of the pump
displacement actuation mechansims and the pump response is not modeled.

Dp(t) = 0.0; t < 1.0 (7.497)

= 4.0 (t − 1.0); 1.0 <= t < 2.0 (7.498)

= 4.0; 2.0 <= t < 3.0 (7.499)

= 4.0 − 4.0 (t − 1.0); 3.0 <= t < 4.0 (7.500)

= 0.0; 4.0 <= t < 5.0 (7.501)

Same equations as in Case 1 apply, only the input variables are different for the
simulation. Notice that since the displacement of the pump matches the main valve
opening, the line pressure does not fluctuate as high as the first case.

Simulated Case 3: Variable pump displacement, closed main valve, relief valve
activates – relief valve modeled as a static relation between pressure and valve
opening (Figure 7.96). Since in this case the only path the flow can go through is
the relief valve, the line pressure will quickly build up to maximum line pressure to
open the relief valve. Same equations as in Case 1 apply. The pump displacement as
a function of time is the same as in Case 2. The main valve orifice area is different:
Av(t) = 0.0 for the whole simulation. The relief valve orifice opening is determined
instantaneously by the line pressure. In other words, the inertial dynamics of the
relief valve is not modeled, rather it is the orifice area (or spool position) versus line
pressure that is modeled as a static relationship, as defined above.

Simulated Case 4: Fluid compressibility in the piping between components is taken
into account (Figure 7.97). Let us take into account the finite stiffness (bulk modulus),
that is the compressible nature of the fluid in the volume between the pump and the
two valves. There is not much interest in taking into account the compressibility of
the fluid between the output port of the valves and the tank connection since the
overall pressure in the return lines is rather small and the fluid compressibility does
not make much difference in the pressure in that line.

Due to the compressibility of the fluid, the net flow rate change in a volume
results in a change (time derivative) of the pressure scaled by the bulk modulus divided
by the total fluid volume in the section considered. When the fluid compressibility
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is not taken into account, the net flow rate into and out of a given section of volume
(i.e., fluid volume in the piping between pump and relief valve and main valve) is
equal to zero.

The pump output pressure will be determined by the dynamic interaction that
involves the compressibility of the fluid. Once we calculate the pump output pressure
from the differential equations, which takes the fluid compressibility into account,
we can further subtract the pressure loss estimations from that in order to determine
the dynamic pressures at the input ports of the two valves. In this case the main
valve is modeled as a variable orifice where the orifice opening area is given as a
function of time, that is the spool position is actuated by a solenoid. The dynamics
of the actuator for the main valve spool motion is not included in the model. The
relief valve is modeled as a variable orifice as a function of the line pressure. A more
accurate model would be to model the inertia–force relationship for the relief valve
spool position, and current–force–inertia relationship for the main valve.

dps(t)

dt
= 𝛽

Vhose
⋅ (Qp(t) − Qv(t) − Qr(t)); ps(t0) = 20 000 kPa (7.502)

Simulated input variable conditions are the same as in Case 3, plus finite bulk modulus
of the fluid in the volume between the pump and the two valves.

Simulated Case 5: Variable pump displacement, closed main valve, fluid compressibility
is taken into account, the relief valve activates, where the relief valve is modeled as
a dynamic inertia–force relationship. Simulated conditions are as Case 4, except
that we modeled the relief valve dynamics more accurately. We take into account the
dynamic delay in the relief valve spool position change as a result of the line pressure,
inertia, spring, and damping in the valve (Figure 7.98).

Example: Dynamic Model of a Poppet Valve Consider the poppet valve in
a hydraulic circuit (Figure 7.99). Here, we will develop a dynamic model of this valve. We
will consider the inertial effects of the poppet spool as well as the fluid compressibility
effects inside the valve chamber. The basic operation of the valve is that input flow is in
port 1 and output flow is in port 2 (Figure 7.99b). The poppet gets unseated when the flow
force exceeds the force at the back of the poppet. Similar to sliding spool valves, poppet
valves are also manufactured for multi port applications such as 2, 3, 4 port applications.

Let us express the force–acceleration relationship for the poppet, the spool (Fig-
ure 7.99b),

mp ⋅ ẍp(t)+ cp ⋅ ẋp(t)+ kp ⋅ xp(t)= − kp ⋅ xpreload +Fsol(t)+Fshear(t)+ p1(t) ⋅A1 − p3(t) ⋅A3

(7.503)

Notice that the pressure p2(t) does not affect the spool motion in this model, because we
consider that the pressure inside the valve body in region 2 is uniform. As a result, the net
force applied to the spool by p2(t) is zero because it is acting both on the top and bottom
surfaces of the poppet.

The relationship between the flow rate through the valve, valve position, pressure in
the valve chamber (assuming no cavitation inside the valve), in-port pressure, and output
(load) pressure is

dp2(t)

dt
= 𝛽

V2
⋅ (Q2(t) − Qleak(t) − Q4(t)) (7.504)

dp3(t)

dt
= 𝛽

V3
⋅ (Qleak(t) − Q3t(t)) (7.505)
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(a) (b)

Solenoid mp

A1
Xp

A2

P2

V2

Q2

Ps = P1

Q4

l3

δ3

A4

d3 A3

P3
V3
kp

CP

Fshear

Q3t

Fsol

Qleak

Pi

Poppet 
valve 

Port
1 

Port 2

T

FIGURE 7.99: Poppet valve cross-section and its dynamic model: (a) picture of a 2/2 way

poppet valve (by Rexroth), (b) cross-section of the 2/2 way poppet valve. Courtesy

Bosch-Rexroth.

Q2(t) = Cd ⋅ A2(xp(t)) ⋅
√

p1(t) − p2(t) (7.506)

Q4(t) = Cd ⋅ A4 ⋅
√

p2(t) − pl(t) (7.507)

Q3t = Cd ⋅ At ⋅
√

p3(t) − pt (7.508)

Qleak(t) = Qleak(l3, d3, 𝛿3, p2, p3) ≈ Kleak ⋅ (p2(t) − p3(t)) (7.509)

where

Fshear(t) = Fshear(l3, d3, 𝛿3, ẋp(t)) ; shear force (7.510)

which can be defined as a look-up table for the numerical simulation. The shear force is a
function of the length l3, diameter d3, clearance 𝛿3, and the speed of the spool ẋp(t).

The force generated by the electric actuator of the valve is modeled as,

Fsol(t) = Kfi ⋅ isol(t) (7.511)

where isol(t) is the current supplied to the solenoid (or to an electric actuator from the
amplifier), Kfi is the current to force gain.

The parameters of the valve are;

mp = mass of the poppet (7.512)

cp = damping coeficient of the poppet motion (7.513)

kp = spring of the poppet. The spring is preloaded to hold the valve closed (7.514)

when the valve is not actively actuated by the electric actuator (Fsol(t)) (7.515)

A1 = cross-sectional area of the valve where p1(t) acts on (7.516)

A2 = orifice opening cross-sectional area of the valve (7.517)

A3 = area of the valve on the back side of the poppet (7.518)
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A4 = output port cross-sectional area, (7.519)

V2 = the volume between the poppet housing and the poppet (7.520)

(approximately constant) (7.521)

V3 = the volume between the poppet housing and the poppet in the section 3 (7.522)

𝛽 = bulk modulus of the fluid (7.523)

l3 = length of the overlap between the poppet and housing in area 3 (7.524)

d3 = diameter of the cross-section between the poppet and housing in area 3 (7.525)

𝛿3 = clearance between the poppet and housing along the back of (7.526)

the poppet (area 3) (7.527)

Fshear = shear force function (7.528)

Qleak = leakage flow rate function (7.529)

Kfi = current to force gain of the electric actuator (i.e., solenoid) (7.530)

xpreload = preload compression in spring (7.531)

The initial conditions needed for a specific time domain simulation of the poppet
valve behavior are

xp(t0) = initial position of the poppet (i.e., zero, closed valve condition) (7.532)

ẋp(t0) = initial speed of the poppet (i.e., zero, stationary valve condition) (7.533)

p2(t0) = initial pressure inside the poppet chamber (7.534)

p3(t0) = initial pressure inside the poppet chamber section 3. (7.535)

This pressure may be assumed to stay constant and equal (7.536)

to tank pressure, by setting initial condition (7.537)

to the tank pressure and defining the net flow rate (7.538)

into the area as zero by setting Q3t(t) = Qleak(t) (7.539)

instead of using the orifice equation for Q3t(t) (7.540)

Given input pressure p1(t) = ps(t) and load pressure pl(t) conditions, and the control
signal isol(t), we can determine the motion of the poppet (xp(t)), flow rate through the valve
(Q2(t), Q4(t)), pressure inside the valve p2(t), as well as leakage flow rate and shear forces
Qleak(t), Fshear(t) via numerical solution of the above equations.

In proportional control applications of poppet valves, the challenge is the high fre-
quency content of the flow forces acting on the valve and the resulting difficulty in control-
ling the position of the poppet accurately. The control challenge is two fold:

� knowing (measuring and/or estimating) the flow force,
� having a fast and large enough valve actuator to be able to compensate for the flow

force.

The benefits of poppet valves are that

� they seal the flow well in closed position (practically zero leakage, hence excellent
position holding capability under load),

� reliability of operation against dirt in the hydraulic fluid (poppet does not easily get
stuck due to dirt unlike the case in sliding spool valves), and

� low manufacturing cost of the poppet valves.
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The MATLAB® code used to initialize the parameters and initial conditions for the
poppet valve is shown below. The dynamic model of the poppet valve is implemented in
Simulink® (Figure 7.100). Time domain simulation of the poppet valve model is shown in
Figure 7.101. In this simulation we did not include the preload on the poppet valve spring
in order to keep it sealed when the solenoid force is zero. As a result, when the solenoid
force is zero (time period from 0 s to 1 s), the poppet valve opens due to the line pressure. In
actual poppet valves, the spring would have initial preload to keep the poppet valve closed
despite the line pressure. This model can be used to simulate other poppet valve sizes by
simply specifying appropriate parameters. Load pressure is considered as constant in this
simulation. In a real application, the load pressure, that is the output port pressure of the
poppet valve, would be determined by the down-stream hydraulic circuit conditions.

% Poppet Valve parameters

Kleak = 0.0 ; % Leak coefficient
At = 0.0 ; %
Kfi = 1.0 ; % Solenoid current to force gain

mp = 1.0 ; % Poppet mass
cp = 20.0 ; % poppet damping
kp = 1000.0 ; % Poppet spring constant
x_preload = 0.0 ; % Poppet spring preload displacement

A1 = 0.01; % Areas
Ka2 = 0.01 ; % with saturation at 0 and A2_max

(no negative orifice area)
A3 = 0.01;
A4 = 0.001 ;
V2 = 0.10 ; % Volumes inside the valve
V3 = 1.0 ;

beta = 250 * 10ˆ3; % Bulk modulus
Cd = 100.0 ; % Flow coeffient scaled sqrt(2/rho)

ps = 3000 ; % p1 = 3000 psi
pt = 100 ; % 100 psi
pl = 100 ; % 100 psi

p20 = pt ; % Initial conditions on pressures
p30 = pt ;

Xp0=0.0 ; % Initial valve (spool) position and speed
Xpdot0= 0.0 ;

An example of a poppet valve (by Hydraforce Inc), which is two-way, normally closed
(when de-energized), proportional solenoid controlled, is shown in Figure 7.102. It shows
the valve, its installation to a standard manifold cavity, its symbol, as well as its steady-
state flow rate–solenoid current–differential pressure relationship (top right figure) and the
dynamic response characteristics as the frequency response input–output relationship (gain
and phase) between solenoid current and flow rate. Notice that for this particular poppet
valve, flow-rate to current relationship under a specific pressure differential across ports 1
and 2 is not linear. When de-energized, flow from port 1 to port 2 is allowed, but flow from
port 2 to port 1 is blocked by a check valve. This type of poppet valve is used in series with
a proportional four-way valve output line for load-holding (sealing) function. It “seals” the
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Time (s)

Solenoid current
100
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0
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Poppet position

P2 and PS

Q2  and Q4

FIGURE 7.101: Simulation result of a

poppet valve.

flow from load (port 2) back to pump or tank (port 1) when de-energized. Some of the key
valve parameters are as follows

1. The rated operating pressure: 3000 psi

2. Rated flow rate: 5.8 gallons∕min

3. Estimated transient response (bandwidth) from current to flow rate under rated pres-
sure differential: 10 Hz.

4. Maximum internal leakage: 5 drops∕min at 3000 psi

5. Temperature range of operation: −40–100 ◦C

Example: Closed Loop Control of an Electrohydraulic Servo Actuator
Consider a one degree of freedom electrohydraulic system (Figure 7.75 or Figures 7.103
and 7.104) where the main flow control valve is a servo valve (Figure 7.60) and its closed
loop control (Figure 7.76). On the cylinder side, the line relief valve and line cross-over
relief valves are not taken into account, and leakage is neglected in the analysis. We take
the compressibility of the fluid into account both in the volume between the pump and
the servo valve, and the servo valve and the cylinder. We assume 100% pump volumetric
efficiency.

The pump is of fixed displacement type and is driven by an electric motor or engine
at a constant speed. The excessive flow between the pump output flow and the flow through
the servo valve is returned to the tank through the relief valve. The relief valve on the
pump supply line is taken into account as an instantaneously acting valve; that is when the
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FIGURE 7.103: Components of a single degree of freedom electrohydraulic motion control

system: magnetostrictive position sensor is integrated into the cylinder for closed loop position

control, two-pressure sensors can be used for closed loop force control.

pump pressure is below maximum pressure setting, the relief valve is closed, but as soon as
pump pressure is equal or exceeds the maximum pressure, the relief valve opens to dump
the excess flow rate (flow rate difference between pump flow rate and the flow rate through
servo valve) to the tank. One way to mathematically model the fluid compressibility and
instantaneously acting relief valve is to limit the pressure integration output to the maximum
pressure setting.

The dynamic model for pump, relief valve, and fluid compressibility effect in the
volume between pump and servo valve is modeled as

Qp(t) = Dp(t) ⋅ wshaft(t) (7.541)

If pp(t) < pmax (7.542)

Qr(t) = 0.0 (7.543)

Else (7.544)

Qr(t) = Qp(t) − Qv(t) (7.545)

Endif (7.546)
dpp(t)

dt
= 𝛽

Vhose,pv
(Qp(t) − Qv(t)) (7.547)
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where Qp(t) is the flow rate from the pump, Qv(t) is the flow rate from pump to cylinder
side of the valve (P to A or P to B, that is Qv(t) = QPA(t) for up motion or Qv(t) = QPB(t)
for down motion, see below).

The two-stage servo valve (flapper nozzle type first stage, and spool type second stage
(Figure 7.60)) is modeled as a current command and actual current dynamic relationship,
torque generated from the current via a gain, and the spool displacement relationships of
the second stage. Once the spool position is known, the flow rate through the valve can
be determined as a function of the pressure differential across it and the spool position.
The current amplifier and the electrical dynamics of the servo valve are modeled as the
dynamic relationship between the commanded current and actual current. It is modeled as
a first-order filter. The current to torque relationship is modeled as a constant gain. The
torque to spool position is described as a second-order mass-force system, where the natural
frequency of the model (wn) varies in a range as a function of the magnitude of the spool
displacement as a percentage of the maximum value,

xv(t)

xv,max
(7.548)

(or as the ratio of the commanded current to the maximum commanded current).

icmd(t)

icmd,max
(7.549)

In other words, the frequency response of the valve spool position to the current command
(Figure 7.70) is different for different values of the magnitude of the current command. For
instance, for 40% of maximum current command, corresponding to about 40% of maximum
spool displacement in steady-state, the bandwidth of spool position is 75 Hz, whereas for
100% of the commanded current, the bandwidth is 25 Hz. The dynamic model of the valve
and its current amplifier, relating the commanded current signal to the actual current, then
to the valve actuation torque, and then to the valve spool position, and finally to the flow rate
as function of spool position and pressure differential across the valve, are expressed below.

iv(s)

icmd(s)
=

Ka

𝜏as + 1
(7.550)

Tv(s) = Kt ⋅ iv(s) (7.551)(
s2 + 𝜉wns + w2

n

)
⋅ xv(s) =

xvmax

Tv,max
⋅ w2

n ⋅ Tv(s); wn(xv∕xvmax) (7.552)

For xv ≥ 0.0 up motion (7.553)

QPA(t) = Qr ⋅
|xv(t)|
xv,max

⋅

√
(pp(t) − pA(t))

Δpr
(7.554)

QBT(t) = Qr ⋅
|xv(t)|
xv,max

⋅

√
(pB(t) − pt(t))

Δpr
(7.555)

For xv < 0.0 down motion (7.556)

QPB(t) = Qr ⋅
|xv(t)|
xv,max

⋅

√
(pp(t) − pB(t))

Δpr
(7.557)

QAT(t) = Qr ⋅
|xv(t)|
xv,max

⋅

√
(pA(t) − pt(t))

Δpr
(7.558)

where xv,max is the maximum spool displacement of the servo valve when maximum
actuation torque is applied Tv,max = Kt ⋅ iv,max.
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The cylinder and load dynamics, including the fluid compressibility effect taken into
account,

(mp + ml) ⋅ ÿ(t) = −cp ⋅ ẏ(t) + pA(t) ⋅ AA − pB(t) ⋅ AB − Fload(t) (7.559)

If up motion xv ≥ 0.0 (7.560)

d
dt

(pA(t)) = 𝛽

Vhose,VA + y ⋅ AA
(QPA(t) − ẏ(t) ⋅ AA) (7.561)

d
dt

(pB(t)) = 𝛽

Vhose,VB + (lcyl − y) ⋅ AB
(−QBT(t) + ẏ(t) ⋅ AB) (7.562)

elseif down motion xv < 0.0 (7.563)

d
dt

(pA(t)) = 𝛽

Vhose,VA + y ⋅ AA
(−QAT(t) − ẏ(t) ⋅ AA) (7.564)

d
dt

(pB(t)) = 𝛽

Vhose,VB + (lcyl − y) ⋅ AB
(QPB(t) + ẏ(t) ⋅ AB) (7.565)

end (7.566)

The position sensor is modeled as a constant gain device,

yfb(t) = Kfb ⋅ y(t) (7.567)

The closed loop control algorithm is a PID control,

icmd(t) = Kp (yd(t) − yfb(t)) + Ki ∫
t

0
(yd(𝜏) − yfb(𝜏))d𝜏 + Kd (ẏd(t) − ẏfb(t)) (7.568)

Now, let us consider the simulated conditions: the size related parameters of the
components, initial conditions of differential variables (i.e., pressures and spool position
and velocity), and input variables as a function of time.

Dp(t) = 20 ∗ 10−6 m3∕rev pump displacement (7.569)

wshaft(t) = 3000 rev∕min input shaft speed of the pump (7.570)

pmax = 3000 psi = 3000 psi ⋅ 6.895 ⋅ 103 (N∕m2)∕psi (7.571)

= 20 685 kN∕m2 = 20 685 kPa = 20.685 ∗ 106 N∕m2 (7.572)

relief valve max. presure setting (7.573)

Qrv = 1.0 ⋅ 10−3 m3∕s at Δpr = 1000 psi = 6895 kPa (7.574)

rated flow rate of servo valve (7.575)

pr = 6.895 ∗ 106 N∕m2 = 1000 psi (7.576)

xv,max = 10 ⋅ 10−3 m max. spool displacement of servo valve (7.577)

Tv,max = 1.0 N max. actuation torque of servo valve (7.578)

𝜉 = 0.6; damping ratio (7.579)

wn = 75 Hz = 2𝜋 ∗ 75 rad∕s; for
xv

xv,max
≤ 40% (7.580)

= 25 Hz = 2𝜋 ∗ 25 rad∕s; for
xv

xv,max
= 100% (7.581)

natural frequency of valve spool motion (7.582)

𝜏a = 0.010 s electrical time constant for current (7.583)

Ka = 1.0; current amplifier gain (7.584)

Kt = 1.0; current to torque gain (7.585)
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𝛽 = 1.5 ⋅ 109 N∕m2 bulk modulus (7.586)

Vhose,pv = 1.0 ⋅ 10−3 m3 volume between pump and valve (7.587)

Vhose,VA = 1.0 ⋅ 10−3 m3 volume between valve and A side (7.588)

Vhose,VB = 1.0 ⋅ 10−3 m3 volume between valve and B side (7.589)

AA = 1.0 ⋅ 10−3 m2 cylinder A side cross-section area (7.590)

AB = 0.5 ⋅ 10−3 m2 cylinder B side cross-section area (7.591)

lcyl = 1.0 m (7.592)

mp = 10 kg piston and rod mass (7.593)

ml = 990 kg load mass (7.594)

cp = 100.0 cylinder damping (7.595)

Fload(t) = (mp + ml) ⋅ g = 1000 kg ⋅ 9.81 m∕s2 = 9810 N (7.596)

PID gains: (7.597)

Kfb = 1.0 position sensor gain (7.598)

Kp = 3.0 PID : proportional gain (7.599)

Ki = 0.0 PID : integral gain (7.600)

Kd = 0.0 PID : derivative gain (7.601)

Initial conditions: (7.602)

pp(t0) = 101 ⋅ 103 N∕m2 pressures (7.603)

pA(t0) = Fload∕Aa N∕m2 (7.604)

pB(t0) = 101 ⋅ 103 N ⋅ m2 (7.605)

pT(t0) = 101 ⋅ 103 N ⋅ m2 (7.606)

iv(t0) = 0.0 A current (7.607)

xv(t0) = 0.0 m spool position (7.608)

ẋv(t0) = 0.0 m∕s spool velocity (7.609)

y(t0) = 0.2 m cylinder–piston position (7.610)

ẏ(t0) = 0.0 m∕s cylinder–piston velocity (7.611)

The desired cylinder–piston is a trapeziodal position command,

yd(t) = 0.2 ; t < 1.0 (7.612)

= 0.2 + 0.5 ⋅ (t − 1.0); 1.0 <= t < 2.0 (7.613)

= 0.7 ; 2.0 <= t < 3.0 (7.614)

= 0.7 − 0.5 ⋅ (t − 3.0); 3.0 <= t <= 4.0 (7.615)

= 0.2 ; 4.0 <= t (7.616)

The desired cylinder–piston velocity is

ẏd(t) = 0.0 ; t < 1.0 (7.617)

= 0.5 ; 1.0 <= t < 2.0 (7.618)

= 0.0 ; 2.0 <= t < 3.0 (7.619)

= −0.5; 3.0 <= t <= 4.0 (7.620)

= 0.0 ; 4.0 < t (7.621)
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Remark on Component Size Matching in Design The above parameters
represent the size of the components of the hydraulic system. It is important for a good
design to have component sizes selected to match each other. That is the pump, valve, and
cylinder sizing must be matched. A simple calculation can determine if the components are
properly sized. For this purpose, one should compare the following size information:

� Pump flow capacity: Qp = Dp ⋅ wshaft = 1.0 ⋅ 10−3 m3∕s
� Servo valve rated flow at rated pressure drop across the valve:

Qrv = 1.0 ⋅ 10−3 m3∕s at pr = 1000 psi (6.895 MPa) (7.622)

� Speed and force requirements of the cylinder:

Vmax <= Qrv∕Aa (7.623)

Fload < (pmax − pr) ⋅ Aa + (mp + ml) ⋅ ÿmax (7.624)

At rated valve flow, the maximum cylinder speed is

Vmax = Qrv∕Aa (7.625)

= 1.0 ⋅ 10−3∕0.001 (7.626)

= 1.0 m∕s (7.627)

The difference between the

[ (pmax − pr) ⋅ Aa − Fload ] (7.628)

is the hydraulic force available for accelerating the inertia and friction losses. Hence,
at most the acceleration we can support is

ÿmax = [(pmax − pr) ⋅ Aa − Fload]∕(mp + ml) (7.629)

assuming no loss for friction. This “head-room” in hydraulic force available deter-
mines the maximum acceleration the EH system can support at rated conditions and
affects the quality of transient response.

For instance if

Qp = 1.0 ⋅ 10−3 m3∕s (7.630)

Qrv = 10.0 ⋅ 10−3 m3∕s (7.631)

at rated pressure drop, this would mean that the valve is too large for this pump, or the pump
is too small for the valve. Likewise, the relief valve should be set to limit the line pressure
to a desired value, and should be sized to so that it has the rated flow capacity to be able
to dump the pump flow capacity when the servo valve is in neutral position. Similarly, if
the desired maximum cylinder speed is larger than the one afforded by rated flow rate, the
pump–valve combination is too small to be able support the desired motion, that is if the
required maximum cylinder speed is Vmax = 2 m∕s, and Qp = Qrv, matched pump–valve,
but Qrv∕Aa = 1 m∕s. In order to meet the cylinder speed requirement, we can either

1. Reduce the cylinder cross-sectional area by a factor of two, hence increase the cylinder
speed by two for the same flow rate. But this in turn reduces the force output capacity
of the cylinder by two.

2. Increase the pump and valve size such that their flow rate is increased by two.
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Similarly, the maximum force the EH system can afford to exert even under a zero accelera-
tion condition (no head-room for force) may be smaller than desired, that is Fload = 15 000,
and available force at rated conditions,

(pmax − pr) ⋅ Aa = (20.865 − 6.895) ⋅ 106 ⋅ 0.001 = 13 590 N (7.632)

One way to determine the approximate proportional gain of the closed loop PID
controller is to decide on the maximum position following error for which the valve should
be fully open, neglecting transient effects. This relationship would give a good estimate
of the proportional gain Kp. Then the rest of the PID gains Ki, Kd can be tuned, including
the tuning of Kp around the estimated value until the desired closed loop performance is
achieved. Let

(yd(t) − y(t))max = emax (7.633)

for which we would like the controller to open the valve fully, xv = xvmax. Neglecting the
transient aspect of the amplifier and valve dynamics,

icmd ≈ Kp ⋅ emax (7.634)

xv = xvmax = xvmax ⋅ Kt ⋅ Ka ⋅ icmd (7.635)

xvmax = xvmax ⋅ Kt ⋅ Ka ⋅ emax ⋅ Kp (7.636)

Kp = 1
Kt ⋅ Ka ⋅ emax

(7.637)

Note that this calculated value for Kp is only a guidance as a starting point, and a very useful
one. The actual values of the PID gains (Kp, Ki, Kd) should be further tuned to achieve the
desired dynamic performance on the actual hardware.

Remarks on Simulations In order to understand the effect of different circuit
design parameters as well as to be able to confirm the accuracy of the simulation results
by our qualitative physics based reasoning, it is instructive to examine the effects of the
following different conditions in simulation;

1. In order to confirm that the overall dynamic model makes sense, simulate the system
for a condition that the servo valve is always in neutral position (no flow through
the servo valve), and initial conditions of the cylinder are stationary at a nominal
position. The simulation results should confirm that the cylinder does not move, and
pressures in A and B sides do not change, no flow through the servo valve. All of the
pump flow should be dumped back to the tank through the relief valve.

2. The next level of check in the correctness of the model and simulation is to specifiy
the servo valve spool position as a function of time, xv(t), instead of having it
determined via a control current command and valve dynamics. Given a prescribed
valve position as a function of time, we can approximately predict and expect that the
cylinder velocity should have a similar profile to the motion of the valve spool, and
the cylinder position should be similar to the integral of the valve spool displacement.
This simulation excludes the effect of servo valve dynamics and the closed loop PID
controller.

3. Much smaller and much larger hose volumes between pump and servo valve, and
between servo valve and cylinder, can be simulated.

4. Different damping coefficient for the servo valve inertial dynamics: very small (i.e.,
cv = 0.1) or very large (i.e., cv = 1.0) can be simulated.
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5. Different damping in the cylinder and load dynamics, cp.

6. Gains of PID controller; especially Kd value since velocity can reach large values for
very short periods of time due to high frequency content.

Remark on “Dither” Signal in Hydraulic Control There are two physical
sources of hysteresis in a hydraulic valve:

1. stiction friction,

2. electromagnetic hysteresis.

Electromagnetic materials have hysteresis. Let us assume that current is zero and magnetic
field is zero in a solenoid. When current is applied from zero to a finite value, a magnetic
field will develop approximately proportional to the current magnitude. When the current
is reduced back to zero, the magnetic field will not be exactly zero, but some residual field
will be left. This is the nature of electromagnetism and materials used in electromagnetic
actuators such as solenoids.

Stiction friction presents a position control problem for valves. Due to stiction friction,
when the control signal (current) is small, the spool movement may be prevented. In order
to avoid this, it is very common in hydraulic circuits to add (“superimpose”) a dither signal
to the regular control signal in order to keep the valve spool moving about a nominal
operating condition.

The dither signal is a periodic signal (i.e., sinusoidal) with a frequency typically in
the range of 100 Hz to 300 Hz, and its magnitude is in the range of 2–10% of the maximum
current signal,

idither = Adither ⋅ sin(2𝜋 wdither t) (7.638)

where Adither = 0.02 ∼ 0.10 ⋅ imax, and wdither = 100 ∼ 300 Hz. The frequency and magni-
tude of the dither and its magnitude selection depends on the specific type of valve appli-
cation and is mostly determined by experimentation. The key is that the dither frequency
should be large enough not to affect the normal position response within the bandwidth
of the valve, but small enough still to cause some motion to break the stiction friction.
The dither signal can either be generated digitally in software or by an analog operational
amplifier circuit and added to the normal current signal.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Filename: EH_Servo_Sim.m

global D_p w_shaft p_max

global Q_rv x_vmax T_vmax p_r c_v w_n tau_a K_a K_t i_v x_v

global beta V_hose_pv V_hose_va V_hose_vb A_a A_b l_cyl m_p c_p m_l

F_load

global Q_p Q_v Q_r

global p_p p_a p_b p_t

global y_d ydot_d y ydot K_fb K_p K_i K_d u_i i_cmd

% Parameters of the components of the EH hydraulic circuit

D_p = 20 ∗ 10ˆ-6 ; % mˆ3/rev

p_max = 20.685 ∗10ˆ6 ; % [N/mˆ2] = Pa

x_vmax = 10 ∗ 10ˆ-3 ; % m
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c_v = 0.60 ; % damping ratio of the valve spool motion

tau_a = 0.01 ; % sec

K_a = 1.0 ; % current amp gain

K_t = 1.0 ; % current to torque gain

Q_rv = 1.0 ∗ 10ˆ-3 ; % mˆ3/sec

p_r = 6.895 ∗10ˆ6 ; % Pa = N/mˆ2

beta = 1.5 ∗(10ˆ9) ; % Bulk modulus

V_hose_pv = 0.001 ; % [mˆ3]

V_hose_va = 0.001 ; % [mˆ3]

V_hose_vb = 0.001 ; % [mˆ3]

A_a = 0.001 ;

A_b = 0.0005 ;

l_cyl = 1.0 ; % [m]

m_p = 10 ; % kg

m_l = 990 ; % kg

c_p = 100.0 ;

% PID controller parameters and initialization

K_fb = 1.0 ;

K_p = 3.0 ;

K_i = 0.0 ;

K_d = 0.0 ;

u_i = 0.0 ;

% Input conditions

w_shaft = 3000/60 ; % rev/sec

F_load = (m_p + m_l) ∗ 9.81 ; % kg m/secˆ2 = N

% Initial conditions on head and rod-end volume of cylinder.

i_v = 0.0 ;

x_v = 0.0 ;

xdot_v = 0.0 ;

y = 0.2 ; % Initial cylinder position

ydot = 0.0 ; % Initial cylinder velocity

y_d = 0.2 ;

ydot_d = 0.0 ;

% Initial pressures, atmospheric pressure: 101 kPa

p_p = 101 ∗ 10ˆ3; % Pump pressure: Pa

p_a = F_load/A_a ;

p_b = 101 ∗ 10ˆ3 ;

p_t = 101 ∗10ˆ3 ; % kPa Tank pressure

Q_r = 0.0 ;

Q_v = 0.0 ;

% Simulation over a time period: [t_0, t_f]

t_0 =0.0;
t_f =5.0 ;



JWST499-c07 JWST499-Cetinkunt Printer: Yet to Come October 9, 2014 8:41 254mm×178mm

562 MECHATRONICS

t_sample = 0.001 ;

z=zeros(8,1);

z(1) = p_p ;

z(2) = i_v ;

z(3) = x_v ;

z(4) = xdot_v ;

z(5) = p_a ;

z(6) = p_b ;

z(7) = y ;

z(8) = ydot ;

% y_out = [ Q_p Q_v Q_r p_p p_a p_b i_cmd x_v∗10ˆ3 y_d y ];

y_out = [ 0.0 0.0 0.0 p_p p_a p_b 0.0 0.0 0.2 0.2 ];

for (t=t_0: t_sample:t_f)

% Solve ODEs...

t_span=[t,t+t_sample] ;

i_cmd = EH_Servo_PID_Controller(t) ;

[T,z1] = ode45(‘EH_Servo_Dynamics’,t_span, z);

[m,n]=size(z1);
z(:)=[z1(m,:)] ;

t

y_out=[y_out ;

Q_p Q_v Q_r z(1) z(5) z(6) i_cmd z(3)∗100 y_d z(7) ];

end

[m,n]=size(y_out);
t_inc = (t_f-t_0)/m ;

tout=t_0:t_inc:t_f-t_inc;
tout = tout’ ;

figure(1) ;

subplot(2,2,1) ;

plot(tout, y_out(:,1), ‘k’,tout, y_out(:,2), ‘b’,tout, y_out(:,3), ‘m’);

xlabel(‘Time (sec)’) ; ylabel(‘Flow rate (mˆ3/sec)’) ;

legend(‘Q_p’,‘Q_v’, ‘Q_r’);

subplot(2,2,2) ;

plot(tout, y_out(:,4), ‘k’,tout, y_out(:,5), ‘b’,tout, y_out(:,6), ‘g’);

xlabel(‘Time (sec)’) ; ylabel(‘Pressure [Pa]’) ;

legend(‘p_p’,‘p_a’,‘p_b’);

subplot(2,2,3) ;

plot(tout, y_out(:,7), ‘k’,tout, y_out(:,8), ‘b’);

xlabel(‘Time (sec)’) ; ylabel(‘Valve currentcmd and spool position’) ;

legend(‘i_cmd’,‘x_v’);

subplot(2,2,4) ;

plot(tout, y_out(:,9), ‘k’,tout, y_out(:,10), ‘b’);

xlabel(‘Time (sec)’) ; ylabel(‘Cylinder position: cmd and mea.’) ;

legend(‘y_d’,‘y’);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Filename: EH_Servo_PID_Controller.m

function i_cmd = EH_Servo_PID_Controller(t)

global y_d ydot_d y ydot K_fb K_p K_i K_d u_i

% Desired cylinder position command to PID controller

if t<1.0

y_d = 0.2 ;

ydot_d = 0.0 ;

elseif (t>= 1.0 && t<=2.0)
y_d= 0.2 + 0.5 ∗(t-1.0) ;

ydot_d = 0.5 ;

elseif (t> 2.0 && t<=3.0)
y_d = 0.5 ;

ydot_d = 0.0 ;

elseif (t> 3.0 && t<=4)
y_d = 0.7 - 0.5 ∗ (t - 3.0) ;

ydot_d = - 0.5 ;

else

y_d = 0.2 ;

ydot_d = 0.0 ;

end

% Cylinder position sensor reading; feedback signal.

y_fb = K_fb ∗ y ;

ydot_fb = K_fb ∗ ydot ;

% PID control algorithm

u_i = u_i + (y_d - y_fb) ;

i_cmd = K_p ∗(y_d - y_fb) + K_i ∗ u_i + K_d ∗ (ydot_d - ydot_fb) ;

return ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Filename: EH_Servo_Dynamics.m

function zdot = EH_Servo_Dynamics(t,z)

global D_p w_shaft p_max

global Q_rv x_vmax p_r c_v w_n tau_a K_a K_t i_v x_v

global beta V_hose_pv V_hose_va V_hose_vb A_a A_b l_cyl m_p c_p m_l

F_load

global Q_p Q_v Q_r

global p_p p_a p_b p_t

global y_d ydot_d y ydot K_fb K_p K_i K_d u_i i_cmd

p_p = z(1) ;

i_v = z(2) ;
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x_v = z(3) ;

xdot_v = z(4) ;

p_a = z(5) ;

p_b = z(6) ;

y = z(7) ;

ydot = z(8) ;

zdot=zeros(8,1) ;

% ODEs....

% Pump flow rate and pressure, and relief-valve model (instantaneously

% acting)

Q_p = D_p ∗ w_shaft ;

if p_p < p_max

zdot(1)= (beta/V_hose_pv)∗(Q_p - Q_v) ;

Q_r = 0.0 ;

else

zdot(1) = 0.0 ;

Q_r = Q_p - Q_v ;

end

% Amplifier and servo valve electrical dynamics

zdot(2) = K_a ∗ (1/tau_a)∗ (- z(2) + i_cmd) ;

T_v = K_t ∗ z(2) ;

% Servo valve stage two spool position and torque relationship

if ((x_v/x_vmax) <= 0.4)

w_n = 2∗pi∗75 ; % rad/sec

else

w_n = 2∗pi∗ (75 - ( ((x_v/x_vmax) - 0.4) ∗ ((75-25)/(1.0-0.4)) ));

% rad/sec

end

zdot(3) = z(4) ;

zdot(4) = (- 2 ∗ c_v ∗ w_n ∗ z(4) - w_nˆ2 ∗ z(3)) + (x_vmax/T_vmax)

∗ w_nˆ2 ∗ T_v ;

if x_v >= 0.0

Q_pa = Q_rv ∗ abs(x_v/x_vmax) ∗ ((p_p - p_a)/p_r)ˆ0.5 ;

Q_bt = Q_rv ∗ abs(x_v/x_vmax) ∗ ((p_b - p_t)/p_r)ˆ0.5 ;

Q_v = Q_pa ;

zdot(5) = (beta/(V_hose_va + y ∗ A_a))∗(Q_pa - ydot ∗ A_a) ;

zdot(6) = (beta/(V_hose_vb + (l_cyl - y) ∗ A_b))∗(-Q_bt + ydot ∗ A_b);

else

Q_at = Q_rv ∗ abs(x_v/x_vmax) ∗ ((p_a - p_t)/p_r)ˆ0.5 ;

Q_pb = Q_rv ∗ abs(x_v/x_vmax) ∗ ((p_p - p_b)/p_r)ˆ0.5 ;

Q_v = Q_pb ;

zdot(5) = (beta/(V_hose_va + y ∗ A_a))∗(-Q_at - ydot ∗ A_a) ;

zdot(6) = (beta/(V_hose_vb + (l_cyl - y) ∗ A_b))∗(Q_pb + ydot ∗ A_b);

end
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% Piston and load inertia dynamics

zdot(7) = z(8);

zdot(8) = (1/(m_p+m_l))∗(-c_p ∗ z(8) + p_a ∗ A_a - p_b ∗ A_b - F_load) ;

return;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Example: One Degree of Freedom Hydraulic Motion Control System
with Flexible Base and Load Contact Consider a single-acting hydraulic cylin-
der which is connected to a non-rigid base as well as a load (Figure 7.105). The base of
the cylinder is not connected to a rigid ground, but to a flexible and moving base. This
is the case in mobile work equipment where the hydraulic cylinder is connected to the
machine frame and the machine frame rides on tires which are highly flexible. In addition,
the rod-end is connected to the load through a non-rigid tool mechanism or the the load is
not rigid, such as a pile of soil. The interaction between the cylinder and the load is modeled
as an inertia, a spring, and a damper. The machine frame, tires, and the cylinder outer shell
inertia are modeled as mass 1, m1, and spring and damper constants k1 and c1. The piston
and rod are modeled as moving inertia (mass) 2, m2. The load contact and load inertia
are modeled as mass 3, spring and damper constants, m3, k3, c3, respectively. The same
dynamic model principle is used in modeling hydraulically powered roll-thickness control
systems in steel mills and other web-thickness control applications. In the roll-thickness

k1

k3

c1

c3

m 1

m   2

Phe

Pre

Ahe

Are

m3

Fload

y0

y2

y3

y1

Load

Tool
fixture

Cylinder

Frame

Tire

FIGURE 7.105: One degree of freedom hydraulic motion system with flexible base and load

connection. A hydraulic cylinder is connected to a frame which rides on tires. The contact

between the load and cylinder is a non-rigid tool fixture. The base frame and tire, as well as the

tool fixture, are modeled as inertia with stiffness and damping. Cylinder inertia is included in

the base inertia and modeled as mass 1, and piston and rod inertia is included as the mass 2,

and load inertia is modeled as mass 3. This type of dynamic condition exists in many

applications such as mobile equipment riding on tires, hydraulically controlled thickness

control mechanisms in steel mill rolls. In steel mill roll thickness control systems, the base

motion would be stationary (y0(t) = 0.0).
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control application case, the base motion would be zero, whereas the base motion is non
zero in mobile equipment applications due to ground height variations as the equipment
travels on the ground.

There are three inertias in the system: m1, m2, m3, connected to each other via springs
and dampers, as well as the hydraulic cylinder. The motion of the hydraulic system has three
degrees of freedom, y1(t), y2(t), y3(t), which are the positions of each inertia relative to a
reference ground. The ground height variation y0(t) is an input variable as a function of the
actual ground conditions and travel speed of the equipment. In web-thickness roll control
applications, it is zero, y0(t) = 0.0. The motion of each mass is defined by a second-order
differential equation. The coupling between the motion of the three inertias is defined by
the springs and dampers, as well as the pressure in the cylinder. The cylinder pressure is
modeled as a compressible fluid volume. The flow in and out of the cylinder is controlled
by a flow control valve. The flow control valve is modeled to have a spool displacement
versus orifice area relationship with a symmetric deadband. In other words, around the
null-position of the spool, there is a deadband in equal amounts in both directions of the
spool motion. While the spool position is in the deadband region, there is no orifice opening,
hence no flow.

The resultant dynamic equations are the three coupled second-order and two first-
order differential equations, where the flow and pressure conditions affect the motion of
the inertia through pressure in the cylinder head-end and rod-end.

m1 ÿ1(t) = −c1(ẏ1(t) − ẏ0(t)) − k1(y1(t) − y0(t)) − (Ahe phe(t) − Are pre(t)) (7.639)

m2 ÿ2(t) = −c3(ẏ2(t) − ẏ3(t)) − k3(y2(t) − y3(t)) + (Ahe phe(t) − Are pre(t)) (7.640)

m3 ÿ3(t) = −c3(ẏ3(t) − ẏ2(t)) − k3(y3(t) − y2(t)) − Fload(t) (7.641)

where,

dphe(t)

dt
= 𝛽

Vhe(t)
⋅ (Qhe(t) − Ahe(ẏ2(t) − ẏ1(t))) (7.642)

dpre(t)

dt
= 𝛽

Vre(t)
⋅ (−Qre(t) + Are(ẏ2(t) − ẏ1(t))) (7.643)

For the spool position ranges in xs ≥ xdb, the valve spool has positive displacement past the
deadband region and flow is from pump to head-end,

Qhe(t) = Cd1 ⋅ Ahe1(xs) ⋅
√|pP(t) − phe(t)| (7.644)

Qre(t) = Cd1 ⋅ Are1(xs) ⋅
√|pre(t) − pt(t)| (7.645)

for the spool position ranges in xs ≤ −xdb, the valve spool has negative displacement past
the deadband region and the flow is from pump to rod-end,

Qhe(t) = −Cd2 ⋅ Ahe2(xs) ⋅
√|phe(t) − pt(t)| (7.646)

Qre(t) = −Cd2 ⋅ Are2(xs) ⋅
√|pP(t) − pre(t)| (7.647)

for the spool position ranges in −xdb ≤ xs ≤ xdb, the valve spool is in the deadband region
and there is no flow to either side of the cylinder,

Qhe(t) = 0.0 (7.648)

Qre(t) = 0.0 (7.649)

and

Vhe(t) = Vhe(0) + Ahe ⋅ (y2(t) − y1(t)) (7.650)

Vre(t) = Vre(0) + Are ⋅ (y2(t) − y1(t)) (7.651)
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FIGURE 7.106: Simulation results: hydraulic cylinder connected to a flexible base and load.

The position of each mass, pressure, and flow rate on both sides (head-end and rod-end) of the

cylinder.

where Vhe(0), Vre(0) are the initial conditions of the head-end and rod-end volume of the
cylinder when y1(0) = y2(0) = 0.0

Simulation results for the following model parameters and initial conditions are
shown in Figure 7.106. The model parameters used in the numerical simulations are

m1 = 1000 kg (7.652)

m2 = 100 kg (7.653)

m3 = 1000 kg (7.654)

k1 = 105 N∕m (7.655)

k3 = 106 N∕m (7.656)

c1 = 1000 N∕(m∕s) (7.657)

c3 = 1000 N∕(m∕s) (7.658)

𝛽 = 7.0 ⋅ 108 N∕m2 (7.659)

Ahe = 0.01 m2 (7.660)

Are = 0.005 m2 (7.661)

Cd1Ahe1(xs(t)) = 0.01 ⋅ (xs − xdb) (7.662)

Cd1Are1(xs(t)) = 0.01 ⋅ (xs − xdb) (7.663)

Cd2Ahe2(xs(t)) = 0.01 ⋅ (xs − xdb) (7.664)

Cd2Are2(xs(t)) = 0.01 ⋅ (xs − xdb) (7.665)

xdb = 10% deadband in percentage of (7.666)

maximum spool travel (7.667)
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The initial conditions are

y1(0) = 0.0 (7.668)

y2(0) = 0.0 (7.669)

y3(0) = 0.0 (7.670)

ẏ1(0) = 0.0 (7.671)

ẏ2(0) = 0.0 (7.672)

ẏ3(0) = 0.0 (7.673)

phe(0) = (m2 + m3) ⋅ 9.81∕Ahe = (9.81) ⋅ 110 000 N∕m2 (7.674)

pre(0) = 0.0 (7.675)

Vhe(0) = 0.01 m3 (7.676)

Vre(0) = 0.01 m3 (7.677)

The input conditions are

y0(t) = 0.0 (7.678)

Fload(t) = 0.0; 0 ≤ t ≤ 2.0 s (7.679)

= 10 000 N; 2.0 < t ≤ 6.0 s (7.680)

= 0.0; 6.0 < t ≤ 10.0 s (7.681)

xs(t) = 0.0 (7.682)

pP(t) = 20 ⋅ 106 N∕m2 constant (7.683)

which simulates a case of response of all three inertias and pressures on both sides of the
cylinder when the valve is in neutral position and a sudden change occurs on the load
(Figure 7.106). Other conditions of valve control and the resulting behavior of the system
can be easily simulated by specifying the valve spool motion as a function of time or as a
control signal from a closed loop control logic. Here, we assumed that we used a valve with
symmetric orifice geometry between all ports (pump to head-end, rod-end to tank, head-end
to tank, pump to rod-end). In this particular simulation, the flow coefficients do not affect
the simulation results because the valve is in neutral position and leakage through the valve
at neutral position is neglected. However, the valve orifice geometry between ports has an
important effect on the system transient response when the valve spool is in flow regulating
mode of operation, that is when the valve spool is positioned outside the deadband region
and allows flow between ports.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Filename: Sim381.m

% Sim381.m

t_0 =0.0;
t_f =10.0 ;

t_sample = 0.001 ;

z=zeros(8,1);
z(1) = 0.0 ;

z(2) = 0.0 ;

z(3) = 0.0 ;

z(5) = 0.0 ;

z(5) = 0.0 ;

z(6) = 0.0 ;

z(7) = 1100∗9.81/0.01 ;

z(8) = 0.0 ;
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z_out = z’ ;

u_out = 0 ;

for (t=t_0: t_sample:t_f)

t_span=[t,t+t_sample] ;

[t,z1] = ode45(‘cyl_flex’,t_span, z);

[m,n]=size(z1);
z(:)=z1(m,:);
if z(7)<0.0 % Pressure can not be negative.

z(7)=0.0;
end

if z(8)<0.0

z(8)=0.0;
end

if t<2.0 % Load force for plotting purposes.

F_load= 0.0 ;

elseif (t>= 2.0 & t<6.0)

F_load = 10000 ;

else

F_load = 0.0 ;

end

u(1) = F_load ;

z_out=[z_out ; z’] ;

u_out=[u_out ; u];

end

t_out=t_0:t_sample:t_f+t_sample;
t_out = t_out’ ;

subplot(321) ; plot(t_out,z_out(:,1)); title(‘y1’); grid on;

subplot(323) ; plot(t_out,z_out(:,2)); title(‘y2’); grid on;

subplot(325) ; plot(t_out,z_out(:,3)); title(‘y3’); grid on;

subplot(322) ; plot(t_out,z_out(:,7)); title(‘Phe (Head end pressure)’);

grid on;

subplot(324) ; plot(t_out,z_out(:,8)); title(‘Pre (Rod end pressure)’);

grid on;

subplot(326) ; plot(t_out,u_out(:,1)); title(‘Load Force’); grid on;

%%%%%%%%%%%%%%%%%%%%

%%% Filename: cyl_flex.m

function zdot=cyl_flex(t,z)

% Parameters

m1 = 1000 ;

m2 = 100 ;

m3 = 1000 ;

k1 = 1.0E5 ;

k3 = 1.0E6 ;

c1 = 1000 ;

c3 = 1000 ;

beta = 7∗10ˆ8 ;

A_he = 0.01 ;

A_re = 0.005 ;
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x_db = 10 ;

C_he1 = 0.01 ∗ abs(x_s - x_db) ;

C_re1 = 0.01 ∗ abs(x_s - x_db) ;

C_he2 = 0.01 ∗ abs(x_s - x_db) ;

C_re2 = 0.01 ∗ abs(x_s - x_db) ;

% Initial conditions on head and rod-end volume of cylinder.

V_he0 = 0.01 ;

V_re0 = 0.01 ;

% Input conditions

x_s = 0.0 ; % Valve spool position. Change this as function of time

% to simulate a different condition.

p_p = 20∗10ˆ6 ; % Pump pressure

p_t = 0.0 ; % Tank pressure

y0 = 0.0 ; % Base motion

doty0= 0.0 ;

V_he = V_he0 + A_he∗(z(2) - z(1));

V_re = V_re0 + A_re∗(z(2) - z(1));

if x_s <= - x_db % Valve: flow-rate and pressure relation

Q_he = -C_he2 ∗ (abs(z(7)-p_t))ˆ0.5 ;

Q_re = -C_re2 ∗ (abs(p_p- z(8)))ˆ0.5 ;

elseif (-x_db < x_s && x_s < x_db)

Q_he = 0.0 ;

Q_re = 0.0 ;

elseif x_s >= x_db

Q_he = C_he1 ∗ (abs(p_p - z(7)))ˆ0.5 ;

Q_re = C_re1 ∗ (abs(z(8)-p_t))ˆ0.5 ;

end

if t<2.0 % Load force

F_load= 0.0 ;

elseif (t>= 2.0 & t<6.0)

F_load = 10000 ;

else

F_load = 0.0 ;

end

zdot=zeros(8,1);
zdot(1) = z(4) ;

zdot(2) = z(5) ;

zdot(3) = z(6) ;

zdot(4) = (1/m1)∗(-c1∗(z(4)-doty0)-k1∗(z(1)-y0)-(A_he∗z(7)-A_re∗z(8)));
zdot(5) = (1/m2)∗(-c3∗(z(5)-z(6))-k3∗(z(2)-z(3))+(A_he∗z(7)-A_re∗z(8)));
zdot(6) = (1/m3)∗(-c3∗(z(6)-z(5)) -k3∗(z(3)-z(2))-F_load) ;

zdot(7) = (beta/V_he)∗(Q_he-A_he∗(z(5)-z(4))) ;

zdot(8) = (beta/V_re)∗(-Q_re+A_re∗(z(5)-z(4))) ;

%%%%%%%%%%%%%%%%%%%%%
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FIGURE 7.107: Open-center hydraulic system: fixed displacement pump, main flow control

valve with pump-to-tank orifice at neutral position.

7.10 EXAMPLE: OPEN CENTER HYDRAULIC
SYSTEM – FORCE AND SPEED MODULATION
CURVES IN STEADY STATE

Consider the single degree of freedom hydraulic motion system shown in Figure 7.1072 .
An open center hydraulic system has a fixed displacement pump and a main flow metering
valve which has an orifice opening between pump and tank ports (P–T) when its spool is in
neutral position. Since the pump is of fixed displacement type, as long as the input shaft to
the pump is rotating (i.e., typically the case in mobile equipment applications because the
pump is driven by the engine), the pump generates flow according to

Qs = 𝜂v ⋅ Dp ⋅ win (7.684)

where Qs is the pump flow rate, Dp is the pump volumetric displacement, win input shaft
speed of the pump, and 𝜂v is the volumetric efficiency of the pump. The pump output
pressure is determined by the load. When the main valve is in neutral position, this flow
must go through the P–T port to the tank. Since this flow through the P–T port performs
no useful work, it is a lost power. The lost power (Ploss) is the flow rate times the pressure
drop across the valve,

Qv = Qs (7.685)

Ploss = Qv ⋅ ΔpPT (7.686)

where Qv is the flow rate across the valve P–T orifice, ΔpPT is the pressure drop across
the P–T orifice of the valve. In order to minimize the power loss, the pressure drop across
the valve through the P–T port should be minimized. The design balance is obtained by
a compromise between the desire to minimize the power loss, which requires as small
a pressure drop as possible which in turn requires as large an orifice size as possible,
while controlling accuracy and physical size (compactness requirement) limitations require
as small a valve as possible. A typical compromise design choice in mobile equipment
applications is that the valve is sized to support the rated flow with P–T pressure drop value
in the range of 100–200 psi.

2 This section is based on lectures by Dr. Richard Ingram.
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The worst case power loss in open center systems occurs if the flow has to go though
the relief valve. Relief valve pressure setting can be in the range of 3000–5000 psi. If we
assume the relief valve pressure is set at prelif = 3000 psi, and the main flow valve sized
such that ΔpPT = 100 psi (to support full flow rate across the P–T orifice when the spool is
in neutral position), hydraulic power loss (wasted power) can be 30 times higher if the flow
has to go through the relief valve as opposed to P–T port of the main flow control valve.

Ploss = Qs ⋅ 100 flow through P–T (7.687)

Ploss = Qs ⋅ 3000 flow through relief valve (7.688)

Clearly, a hydraulic system with a fixed displacement pump, a relief valve, and a closed
center valve would also be functional. However, since in a closed center valve, the P–T
port does not exist (APT = 0.0), the flow would have to go through the relief valve when
the main flow control valve is in neutral position. Such a system would be about 30 times
less efficient than the same system with an open center main flow control valve.

Let us consider the orifice geometries as a function of the spool position. There are
five orifice areas defined by the position of the spool: pump to tank (P–T), pump to cylinder
head end (P–CHE), pump to cylinder rod end (P–CRE), cylinder head-end to tank (CHE–T)
and cylinder rod end to tank (CRE–T) (Figures 7.107 and 7.108). Independently controlled
valves (IMVs) control each one of these orifice areas by controlling a separate spool for
each orifice. In a standard single spool valve, these orifice areas are directly a function
of the spool. Figure 7.108 shows a possible set of orifice area curves which are directly a
function of the geometry of the valve spool and valve body orifices. Let us consider the case
that the spool moves to the right side in the following increments of its total displacement:
0, 25, 50, 100%. As that happens, the orifice openings between ports, pump, tank, cylinder
head-end, and cylinder rod-end vary as follows,

APT ≠ 0 (7.689)

APCHE
≠ 0 (7.690)

ACRET ≠ 0 (7.691)

2525 5050 7575 100100 %% 0

Orifice areas

A C  -T

A P-CA P-C

AC   -T

Xs - spool displacement (%)

A P-T
he

he
re

re

FIGURE 7.108: Open-center valve and its orifice areas as a function of spool displacement:

P-T , P-CHE, P-CRE, CHE-T , CRE-T .
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APCRE
= 0 (7.692)

ACHET = 0 (7.693)

Notice that the valve has a large deadband. As the spool moves for up to about 25% of
its total travel range, none of the orifices to either side of the cylinder open. In many
cases, this deadband is built on purpose into the valve design in order to reduce leakage
and unintended motion, at the expense of dynamic response. When the spool moves in
the opposite direction, the orifice opening values change, establishing different hydraulic
connection between ports P, T , CHE, CRE. Let us consider the case that spool moves to the
left side in the following increments of its total displacement: 0,−25,−50,−100%. As that
happens, the orifice openings between ports, pump, tank, cylinder head-end, and cylinder
rod-end vary as follows,

APT ≠ 0 (7.694)

APCHE
= 0 (7.695)

ACRET = 0 (7.696)

APCRE
≠ 0 (7.697)

ACHET ≠ 0 (7.698)

resulting in cylinder motion in the opposite direction.
Flow rate across each orifice is defined by the following relationship,

Qv,ij = CD ⋅ Aij(xs) ⋅
√

Δpij (7.699)

where i, j represent the ports P, T , CHE, CRE and their five possible connection possibilities
in an open-center valve, Aij(xs) represents the orifice area opening as a function of spool
position between the ports, and Δpij represents the pressure drop across the port, CD is the
valve gain.

For a given physical valve, all five of the orifice areas as a function of spool dis-
placement are known strictly based on the valve geometry: APT(xs), APCHE

(xs), APCRE
(xs),

ACHET(xs), ACRET(xs). In addition, the valve gain CD is known as a specification. If it is
not available, CD can be measured as a calibration parameter using the flow rate equation
above: under known pressure drop conditiond, measured flow rate, and orifice opening,
then calculate the CD from the above equation. Let us assume that the pump parameters
(volumetric displacement DP and volumetric efficiency 𝜂v) are specified and the input shaft
speed of the pump (wpump) is given.

Let us consider two different cases: case 1 is a blocked load, and case 2 is a moving
load case with light and heavy load conditions (Figure 7.109).

Case 1: Blocked load case (force modulation curve). Since the load is blocked and the
cylinder cannot move, the hydraulic system controls the force applied on the load.

Case 2: Moving load case for light load and heavy load. In this case, we will assume the
force needed to accelerate/decelerate the load is negligable (inertial force is neglected)
for the purpose of obtaining the steady-state force and speed modulation curves.

In both cases, consider that the spool is moved from left to right starting at center
position. We can assume similar behavior in the opposite direction. Analysis of case 1 gives
us the steady-state force modulation curves for the open-center hydraulic system. In other
words, it defines in steady-state the force output at the cylinder rod (F) as a function of the
spool position (xv). As the valve moves from neutral position towards 25%, then 50% and
100% displacements, the orifice openings change according to the orifice functions shown
in Figure 7.108. Yet, since the load is blocked, the cylinder will not move. All of the flow
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FIGURE 7.109: Open-center hydraulic system, operating conditions: (a) blocked load and

steady-state force modulation curve, (b) moving load (low and high load cases) and

steady-state speed modulation curves.

has to go through the P–T port, until the relief valve pressure is reached. As a result, from
the flow equation, since we know the orifice opening and the flow rate that must go through
the P–T orifice, we can determine the pressure drop developed across the P–T port. This
same pressure is applied on the cylinder head-end as well. Hence, the applied force can be
calculated as a function of spool displacement. The resulting force as a function of spool
displacement is called the force modulation curve.

Qs = 𝜂v ⋅ Dp ⋅ wpump (7.700)

QPT = CD ⋅ APT(xs) ⋅
√

pP − pT = Qs (7.701)

Fs(xs) = ACyl,HE ⋅ pP(xs) (7.702)

From these equations, we can calculate the force modulation curve as a function of the
spool displacement (Figure 7.109). For a given constant Qs and spool position xs, we know
APT(xs). Then pP can be determined as a function of xs. Since APT(xs) is large when xs is
small, and gets smaller when xs increases (Figure 7.108), the pP(xs) gets larger as xs gets
larger (Figure 7.109a). Notice that pP ≤ prelief , which defines the maximum force that can
be applied,

(Fs)max = ACyl,HE ⋅ prelief (7.703)

Notice that the modulation curve is also a function of the engine speed, hence the modulation
can be also affected by changing the engine speed. This is not possible in a load sensing
(closed-center) hydraulic system.
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Unlike in open-center hydraulic systems, in closed-center systems the operator cannot
modulate the tool force.

For a moving load, Case 2, again we can trace the orifice openings as a function of the
spool position. Let us neglect the inertia force needed to accelerate or decelerate the load.
Then, the cylinder will start to move only after the developed pressure at the output of the
pump is larger than the load pressure (load force/area). In the large load force case versus
small load force case, the spool has to move more, restricting the P–T orifice area, making
it smaller, hence increasing the pressure drop across P–T in order to support the flow rate.
In other words, as the spool position xs increases, APT decreases and PP increases. At the
same time, since the same pressure acts on the cylinder head-end side, it takes a larger
spool displacement in order to initiate the motion against a larger load. Although not shown
in the figure, we assume that there is a check valve between the pump and cylinder ports
so that the flow can only move in one direction: from pump to cylinder when the pump
pressure is larger than the cylinder port pressure. When the cylinder port pressure is larger
than the pump pressure, the check valve blocks the flow from cylinder to pump direction.
By analyzing the same relationship for different spool displacements, we can calculate data
points to plot the speed modulation curves under different loads. The start of motion of
the actuator at different spool displacements against different loads shows up as a variable
deadband in the speed modulation curve. The effective deadband is a function of the load.
Neglecting the force needed to accelerate the load and assuming the only load to overcome
is the gravity load, the load will not move as long as the P–T orifice opening is such that
the pump pressure developed, pP, is smaller than Fl∕ACyl,HE

Qs = 𝜂v ⋅ Dp ⋅ wpump (7.704)

QPT = Qs = CD ⋅ APT(xs) ⋅
√

pP − pT (7.705)

Fs = ACyl,HE ⋅ pP < Fl (7.706)

As the P–T orifice continues to close, pP will increase in order support the flow QPT = Qs
through a smaller orifice until ACyl,HE ⋅ pP is equal or larger than Fl, at which point the load
starts to move. Since we neglected the inertial forces, the pressure developed at the pump
output will be limited to pP = Fl∕ACyl,HE + ΔpPC, where ΔpPC is the pressure drop across
the valve between pump and cylinder port, which is at most 100–200 psi range by design.
As P–T closes and less orifice is available, more and more of the flow will go through the
P–CHE port, hence the speed of the cylinder will increase as spool displacement increases
and P–T closes. For larger loads (FL large), in order to develop larger pP, the P–T port
must get smaller compared to the lower loads. Hence, for larger loads, the first motion is
achieved after larger spool displacement. In other words, the effective deadband (the start
of motion as a function of spool displacement) is dependent on the load force, not just the
geometric deadband of the spool. When the spool position is such that it fully closes the
P–T port, all of the flow must go through the P–CHE port, while pp < prelief , which means
while the relief valve is closed. For large spool displacements, as long as pP < prelief and
APT = 0.0, the maximum speed of the cylinder for the low and high load condition would
be the same.

Remarks Hydraulic systems which drive mechanisms such as those in construction
equipment, have a linkage mechanism between the hydraulic cylinder and tool (e.g., bucket).
Operator command signals are effectively translated to the speed of the cylinder. The linkage
is simply a power conversion mechanism. If we assume it operates with 100% efficiency,
the hydraulic power in the cylinder is converted to the tool’s mechanical power. That is,
power is converted from flow-rate times pressure to speed (angular or translational) times
force (or torque if translational motion). The control “modulation” of the hydraulic cylinder



JWST499-c07 JWST499-Cetinkunt Printer: Yet to Come October 9, 2014 8:41 254mm×178mm

576 MECHATRONICS

refers to the gain between the lever displacement (operator command signal) and the change
in the speed or force of the cylinder: speed modulation or force modulation. That gain is
built into the hydraulic circuit including the control algorithm, control valves, pump, and
cylinder parameters. Depending on the kinematic conversion relationship from the cylinder
to the tool motion, that gain is further modified. Therefore, the linkage mechanism gain as
a function of linkage angular position effects (multiplies) the control modulation capability
from the operator commands to the motion/force delivered to the tool.

In load driven motion, such as lowering a bucket, if the downward motion speed is so
high that the maximum pump flow cannot supply the other end of the cylinder, there will be
cavitation in the other end of the cylinder. In order to maintain good controllability, cylinder
cavitation should be avoided. Consider the lowering motion of the bucket lift cylinder in
the load driven case. The maximum speed that the cylinder can move without causing
cavitation in the rod-end of the cylinder is

Vmax =
Qmax

ACyl,RE
(7.707)

=
𝜂v ⋅ Dp,max ⋅ wshaft

ACyl,RE
(7.708)

Let us assume the load is Wload, and the head-end area of the cylinder is AHE, and the
valve cylinder-to-tank orifice area is fully open (Av,CT) and that valve flow rate coefficient
is known for the system, Cd, then the speed of the cylinder will be

pCT =
Wload

AHE
(7.709)

Q = Cd ⋅ Av,CT ⋅
√

pCT (7.710)

V = Q
AHE

(7.711)

If V > Vmax, there will be voiding in the rod-end of the cylinder. If the speed of the cylinder
exceeds that speed, there will be cavitation in the rod-end of the cylinder.

7.11 EXAMPLE: HYDROSTATIC TRANSMISSIONS

When mechanical power is transmitted from source (i.e., a diesel engine or electric motor)
to a destination load (i.e., a track or wheel) via a pair of pump and motor, it is called a
hydrostatic transmission or hydrostatic drive. Most common applications of hydrostatic
transmissions are tracked vehicles, such as excavators, dozers, agricultural harvesters,
military tanks (Figure 7.110). There are also wheeled vehicles where the wheels are powered
via a hydrostatic transmission. In track-type vehicle applications, two pairs of pump-motor
combinations drive the two tracks of the vehicle. Typically, there are three pumps connected
to the diesel engine to support the two-track hydrostatic transmission system: two pumps
to convert mechanical power to hydraulic power (one for each track), and one pump for
the charge circuit to provide replenishing fluid into the circuit. Two hydraulic motors
(one hydraulic motor for each track) convert the hydraulic power back to mechanical
power (Figure 7.111). For simplicity, the charge circuit, flushing circuit, and line relief
valves are not shown in Figure 7.111. Each hydraulic motor is connected to the track
drive sprocket via a gear reducer. Engine speed can vary between its minimum (low idle)
and maximum speed during normal operation as a function of operator commands and
load conditions. Regardless of the variations of the engine speed within its operating
range, our goal is to control position, and/or speed and/or force at the tracks. This clearly
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Dozer (Track type tractor)

Excavator
Skid steer loader (Track type)

FIGURE 7.110: Hydrostatic transmission (drive) application in tracked vehicles.

requires a transmission system with adjustable gear ratio. The gear ratio of the hydrostatic
transmission is determined by the ratio of the pump and motor displacement. In older
hydrostatic transmission designs, the pump is variable displacement and the motor is fixed
displacement. However, the current trend is towards designing hydrostatic transmissions
with both pump and motor being of the variable displacement type.
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(Charge and flushing circuits, relief valves are not shown)

FIGURE 7.111: Hydrostatic transmission circuit and its components.
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Let us consider a two track vehicle application and its two hydrostatic transmission
designs and controls. For component sizing, we need the maximum load traction force and
maximum translational speed requirements,

� maximum load traction force: Fl,max,
� maximum translational speed: Vmax.

In other words, it is desired to have a tracked vehicle with a specified maximum traction
force and maximum travel speed capacity.

Let us assume 100% efficiency in the components, and then take a safety factor
in component sizing after the calculations. Furthermore, if we assume no pressure loss
between pump and motor line, and that the charge circuit makes up for the flushing circuit
flow perfectly, then the pump power is equal to the motor power. In other words, with
the above assumptions, the hydraulic power of pump (converted by pump from the engine
shaft’s mechanical power into hydraulic power) is equal to the hydraulic power delivered
to the motor.

We also assume that the compressibility of fluid in the hydraulic lines is negligable,
which is a reasonably good assumption assuming that the load conditions are such that the
frequency content of the load variations are low. However, if this assumption is not accurate
enough under certain operating conditions (i.e., hitting a rigid wall or impact loading), then
fluid compressibility may need to be taken into consideration in order to better predict the
dynamic behavior of the hydrostatic transmission and accurate dynamic control.

Furthermore, we assume the flushing and charge circuit components are sized so that:

1. Flushing circuit components leak a percentage of rated flow of the circuit, so that
fluid can be cooled and filtered, and then re-introduced to the circuit by the charge
circuit,

Qflush = 0.1 ⋅ Qp,rated (7.712)

2. The charge circuit is to make up the flushing circuit’s leak at a desired pressure,

Qcharge = Qflush (7.713)

pcharge = 2 MPa (7.714)

Component sizing decisions are determined by the following two key observations:

� The pump determines how much power is converted from mechanical to hydraulic
power, hence the hydraulic power in the circuit at any given time. Assume we have
a constant engine speed, weng. The power converted by the pump and delivered
to the hydrostatic transmission is determined by the pump displacement, which is
controllable, and pressure in the hydrostatic line,

Powerp(t) = (pp(t) − pr(t)) ⋅ Dp(t) ⋅ weng(t) (7.715)

= Teng,p(t) ⋅ weng(t) (7.716)

where pp(t) is the pressure at the pump output line (high pressure side), pr(t) is the
pressure at the pump input line (low pressure side), Dp(t) is the pump displacement
which has a range from negative to positive displacement through zero displacement
in order to provide bidirectional flow, while the mechanical input shaft speed in
unidirectional flow which is the engine speed, Teng,p(t) is the torque load on the
engine due to the pump. As a result, such a pump has a swashplate angle control
mechanism that requires two solenoids for an electronically controlled version. The
pump power must meet the load power requirement. The pump power is determined
by the engine speed, pump displacement (the controlled variable on the pump), and
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the line pressure which is determined by the load condition and motor displacement
as shown below.

� The motor determines how this power is converted to mechanical power to meet the
load demands. In other words, depending on the displacement of the motor, this power
is converted to mechanical power in various combinations of torque and speed,

Powerm(t) = (pm(t) − pr(t)) ⋅ Dm(t) ⋅ wm(t) (7.717)

where pm(t) is the pressure on the high side of the motor port, pr(t) is the pressure on
low side (return line), Dm(t) is motor displacement, wm(t) motor output shaft angular
speed.

For sizing calculations, we can use rated speed of the engine.

Powerp(t) = Powerm(t) = Powerload(t) (7.718)

Pump displacement for each one of the two identical circuits is determined by the
load power requirement,

Powerp(t) = (Fl,max∕2) ⋅ Vmax (7.719)

= prelief ⋅ Dp(t) ⋅ weng(t) (7.720)

Sizing should be done for worst case load conditions conditions,

Dp(t) ≥ (Fl,max∕2) ⋅ Vmax

prelief ⋅ weng(t)
(7.721)

Let us assume that pressure at the pump output and motor input is same, neglecting the
pressure drop (pressure loss) in the hydraulic line between pump and motor.

pp(t) = pm(t) (7.722)

In reality, the return line pressure is equal to the charge pressure, which is about 2 MPa in
a typical hydrostatic drive,

pcharge(t) = pr(t) = 2 MPa (7.723)

However, we will neglect the return line pressure

pr(t) = 0 (7.724)

since the pressure on the return line is much lower than the pressure on the powered line.
For instance, pp(t) is around 40–50 MPa range.

In motor sizing and control, the main consideration is the load force. The load force
is not under our control and is determined by operating conditions such as the ground
traction conditions and the load the vehicle faces. The objective in motor control is to scale
the available hydraulic power to mechanical power conversion so that the output torque is
equal or greater than the load torque.

Powerm(t) = pp(t) ⋅ Dm(t) ⋅ wm(t) (7.725)

= wm(t) ⋅ Tm(t) (7.726)

= wm(t) ⋅ Ng ⋅ Rt ⋅ (Fl(t)∕2) (7.727)

where Rt is the radius of the track output sprocket connected to the motor driven final gear
reducer, Ng is the gear ratio of the final gear reducer between the motor and track sprocket
drive, Fl is the load force the two tracks must overcome. It is clear that

Tm(t) = pp(t) ⋅ Dm(t) = Ng ⋅ Rt ⋅ (Fl(t)∕2) (7.728)
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From conservation of power between pump and motor (assuming perfect efficiency), the
speed conversion ratio between engine speed and motor output shaft speed is,

Powerp(t) = Powerm(t) (7.729)

pp(t) ⋅ Dp(t) ⋅ weng(t) = pp(t) ⋅ Dm(t) ⋅ wm(t) (7.730)

wm(t) =
Dp(t)

Dm(t)
⋅ weng(t) (7.731)

Similarly, the effective gear ratio between the load torque at each track and reflected load
on the engine is

Teng,p(t) ⋅ weng(t) = Tm(t) ⋅ wm(t) (7.732)

Teng,p(t) =
wm(t)

weng
(t) ⋅ Tm(t) (7.733)

=
Dp(t)

Dm(t)
⋅ Tm(t) (7.734)

Tm(t) =
Dm(t)

Dp(t)
⋅ Teng,p(t) (7.735)

Notice that the ratio of pump displacement and motor displacement defines the effective
transmission gear ratio between engine speed and motor speed. The gear ratio that can be
realized with continuous variability is in the range of

Dp,min

Dm,max
≤ Ntr =

Dp

Dm
≤ Dp,max

Dm,min
(7.736)

where Dp,min, Dp,max are minimum and maximum pump displacements, and Dm,min, Dm,max
are minimum and maximum motor displacements. Maximum motor speed, when the engine
is operating at a rated speed, can be determined by using the pump and motor displacements
that are maximum. It should be checked whether it meets the specified maximum track
speed requirement.

In short, pump displacement Dp(t) must be controlled to meet the power demand (i.e.,
maximize the available hydraulic power at all times, or only to meet the current demand,
or limit the load on the engine so that engine does not stall, or a combination of all of the
above), whereas the motor displacement Dm(t) is controlled to deliver the proper traction
torque (or force) to meet the load torque demand or commanded speed.

For a given load force, each track needs to deliver half of it, and the torque each track
motor must provide can be determined from,

Tm(t) = 1
Ng

⋅ Rt ⋅ (Fl(t)∕2) (7.737)

= Dm(t) ⋅ pline (7.738)

Since, we need to meet the maximum load demand with the maximum motor displacement
condition, then the selected motor should have a maximum displacement that meets the
following condition,

Dm,max ≥ Tm(t)

prelief
(7.739)

Once a particular motor is selected, then we would know the minimum and maximum
displacements of the motor, [Dm,min, Dm,max]. Then for a given load force condition
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(i.e., worst case) Fl, we can calculate the line pressure developed when the motor is at
its maximum displacement,

Tm(t) = 1
Ng

⋅ Rt ⋅ (Fl(t)∕2) (7.740)

pline =
Tm(t)

Dm,max(t)
(7.741)

And the line pressure under the same load condition when the motor is at its minimum
displacement is

Tm(t) = 1
Ng

⋅ Rt ⋅ (Fl(t)∕2) (7.742)

pline =
Tm(t)

Dm,min(t)
(7.743)

In other words, when track conditions face a load condition, Tm, depending on the value of
the motor displacement at any given time, line pressure will be at a value in the following
range, never exceeding the relief pressure since relief valves would open at that condition,

Tm

Dm,max
≤ pline ≤ min

(
Tm

Dm,min
, prelief

)
(7.744)

Another way to view the dynamics of the system is in terms of the maximum traction that
can be developed at the tracks and ground contact. If the ground conditions are such that a
smaller value of traction force can be developed, then the tracks would start slipping when
the the torque output from the motors exceeds the maximum torque that can be supported
by the track-ground conditions. This may happen even before relief pressure is reached.
For instance, in poor traction conditions (i.e., muddy and slippery ground conditions with
poor friction, hence poor traction capacity), we quickly observe slipping of the tracks.
Track slip condition should be minimized since it represents the wasted energy condition.

Component Sizing for Hydrostatic Transmissions Let us consider a
numerical example for a hydrostatic transmission circuit component sizing. Given hydro-
static transmission specifications for an application, such as an excavator model,

� the hydrostatic drive should be able to deliver traction force of Fl,max = 100 000 N,
and

� a linear speed of Vmax = 10 km∕h.

Based on this specification, a designer must select a pair of hydraulic pump-motors, as well
as the sprocket radius, final drive gear ratio, and charge pump.

The sprocket radius and final gear reducer ratio are typically chosen from a range of
standard values depending on the power levels involved in the application. Let us assume
that the final drive gear ratio and sprocket radius are

Ng = 50 (7.745)

Rs = 0.5 m (7.746)

Let us assume that the flushing circuit is sized to approximately flush about 10% of
the flow rate in the line. Then, the charge pump should be sized to provide this flow rate at
the nominal charge pressure. Hence, the selection criteria for the charge pump is

Qflush = 0.1 ⋅ Qp,rated (7.747)

Qcharge = Qflush (7.748)

pcharge = 2 MPa (7.749)
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These specifications (rated flow rate and rated pressure) then determine the size of the
flushing valves, charge pump, and valves in the circuit.

One of the important engineering constraints is the maximum line pressure in the
hydraulic lines, which sets the relief valve pressure settings,

prelief = pl,max ≈ 50 MPa (7.750)

The pump size and motor size selection is determined as follows: determine Dp, Dm.

Tm =
Rf

Ng
⋅

Fl,max

2
= 500 Nm (7.751)

wm =
Ng

Rf
⋅ Vmax = 277 rad∕s = 2652 rev∕min (7.752)

Then, the motor size can be determined from

Tm = Dm ⋅ pline (7.753)

wm =
Qm

Dm
(7.754)

where we select pline = 50 MPa = 50 × 106 N∕m2, and solve for Dm and Qm.

Dm = 2𝜋 ⋅ 10 ⋅ 10−6 m3∕rev = 6.28 × 10−5 m3∕rev (7.755)

Qm = Dm ⋅ wm = 0.167 m3∕min (7.756)

The pump size is calculated from (assuming 100% efficiency in the transmissions line and
at the pump and motor)

Tp = Dp ⋅ pline (7.757)

wp =
Qp

Dp
= weng ⟶ Dp = 6.65 × 10−5 m3∕rev (7.758)

where Qp = Qm and weng = 2500 rpm are known, then solve for Dp. Then, we can calculate
the Tp to determine the load torque reflected on the engine by the pump to verify if it is
acceptable for the engine.

Control System for Hydrostatic Transmissions Components of the con-
trol system for a hydrostatic transmission are shown in Figure 7.112. Typical software
development tools (a notebook PC, software, and communication adaptor) are shown in
Figure 7.113. The control system components are grouped into three categories:

1. input and output devices for the operator (operator I/O devices in the cab),

2. input (sensors) and output (solenoids) for the hydrostatic transmission, generically
referred to as the machine I/O,

3. electronic control module (ECM) to implement the digital logic and provide the
interface circuit for the I/O.

I/O interface circuitry between the ECM and I/O (sensors and solenoids) will not
be discussed here since they are standard interfaces integrated into the design of most
ECMs. The control logic that relates the input signals (from operator and machine) to
the output signals (solenoids and operator cab indicators) is developed using Simulink®,
Stateflow, and C-functions incorporated to Simulink® and Stateflow as S-functions. The
developed code can be simulated on a non-real-time computer using a dynamic model of
the hydrostatic transmission. Then, the same code can be converted to a C-code by the
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FIGURE 7.112: Control system: electronic control module, operator I/O, machine I/O.
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ECM flash memory download, memory R/W tool
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FIGURE 7.113: Control system with development tools: PC with code development, download

and reads/write to ECM memory capability, electronic control module, operator I/O,

machine I/O.



JWST499-c07 JWST499-Cetinkunt Printer: Yet to Come October 9, 2014 8:41 254mm×178mm

584 MECHATRONICS

auto-code generation tools, and compiled and linked to generate the executable code for
the target ECM. The executable code would then be downloaded to the flash memory of
the ECM, and tested on the vehicle with the actual I/O hardware. The conditions of the
control variables and control logic parameters can be continuously monitored and recorded
for debugging purposes using direct memory access tools into the ECM memory map as
well as by monitoring a common communication bus, that is CAN bus monitor software.

Basic operator I/O devices include two proportional command devices, such as a
joystick connected to a position sensor for each degree of freedom (Figure 7.114). One
joystick-position sensor combination is used to define the forward (positive) speed and
reverse (negative) speed and neutral speed (zero speed) of the vehicle, a second joystick-
position sensor combination is used to define the left and right turn steering command
signal. Steering is achieved by controlling the speed of the two tracks to different levels. If
the machine is commanded to turn left, then the left track is slowed down while the right
track is speeded up proportional to the steering angle command as well as the speed of the
machine.

The basic machine I/O includes six solenoids (two solenoids for bidirectional pump
displacement swashpalte angle control, one solenoid for motor displacement swash-plate
angle control per track), and two angular speed sensors (one per track).

An open loop speed control system for the hydrostatic drives is shown in Figure 7.114.
The commanded speed of each track is determined from two joystick sensors: F/N/R speed
command and the steering command,

Vcmd1 = 𝜃1,cmd ⋅ (1 + 𝜃2,cmd) (7.759)

Vcmd2 = 𝜃1,cmd ⋅ (1 − 𝜃2,cmd) (7.760)

Furthermore, for a realistic operator controlled system, there is always the following desired
components in the control logic:

1. Deadband between the joystick position sensor and output signal in control logic so
that small unintended movements of the joystick (due to vibrations and resolution of
the operator control ability) do not cause motion in the hydrostatic drive.

2. Lowpass filter or rate limiter functions to limit the maximum accelerations and remove
the sensor noise.

3. Gain (or look-up table for variable gain) to determine the commanded speed based
on joystick sensors. In practice, this is generally a variable gain, which is a curve or
multiple lines with different slopes or a look-up table.

4. Offset signal to solenoids, since there are always variations in the manufacturing
tolerances of the solenoids and valves they actuate, the initial offset current command
needed to just start the motion of the solenoid needs to be determined for each solenoid
as part of a calibration process on the machine during manufacturing.

Remark 1 If the vehicle it to travel in a straight line, the steering command would
be zero and both tracks would receive the same speed command (forward or reverse).
The solenoids for both track’s pumps and motors would also receive the same current
commands, where the only difference might be if their offset currents are different, in order
to obtain the same speed for the tracks. However, due to small variations in components
(i.e., between pumps in two tracks), the actual speed of each track cannot be exactly equal
in practical conditions. As a result, the vehicle travel path would not be a straight line. This
can be corrected by the operator periodically by corrective steering commands. A better
solution is to implement a closed loop control on the track speeds to make sure that both
tracks run at the same speed, and hence assure a better straight path motion. The only



JWST499-c07 JWST499-Cetinkunt Printer: Yet to Come October 9, 2014 8:41 254mm×178mm

1 2 3

Jo
y
st

ic
k
 c

o
m

m
an

d
 1

Jo
y
st

ic
k
 c

o
m

m
an

d
 2

F
ee

d
b
ac

k
: 

S
p
ee

d
 s

en
so

r

1

D
is

cr
et

e 
fi

lt
er

D
is

cr
et

e 
fi

lt
er

 1

D
ea

d
 z

o
n
e

D
ea

d
 z

o
n
e 

1

S
at

u
ra

ti
o
n
 1

S
at

u
ra

ti
o
n
 3

L
o
o
k
u
p
 t

ab
le

R
at

e 
li

m
it

er

R
at

e 
li

m
it

er
 1

G
ai

n

S
at

u
ra

ti
o
n

1
6
2

S
o
le

n
o
id

 1

1

1

S
o
le

n
o
id

 o
ff

se
t

C
al

ib
ra

ti
o
n
 1

S
o
le

n
o
id

 o
ff

se
t

C
al

ib
ra

ti
o
n
 2

1
5
3

+ + + +
+ –

S
at

u
ra

ti
o
n
 2

S
o
le

n
o
id

 2

2

O
p
en

 l
o
o
p
 c

o
n
tr

o
l 

ex
am

p
le

 o
f 

a 
so

le
n
o
id

: 
so

le
n
o
id

 c
u
rr

en
t 

co
m

m
an

d
 ~

 j
o
y
st

ic
 c

o
m

m
an

d

C
lo

se
d
 l

o
o
p
 c

o
n
tr

o
l 

ex
am

p
le

 o
f 

a 
so

le
n
o
id

 u
si

n
g
 a

 s
p
ee

d
 s

en
so

r 
fe

ed
b
ac

k
, 
jo

y
st

ic
k
 c

o
m

m
an

d
 r

ep
re

se
n
ts

 t
h
e 

d
es

ir
ed

 s
p
ee

d
.

1
+

0
.5

z–
1

1

1
+

0
.5

z–
1

FI
G

U
R

E
7

.1
1

4
:

C
o

n
tr

o
l

lo
g

ic
s
a
m

p
le

fo
r

o
p

e
n

lo
o

p
a
n

d
c
lo

s
e
d

lo
o

p
c
o

n
tr

o
l

o
f

h
y
d

ro
s
ta

ti
c

tr
a
n

s
m

is
s
io

n
fo

r
d

u
a
l

tr
a
ck

v
e
h

ic
le

a
p

p
li
c
a
ti

o
n

s
.

585



JWST499-c07 JWST499-Cetinkunt Printer: Yet to Come October 9, 2014 8:41 254mm×178mm

586 MECHATRONICS

deviation from the straight path would be due to the control resolution of the track speeds
and slip between the tracks and ground. A further level of path tracking accuracy can be
added by closed loop path tracking using GPS signals.

Remark 2 It is assumed that the flushing circuit and charge circuit components are
properly sized so that a certain percentage of the flow is flushed out of the circuit, then
cooled and filtered, and reintroduced back to the circuit via the charge circuit,

Qcharge = Qflush (7.761)

Typically, the charge circuit pressure is used for the swash plate control circuit as the supply
pressure. Hence, for predictable pump and motor displacement control, it is important to
maintain the charge pressure as constant as possible.

Remark 3 In hydrostatic drives which have both their pump and motor as a variable
displacement type, the control of pump and motor order depends on the application mode.
When the vehicle just starts to move, we first up-stoke the pump to start generating hydraulic
power with the motor at its maximum displacement to provide maximum torque, then
slowly reduce motor displacement to get more speed (and less torque). For a given engine
speed, pump displacement controls how much power the hydrostatic circuit draws from
the engine. Motor displacement control is how that power is converted to speed and torque
combination.

7.12 CURRENT TRENDS IN ELECTROHYDRAULICS

The current trend in future electrohydraulic technology is to increase

� the power/weight ratio to reduce physical size of components, hence to reduce cost,
� software programmable components.

In order to increase the power/weight ratio, the system pressure must be increased, which
results in smaller size components to deliver the same power. However, increased system
pressure reduces the resonant frequency of a hydraulic system due to oil compressibility,
hence the control loop system bandwidth limit is lower. As the supply pressure gets higher,
it is more important to minimize cavitation and air bubbles in the hydraulic lines. Otherwise,
the system response will be significantly slower or even become unstable in the case of
closed loop control. Furthermore, cavitation leads to damage to the hydraulic components
and increases noise.

Another way of reducing the size of components and cost is to make more effective
use of the components. Consider the hydraulic circuits (implement, steering, brake, cooling
fan, pilot hydraulics) and the pumps used to support them in construction equipment
applications. Traditional designs dedicate one or more pumps per circuit. Since all systems
are not used in maximum flow demand at all times, all of the pumps are not used in
their maximum capability. Furthermore, duplicate pumps are provided for safety backup
reasons for critical systems (i.e., steering). The concept of sharing pumps among multiple
circuits through a controllable power distribution valve has been emerging in recent years
(Figure 7.115). Instead of dedicating a pump to each circuit in hardware, the total hydraulic
power of all pumps is combined at a distribution valve, and under program control, the
hydraulic power is distributed to the different subsystems based on demand. This approach
has the promise of making better use of available component capability, reduced cost, and
improved performance.
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FIGURE 7.115: Programmable power allocation in multi pump multi circuit hydraulic

systems. Instead of dedicating a pump to each circuit in hardware, the output of all pumps is

brought into a controllable distribution valve. The valve directs the desired amount of flow to

each sub-system based on demand.

The valve is the main critical component in a hydraulic system from a control system
perspective. All of the valves we have discussed so far have a single spool for each stage.
One spool geometry defines the orifice areas between the four ports of the valve: pump
(P), tank (T), A and B side of the cylinder. The single variable, spool displacement xspool,
determines the orifice areas

APA(xv), APB(xv), AAT(xv), ABT(xv), APT(xv) (7.762)

These geometric relationships between the spool displacement versus the orifice areas are
designed and physically machined into each valve spool. Once the valve is machined, its
orifice characteristics are fixed. In order to accomodate many different application specific
requirements on orifice functions, many different spool geometry variations are often
needed. This requires machining many variations of basically the same spool geometry for
different applications. For instance, it has been estimated that one of the major construction
equipment manufacturers alone machines over 1600 different valve spool geometries.
It would be desirable to reduce the number of different spool geometries that must be
physically machined. This idea had led to the development of the independently metered
valves (IMV) concept. The idea is to define the orifice areas in software by actively
and independently controlling each orifice area by a separate spool (Figure 7.116). The
IMV valve has up to six independently operated spools and solenoids, one for each port
connection orifice area,

APA(x1), APB(x2), AAT(x3), ABT(x4), APT(x5), AAB(x6) (7.763)

where each spool position is proportional to the associated solenoid current. Therefore, the
orifice area functions can be equally expressed as a function of solenoid currents.

APA(i1), APB(i2), AAT(i3), ABT(i4), APT(i5), AAB(i6) (7.764)
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FIGURE 7.116: Independently metered valve (IMV) concept. Valve flow orifices are

independently controlled and defined in real-time control software.

There are several patents on this concept [15]. The valve flow–orifice–pressure differential
relationships are still the same, except that in the case of IMV each flow rate can be
independently metered,

QPA = Cd ⋅ APA(i1)
√

(PP–PA) (7.765)

QPB = Cd ⋅ APB(i2)
√

(PP–PB) (7.766)

QAT = Cd ⋅ AAT(i3)
√

(PA–PT) (7.767)

QBT = Cd ⋅ ABT(i4)
√

(PB–PT) (7.768)

QPT = Cd ⋅ APT(i5)
√

(PP–PT) (7.769)

QAB = Cd ⋅ AAB(i6)
√

(PA–PB) (7.770)

Since each solenoid pair is independently controlled, each orifice area can be controlled
and their relationship to each other, like the case in single spool valve, can be defined in
software. Therefore, the same IMV valve can be controlled to behave like a valve with a
different geometry by changing the control software. In other words, the effective valve
geometry is defined in software. For instance, if the IMV control is to emulate a standard
closed center valve, then i5, i6 should be controlled such that

APT(i5) = 0 AAB(i6) = 0 (7.771)

If open-center valve emulation is desired, then i6 should be controlled such that

AAB(i6) = 0 (7.772)

If regenerative power capability is desired in a closed-center valve emulation, then i5, i6
should be controlled such that

APT(i5) = 0 AAB(i6) ≠ 0 (7.773)
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The IMV concept offers the following advantages and disadvantages. The advantages are
as follows.

� Valve geometry is defined in software. Therefore, only three or four mechanical
valves would be needed to cover the low, medium, and high power applications. The
application specific spool geometry would be defined in the software.

� Emulated valve geometry in software does not have be the equivalent of a single
mechanical valve. It can function as the equivalent of different types of mechanical
valve during different operating conditions to optimize the performance.

� Through the added flexibility in valve control, regenerative energy can be used to
operate the EH system more energy efficiently.

The disadvantages are as follows.

� The control task is more complicated. While a standard valve has a single controlled
solenoid, IMV has six controlled solenoids.

� Because of the increased number of electrical components, the number of possible
failures is higher.

The IMV concept is one of the most significant new EH technologies in recent years. As
embedded digital control of valves increases, the functionality of a valve component is
defined in software. The mechanical design of it becomes simpler, since the functionality
no longer needs to be machined into the valve. However, the software aspect of the valve
becomes more complicated and without software the component would not be functional.

7.13 CASE STUDIES

7.13.1 Case Study: Multi Function Hydraulic Circuit of a
Caterpillar Wheel Loader

Figure 7.117 (also see Figure 7.14) shows the complete hydraulic system schematics for a
wheel loader model 950G by Caterpillar. The steering sub-system is discussed separately
in detail below. The hydraulic system power is supplied by four major pumps: a variable
displacement pump for the steering sub-system, and three fixed displacement pumps for
implementing the hydraulics main pressure lines, for the brake charging and pilot pressure
lines, and for the cooling fan motor. The steering system also has a secondary power
source as a safety backup using a battery, electric motor, and pump (the fifth pump). This
design uses:

1. Mostly fixed displament pumps (except the primary steering pump) and each pump
is dedicated to one circuit (for example, the steering pump is dedicated to support the
steering sub-system, the implement pump is dedicated to the implement sub-system).

2. lift, tilt, and auxilary function valve–cylinder functions are connected in series to
the hydraulic supply lines (P and T) and are necessarily os open center type (see
Figure 7.14). Furthermore, the function closer to the pump has priority over the
functions following it.

3. The main flow control valves do not have pressure compensation (no compensator
valves), hence the function speed will vary with load for a given command.

The valves of the implement hydraulics are of electrohydraulic (EH) type, meaning
that the pilot control valves are controlled proportionally by an electric current sent to a
solenoid for each pilot valve. The hydraulic system is also available with mechanically
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FIGURE 7.117: Hydraulic system circuit diagram of the Caterpillar wheel loader model 950G.

actuated pilot valves instead of EH pilot valves. Proportional flow control valves for mobile
equipment are typically fabricated in stackable blocks, that is a valve stack may have up to
ten valve sections for ten different functions (Figure 7.118).

In some cases, the pilot and main flow sections of the valves are designed as separate
blocks. The advantage of this is that the main section of the valve accepts the pilot control
pressure. The pilot control pressure may be controlled either by a mechanically actuated
pilot valve or solenoid actuated EH valve. Hence, the main flow section of the valve can be
used with either mechanically actuated pilot valves or electrically (solenoid) actuated pilot
valves. It is instructive to note that the main flow control valve for multi function hydraulic
circuits, such as the the lift and tilt circuit in Figure 7.52 (component V on the figure), is
manufactured as a single valve block with all the individual valve functions incorporated
into one block design that has the external port connections (pump, tank, service ports A
and B for lift and tilt, and pilot pressure control ports, Figure 7.119).

Notice that the difference between mechanical lever controlled and electrical solenoid
controlled pressure reducing pilot control valves is the source of actuation power to shift
the spool of the pilot valve (see Figure 7.66). In a mechanical lever controlled system,
as the operator moves the lever, the lever motion moves a spring in the pilot valve which
then moves the pilot valve spool and changes the output pilot control pressure. In solenoid
controlled pilot valves, the lever displacement is measured by a sensor, the electronic control
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module (ECM) samples the sensor signal and then sends a current to the pilot valve to move
its spool. The rest of the power hydraulic circuit is the same.

There are two pilot valves per cylinder function, for example lift raise and lift lower
pilot valves for the lift circuit. Each pilot valve is proportionally controlled by a solenoid
in the EH system. Hence, there are two solenoid outputs per function. Each pilot valve
has two inports: pilot pressure supply and tank ports. The outport carries the pilot control
pressure to the main flow control valve. The outport pilot control pressure is proportionally
controlled by the solenoid current between the tank pressure (minimum outport pilot
pressure) and the pilot pressure supply (maximum outport pilot pressure). In short, these
are proportional solenoid controlled pressure reducing valves. As the operator moves a
lever (such as a lift lever), a sensor senses the displacement of the lever and the signal is
sampled by the electronic control module (ECM). The ECM sends current approximately
proportional to the lever displacement signal to the pilot valve solenoids, which in turn
generate a proportional pilot control pressure to the main valves. Note that in wheel loader
applications, the solenoid current sent to the solenoid by the ECM is not exactly proportional
to the lever displacement, but includes a deadband around the neutral position of the lever
and a modulation curve beyond the deadband region that is not necessarily perfectly linear.
The pilot valve control is enabled/disabled by a solenoid controlled two position valve (E1).
The operator select the desired function by a switch in the cab, and the ECM controls the
solenoid (ON/OFF) based on that switch state (ON/OFF).

The displacement of the main flow control valve, and hence the flow rate, is pro-
portional to the pilot control pressure since the force (due to pilot control pressure) acting
on the sides of the valve spool is balanced by a pair of centering springs. It is important
to note that the main flow control valves do not have any flow compensator valves. As
a result, as the load changes, the cylinder speed changes for the same lever command.
The cylinder speeds are load dependent. Furthermore, the lift, tilt, and auxilary function
main flow control valves are hydraulically connected in series and they are of open-center
type. The open-center hydraulic system (fixed displacement pump and open-center valves
combination) are less energy efficient (waste more energy) than the closed-center hydraulic
systems (variable displacement pump and closed-center valves combination). Since the tilt
valve is closer to the pump in the serial connection, the tilt circuit has priority over the lift
circuit. Tilt and auxilary function cylinders have anti cavitation make-up valves connected
to the tank as well as line pressure relief valves. The lift cylinder has a ride control circuit
that is engaged or disengaged by the operator using a selector switch.

7.14 PROBLEMS

1. Consider a pump with fixed displacement Dp = 50 cm3∕rev and the following nominal operating
conditions: input shaft speed wshaft = 600 rpm, torque at the input shaft T = 50 Nt ⋅ m, the output
pressure pout = 5 MPa, and output flow rate Qout = 450 cm3∕s. Determine the volumetric, mechanical,
and overall efficiency of the pump at this operating condition. Consider another version of this problem
statement where pout = 10 MPa, and all other data is the same. Is there any error in this pump data?
If so, discuss what might be the source of error and suggest ways to correct the data.

2. Consider a bidirectional hydraulic motor with fixed displacement of Dm = 100 cm3∕rev. The
load torque it needs to provide at its output shaft is 100 Nt ⋅ m and to maintain a rotational speed of
600 rpm. Determine the necessary flow rate and differential pressure between the two ports (input and
output) of the motor that must be supplied by a hydraulic circuit (i.e., a pump and valve preceeding
the hydraulic motor). What is the power rating of the pump to supply this motor assuming an overall
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pump efficiency of 80% and neglecting the losses at the valve? Assume 100% efficiency for the
hydraulic motor. See Figure 7.83.

3. Consider the two-axis hydraulic motion system shown in Figure 7.13. The system is to operate
under the control of an operator. The operator commands the desired speed of each cylinder by two
joysticks. There is no need for sensors since this is an operator in the loop control system. Cylinder
1 needs to be able to provide a force of 5000 Nt at a rated speed of 0.5 m∕s, and maximum no-load
speed of 1.0 m∕s. Cylinder 2 needs to be able to provide 2500 Nt force at the same rated speed, and
has the same maximum no-load speed as cylinder 1.

(a) Select components and size them for a completely hydro-mechanical control of the system.
There should be no digital or analog computers involved. Draw the block diagram of the control
system, and indicate the function of each component in the circuit. Assume that we use a fixed
displacement pump. As a designer make decisions regarding the anticipated realistic pressure
that can be delivered at the cylinder ports and decide on a realistic cylinder bore size.

(b) Select components for an embedded computer controlled system. Discuss the differences between
this design and the previous design in terms of the components and their differences.

4. Consider hydraulic fluid in a hydraulic hose that has some entrapped air in it. Let the hose
diameter be D = 6 in and wall thickness of the hose is 𝛿x = 1 in. Let the Young’s modulus of the hose
material be E = 30 × 106 psi. Determine the effective bulk modulus for zero and 1% air entrapment,
for operating pressures of 500 psi and 5000 psi.

5. Let us consider a single axis EH motion control system with the following parameters. For
the cylinder bore diameter, consider the following size information: dbore = 10 cm, and the rod
diameter drod = 5 cm, stoke is L = 1.0 m. Let us approximate the bulk modulus of hydraulic fluid to
be 2.5 × 105 psi = 1.723 × 109 Pa = 1.723 GPa. The mass carried by the cylinder (including the mass
of the rod and piston and load) is M = 200 kg.

(a) Determine the lowest natural frequency of the system due to the compressibility of the fluid in
the cylinder and the inertia.

(b) What is the maximum recommended closed loop control system bandwidth?

6. Consider a single axis electrohydraulic motion control system as shown in Figure 7.90 and its
block diagram representation in Figure 7.89. We assume that the cylinder is rigidly connected to its
base and load. Let us consider the small movements of the valve around its null position, that is a
case that is maintaining a commanded position.

1. amplifier gain is Ksa = 200 mA∕10 V = 20 mA∕V,
2. valve gain around the null position operation, Kq = 20 (in3∕s)∕200 mA = 0.1 (in3∕s)∕mA,
3. cross-sectional area of the cylinder is Ac = 2.0 in2 on both sides (rod is extended to both sides),
4. the sensor gain is Kfx = 10 V∕10 = 1 V∕in,
5. deadband of the valve is 2% of the maximum input current, idb = 0.02 ⋅ imax = 0.02 ⋅ 200 mA =

4 mA.

Assume that the total inertial load the cylinder moves is W = 1000 lb, m = 1000 lb∕386 in∕s2 =
2.59 lb s2∕in, and the cylinder is currently at the mid position of its total travel range of l = 10 in.
Note that the approximate bulk modulus of the hydraulic fluid is 𝛽 = 2.5 × 105 psi.

In terms of the amplifier gain, what is necessary to reduce the positioning error? Is there an
upper limit set on the value of the amplifier gain? If so, determine that limit. Discuss the limitations
imposed on the amplifier gain by the small positioning error requirement and closed loop system
stability. Determine the amplifier gain that provides the maximum practical closed loop bandwidth
while minimizing the positioning error due to the deadband of the valve.

7. Consider the single axis EH motion control system shown in Figure 7.85. The system needs to
operate in two modes under the control of a programmed embedded computer:

� Mode 1: closed loop speed control where the commanded speed is obtained from a programmed
command generator. The cylinder speed is measured and a closed loop control algorithm
implemented in the electronic control unit (ECU) which controls the valve.
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� Mode 2: closed loop force control where the force command is obtained from a programmed
command generator. The cylinder force is measured using a pair of pressure sensors on both
ends of the cylinder.

A real-time control algorithm, programmed in the embedded computer, decides when to operate
the axis motion in speed control or force control mode (Figure 7.84).

(a) Draw a block diagram of the components and their interconnection in the circuit.
(b) Select proper components in order to meet the following specifications:

1. Maximum speed of the cylinder under no load conditions is Vnl = 1.0 m∕s.
2. Provide an effective output force of Fr = 1000 Nt at the cylinder rod while moving at the

speed of Vr = 0.75 m∕s.
3. The desired regulation accuracy of the speed control loop is 0.1% of maximum speed.
4. The desired regulation accuracy of the force control loop is 1.0% of maximum force.

The components to be selected and sized include an electronic control unit (ECU) with
necessary analog-digital signal interfaces, position and force sensor on the cylinder for closed loop
control (Figure 7.85), pump, valve, and cylinder. Assume that the valve rating is specified for ΔPv =
7 MPa (1 Pa = 1 Nt∕m2) pressure drop, and that the input shaft speed at the pump is win = 1200 rpm.

8. For the previous problem, write a pseudo-code for the real-time control software in order to
implement the following logic for the operation of this hydraulic motion control system.

(a) First, make a list of all of the inputs and outputs from the controller point of view and give
symbolic names to them.

(b) Then write the pseudo-code.

The objective is that the actuator is to approach the load at a predefined speed until a certain
amount of pressure differential is sensed between P1 and P2 signals. The predefined speed is a
trapezoidal speed, the cylinder is to start from stationary position and accelerate to a top speed, and
run for a while at the top speed while monitoring the pressure sensors. The position range of the
actuator around which that is expected is known. When a certain pressure differential is sensed, the
control system is supposed to automatically switch to force (pressure) regulation mode; maintain
the desired pressure until and move a defined distance at a lower speed. Then reverse the motion, and
return to the original position under another programmed speed profile.

9. Consider the hydraulic circuit shown in Figure 7.120. a) Describe the operation of the circuit. b)
What is the role of the emergency back up steering block and how does it work? c) What is the role
of joystick and wheel steering and how do they work?

10. A Case Study: One Degree of Freedom Hydraulic Motion Control System with an Accumulator.
Consider the hydraulic system shown in Figure 7.121, which has a fixed displacement pump,

a closed-center valve, a cylinder, a relief valve, and an accumulator. Notice the accumulator volume
and flow rate are included in Equations 7.778 and 7.782 below, describing the pressure variation on
the pump-valve line where the accumulator is located.

The dynamic model of the EH system is defined by the following equations in its general form,
when the dynamics of cylinder-load inertia and the fluid compressibility are taken into account. Since
the main valve is closed center type, APT(xs) = 0.0, hence QPT(t) = 0 always. As a result, we have
one less unknown and one less equation compared to the general treatment of this problem in Section
7.8. However, the same number of equations are displayed below to make the comparison easier.

(1) m ⋅ ÿ(t) = − c ⋅ ẏ(t) + pA(t) ⋅ AA − pB(t) ⋅ AB − Fload(t) (7.774)

If up motion xs ≥ 0.0 (7.775)

(2)
d
dt

(pA(t)) = 𝛽

Vhose,VA + y ⋅ AA

(QPA(t) − ẏ(t) ⋅ AA) (7.776)

(3)
d
dt

(pB(t)) = 𝛽

Vhose,VB + (lcyl − y) ⋅ AB

(−QBT(t) + ẏ(t) ⋅ AB) (7.777)

(4)
d
dt

(pP(t)) = 𝛽

Vhose,pv + Vacc

(QP(t) − (QPA(t) + QPT(t) + Qr(t) + Qacc(t))) (7.778)
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FIGURE 7.121: One degree of freedom hydraulic system with fixed displacement pump,

closed center valve, a cylinder, and a relief valve.

elseif down motion xs < 0.0 (7.779)

(2)
d
dt

(pA(t)) = 𝛽

Vhose,VA + y ⋅ AA

(−QAT(t) − ẏ(t) ⋅ AA) (7.780)

(3)
d
dt

(pB(t)) = 𝛽

Vhose,VB + (lcyl − y) ⋅ AB

(QPB(t) + ẏ(t) ⋅ AB) (7.781)

(4)
d
dt

(pP(t)) = 𝛽

Vhose,pv + Vacc

(QP(t) − (QPB(t) + QPT(t) + Qr(t) + Qacc(t))) (7.782)

end (7.783)

if ideal relief valve (7.784)

(5) if Qr(t) > 0.0 ; then pP(t) = prelief (7.785)

(5) else if pP(t) < prelief ; then Qr(t) = 0.0 (7.786)

end (7.787)

else (7.788)

if pP(t) ≥ prelief and no transient dynamics (7.789)

(5) Qr(t) = Krelief ⋅ (pP(t) − prelief ) (7.790)

elseif pP(t) ≥ prelief and with transient dynamics (7.791)

(5) 𝜏relief

Qr(t)

dt
= −Qr(t) + Krelief ⋅ (pP(t) − prelief ) (7.792)

else (7.793)

(5) Qr(t) = 0.0 (7.794)

end (7.795)

end (7.796)

where (7.797)

(6) QP(t) = Dp ⋅ wpump(t) (7.798)

(7) QPT(t) =
√

(pP(t) − pT(t))∕Δpr = 0.0 (7.799)

(8) QPA(t) = Qr ⋅
xs(t)

xs,max

⋅
√

(pP(t) − pA(t))∕Δpr if xs > 0 (7.800)

(9) QBT(t) = Qr ⋅
xs(t)

xs,max

⋅
√

(pB(t) − pT(t))∕Δpr if xs > 0 (7.801)
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(8) QPB(t) = Qr ⋅
xs(t)

xs,max

⋅
√

(pP(t) − pB(t))∕Δpr if xs < 0 (7.802)

(9) QAT(t) = Qr ⋅
xs(t)

xs,max

⋅
√

(pP(t) − pT(t))∕Δpr if xs < 0 (7.803)

Notice that the ideal relief valve model cancels the fluid compressibility whenever pP(t) = prelief ,
by calculating the Qr(t) such that the right hand side of the pump pressure dynamics is equal to zero.

The accumulator acts both as a hydraulic power storage device which increases the line
capacitance, hence absorb large pressure spikes, and as a hydraulic power source when line pressure
drops below the pressure setting of the accumulator to support the pump. Especially when fast
dynamic changes occur in demand for hydraulic power, the pump cannot react fast enough. But the
accumulator can provide the transient power needed for a short period of time. The flow into or out
of the accumulator is function of the line pressure, accumulator pressure and max-min pressure range
settings of the accumulator.

Accumulator state (volume and pressure) is modeled as,

If Vacc(t) ≤ 0.0 and pP(t) ≤ pacc(t) (7.804)

(10) Qacc(t) = 0.0 (7.805)

else (7.806)

(10) Qacc(t) = sign(pP(t) − pacc(t)) ⋅ Kacc ⋅
√|pP(t) − pacc(t)| (7.807)

end (7.808)

(11)
dpacc(t)

dt
=

(
pmax − pmin

Vdisch

)
⋅ Qacc(t) ; pacc(t0) = pmin (7.809)

(12)
dVacc(t)

dt
= Qacc(t) ; Vacc(t0) = 0.0 (7.810)

where initial conditions of the accumulator pressure and fluid volume in the accumulator are specified
(pacc(t0) and Vacc(t0)). On power-up, as accumulator is charged by the line pressure, the accumulator
pressure increases. For a given accumulator, we know the discharge volume (Vdisch), maximum,
minimum, and precharge pressures (pmax = prelief , pmin, ppre) and initial conditions on pressure and
fluid volume in the accumulator, that is typical values pacc(t0) = ppre, Vacc(t0) = 0.0.

For simulation purposes, we can consider the initial pressure of the accumulator as pacc(t0) =
pmin (or a value between pmin and pmax) and initial volume Vacc(t0) = 0.0. Maximum discharge volume
is reached at pacc = pmax, and zero discharge volume is reached (no fluid volume left to discharge)
at pacc = pmin. The net result of adding an accumulator between the pump and the valve is to reduce
the pressure variations by increasing the compliant fluid volume, while the accumulator acts both as
energy storage (during ps > pacc) and energy source (during ps < pacc) device.

An engine or electric motor provides the mechanical power to the pump. The engine/motor
speed is wpump rev∕min. The pump is of fixed displacement type, as indicated by its hydraulic symbol,
and the volumetric displacement of the pump is Dp m3∕rev. The leakage flow from the pump is
neglected. We assume that the pressure at the input port of the valve is the same as the pump output
pressure, pP, and the pressure at the output port of the valve is the same as the pressure at the cylinder.
In other words, we neglect the pressure drop in the line between the pump and the main valve, and
the main valve and the cylinder.

Let us assume the following values for the parameters of the system components:

Dp = 0.0001 m3∕rev (7.811)

Qr = 20.0 × 10−4 m3∕s (7.812)

Δpr = 1000 psi (7.813)

xdb = 10.0% (7.814)

xs,max = 100.0% (7.815)

APA(xs) = (20 ⋅ 10−6)∕(100 − xdb)) ⋅ (|xs| − xdb) m2 ; xs ≥ xdb (7.816)

APB(xs) = (10 ⋅ 10−6)∕(100 − xdb)) ⋅ (|xs| − xdb) m2 ; xs ≤ −xdb (7.817)
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AAT(xs) = (40 ⋅ 10−6)∕(100 − xdb)) ⋅ (|xs| − xdb) m2 ; xs ≤ −xdb (7.818)

ABT(xs) = (10 ⋅ 10−6)∕(100 − xdb)) ⋅ (|xs| − xdb) m2 ; xs ≥ xdb (7.819)

APT(xs) = 0.0 closed-center valve (7.820)

AA = 0.01 m2 (7.821)

AB = 0.005 m2 (7.822)

m = 10 000 kg (7.823)

c = 0.0 Nt∕(m∕s) (7.824)

lcyl = 1.0 (7.825)

𝛽 = 15.0 ⋅ 108 N∕m2 (7.826)

Vhose,pv = 0.0001 m3 (7.827)

Vhose,VA = 0.0001 m3 (7.828)

Vhose,VB = 0.0001 m3 (7.829)

Krelief = 1.0 ⋅ 10−8 (7.830)

𝜏relief = 0.025 (7.831)

prelief = 20.0 ⋅ 106 Nt∕m2 (7.832)

pmax = 20 ⋅ 106 N∕m2 (7.833)

pmin = 15 ⋅ 106 N∕m2 (7.834)

ppre = 15 ⋅ 106 N∕m2 (7.835)

Vdisch = 0.005 m3 (7.836)

Kacc = 1.0 ⋅ 10−6 (7.837)

Cacc =
Vdisch

pmax − pmin
= 1.0 ⋅ 10−9 m3∕(N∕m2) (7.838)

The simulated input condition and initial conditions are

wpump(t) = 25 rev∕s (7.839)

Fload(t) = 10 000.0 kg ⋅ 9.81 m∕s2 = 98.1 kN weight (7.840)

xs(t) = 0 ; 0 < t <= 1.0 (7.841)

= (100∕0.25) ∗ (t − 1) ; 1.0 < t <= 1.25 s (7.842)

= 100 ; 1.25 < t <= 3.0 s (7.843)

= 100 − (100∕0.25) ⋅ (t − 3) ; 3.0 < t <= 3.25 s (7.844)

= 0 ; 3.25 < t < 5.0 (7.845)

pT(t) = 0.0 ; tank pressure (7.846)

y(0) = 0.10 ; initial cylinder position (7.847)

ẏ(0) = 0.0 ; initial cylinder velocity is zero (7.848)

pP(0) = prelief (7.849)

pA(0) = Fload(0)∕AA ; initial cylinder pressure (7.850)

pB(0) = pT = 0.0 (7.851)

pacc(0) = pmin = 15 ⋅ 106 N∕m2 (7.852)

Vacc(0) = 0.0 m3 (7.853)

Note that the input shaft to the pump runs at a constant speed, the load on the cyclinder is simply a
mass moving against gravity, the initial position of the cylinder is close to the bottom zero position.
The valve opens and closes in a total of 3.0 s in a trapezoidal profile.
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It is of interest to simulate the motion of the hydraulic system and plot the results:

1. Qs(t) – pump flow rate
2. QPA(t) – flow rate from pump to A-side of the cylinder
3. QPB(t) – flow rate from pump to B-side of the cylinder
4. QAT(t) – flow rate from A-side of the cylinder to the tank
5. QBT(t) – flow rate from B-side of the cylinder to the tank
6. Qr(t) – flow rate through the relief valve
7. Qacc(t) – flow rate into or out of the accumulator
8. xs(t) – main valve spool displacement
9. Fload(t) – external load

10. pP(t) – pump pressure
11. pA(t) – pressure in the A-side of the cylinder
12. pB(t) – pressure in the B-side of the cylinder
13. pacc(t) – pressure in the accumulator
14. Vacc(t) – fluid volume in the accumulator
15. ẏ(t) – cylinder velocity
16. y(t) – cylinder position, which is obtained from initial condition plus the integtration of cylinder

velocity, y(t) = y(t0) + ∫ t

t0
ẏ(𝜏)d𝜏

Remark: The actual pressure developed at the outlet of the pump is determined by the load pressure,
valve size, and relief pressure. Note that if the valve is undersized for the application, Av(xs(t)) is
small, then pP will be equal to prelief most of the time to support the most flow rate it can. If, on the
other hand, the valve is oversized, then Av(xs(t)) is too large, then pP will not need to be as large as
prelief most of the time to support the flow, and the relief valve will not need to open, hence the system
will be more efficient. However, the larger the Av(xs(t)) gain is, the worse the control accuracy of the
flow rate, and hence the control accuracy of the EH motion control system.

It is instructive for the reader to change the valve size by changing the Av(xs) and observe
the effect of it on the pP, that is what happens if we have sized the valve too small or too large
for the application. As the valve size gets larger, the control accuracy gets poorer, while efficiency
improves. The fundamental variable we control is the valve spool displacement, xs, through which
the valve orifice area Av(xs) is determined. The smallest resolution that the valve is controllable is
determined by the position control of the valve. Let us assume that it is a fixed quantity by the valve
control accuracy, depending on the controller, amplifier, and valve position feedback accuracy (if any
closed loop control is used on the valve position). For a given Δxs, that is the smallest increment the
valve position can be controlled, the change in flow rate, hence the cylinder speed is proportionally
affected by the Av(xs). The larger that gain is (the larger the valve size), the larger the smallest change
in the cylinder velocity that we can affect, hence the worse the control resolution is (or control
accuracy). Conversely, the smaller the valve size (Av(xs)), the smaller the flow rate change we can
affect, hence the smaller cylinder velocity change we can affect, the better the control resolution
(control accuracy). In contrast, energy efficiency requires a larger valve size, since energy efficiency
requires us to minimize the power loss. It is desirable to support the largest flow rate with as little
pressure drop as possible across the valve. In other words, as the valve size gets larger, the pressure
drop needed to support a given desired flow rate gets smaller. Hence, the power loss

QPA ⋅ (pP − pA) + QBT ⋅ (pB − pT) or (7.854)

QPB ⋅ (pP − pB) + QAT ⋅ (pA − pT) (7.855)

across the valve (due to pressure drop across the valve) is smaller. This is a fundamental design
conflict between control resolution (accuracy) and energy efficiency in hydraulic systems. A good
design must find a balance between these two conflicting requirements.

Case 1 – Simplified Model: We consider the following simplified version of the model

� neglect the cylinder and load inertial dynamics,
� neglect fluid compressibility throughout the hydraulic circuit,
� assume we have an ideal relief valve,
� assume we do not have any accumulator.
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The only initial condition needed in this case is y(t0). The rest of the initial conditions (pP(t0),
pA(t0), pB(t0), ẏ(t0), Qr(t0)) do not need to be specified. Instead, they are calculated directly from the
simultaneous solution of the algebraic equations. In this case the differential equations describing
the variation in cylinder pressure and cylinder motion reduce to an algebraic equation where the
cylinder velocity is directly determined by the flow rate into the cylinder. The solution can be
obtained directly by substitution among the algebraic equations since there are as many equations
as there are unknowns. However, a more useful method is to use a numerical method to solve
these equations. The iterative solution of the algebraic equations requires initial guesses (not initial
conditions), pP(t0), pA(t0), pB(t0), ẏ(t0), Qr(t0), which are used as the starting point for the numerical
search algorithm for finding the roots. In order to simulate this case, simply set the left hand side of
the differential Equations 7.776–7.778 to zero, turning them into algebraic equations, and solve the
whole equation set (1)–(10) numerically.

Case 2 – Take into account cylinder and load inertial dynamics, and fluid compressibility
on both pump and load side of the line: In this case we have the second-order differential equation
as Equation (1), that defines the net force–acceleration relationship due to inertia and the differential
Equations (7.776–7.782). Then we need y(t0) and ẏ(t0), pA(t0), pB(t0), pP(t0) initial conditions to be
specified. Numerical solution requires only the solution of a set of ordinary differential equations.
All of the algebraic equations (5-9) can be solved directly (without any iterative algorithm) by using
the available initial conditions on pressures.

We simulate this condition without the accumulator and with the accumulator in the circuit.
The accumulator is added to the circuit model by including the Vacc and Qacc terms in Equation (4),
and the equations describing the dynamics of the accumulator state, pacc(t) and Vacc(t) (Equations
(10), (11), and (12)). We need to specify the initial pressure and volume of the accumulator (pacc(t0),
Vacc(t0)), as well as the discharge volume capacity (Vdisch) and operating pressure range (pmin, pmax).
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CHAPTER 8
ELECTRIC ACTUATORS: MOTOR AND
DRIVE TECHNOLOGY

8.1 INTRODUCTION

The term “actuator” in motion control systems refers to the component which delivers the
motion (Figure 8.1). It is the component that delivers the mechanical power, which may be
converted from an electric, hydraulic, or pneumatic power sources. In the electric power
based actuator category, the motor and the drive are two power conversion components that
work together. In a motion control system, when we refer to the performance characteristics
of a motor, we always have to refer to it in conjunction with the type of “drive” that the
motor is used with, for the type of drive determines the behavior of the motor. The term
drive is generically used in industry to describe the power amplification and the power
supply components together.

The discussion in this chapter is limited to motor-drive technologies that can be used
in high performance motion control applications, that is involving closed loop position and
velocity control with high accuracy and bandwidth. Low cost constant speed motor-drive
components, which are used in mass quantities in applications such as fans and pumps, are
not discussed. To this end, we will discuss the following motor-drive technologies:

1. DC motors (brush-type and brushless type) and drives.

2. AC induction motors and field oriented vector control drives.

3. Step motors and drives:
(a) permanent magnet step motors,
(b) hybrid step motors,
along with full step, half step, and micro-stepping drives.

The operating principle of any electric motor involves one or more of the following
three physical phenomenon:

1. opposite magnetic poles attract, and the same magnetic poles repel each other,

2. magnets attract iron and seek to move to a position to minimize the reluctance to
magnetic flux,

3. current carrying conductors create electromagnets and act like a current-controlled
magnet.

Every motor has the following components,

1. a rotor on a shaft (moving component),

2. a stator (stationary component),

Mechatronics with Experiments, Second Edition. Sabri Cetinkunt.
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FIGURE 8.1: Functional blocks of a closed loop motion control system: actuator, sensor,

amplifier, controller filters.

3. a housing (with end plates for rotary motors),

4. two bearings, one for each end, to support the rotor in the housing, including some
washers to allow axial play between the shaft and the housing.

In addition, brush-type motors have commutator and brush assembly to direct current into
the proper coil segment as a function of rotor position. Brushless motors have some type
of rotor position sensor for electronic commutation of the current (i.e., Hall effect sensors
or incremental encoders). Commutation means the distribution of current into appropriate
coils as a function of rotor position.

Traditionally AC induction motors have been used in constant speed applications,
whereas DC motors have been used in variable speed applications. With the advances in
solid-state power electronics and digital signal processors (DSP), an AC motor can be
controlled in such a way that it behaves like a DC motor. One way of accomplishing this is
the “field oriented vector control” algorithm used in the drive for current commutation.

In the following discussion, a magnetic pole refers to a north (N) or south (S) pole, a
magnetic pole pair refers to a N and a S pole. When we refer to a two pole motor, it means
it has one N and one S pole. Likewise, a four pole motor has two N and two S poles.

An electric motor is a power conversion device. It converts electrical power to mechan-
ical power. Input to the motor is in the form of voltage and current, and the output is
mechanical torque and speed. The key physical phenomenon in this conversion process is
different for different motors.

1. In the case of DC motors, there are two magnetic fields. In brush-type DC motors,
one of the magnetic fields is due to the current through the armature winding on the
rotor, and the other magnetic field is due to the permanent magnets in the stator (or
due to field excitation of the stator winding if electromagnets are used instead of
permanent magnets). In the case of brushless DC motors, the roles of rotor and stator
are swapped.

2. In the case of AC motors, the first magnetic field is setup by the excitation current
on the stator. This magnetic field in turn induces a voltage in the rotor conductors by
Faraday’s induction principle. The induced voltage at the rotor conductors results in
current which in turn sets up its own magnetic field, which is the second magnetic
field. The torque is produced by the interaction of the two magnetic fields. In the case
of a DC motor and AC induction motor (with field oriented vector control), the two
magnetic fields are always maintained at a 90 degree angle in order to maximize the
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torque generation capability per unit current. This is accomplished by commutating
the stator current (mechanically or electronically) as a function of the rotor position.

3. Stepper motors (permanent magnet (PM) type) work on basically the same principle
as brushless DC motors, except that the stator winding distribution is different. A
given stator excitation state defines a stable rotor position as a result of the attraction
between electromagnetic poles of the stator and permanent magnets of the rotor. The
rotor moves to minimize the magnetic reluctance. At a stable rotor position of a step
motor, two magnetic fields are parallel.

The torque generation, that is the electrical energy to mechanical energy conversion process,
in any electric motor can be viewed as a result of the interaction of two magnetic flux density
vectors: one generated by the stator (B⃗s) and one generated by the rotor (B⃗r). In different
motor types, the way these vectors are generated is different. For instance, in a permanent
magnet brushless motor the magnetic flux of rotor is generated by permanent magnets and
the magnetic flux of stator is generated by current in the windings. In the case of an AC
induction motor, the stator magnetic flux vector is generated by the current in the stator
winding, and the rotor magnetic flux vector is generated by induced voltages on the rotor
conductors by the stator field and resulting current in the rotor conductors. It can be shown
that the torque production in an electric motor is proportional to the strength of the two
magnetic flux vectors (stator’s and rotor’s) and the sine of the angle between the two vectors.
The proportionality constant depends on the motor size and design parameters.

Tm = K ⋅ Br ⋅ Bs ⋅ sin(𝜃rs) (8.1)

where K is the proportionality constant, and 𝜃rs is the angle between the B⃗s and B⃗r, and Tm
is the torque.

Every motor requires some sort of current commutation by mechanical means as in
the case of brush-type DC motors, or by electrical means as in the case of brushless DC
motors. Current commutation means modifying the direction and magnitude of current in
the windings as a function of rotor position. The goal of the commutation is to give the
motor the ability to produce torque efficiently, that is to maintain 𝜃rs = 90◦.

The design of an electric motor seeks to determine the following:

1. the three-dimensional shape of the effective magnetic reluctance of the motor by
proper selection of materials and geometry of the motor,

2. the distribution of coil wires, coil wire diameter, and its material (i.e., copper or
aluminum)

3. the permanent magnets (number of poles, geometric dimensions and PM material).

The engineering analysis is concerned with determining the resulting force/torque for
a given motor design and coil currents. In addition, we also need to examine the flux
density and flux lines in order to evaluate the overall quality of the design so that there
is no excessive saturation in the flux path. These results are obtained from the solution
of Maxwell’s equations for electromagnetic fields. Modern engineering analysis software
tools are based on the finite element method (FEM) to solve Maxwell’s equations and used
for motor design (examples include Maxwell 2D/3D by Ansoft Corporation, Flux2D/3D
by Magsoft Corporation, and PC-BLDC by The Speed Laboratory).
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FIGURE 8.2: Four quadrant region torque-speed characteristics of an electric motor.

8.1.1 Steady-State Torque-Speed Range, Regeneration,
and Power Dumping

Electric motors can act either as a motor, that is to convert electrical power to mechanical
power, to drive loads, or as a generator, that is to convert mechanical power to electrical
power, when driven externally by the load. Let us consider the steady-state torque versus
speed plane (Figure 8.2). Motor-drive combinations that can operate in all four quadrants
of the torque-speed plane are called four-quadrant operation devices and can act as motor
and generator during different modes of an application. In the quadrants I and III of the
torque-speed plane, the mechanical power output is positive.

Pm = T ⋅ w > 0.0; motoring mode (8.2)

When the motor speed and torque are in the same direction, the device is in motoring
mode. In quadrants II and IV of the torque-speed plane, the mechanical power output is
negative. That means the motor takes mechanical energy from the load instead of delivering
mechanical energy to the load. The device is in generator mode or regenerative braking
mode.

Pm = T ⋅ w < 0.0; generating mode (8.3)

This energy can either be dissipated in the motor-drive combination, stored in a battery
or capacitor set, or returned to the supply line by the drive. This is precisely the energy
recovered (and stored in batteries) while braking in a hybrid car, where the electric motor
torque applied to provide the braking effect is in the opposite direction to the speed. By
storing this energy in the batteries and using it later, instead of wasting it, the energy
efficiency of the car is improved. Similarly, in industrial and factory applications, anytime
this condition occurs for a motor operation (motor operating in II or IV quadrant, T ⋅w < 0),
the energy can be stored in battery/capacitors, returned to the utility supply line or wasted
as heat via resistors.
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During acceleration, a motor adds mechanical energy to the load. It acts as a motor.
During deceleration, the motor takes away energy from the load. It acts like a brake
or generator. This means that energy is put into the load inertia during acceleration, and
energy is taken from the load inertia (returned to the drive) during deceleration (Figure 8.2).

Some drives can convert the generated electric power and put it back to into the
electric supply line while others dump the regenerative energy as heat through resisitors.
The amount of regenerative energy depends on the load inertia, deceleration rate, time
period, and load forces.

There are two different motion conditions where regenerative energy exists and
satisfies the T ⋅ w < 0 condition:

1. During deceleration of a load, where the applied torque is in the opposite direction
to the speed of inertia.

2. In load driven applications, that is in tension controlled web handling applications, a
motor may need to apply a torque to the web in the opposite direction to the motion
of motor and web in order to maintain a desired tension. Another example for this
case is where the gravitational force provides more than the needed force to move an
inertia, and the actuator needs to apply force in the direction opposite to the motion
in order to provide a desired speed.

Example Consider the electric motor driven load shown in Figures 8.3 and 8.4. Assume
that the load is a translational inertia and an electric motor is a perfect linear force generator.
Consider an incremental motion that moves the inertia from position x1 to position x2 using
a square force input. For simplicity, let us neglect all the losses. We will assume that the
motor-drive combination converts electrical power (Pe(t)) to mechanical power (Pm(t))
with 100% efficiency in the motoring mode, and mechanical power to electrical power with
100% efficiency in the generator mode.

Pe(t) = Pm(t) (8.4)

M m
F

x
Load

Rectifier Inverter

Rregen Ccap

DC bus

3 Phase
AC source

Non–regenerative
drives

Regenerative drives

Rregen = 0Rregen ≠ 0

FIGURE 8.3: Regenerative energy in motion, its storage and dissipation.



608 MECHATRONICS

·

tacc tdec

tcycle

E

P

x

t

t

t

t

t

t

x

x··

F

FIGURE 8.4: Typical output force to load and

motion profile and regenerative energy

opportunity for energy recovery during the

deceleration phase of the motion.

The force–motion relationship from Newton’s second law is

F(t) = m ⋅ ẍ(t) (8.5)

The mechanical power delivered to the inertia is

Pm(t) = F(t) ⋅ ẋ(t) (8.6)

which is supplied by the electric motor and drive combination.
Notice that when the force and speed are in the same direction, the mechanical power

delivered to the inertia is positive, and the motor-drive operates in motoring mode, that is
to convert electrical energy to mechanical energy. Similarly, when the direction of force
is opposite to the direction of speed, the mechanical power is negative, which means the
inertia gives out energy intead of taking energy. This mechanical energy is converted to
electrical energy by the motor since it acts like a generator under this condition.

Pm(t) = Pe(t) = F(t) ⋅ ẋ(t) (8.7)

Pm(t) = Pe(t) = F(t) ⋅ ẋ(t) > 0 motoring mode (8.8)

Pm(t) = Pe(t) = F(t) ⋅ ẋ(t) < 0 generating mode (8.9)

In motoring mode, the motor-drive provides energy to the load. In generator mode, the
motor drive takes away energy from the load. This energy must be either stored, returned to
line, or dissipated in resistors. One of the most common approaches in servo applications
is to store a small portion of the energy in the DC bus capacitor and dissipate the rest
as heat over external resistors added specifically for this purpose. In applications where
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this so-called regenerative energy is large, external resistors are added for the purpose of
dumping it.

In load driven applications, such as tension controlled web handling or gravity driven
loads, the motor continuously operates in regenerative power mode (generator mode). The
tension, hence the torque, generated by the motor is always in the opposite direction of
the speed. If all of the regenerative power is to be dissipated as heat using external resistors,
the resistors should be sized based on the following continuous power dissipation cabability,

Pcont = RMS(Ftension(t) ⋅ ẋ(t)) (8.10)

In a given application, the amount of regenerative energy is a function of inertia,
deceleration rate, and time period. In this example, the regenerative energy is is the time
integral of the regenerative power as follows,

Ereg(t) = ∫
tdec

0
Pm(t) ⋅ dt (8.11)

= ∫
tdec

0
F(t) ⋅ ẋ(t) ⋅ dt (8.12)

= ∫
xdec

0
F(x) ⋅ dx (8.13)

= ∫
xdec

0
m ⋅ ẍ(t) ⋅ dx (8.14)

= ∫
xdec

0
m ⋅ ẋ(t)

dẋ
dx

⋅ dx (8.15)

= ∫
xdec

0
m ⋅ ẋ(t) ⋅ dẋ (8.16)

= 1
2
⋅ m ⋅

(
ẋ2

1 − ẋ2
2

)
(8.17)

If we consider the tension control application, then regenerative energy is always increasing
which must be either stored or used or dissipated. Let us consider a tension control case
where the web tension is constant F(t) = F0 and the web speed is constant, ẋ(t) = ẋ0. Then
for any period of time Δt, the regenerative energy is

Ereg(Δt) = Fo ⋅ ẋo ⋅ Δt (8.18)

This energy (Ereg) must be dissipated at the “regen” resistors and the motor winding
due to its resistance (Eri) and partially stored in the DC bus capacitors (Ecap).

Ereg = Ecap + Eri (8.19)

Let us assume that the regenerative resistors will be activated by an appropriate logic circuit
whenever DC bus voltage reaches a voltage level Vreg, where Vnom < Vreg < Vmax. Vmax
is the maximum voltage level above which the amplifier control circuit would disable the
transistors and go into “fault” mode. Then, the amount of energy that can be stored in the
capacitor is

Ecap = 1
2
⋅ Ccap ⋅

(
V2

reg − V2
nom

)
(8.20)

Ccap = 2 ⋅
Ecap(

V2
reg − V2

nom

) (8.21)

where Ccap is the capacitance of the capacitors. Clearly, the capacitor can store a finite
amount of energy and its size grows as the required energy storage capacity increases.
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Therefore, the remainder of the regenerative energy must either be returned to the supply
line through a voltage regulating inverter or dissipated as heat at the regenerative resistor
and the motor winding.

Let us neglect the energy dissipated to heat at the motor winding. Hence, the remaining
energy must be dissipated at the “regen” resistors. The peak and continuous power rating
of the regenerative resistors can be calculated from

Ppeak =
Ereg − Ecap

tdec
(8.22)

Ppeak = Rreg ⋅ i2 (8.23)

=
V2

reg

Rreg
(8.24)

Rreg ≤ V2
reg

Ppeak
(8.25)

where Ppeak are peak, power dissipation capacity used to determine the regen resistor size
Rreg, Ecap regenerative energy to be stored, Vreg is the nominal DC bus voltage over which
the regenerative circuit is active (i.e., a value between the nominal DC bus voltage and
maximum DC bus voltage, Vnom, Vmax), to determine the regenerative storage capacitor
size Ccap. In some applications, the regenerative power may be so small that the DC bus
capacitor is large enough to store the energy without the need for dissipating it as heat over
resistors. Notice that the capacitor (or battery) is sized based on maximum energy, whereas
the resistor is sized based on maximum power.

8.1.2 Electric Fields and Magnetic Fields

There are two types of fields in electrical systems: electric fields and magnetic (also called
electromagnetic) fields. Although we are primarily interested in electromagnetic fields for
the study of electric motors, we will discuss both briefly for completeness. Electric fields
(E⃗) are generated by static charges. Magnetic fields (H⃗, also called electromagnetic fields)
are generated by moving charges (current).

An electric field is a distributed vector field in space whose strength at a location
depends on the charge distribution in space. It is a function of the static location of charges
and the amount of charges. By convention, electric fields start (emitted) from positive
charges and ends (received) in negative charges (Figure 8.5a). Capacitors are commonly
used to store charges and generate electric fields. The smallest known charge is that of an
electron (negative charge) and a proton (positive charge) with units of Coulomb, C,

|e−| = |p+| = 1.60219 × 10−19 C (8.26)

The electric field E⃗ at a point in space (s) due to n many charges (q1, q2,… , qn) at various
locations can be determined from (Figure 8.5b),

E⃗(s) = ke

n∑
i=1

qi

r2
i

⋅ e⃗i N∕C or V∕m (8.27)

where ke = 8.9875 × 109 N ⋅ m2∕C2 is called the Coulomb constant, ri is the distance
between the location of charge (i) and the point in space considered (s), e⃗i is the unit vector
between each charge location and the point s, qi is the charge at location i. For negative
charges, the unit vector is directed towards the charge, for positive charges it is directed
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FIGURE 8.5: Electric fields due to stationary electric charges. (a) By convention, electric fields

are assumed to eminate from positive charges and terminate at the negative charges.

(b) Electric field at a point in space due to charged particles at other locations. (c) Force acting

on a charged particle due to an electric field. (d) Integral of electric field over a closed surface is

proportional to the net charge inside the volume spanned by the closed surface. (e) Voltage

between two points in space (A and B) is equal to the line integral of electric field between the

two points.

away from the charge. The Coulomb constant is closely related to another well known
constant as follows,

ke =
1

4 ⋅ 𝜋 ⋅ 𝜖o
(8.28)

where 𝜖o = 8.8542 × 10−12 C2∕N ⋅ m2 is the permittivity of free space.
Force (F⃗) exerted on a charge (q) which is in an electric field (E⃗) is (Figure 8.5c)

F⃗ = q ⋅ E⃗ (8.29)

and if the charge is free to move, the resulting motion is governed by

F⃗ = mq ⋅ a⃗ (8.30)

where the generated force results in the acceleration (a⃗) of the charge mass (mq) based on
Newton’s second law. This last equation is used to study the motion of charged particles
in electric fields, that is the motion of electrons in cathode ray tube (CRT), or the motion
of charged small droplets in ink-jet printing machines. The motion trajectory of a particle
of a known mass can be controlled by controlling the force acting on it. The force can be
controlled either by controlling its charge or the electric field in which it travels. Generally,
the electric field is kept constant, and the charge on each particle is controlled before it
enters the electric field. Another electric field quantity of interest is the electric flux, ΦE,
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FIGURE 8.6: Magnetic fields due to current (moving charge): (a) magnetic field at any point P

due to current over a general shape conductor, (b) magnetic field around an infinitely long
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which is the area integral of the electric field over a closed surface. The electric flux over a
closed surface is proportional to the net electric charge inside the surface (Figure 8.5d),

ΦE = ∮A
E⃗ ⋅ dA⃗ =

qnet

𝜖o
(8.31)

where dA⃗ is a differential vector normal to the surface. The line integral of an electric field
between any two points is the electric potential difference between the two points (voltage)
(Figure 8.5e),

VAB = −∫
B

A
E⃗ ⋅ d s⃗ (8.32)

where the d s⃗ vector is a differential vector that is tangent to the path traveled from A to B.
The magnetic fields are generated by moving charges (Figure 8.6). There are two

sources to generate and sustain a magnetic field:

1. current (moving charge) over a conductor,

2. permanent magnetic materials.

In the case of current carrying conductors, the magnetic field generated by the current
(moving charges) is called an electromagnetic field. In the case of permanent magnet
materials, the magnetic field is generated by orbital rotation of the electrons around the
nucleus and the spin motion of electrons around their own axis of the permanent magnetic
material. The net magnetic field of the material in macro scale is the result of the vector
sum of the magnetic fields of its electrons.

In a non-magnetized material, the net effect of magnetic fields of electrons cancel out
each other. Their alignment in a certain direction, by magnetizing the material, gives the
material non-zero magnetization in a specific orientation. Either way, the magnetic field is
a result of moving charges. The electric field vector starts at charges (i.e., positive charges)
and ends in charges (negative charges). The magnetic field vector encircles the current that
generates it (Figure 8.6). The vector relationship between the current and the magnetic field
it generates follows the right hand rule. If the current is in the direction of the thumb, the
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magnetic field is in the direction of the fingers encircling the thumb. If the current changes
direction, the magnetic field changes direction.

The Biot-Savart law states that the magnetic field (also called magnetic flux density),
B⃗, generated by a current on a long wire at a point P with distance r from the wire is
(Figure 8.6a and b)

dB⃗ =
𝜇 i d⃗l × e⃗r

4𝜋 r2
(8.33)

where 𝜇 is the permeability of the medium around the conductor (𝜇 = 𝜇0 for free space), e⃗r
is unit vector of r⃗. We can think of permeability as the conductivity of the medium material
(the opposite of resistance) for magnetic field. The permeability of free space is called 𝜇0

𝜇0 = 4𝜋 ⋅ 10−7 Tesla ⋅ m∕A (8.34)

Quite often, the permeability of a material (𝜇m) is given relative to the permeability of free
space,

𝜇m = 𝜇r ⋅ 𝜇0 (8.35)

where 𝜇r is the relative permeability of the material with respect to free space. If the Biot-
Savart law is applied to a conductor over the length of l, we obtain the magnetic flux density
B⃗ at point P at a distance r from the conductor due to current i (Figure 8.6a),

B⃗ = ∫
l

0

𝜇 i dl⃗ × e⃗r

4𝜋 r2
(8.36)

The units of B⃗ in SI units is Tesla or T.
Ampere’s Law states that the integral of a magnetic field over a closed path is equal

to the current passing through the area covered by the closed path times the permeability
of the medium covered by the closed path of integration (Figure 8.6a and b),

∮C
B⃗ ⋅ d⃗s = 𝜇 ⋅ i (8.37)

The vector relationship between the current, position vector of point P with respect to
the wire and magnetic field follows the right hand rule. It describes how electromagnetic
fields are created by a current in a given medium with a known magnetic permeability. The
magnetic flux density is a continuous vector field. It surrounds the current that generates
it based on the right hand rule. The magnetic flux density vectors are always closed,
continuous vector fields.

By using either the Biot-Savart law or Ampere’s law, the magnetic field due to
current flow through a conductor of any shape in an electrical circuit can be determined.
For instance, the magnetic field generated around an infinitely long straight conductor
having current i in free space at a distance r from it can be calculated (Figure 8.6b)

|B⃗| = B =
𝜇0 ⋅ i

2𝜋 ⋅ r
(8.38)

Similarly, the magnetic field inside a coil of solenoid is (Figure 8.6c)

|B⃗| = B =
𝜇0 ⋅ N ⋅ i

l
(8.39)

where N is the number of turns of the solenoids, l is the length of the solenoid. It is assumed
that the magnetic field distribution inside the solenoid is uniform and the medium inside
the solenoid is free space. Notice that if the medium inside the coil is different than free
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space, such as steel with 𝜇m ≫ 𝜇0, then the magnetic flux density developed inside the coil
would be much higher.

Magnetic flux (ΦB) is defined as the integral of magnetic flux density (B⃗) over a
cross-sectional area perpendicular to the flux lines (Figure 8.6c),

ΦB = ∫Aps

B⃗ ⋅ dA⃗ps Tesla ⋅ m2 or Weber (8.40)

where dA⃗ps is differential vector normal to the surface (Aps). The area is the effective
perpendicular area to the magnetic field vector. It is important not to confuse this relationship
with Gauss’s law.

Gauss’s law states that the integral of a magnetic field over a closed surface that
encloses a volume is zero (integration over the closed surface Acs shown in Figure 8.6c),

∮ B⃗ ⋅ d⃗Acs = 0 (8.41)

where d⃗Acs is a differential area over a closed surface (Acs), not a cross-sectional perpen-
dicular area to flux lines. This integral is over a closed surface. In other words, net magnetic
flux over a closed surface is zero. The physical interpretation of this result is that magnetic
fields form closed flux lines. Unlike electric fields, magnetic fields do not start in one
location and end in another location. Therefore, the net flow-in and flow-out lines over a
closed surface are zero (Figure 8.6c).

Let us define the concept of flux linkage. Consider that a magnetic flux (ΦB) is
generated by a coil or permanent magnet or a similar external source. If it crosses one turn
of conductor wire, the magnetic flux passing through that wire is called the flux linkage
between the existing magnetic flux and the conductor,

𝜆 = ΦB; for one turn coil, (8.42)

If the conductor coil had N turns instead of one, the amount of flux linkage between the
external magnetic flux ΦB and the N turn coil is

𝜆 = N ⋅ΦB; for N turn coil, (8.43)

Magnetic field strength (H⃗) is related to the magnetic flux density B⃗ with the permeability
of the medium,

B⃗ = 𝜇m ⋅ H⃗ (8.44)

Magnetomotive force (MMF) is defined as,

MMF = H ⋅ l (8.45)

where l is the length of the magnetic field strength path.
Reluctance of a medium to the flow of magnetic flux is analogous to the electrical

resistance of a medium to the flow of current.
The reluctance of a medium with cross-sectional area A and thickness l can be defined

as

RB = l
𝜇m ⋅ A

(8.46)

where 𝜇m is the permeability of the medium, such as air, iron. Permeance of a magnetic
medium is defined as the inverse of reluctance,

PB = 1
RB

(8.47)

Reluctance is analogous to resistance, and permeance is analogous to conductivity.
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The design task of shaping a magnetic circuit is the design task of defining the
reluctance paths to the flow of magnetic field lines in the circuit. It is a function of material
and geometry. Series and parallel reluctances are added following the same rules for
electrical resistance. Iron and its various variations is the most commonly used material in
shaping a magnetic circuit, that is in design of electric actuators. The material and geometry
of the magnetic circuit determines the resistance paths to the flow of magnetic flux.

For instance, the magnetic flux in a coil (N turn coil with length l) can be determined
as follows. The magnetic field due to current i has been given above,

B =
𝜇0 ⋅ N ⋅ i

l
(8.48)

= 𝜇0 ⋅ H (8.49)

H = N ⋅ i
l

(8.50)

= MMF
l

(8.51)

MMF = N ⋅ i (8.52)

The magnetic flux is defined as the integral of the magnetic flux density over a surface
perpendicular to the flux density vector (Figure 8.6c)

ΦB = B ⋅ A =
𝜇0 ⋅ N ⋅ i

l
⋅ A (8.53)

= N ⋅ i
[l∕(𝜇0 ⋅ A)]

(8.54)

= MMF
RB

(8.55)

For instance, a coil with N turns and current i, can be modeled in an electromagnetic
circuit as an MMF source (similar to voltage source) and magnetic reluctance RB (similar
to electrical resistance) in series with the source (Figure 8.7),

MMF = N ⋅ i (8.56)

RB = l
𝜇 ⋅ A

(8.57)

Then, the magnetic flux (analogous to current) through the coil is

ΦB = MMF
RB

(8.58)

B

(a) (b)

N

i

l

l

FIGURE 8.7: (a) A coil winding, and (b) its magnetic model. Coil is modeled as having an

MMF = N ⋅ i, magnetomotive source, and magnetic resistance (reluctance) RB = l∕(μA) in

series with the MMF .
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TABLE 8.1: Analogy between electrical and
electromagnetic circuits.

Electric circuits Magnetic circuits

V MMF or H

i ΦB or B

R RB or
1

𝜇m

i = V

R
ΦB = MMF

RB

or B = 𝜇m ⋅ H

By analogy to electrical circuits, there are three main principles used in analyzing
magnetic circuits as follows (Table 8.1):

1. The sum of the MMF drop across a closed path is zero. This is similar to Kirchoff’s
law for voltages, which says the sum of voltages over a closed path is zero.∑

i

MMFi = 0; over a closed path, (8.59)

2. The sum of flux at any cross-section in a magnetic circuit is equal to zero (that is,
the sum of incoming and outgoing flux through a cross-section). This is similar to
Kirchoff’s law for currents which says that at a node, the algebraic sum of currents
is zero (sum of incoming and outgoing currents).∑

i

ΦBi = 0; at a cross-section, (8.60)

3. Flux and MMF are related by the reluctance of the path of the magnetic medium,
similar to the voltage, current and resistance relationship,

MMF = RB ⋅ΦB (8.61)

Magnetic circuits typically have:

1. current carrying conductors in coil form which act as the source of the magnetic field,

2. permanent magnets (or a second current carrying coil),

3. iron based material to guide the magnetic flux, and

4. air.

The geometry and material of the medium uniquely determines the reluctance distribution
in space. Current carrying coils and magnets determine the magnetic source. Interaction
between the two (magnetic source and reluctance) determines the magnetic flux.

Motor Action: Force (F⃗) in a magnetic field (B⃗) and a moving charge (q) has vector
relationship (Figure 8.8a),

F⃗ = q v⃗ × B⃗ (8.62)

where v⃗ is the speed vector of the moving charge. This relationship can be extended for a
current carrying conductor instead of a single charge. The force acting on a conductor of
over length l due to the current i and magnetic field B⃗ interaction is (Figure 8.8b)

F⃗ = l ⋅ i⃗ × B⃗ (8.63)
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FIGURE 8.8: Magnetic forces: (a) magnetic force acting on a moving charge in a magnetic

field, (b) magnetic force acting on a conductor with current in a magnetic field, and

(c) magnetic force between two current carrying conductors.

This relationship is convenient to derive the Tesla or T unit of B⃗,

1 Tesla = 1
N

C∕s ⋅ m
= 1

N
A ⋅ m

(8.64)

This is the basic physical principle for the electromechanical power conversion for
motor action. Notice that the force is a vector function of the current and the magnetic flux
density. B⃗ may be generated by a permanent magnet and/or electromagnet.

The force between two current carrying parallel conductors can be described as the
interaction of the current in one conductor with the electromagnetic field generated by the
current in the other conductor. Consider two conductors parallel to each other, carrying
currents i1 and i2, separated from each other by a distance d and has length l. The force
acting between them (Figure 8.8c)

|F⃗| = 𝜇o ⋅
( l

2𝜋 ⋅ d

)
⋅ i1 ⋅ i2 (8.65)

where 𝜇o is the permeability of space between the two conductors. The force is attractive
if the two currents are in the same direction, and repulsive if they are opposite.

Generator Action: Similarly, there is a dual phenomenon called the generator action
which is a result of Faraday’s law of induction. Faraday’s law of induction states that an
electromotive force (EMF) voltage is induced on a circuit due to changing magnetic flux
and that the induced voltage opposes the change in the magnetic flux. We can think of this
as the relationship between magnetic and electric fields: a changing magnetic field induces
an electric field (induced voltage) where the induced electric field opposes the change in
the magnetic field (Figure 8.9a).

Vinduced = −
dΦB

dt
(8.66)

Note that the time rate of change in magnetic flux can be due to the change in the magnetic
field source or due to the motion of a component inside a constant magnetic field strength
which results in change of effective reluctance or both (Figure 8.9a,b,c,d). If we consider
the induced voltage on a coil with N turns and the magnetic flux passing through each of
the turns is ΦB, then

Vinduced == −N ⋅
dΦB

dt
= −d𝜆

dt
(8.67)

where 𝜆 = N ⋅ΦB is called the flux linkage, which is the amount of flux linking the N turns
of coil.
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FIGURE 8.9: Faraday’s law of induction: change in magnetic flux induces an opposing voltage

in an electrical circuit affected by the field. The induced voltage is proportional to the time rate

of change in the magnetic flux and in opposite direction to it. The source of the chance in

magnetic flux can be (a) a changing current source which generates the electromagnetic field,

(b) it can be due to the change in reluctance in a magnetic field (in other words, the inductance

of the electrical circuit changes). In inductive circuits, the back EMF can be due to

self-inductance itself and due to the change in the inductance), or (c) due to mechanical motion.

The last two cases are observed as back EMF on solenoids and DC motors, respectively. The

first case is observed in transformers. (d) Generator action as a result of Faraday’s law of

induction.

In electromagnetism, the current is the “cause” (source) and the magnetic field is the
“effect” of it. Faraday’s induction law states that the time rate of change in magnetic flux
induces EMF voltage on a circuit affected by it. The source of electromagnetic induction
(induced voltage) is the change in the magnetic flux. This change may be caused by the
following sources (Figure 8.9):

1. A changing magnetic flux itself, that is changing magnetic flux created by a changing
source current. In the case of a transformer, the AC current in the primary winding
creates a changing magnetic flux. The flux is guided by the iron core of the transformer
to the secondary winding. The changing magnetic flux induces a voltage in the
secondary winding (Figure 8.9a, Figure 8.11).
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2. A changing magnetic flux is created as a result of changing inductance. In a circuit,
even though the current is constant, change in magnetic flux can be caused by the
change in the geometry and permeability of the medium (change in reluctance). This
results in induced back EMF. This phenomenon is at work in the case of solenoids
and variable reluctance motors. In general this voltage has the form (Figure 8.9b),

Vbemf = −
dΦB

dt
(8.68)

= −d(L(x)i(t))
dt

(8.69)

= −L(x)
di(t)
dt

− dL(x)
dx

⋅ i(t) ⋅ ẋ(t) (8.70)

where the first term is the back EMF due to self-inductance of the circuit (L(x)),
and the second term is the back EMF induced due to the change in the inductance
(dL(x)∕dx).

3. A back EMF is induced in the conductors moving in a fixed magnetic field established
by the field magnets (permanent magnets or electromagnets Figure 8.9d). As the
conductor moves in the magnetic field, there will be a force acting on the charges in it
just as there is a force acting on a charge moving in a magnetic field. Let us consider a
constant magnetic field B, a conductor with length l moving in perpendicular direction
to magnetic field vector, and its current position is x (Figure 8.9d). The induced back
EMF because of this motion is

Vbemf = −
dΦB

dt
= −d(B ⋅ l ⋅ x)

dt
= −B ⋅ l ⋅ ẋ (8.71)

This is referred to as the generator action. In the case of a brush-type DC motor, the
conductor is the winding on the rotor which moves relative to stator magnets. In the
case of brushless DC motors, the permanent magnets on the rotor move relative to
the fixed stator windings. The resulting induced back EMF voltage effect is the same.

A coil of conductor has self-inductance, which opposes the change in the magnetic
field around it. Through self-inductance, L, the coil generates an EMF voltage that is
proportional to the rate of change of current in the opposite direction (Figure 8.10). If the
circuit geometry and its material properties vary (i.e., in the case of a solenoid, the air gap
varies), the inductance is not constant. The inductance is a function of the geometry (i.e.,
number of turns in a coil) and the permeability of the medium. If the core of an inductor
winding has a moving iron piece and the permeability of the medium changes as the core
moves, the inductance of the coil changes. Consider the self-inductance L of a solenoid coil
with length l and a total of N turns, cross-sectional area of A. Let us assume the medium
inside the coil is air. Let us assume that the magnetic flux inside the coil is uniform. Then,

B = 𝜇o ⋅ (N∕l) ⋅ i (8.72)

ΦB = B ⋅ A = 𝜇o ⋅ (N∕l) ⋅ i ⋅ A (8.73)

V (t)
L

L
i

FIGURE 8.10: A coil of a conductor and its

self-inductance. Self-inductance of a coil is a function of

the number of turns in the coil, its geometry, and the

material properties of the medium that the coil core and

its surrounding.
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Vbemf = −L
di
dt

= −N
dΦB

dt
(8.74)

L ⋅ i = N ⋅ΦB (8.75)

L =
N ⋅ΦB

i
(8.76)

L =
N ⋅ 𝜇o ⋅ (N∕l) ⋅ i ⋅ A

i
(8.77)

=
𝜇o ⋅ N2 ⋅ A

l
(8.78)

L = N2

RB
(8.79)

which shows that the inductance is a function of the coil geometry and permeability of the
medium. If the coil core is iron, then 𝜇o would be replaced by 𝜇m for iron which is about
1000 times higher than the permeability of air. Hence, the inductance of the coil would be
higher by the same ratio.

In electric actuator design, it is desirable to have a small magnetic reluctance, RB,
so that more flux (ΦB = MMF∕RB) is conducted per unit magnetomotive force (MMF).
On the other hand, it is desirable to have small inductance (L) so that the electrical time
constant of the motor is small. These are two conflicting design requirements. A particular
design must find a good balance between them that is appropriate for the application.

Let us consider the transformer shown in Figure 8.11. A transformer has two windings,
a primary and secondary winding, and a laminated iron core which magnetically couples
them. The laminated design, as opposed to solid metal piece design, reduces eddy current
losses. The iron core material of the laminations has a large magnetic permeability and a
large flux saturation level, which helps conduct the generated magnetic flux through the
circuit without saturation. In other words, it provides an efficient electromagnectic coupler
between the two coils.

A transformer works based on Faraday’s induction principle, that is, voltage is induced
on a conductor due to a change in the magnetic field. In the case of transformers, the change
in magnetic field is due to the alternating current (AC) nature of the source at the primary
winding. An ideal transformer can be viewed as having pure inductance, although in reality
there is some resistance and capacitance.

Faraday’s law states that the voltage across the primary winding is proportional to
the rate of change of the magnetic flux and opposes that change,

𝜐1(t) = V1 ⋅ sin𝜔t (8.80)

𝜐1(t) = −N1
dΦB

dt
(8.81)

V (t)

N

V (t)

N

1 2

1 2

N1 N2

Iron core

V (t)1 V (t)
2

(a) (b)

FIGURE 8.11: (a) An ideal

transformer with primary and

secondary coil windings,

laminated soft iron core.

(b) circuit diagram for a

transformer.
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where 𝜐1(t) is the source voltage applied to the primary winding, N1 is the number of turns
of the coil, and ΦB is the magnetic flux. Assuming no loss in the magnetic flux, the induced
voltage in the secondary winding is

𝜐2(t) = −N2
dΦB

dt
(8.82)

𝜐2(t) =
N2

N1
𝜐1(t) (8.83)

Notice that when N2 > N1, the transformer increases the voltage (step-up transformer), and
when N2 < N1, it reduces the voltage (step-down transformer, Figure 8.11). Notice that a
transformer works on the AC voltage. The DC component of the voltage in the primary
winding does not cause any change in the magnetic field, hence does not contribute to the
voltage induced in the secondary winding. Therefore, a transformer is sometimes used to
isolate (or block) the DC component of a source voltage in signal processing applications.
When N1 = N2, there is no AC voltage level change between primary and secondary
windings, and such a transformer is called the isolation transformer. The main purpose of
an isolation transformer is to “isolate” the two devices on the primary side and secondary
side from each other so that there are no physical ground loops between the two sides.

Example Consider the electromagnetic circuit shown in Figure 8.12. The core of the
coil winding is made of a magnetically conductive material with a permeability coefficient
of 𝜇c. The cross-sectional area, the length of the core material, and the total number of turns
of the solenoid are Ac, lc, N, respectively. Let the air gap distance be lg. The cross-sectional
area at the air gap is Ag. Determine the effective reluctance and inductance of the circuit.

The reluctance of the magnetically permeable core and air gap add in series like
electrical resistance.

R = Rc + Rg (8.84)

=
lc

𝜇c ⋅ Ac
+

lg
𝜇0 ⋅ Ag

(8.85)

Notice that if 𝜇c ≫ 𝜇0, then R ≈ Rg.

N.i

(a) (b)

N.i

Rg
Ag

Ag

Ac

lg

lg

FIGURE 8.12: (a) An electromagnetic circuit example: coil wound over a core which has an air

gap. (b) Magnetic circuit model.
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The magnetomotive force (MMF) generated due to the coil and current is

MMF = N ⋅ i (8.86)

Flux circulating in the closed path along the core and through the air gap is

ΦB = MMF
R

= N ⋅ i
R

(8.87)

The flux linkage to the coil is

𝜆 = N ⋅ΦB (8.88)

= L ⋅ i (8.89)

= N
N ⋅ i

R
(8.90)

L = N2

R
(8.91)

This shows that self-inductance of a magnetic circuit involving a coil is proportional to the
square of the number of turns and inversely proportional to the reluctance of the circuit. In
actuator applications, small reluctance is desirable in order to generate more magnetic flux,
hence force or torque. However, smaller reluctance leads to large inductance, which results
in a larger electrical time constant. In electric motor design applications, this conflicting
design requirement must be balanced: for large force/torque, we want small reluctance
and for small electrical time constant we want small inductance. However, inductance and
reluctance are inversely related. As one increases, the other one decreases.

8.1.3 Permanent Magnetic Materials

Materials can be classified into three categories in terms of their magnetic properties:

1. paramagnetic (i.e., aluminum, magnesium, platinum, tungsten),

2. diamagnetic (i.e., copper, diamond, gold, lead, silver, silicon),

3. ferromagnetic (i.e., iron, cobalt, nickel, gadolinium) materials,
� soft ferromagnetic materials,
� hard ferromagnetic materials.

Of these, hard ferromagnetic materials are of interest to us as permanent magnetic materials.
Soft ferromagnetic materials are used as lamination material for stator and rotor frames and
transformer frames. The difference between these materials originates from their atomic
structure. Magnetic field strength, H⃗, and magnetic flux density, B⃗, relationship in a given
spatial location depends on the “permeability” of the surrounding material, 𝜇m,

B⃗ = 𝜇m ⋅ H⃗ (8.92)

where, 𝜇m = 𝜇r ⋅ 𝜇0 is called the magnetic permeability of the material which is a measure
of how well a material conducts magnetic flux, and 𝜇r is called the relative permeability,
𝜇0 is the permeability of free space. The relationship between the magnetic field strength
(H⃗) and the magnetic flux density (B⃗) is almost linear for paramagnetic and diamagnetic
materials. Although the same relationship can be used to describe the magnetic behav-
ior of ferromagnetic materials, the relationship is not linear and exhibits large hysteresis
(Figure 8.13). Susceptibility, 𝜒 , is defined as

𝜇r = 1 + 𝜒 (8.93)



ELECTRIC ACTUATORS: MOTOR AND DRIVE TECHNOLOGY 623

(d)

P1 - Load line

P2 - load line

Knee point

   @20 °C

  @140 °C

Permanent loss
of magnetization
due to knee point

No permanent 
loss

Br

Ba

Bb

Bc

Bd
Be

r

r

r

r

c

c

m

m

c m

c
c

c

c

c

c

FIGURE 8.13: Magnetic properties of ferromagnetic materials are not linear. (a) In soft

magnetic materials, the Br and Hc are small, hence they have small hysteresis. They retain a

very small portion of their magnetization when the external field is removed. They are

temporarily magnetized, not permanently. (b) In hard magnetic materials, the Br and Hc are

large (with large hysteresis) which means the material retains a large magnetization after

external field is removed. This is the case for permanent magnetic materials. (c) Permanent

magnets (PM) in electric actuator applications operate primarily in the second quadrant of the

B-H curve. Rare-earth PMs (i.e., samarium-cobalt mixtures, neodymium mixtures) have almost

linear characteristics in the second quadrant. (d) Temperature effect on demagnetization curve

of permanent magnets and the “knee point. Source: Adapted from www.hitachi-metals.co.jp/e.”

http://www.hitachi-metals.co.jp/e
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The susceptibility

1. is positive but small (i.e., 10−4 to 10−5 range) for paramagnetic materials,

2. is negative but small (i.e., −10−5 to −10−10 range) for diamagnetic materials, and

3. is positive and several thousand times larger than 1 (i.e., in the range of 103 to 104)
for ferromagnetic materials. Furthermore, the effective 𝜇m in the B⃗ and H⃗ relation-
ship is not linear, but exhibits hysteresis nonlinearity. Ferromagnetic materials are
categorized into two groups based on the size of the hysteresis:
(a) materials that exhibit small hysteresis in their B-H curves are called soft

ferromagnetic materials (Figure 8.13a),
(b) materials that exhibit large hysteresis in their B-H curves are called hard

ferromagnetic materials (Figure 8.13b).

In the case of soft ferromagnetic materials, the material goes though the full cycle of
magnetization and demagnetization at the same frequency of the external magnetic field.
For instance, the stator and rotor material in an electric motor are made of soft ferromagnetic
material. As the stator current changes direction in a cyclic way, the B-H curve for the steel
goes through the hysteresis loop. The energy in the hysteresis loop is lost as heat. Hysteresis
loss is proportional to the maximum value of magnetic field intensity magnitude and its
frequency. Therefore, in order to minimize the energy loss in motor and transformer cores,
lamination material is chosen among the soft ferromagnetic materials. Soft ferromagentic
materials have less hysteresis losses. But, as a result of the same property, they have a
small residual magnetization when the external magnetic field is removed. Therefore, we
can think of them temporarily magnetized materials.

Hard ferromagnetic materials have a large residual magnetization, which means they
maintain a strong magnetic flux density even when the external field is removed, hence the
name permanent magnets. But, as a result of the same property, they have large hysteresis
losses if they operate in a full cycle of external magnetic field variation. The maximum
value of the product of B ⋅ H on the hysteresis curve indicates the magnetic strength of the
material. It is easy to confirm that the BH term has energy units as follows,

Tesla ⋅ A∕m = Nt
A m

A∕m = Nt
m2

= Nt ⋅ m
m3

(8.94)

= Joule
m3

(8.95)

or in CGS units, BH has units of Gauss ⋅ Oerstead GOe = 1
4𝜋

× 103 Joule∕m3.

The residual magnetization (Br) left after the external magnetic field is removed,
which is a result of the magnetic hysteresis, is used as a way to permanently magnetize
ferromagnetic materials. This permanent magnetization property is called remanent mag-
netization or remanence (Br) of the material, which means the “remaining magnetization.”
As the magnitude of the residual magnetic flux density (Br) increases, the capability of
the material to act as a permanent magnet (PM) increases. Such materials are called “hard
ferromagnetic materials” compared to the “soft ferromagnetic materials” which have small
residual magnetization. The value of the external magnetic field strength (Hc) necessary
to remove the residual magnetism (to totally demagnetize it) is called the coercivity of
the material. It is a measure of how hard the material must be “coerced” by the external
magnetic field to give up its magnetization. Notice that the area inside the hysteresis curve
is the energy lost during each cycle of the magnetization between H⃗ and B⃗. This is called
the hysteresis loss. This energy is converted to heat in the material. In electromagnetic
actuator applications such as electric motors, a permanent magnet (PM) usually operates in
the second quadrant of B-H curve. As long as the external field is below the Hc, the magnet
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state moves back and forth along the curve on the second quadrant. In this case, there is a
very small hysteresis loss (Figure 8.13c).

The power of a permanent magnet is measured in terms of the magnetic flux and
MMF it can support,

ΦB = B ⋅ Am (8.96)

MMF = H ⋅ lm (8.97)

where lm is the length of the magnet in the direction of magnetization, and Am is the cross-
section of the magnet perpendicular to the magnetization direction. In order to increase the
MMF for a given PM with a specific B-H characteristics, it must have a large thickness in
the direction of magnetization (lm). Similarly, in order to increase the flux, it must have a
large surface area that is perpendicular to its magnetization (Am).

If a permanent magnet is placed in an infinitely permeable medium, no MMF would
be lost and the magnetic field intensity coming out of the magnet would be B = Br, H = 0.0
(Figure 8.13c). If, on the other hand, the permanent magnet is placed in a medium with
zero permeability, no magnetic flux can exit it. The operating point of the magnet would be
B = 0 and H = −Hc.

In a real application, the effective permeability of the surrounding medium is finite.
Hence, the permanent magnet operates somewhere along the curve between the two extreme
points in the second quadrant of the B-H curve. The nominal location of the operating point
is determined by the permeance of the surrounding medium. The absolute value of the slope
of the line connecting the nominal operating point to the origin is called the permeance
coefficient, Pc and the line is called the load line. The applied coil current shifts the
net MMF (or H), and hence the operating point of the magnet along the H-axis. It is
important that the applied coil current should not be large enough to force the magnet
into the demagnetization zone. In permanent magnet motors, the electromagnetic circuit
of the motor generally results in a load line that is Pc = 4 to 6 range. In magnetic circuits
where the closed path of the flux is made of an air gap, highly permeable material, and a
permanent magnet, it can be shown that

Pc ≈
lm
lg

(8.98)

where lm is the permanent magnet thickness in the direction of magnetization, and lg is the
effective air gap length.

The B-H curve of a permanent magnet is strongly a function of the operating tem-
perature. Consider a permanent magnet in an electromagnetic circuit. We will consider two
operating temperature conditions 20 ◦C and 140 ◦C. Figure 8.13d shows the B-H demag-
netization curves in the second quadrant for a particular permanent magnet for these two
temperatures. On the figure on the left of Figure 8.13d, B-H curve A is for 20 ◦C, and
B-H curve B is for 140 ◦C. Notice the drop in the magnetic strength as the temperature
increases. In particular we want to focus on the “knee point” effect. Let us assume that
the current operating condition is defined by the load line P1 and its intersection with the
B-H curve. At 20 ◦C temperature, the nominal flux density is Ba. Now, assume that under
this operating condition, the temperature has risen to 140 ◦C. Then, the nominal operating
point is now the intersection between the load line P1 and the B-H curve for the 140 ◦C
temperature. Under this condition, the nominal magnetic flux density is Bb. Then, let us
assume that the operating temperature returns to 20 ◦C. The nominal magnetic flux density
will return to the Ba value. Under this operating condition, temperature variation did not
result in permanent demagnetization. When the temperature increases, the magnetic field
strength reduces. But when the temperature returns to its original lower value, the original
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TABLE 8.2: Temperature dependence of the magnetic
properties of various permanent magnetic materials.

Material 𝚫Br∕𝚫T 𝚫Hc∕𝚫T

Neodymium −0.10 −0.60

Samarium −0.04 −0.30

Alnico −0.02 +0.01

Ferrite −0.18 +0.30

magnetic field strength (and magnetic flux density) is recovered. This is called reversible
loss in magnetization. The loss on B value as a function of temperature is defined as tem-
perature sensitivity constant for a permanent magnet material. For instance, Neodymium
magnets lose about 10% of their magnetic strength when the temperature rises from room
temperature 20 ◦C to 120 ◦C, whereas samarium cobalt loses only 4%.

There are also non-reversible losses due to temperature and operating condition
variations, such as knee point, Curie temperature (Table 8.2). Next, let us consider the
same temperature cycling between 20 ◦C and 140 ◦C and back to 20 ◦C while operating
on the load line P2 (i.e., the same magnet is used in a slightly different circuit, such as
the air gap in this circuit is larger). When the temperature is 20 ◦C, the nominal magnetic
flux density is Bc. When the temperature is 140 ◦C, the nominal flux density is Bd. It is
important to note that this operating condition falls below the “knee point.” Some of the
magnetic strength will be permanently lost. When the temperature returns to 20 ◦C, the
nominal magnetic flux density will be a value Be between Bc and Bd. The original Bc value
will not be recovered. This means that if the operating conditions (such as a combination of
load line and temperature) bring the magnet to a point below the “knee point,” there is some
permanent loss of magnetic strength. In electromechanical actuators, the electromagnetic
circuit should be designed such that PM never reaches the knee point, that is the point of
permanently losing some of its magnetization. The lost magnetization can only be recovered
by re-magnetizing the magnet.

In an electromagnetic circuit, a permanent magnet can be modeled as a flux source
Φr and a reluctance Rm in parallel with it (Figure 8.14)

Φr = Br ⋅ Am (8.99)

Rm =
lm

𝜇r ⋅ 𝜇o ⋅ Am
(8.100)

where lm is the length along the magnetization direction, and Am is the cross-section area
perpendicular to the magnetization direction, 𝜇r is the recoil permeability of the magnet
material.

In short, remanence Br, coercivity Hc, and (BH)max maximum energy are three
nominal parameters which characterize the magnetic properties of a ferromagnetic material.

Φ

Φ

= B  Amr r 

FIGURE 8.14: Magnetic model of a

permanent magnet. The permanent

magnet acts like a flux source and a

parallel reluctance. The actual flux, Φ,

which leaves the magnet is determined

by the rest of the load circuit.
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TABLE 8.3: Comparison of four major permanent magnetic material types.

Permanent magnet Max. magnetic Curie Max. operating

material energy (MGOe) temp (◦C) temp (◦C) Cost $

Alnico 5 ∼ 1000 ∼ 500 Low

Ceramic 12 ∼ 450 ∼ 300 Moderate

SmCo 35 ∼ 800 ∼ 300 High

NdFeB 55 ∼ 350 ∼ 200 Medium

There are four major types of natural hard ferromagnetic materials that can be used
as permanent magnets:

1. Alnico which is an aluminum (Al)-nickel (Ni)-cobalt (Co) (“AlNiCo”) mixture.

2. Ceramic (hard ferrite) magnetic materials which consists of strontium, barium ferritite
mixtures.

3. Samarium cobalt (samarium and cobalt mixtures, SmCo5, Sm2Co17).

4. Neodymium (neodymium, iron, and boron are the main mixture components with
small amounts of other compounds). The ideal mixture is Nd2Fe14B1.

Alnico and ceramic ferrite permanent magnet materials are the lowest cost types and have
lower magnetic strength compared to samarium and neodymium. The maximum magnetic
energy of each type is shown in Table 8.3. Today, Alnico permanent magnets (PM) are
used in automotive electronics, ceramic PM materials are used in consumer electronic, and
samarium and neodymium are used in high performance actuators and sensors. The cost
of the PM material increases as the magnetic energy level increases. Notice that the energy
levels given in the table are the maximum currently achievable levels. Lower energy level
versions are available at lower cost. For instance, the cost of NdFeB at 45 MGOe is twice
that of NdFeB at 30 MGOe. The biggest advantage of samarium-cobalt PM material over
neodymium PM material is the fact the samarium-cobalt PM material can operate at higher
temperatures.

The manufacturing process for making permanent magnets from one of the above
materials has the following steps (it is important to note that small variations in composition
and the manufacturing process make a difference in the final magnetic and mechanical
properties of the magnet):

1. Mix the proper amount of elements to form the magnet compound and melt it in
furnace, and make ingots.

2. Process the ingots to turn them into fine powder and mix the powder.

3. Place the mixed powder in a die cavity, apply an initial electromagnetic field to orient
the magnetic directions (pre-alignment of magnetic field), and press it down to about
50% of its powder state size. This is a powder metallurgy process. The product at this
state is called “green.”

4. Heat the “green” PM in a furnace (i.e., vacuum chamber at 1100–1200 ◦F for
neodymium-iron-boron) which will result in further shrinkage in size. This process
may be followed by a lower temperature heat treatment around 600 ◦C.

5. Saw and grind to the desired shape (rectangular, cylindrical) and size.

6. Coat the surface of the magnet piece if desired.

7. Magnetize each piece to magnetic saturation by an external electromagnetic field
pulse (i.e., generally a few milliseconds duration of external magnetic field pulse
with a high enough H value to make the magnet reach its saturation level). Pulse
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duration can also be in the order of seconds depending on the magnet material being
magnetized. Since the handling of magnetized permanent magnet pieces is difficult, it
is desirable to magnetize the magnets as late as possible in the manufacturing process
for a given magnetic product application.

8. Finally, the permanent magnet batch should be treated with stabilization and calibra-
tion processes. The calibration process makes sure that the magnetic strength of each
piece is within a certain tolerance of the desired specifications (i.e., ±1%).

Typical shapes and magnetization directions of permanent magnets are shown in
Figure 8.15. There is a critical temperature, called the Curie temperature for each ferro-
magnetic material above which the material losses its ferromagnetic properties and becomes
a paramagnetic material. The Curie temperature for iron is 1043 ◦K, for cobalt 1394 ◦K,
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FIGURE 8.15: Typical shapes and magnetization directions of permanent magnets. The letter

M with arrows indicates the magnetization direction of the piece.
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and for nickel 631 ◦K. In practice, the allowed maximum operating temperature for a PM
material is much lower than the Curie temperature.

The external magnetic field (also called the magnetizing force) should be strong
enough to fully magnetize the material and saturate it so that the permanent magnet material
attains its maximum possible magnetic capacity. This value is at least 3 to 5 times the
coercivity (Hc) of the permanent magnet material.

Each PM material has a different susceptibility to environmental conditions. In addi-
tion to temperature, the chemical composition of the environment is most important. Alnico,
ceramic, and samarium magnets are corrosion resistant, whereas neodymium magnets are
very susceptible to corrosion. In the selection of a permanent magnet (PM) material, the
environmental issues to consider are:

1. oxidation and humidity level,

2. acid content,

3. salt content,

4. alkaline content,

5. radiation level.

The following specifications are typically used by designers in selecting a proper
permanent magnet for an application:

1. permanent magnet material,

2. remanance, coercivity, and maximum energy, Br, Hc, (BH)max,

3. maximum operating temperature without irreversible loss of magnetization,

4. mechanical dimensions (shape and size),

5. magnetization direction (radial, axial, etc.),

6. whether the permanent magnet is sintered or bonded,

7. surface coating (i.e., 2 μm to 20 μm range thickness, aluminum, nickel, or titanium
nitride coating material).

The selected PM material largely determines the temperature coefficient for the loss of
magnetic field as the temperature rises, and the thermal expansion coefficient of mechanical
dimensions, which is important in a device assembly. Neodymium magnets expand in the
magnetized direction and contract in the other direction with increasing temperature.

A permanent magnet piece is usually bonded to a steel backing material using adhe-
sives in motor applications, that is in the case of electric motors on a steel rotor (3M Adhe-
sives). The bonding material types include thermosetting epoxies, and structural adhesives.
There are many adhesives specifically designed for motor applications (3M Adhesives).
The strength of the bond between the PM and and the rotor is a function of the contact sur-
face area. Typically, the surface area is roughened in order to provide a good bonding. After
the application of adhesive, the PM is clamped on the rotor and cured at high temperature.
The curing temperature for the bonding material (the temperature at which the bonded PM
is baked for a certain time period) should be well below the demagnetization temperature
of the PM, if the PM was magnetized before the bonding process.

8.2 ENERGY LOSSES IN ELECTRIC MOTORS

An electric actuator is a device that converts energy from electrical to mechanical form
(Figure 8.16). The conversion process is not 100% efficient, hence there are losses.
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Electric motor: 
   Power conversion process
   Losses converted to heat
   Heat transfer to/from environment
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FIGURE 8.16: Energy losses in electric motors and its effect on the motor temperature.

These losses are in the form of heat. The energy losses can be categorized into three
groups:

1. resistance losses (also called copper losses): R ⋅ i2,

2. core losses (hysteresis and eddy current losses),

3. friction and windage losses.

Resistance and core losses are electrical losses, whereas the friction and windage losses are
mechanical losses.

The steady-state operating temperature of the actuator is determined by these losses,
the heat transferred to the surrounding medium through conduction, convection, and radia-
tion type heat transfer mechanisms. The maximum temperature the actuator can operate in
(i.e., before losing its insulation material or magnetic properties) determines the maximum
power capacity of the motor.

The energy balance (Qnet) is the difference between the generated heat due to the
losses (Qin) and the transferred heat from the actuator to its surrounding environment (Qout)
is the energy that must be absorbed by the actuator in the form of temperature rise,

Qnet = Qin − Qout (8.101)

= ct ⋅ m ⋅ (T − T0) (8.102)
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where m is the mass of the actuator which absorbs heat, ct is the specific heat of the material
of actuator in units of Joule∕(kg ⋅ ◦C), T0 is the initial temperature and T is the steady-state
temperature. The generated heat due to losses, Qin,

Qin = QR + QC + QF (8.103)

where QR is the resistive loss, QC is the core loss, and QF is the friction and windage loss.
The transferred heat is estimated with approximation as follows,

Qout = cout ⋅ (T − Tamb) ⋅ Δt (8.104)

where Tamb is the ambient temperature, and cout is the effective heat transfer coefficient
between the actuator and its surrounding with units (Joule∕s)∕◦C = Watts∕◦C, and Δt is
the time period.

The energy balance equation can also be expressed as power balance in differential
equation form,

d
dt

[Qnet] =
d
dt

[Qin − Qout] (8.105)

Pnet = Pin − Pout (8.106)

ct ⋅ m ⋅
dT
dt

= Pin − cout ⋅ (T − Tamb) (8.107)

ct ⋅ m ⋅
dT
dt

+ cout(T − Tamb) = Pin (8.108)

This models the electric actuator thermal behavior like a first-order dynamic system. Notice
that the actuator reaches a steady-state temperature, when Pnet = 0, then dT∕dt = 0. The
difficulty in using such an analytical model is in the difficulty of accurately estimating
cT, cout and Pin. Note that

Pin = d
dt

Qin (8.109)

= d
dt

QR + d
dt

QC + d
dt

QF (8.110)

= PR + PC + PF (8.111)

For a given motor design and its expected operating conditions, if we can estimate
the total losses Pin = PR + PC + PF and the heat transfer coefficient between the motor
and environment cout, then we can estimate the steady-state operating temperature of the
motor. The steady-state value of the operating temperature is easy to calculate from the
above differential equation

ct ⋅ m ⋅
dT
dt

+ cout ⋅ (T − Tamb) = Pin (8.112)

dT
dt

= 0 in steady-state, then (8.113)

0 + cout ⋅ (T − Tamb) = Pin (8.114)

T(∞) = Tamb +
1

cout
⋅ Pin (8.115)

8.2.1 Resistance Losses

Electric actuators have coils which are windings of current carrying conductors. Coils act
as current controlled electromagnets. The conductor material, such as copper or aluminum,
has finite electrical resistance. In order to generate an electromagnetic effect, we need to
pass a certain amount of current. As the electrical potential pushes the current through the
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conductor, there is energy loss due to resistance. This is similar to the energy loss in pushing
a certain fluid flow rate through a restriction. The power (PR) lost as heat due to resistance
(R) of a conductor when current i is conducted,

PR = R ⋅ i2 (8.116)

Therefore, in order to minimize the heating of the motor, it is desirable to minimize the
resistance and current. However, a large current is needed to generate a large force or
torque. The energy (Qr) that is converted to heat over a period of time tcycle is

QR = ∫
tcycle

o
PR ⋅ dt (8.117)

= ∫
tcycle

o
R ⋅ i(t)2 ⋅ dt (8.118)

Resistive loss, PR = R ⋅ i2, is fairly well estimated. The temperature dependence of
resistance can also be taken into account for better accuracy of thermal prediction,

R(T) = R(T0)[1 + 𝛼cu(T − T0)] (8.119)

where R(T), R(T0) are resistances of coil at temperature T and T0, respectively and 𝛼cu =
0.00393 for copper which is the property of the conductor material. Notice that for copper,

R(125 ◦C) ≈ 1.4 ⋅ R(25 ◦C) (8.120)

The resistance of the coil increases by 40% when its temperature increases by 100 ◦C.

8.2.2 Core Losses

Core losses refers to the energy lost, in the form of heat, in electric actuators at their
stator and rotor structure due to electromagnetic variations. There are two major physical
phenomenon that contribute to core losses: hysteresis losses and eddy current losses.

Hysteresis loss is due to the hysteresis loop in the B-H characteristics of the core
(rotor and stator) material which is typically a soft ferromagnetic material. As the magnetic
field changes, the hysteresis loop is traversed and energy is lost. The hysteresis loss is
proportional to the magnitude of the magnetic field change and its frequency. This loss can
be minimized by selecting a core material that has small hysteresis loops, such as a high
silicon content in the steel used for the core material.

Eddy currents and related losses can be summarized as follows. If a bulk piece
of metal (e.g., iron, copper, aluminum) moves through a magnetic field or is stationary
in a changing magnetic field, a circulating current is induced on the metal. This current
is called eddy current and it results in heat loss due to the resistance of the metal. The
induced current is a result of Faraday’s law of induction. That is the changing magnetic
field (whether due to change in B⃗ or motion of the metal conductor relative to B⃗ or both)
induces a voltage on the conductor. This induced voltage generates the current. Power loss
due to eddy currents is proportional to the square of magnetic flux density and its frequency
of variations. Therefore, it is expected that the hysteresis losses will be more dominant at
low frequencies, whereas eddy current losses will be more dominant at high frequencies.

Laminations of thin layers of metal which are insulated and stacked together, as
oppose to bulk metal, are used to reduce the eddy currents in motor applications. Hence
eddy current-related heat losses are reduced, increasing the efficiency of the motor. The
stators of DC and AC motors are built using laminated iron instead of bulk iron in order to
reduce the eddy current related loss of energy into heat. For different lamination materials,
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hysteresis and eddy current losses are given based on measured data as a function of field
intensity and frequency,

P∗
C = f (Bmax, w) (8.121)

where Bmax is the maximum flux density, and w is the frequency of change in magnetic
flux. The nonlinear function f (⋅) is defined as numerical graphs for different lamination
materials by manufacturers. Notice that the core loss data for different materials is given
per unit mass of the material. Total core loss for a given mass of motor application,

PC = m ⋅ P∗
C (8.122)

Hence, the designer can estimate the core losses for a given design using the manufacturer
supplied data.

8.2.3 Friction and Windage Losses

These losses are significant at very high speeds due to the air resistance between the rotor
and stator. The energy loss due to air resistance is called the windage loss. Energy loss due
to bearing friction is called the friction loss. They are taken into account by increasing the
resistive loss by a safety factor, since it is very difficult to accurately model friction and
windage losses, that is

PF = 0.1 ⋅ PR (8.123)

8.3 SOLENOIDS

8.3.1 Operating Principles of Solenoids

A solenoid is a translational motion actuator with a rather limited motion range. Solenoids
are used in fluid flow control valves and small range translational displacement actuators.
A solenoid is made of (Figure 8.17),

1. a coil,

2. a frame which is a material with high permeability to guide the magnetic flux,

3. a plunger which also is made of high permeability material,

4. a stopper (and a centering spring in most cases), and

5. a bobin, which is a plastic or non-magnetic metal on which coil is wound. It is non-
magnetic so that there is no short circuit for the flux between the coil and plunger.

Plunger

Mounting thread

FrameCoil

Stop

(a) (b)

Bobin
Flux lines

x

FIGURE 8.17: Solenoid components and its design: pull and push types.
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The operating principle of solenoids is based on the tendency of the ferromagnetic
plunger and coil generated magnetic flux to seek the minimum reluctance point. As a
result, when the coil is energized, the plunger is pulled in towards the stopper. The higher
the magnetic field strength (ncoil ⋅ i, number of turns in the coil times current) and the
better the magnetic permeability of the medium that guides the flux to the plunger, the
higher the force generated. The plunger works on the pull principle. However, by mechanical
design we can obtain pull or push motion from the solenoid (Figure 8.17). The mechanical
connection between the plunger, made of a ferromagnetic material, and the tool must be via
a nonmagnetic material. For instance, in the case of a push-type solenoid (Figure 8.17b),
the push-pin is made of a nonmagnetic material. The quality of the magnetic circuit and
its ability to guide magnetic flux lines depends on the permeability of the coil frame, the
air gap between the plunger and coil (fixed gap), and the air gap between the plunger and
stopper (variable gap). For a given current, the force generated by the solenoid varies as
a function of the air gap between the plunger and the stopper. The smaller this gap is, the
smaller the effective reluctance of the magnetic flux path, and hence the higher the force
generated. The force as a function of plunger displacement under constant current varies as
shown in Figure 8.18. Notice that the shape of the force-displacement curve for a constant
current can be affected by the shape of the plunger and stopper head. For high performance
applications, in order to reduce the eddy current losses in the solenoid, the iron core of the
winding and the plunger may be constructed from laminated sheets of iron that are insulated.

Sometimes, solenoids are referred as single acting type and double acting types. A
solenoid is a single acting type device: that is, when current is applied the plunger moves
in one direction in order to minimize the reluctance, regardless of the direction of the
current. Force is always generated in one direction. A double acting solenoid can move in
both directions by generating force in both directions, both pull and push directions, by
using two solenoids in one package. Therefore, a double acting solenoid is basically two
solenoids with one plunger, two coils, and two stops.

A directional flow control valve may have one or two solenoids to position it in
two or three discrete positions. For instance a double acting solenoid (two solenoids in one
package) can have three positions: center position when both the solenoids are deenergized,
left position when the left solenoid is energized, and right position when the right solenoid
is energized. If the current in each solenoid is controlled proportionally, instead of fully
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ON or fully OFF, then the displacement of the plunger can be controlled proportionally
instead of two or three discrete positions. This is the method used in proportional valves.
The solenoids are rated in terms of their coil voltage (i.e., 12 VDC, 24 VDC), maximum
plunger displacement (i.e., 1∕4 in), and maximum force (i.e., 0.25 oz to 20 lb range). There
are two major differences between ON/OFF type and proportional type solenoids:

1. the solenoid mechanical construction where the plunger, coil, and frame design
provides a different flux path (Figure 8.18i-iii, the proportional solenoids are generally
of type shown in Figure 8.18iiic)).

2. the current in the coil is controlled either in ON/OFF mode or in proportional mode.

The coil acts as the electromagnet in all electric actuators. Current (i), number of
turns (ncoil), and the effective permeance of the magnetic medium (core material, air gap,
etc.) determine the strength of the electromagnetic field generated by the coil. At the same
time, there are mechanical size and thermal considerations. The rated current determines
the minimum diameter requirement of the conductor wire. The wire diameter and the
number of turns determines the mechanical size of the coil. In general, the insulation
material increases the effective conductor diameter by about 10%. Different insulation
materials have different temperature ratings (i.e., 105 ◦C for formvar, 200 ◦C for thermalex
insulation material compounds commonly used industry). Once the coil wire diameter,
number of turns, and mechanical size is known, the resistance of the coil is determined.
Hence, the resistive heat dissipation is known. In order to make sure the temperature of the
coil stays within the limits of its coil insulation rating, the thermal heat conducted from the
coil should balance the resistive heat. The coil design requires the balancing of electrical
capacity (current and number of turns), mechanical size, and thermal heat. In other words,
the designer must find a balance between the mechanical dimension constraint, thermal
heat dissipation capacity, and electrical power conversion capability for a coil design. In
order to increase the MMF, we need a large number of turns, ncoil, which means diameter,
d, of the coil wire should be small. However, as d gets smaller, resistance R increases, hence
the maximum current we can pass through must be smaller in order to stay within the heat
dissipation capacity of the solenoid,

MMF = ncoil ⋅ i (8.124)

R ⋅ i2 < Prated (8.125)

In order to increase MMF, we can decrease d so that ncoil is large. But this results in an
increase in R which in turn requires lower i, which then reduces MMF.

The force generated by a solenoid is a function of the current in the coil (i),
the number of turns in the coil (ncoil), the magnetic reluctance (RB, which is a func-
tion of the plunger displacement, x, the design shape, and material permeability, 𝜇), and
temperature (T)

Fsol = Fsol(i, ncoil, RB(x,𝜇), T) (8.126)

For a given solenoid, the ncoil is fixed, RB(x,𝜇) varies with the displacement of the plunger
and the air gap between the winding coil and the plunger. The main effect of temperature is
the change in the resistance of the coil. This leads to a change in current for a given terminal
voltage. If the control system regulates the current in the coil, the effect of temperature on
force other than its effect on resistance is negligable. Therefore, for a given solenoid, the
generated force is a function of operating variables as follows,

Fsol = Fsol(i, x) (8.127)
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The basic mode of control is the control of current in the coil in order to control the
force. Unlike a rotational DC motor where the current and torque relationship is constant
and independent of the rotary position of the shaft, the force–current relationship of a
solenoid is nonlinear and a function of the rotor (plunger) position (Figure 8.18).

In general the force capacity of the solenoid is rated at 25 ◦C. The force capacity
would typically reduce to 80% value at around 100 ◦C temperature. At a rated current, the
force varies as function of plunger displacement (Figure 8.18). Notice that there is always
a residual flux left in the core when the current is turned OFF (current is zero) due to
the hysteresis nature of electromagnetism. Use of annealed steel for the core and plunger
material minimizes that effect.

In the basic mode of operation, a solenoid is driven by DC voltage, Vt (i.e., 12 V,
24 V, 48 V) at its coil terminals, and steady-state current i is developed by the resistance
ratio (neglecting the inductance of coil),

i =
Vt

Rcoil
(8.128)

The physical size of the solenoid determines the maximum amount of power it can convert
from electrical to mechanical power. The continuous power rating of the solenoid should
not be exceeded in order to avoid overheating,

P = Rcoil ⋅ i2 =
V2

t

Rcoil
< Prated (8.129)

In some applications, it is desirable to provide a larger current (the in-rush current)
and after the initial movement, the current is reduced to a lower value, called the hold-
ing current. One way to reduce the in-rush current to the holding current is to divide the
coil winding into two resistor sections and provide an electrical contact between the two
series resistor. When a large in-rush current is needed, short circuit via a switch (i.e., elec-
tronic transistor switch) the second resistor section to increase current by reducing effective
resistance. When it is desired to reduce the current, turn OFF the switch to include the
second part of the resistor in the circuit in series, hence reduce the current for the given
terminal voltage. Some solenoids can be driven by 50 Hz or 60 Hz AC voltages (i.e., 24,
120 VAC). Force is related to the square of current. Therefore, the direction of generated
force does not oscillate with the AC current direction change. However, the magntitude
oscillates at twice the frequency of the supply current frequency, that is if the AC supply
is 60 Hz, the force magnitude would oscillate at 120 Hz. In other words, the electromag-
netic circuit of the solenoid acts like a “rectifier” between supply current and generated
force.

8.3.2 DC Solenoid: Electromechanical Dynamic Model

Consider the solenoid shown in Figure 8.17. The electromagnetic energy conversion mech-
anism generates the force as a result of the interaction between the coil generated elec-
tromagnetic field and variable reluctance of the plunger–air gap assembly. Let us consider
the magnetic flux path in the solenoid (Figure 8.17). Assume that the permeability of the
plunger, frame, and stop are very high compared to permeability of air gap, 𝜇c ≫ 𝜇0. We
can assume the magnetic energy is only stored in the air gap, neglecting the magnetic
energy stored elsewhere. This model is similar to the magnetic circuit shown in Figure 8.12
except that in the case of solenoids, the air gap is variable. Then, the following relations
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hold for magnetic field strength, flux density, and flux itself,

Hg ⋅ x = ncoil ⋅ i (8.130)

Bg = 𝜇0 ⋅ Hg = 𝜇0 ⋅
ncoil ⋅ i

x
(8.131)

Φb = Bg ⋅ Ag = 𝜇0 ⋅
ncoil ⋅ i

x
⋅ Ag (8.132)

The flux linkage and the inductance is defined as,

𝜆(x, i) = Φb ⋅ ncoil = L(x) ⋅ i(t) (8.133)

= 𝜇0 ⋅
n2

coil ⋅ i(t)

x
⋅ Ag (8.134)

Then, the inductance as a function of plunger displacement is

L(x) = 𝜇0 ⋅
n2

coil

x
⋅ Ag (8.135)

The coil has ncoil turns, and the voltage is controlled across the terminals of the
coil, V(t). The plunger moves inside in the direction of x. The electromechanical dynamic
model of the solenoid includes three equations: (i) the electromechanical relationship which
describes the voltage, current in coil, and motion of the plunger,

V(t) = R ⋅ i(t) + d
dt

(𝜆(x, i)) (8.136)

where 𝜆(x, i) is the flux linkage. For an inductor type coil circuit 𝜆(x, i) is

𝜆(x, i) = L(x) ⋅ i(t) (8.137)

Hence, the voltage–current–motion relationship can be expressed as,

V(t) = R ⋅ i(t) + dL(x)
dx

⋅
dx
dt

⋅ i(t) + L(x) ⋅
di(t)
dt

(8.138)

V(t) = R ⋅ i(t) + L(x) ⋅
di(t)
dt

+
(

dL(x)
dx

)
⋅ i(t)) ⋅ ẋ(t) (8.139)

The force is calculated from the so-called co-energy equation,

Wco(𝜆, i) = 1
2
𝜆(x, i) ⋅ i = 1

2
L(x) ⋅ i2 (8.140)

F(x, i) =
𝜕Wco(x, i)

𝜕x
(8.141)

= 1
2
𝜕L(x)
𝜕x

⋅ i2 (8.142)

F(x, i) = −1
2
𝜇0 ⋅

n2
coil

x2
⋅ Ag ⋅ i2 (8.143)

Notice that the force direction does not depend on the current and it is proportional to the
square of the current, and inversely proportional to the square of the air gap. The shape of
the force as a function of displacement can be shaped with design of the plunger and stopper
cross-sections (Figure 8.18). Finally, the force–inertia relationship defines the motion of
the plunger and any load it may be driving,

F(t) = mt ⋅ ẍ(t) + kspring ⋅ (x(t) − x0) + Fload(t) (8.144)

where mt is the mass of the plunger plus the load, Fload is the load force, x0 is the preload
displacement of the spring.
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FIGURE 8.19: A solenoid example. The magnetic circuit is shown on the right. The force is a

nonlinear function of the air gaps and current. The air gap xg varies with motion, and the air

gaps yg are fixed.

Notice that the electrical time constant of the solenoid, 𝜏 = L∕R, can become large
when L is large. In order to reduce the electrical time constant for fast response, one method
is to increase the effective resistance by adding external resistance in series with the coil.
As R increases, 𝜏 decreases. However, in order to provide the rated current at increased
resistance, the supply voltage level must be proportionally increased since i = V∕R. This
in turn increases the resistive heat loss, PRi = R ⋅ i2.

Example Consider the solenoid type shown in Figure 8.19. There are three air gap
paths, one xg and two yg spaces. The winding has N turns, and a controlled current i is
supplied to the winding. Let us determine the force generated as a function of current i
and the variable air gap xg. The air gaps yg on both sides are constant. Assume that the
permeability of the iron core is much larger than that of the air gaps and neglect the MMF
loss along the path in the iron. Then, the total MMF is stored in the air gaps xg and yg. Let
Ax and Ay denote the cross-sectional areas at the air gaps.

From conservation of the MMF, if we trace the flux path either on the top or bottom
section, we obtain

Hx ⋅ xg + Hy ⋅ yg = N ⋅ i (8.145)

From symmetry,

Φx = 2 ⋅Φy (8.146)

Bx ⋅ Ax = 2 ⋅ By ⋅ Ay (8.147)

Note that

Bx = 𝜇o ⋅ Hx (8.148)

By = 𝜇o ⋅ Hy (8.149)

Hence,

Φx = 2 ⋅Φy (8.150)

𝜇o ⋅ Hx ⋅ Ax = 2 ⋅ 𝜇o ⋅ Hy ⋅ Ay (8.151)

This results in the following magnetic field strength relation,

Hy =
Ax

2Ay
Hx (8.152)
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Then,

Hx = N ⋅ i(
xg +

Ax
2 Ay

yg

) (8.153)

Hy =
Ax

2Ay

N ⋅ i(
xg +

Ax
2 Ay

yg

) (8.154)

Another way to look at this is in terms of MMFs and reluctances. The flux due to MMF
and effective reluctance in the circuit,

Φ = Φx = 2 ⋅Φy (8.155)

= MMF
Reqv

= N ⋅ i
Rx + Ry,eqv

(8.156)

=
𝜇o N i Ax(

xg +
Ax

2 Ay
yg

) (8.157)

where the effective reluctances

Rx =
xg

𝜇o ⋅ Ax
(8.158)

Ry =
yg

𝜇o ⋅ Ay
(8.159)

and Ry,eqv from the parallel connection of two reluctances,

Ry,eqv =
(

1
Ry

+ 1
Ry

)−1

= Ry∕2 (8.160)

Flux linkage is a function of variable quantities i and xg (yg is constant)

𝜆(xg, i) = Φx ⋅ N = L(xg) ⋅ i (8.161)

= 𝜇o
N2 ⋅ i(

xg +
Ax

2 Ay
yg

) Ax (8.162)

L(xg, i) = 𝜇o
N2(

xg +
Ax

2 Ay
yg

) Ax (8.163)

The co-energy expression as a function of flux linkage and current is

Wco = 1
2
𝜆(xg, i) ⋅ i = 1

2
L(xg) ⋅ i2 (8.164)

F(xg, i) =
𝜕Wco(xg, i)

𝜕xg
(8.165)

= −1
2

𝜇o N2 Ax(
xg +

Ax
2 Ay

yg

)2
⋅ i2 (8.166)

The generated force is a function of actuator geometery, Ax, Ay, xg, yg, permeability of gap,
𝜇0, coil turn, N, and current, i.
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The complete electromechanical dynamic model of this actuator can be written as

V(t) = L(xg)
di(t)
dt

+ Rcoil i(t) +
(dL(xg)

dxg

)
⋅ i(t) ⋅

dxg(t)

dt
(8.167)

F(xg, i) = −1
2

𝜇o N2 Ax(
xg +

Ax
2 Ay

yg

)2
⋅ i2 (8.168)

F(xg, i) = mp

d2xg(t)

dt2
+ kspring ⋅ xg(t) (8.169)

where

L(xg) = 𝜇o
N2(

xg +
Ax

2 Ay
yg

) Ax (8.170)

dL(xg)

dxg
= −𝜇0 ⋅

N2(
xg +

Ax
2Ay

yg

)2
⋅ Ax (8.171)

In order to simulate this solenoid, we need the following:

� Parameters: 𝜇0, N, Ax, Ay, yg, mp, kspring, Rcoil.
� Initial conditions: i(t0), xg(t0), ẋg(t0).
� Variables of interest as simulation output: F(t), xg(t), V(t), i(t).

8.4 DC SERVO MOTORS AND DRIVES

DC servo motors can be divided into two general categories in terms of their commutation
mechanism: (i) brush-type DC motors; (ii) brushless DC motors. The brush-type DC motor
has a mechanical brush pair on the motor frame and makes contact with a commutator
ring assembly on the rotor in order to commutate the current, that is to switch the current
from one winding to another, as a function of rotor position so that the magnetic fields of
the rotor and stator are always at a 90 degree angle relative to each other. In brush-type
permanent magnet DC motors, the rotor has the coil winding, the stator has the permanent
magnets.

The brushless DC motor is an inside-out version of the brush-type DC motor, that
is, the rotor has the permanent magnets and the stator has the winding. In order to achieve
the same functionality of the brush-type motor, the magnetic fields of the rotor and stator
must be perpendicular to each other at all rotor positions. As the rotor rotates, the magnetic
field rotates with it. In order to maintain a perpendicular relationship between the rotor
and stator magnetic fields, the current in the stator must be controlled as a vector quantity
(both magnitude and direction) relative to the rotor position. Control of current to maintain
this vector relationships is called commutation. Commutation is done by solid-state power
transistors based on a rotor position sensor. Notice that a rotor position sensor is necessary
to operate a brushless DC motor, whereas a brush-type DC motor can be operated without
any position or velocity sensor as a torque source. When a motor is controlled in conjunction
with a position or velocity sensor, it is considered a “servo” motor.

The field magnetics in a brush-type DC motor can be established either by permanent
magnets (hence the name permanent magnet DC motor) or electromagnets (hence the
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name field-wound DC motor). Field-wound DC motors are used in high power applications
(i.e., 20 HP and above) where the use of permanent magnets are no longer cost effective.
Permanent magnet (PM) DC motors are used in applications below 20 HP.

Coil winding (either on the stator in the case of brushless DC motors, AC induction
motors, stepper motors or on the rotor in the case of brush-type DC motors) determines one
of the magnetic fields essential to the operation of a motor. The coil design question is the
question of how to distribute the coil around the perimeter of the stator or rotor. The design
parameters are [16]

1. the number of electrical phases,

2. the number of coils in each phase,

3. the number of turns on each coil,

4. the wire diameter, and

5. the number of slots and how each coil is distributed over these slots.

There are two types of windings in terms of the spatial distribution of wire on the stator
(Figure 8.20):

1. distributed winding, where each phase winding is distributed over multiple slots and
one phase winding has overlaps with the other windings (i.e., AC induction motors,
DC brushless motors),

2. concentrated winding where a particular winding is wound around a single pole (i.e.,
stepper motors).

Most common step motors have concentrated winding, whereas AC and DC motors have
distributed winding. In concentrated winding, one coil is placed around a single tooth. By
controlling the current direction in that particular coil, magnetic polarity (N or S) of that
tooth is controlled. Hence, a desired N and S pole pattern can be generated by controlling
each coil current direction and magnitude. In distributed winding, there are many variations
on how to distribute the coils. The most common type is a three-phase winding. The coil
can be distributed to generate two poles, four poles, eight poles, and so on the stator at any
given current commutation condition. By controlling the current in each phase, both the
magnitude and direction of the magnetic field pattern are controlled. It is common to view
the coil distribution in slots in a linear diagram by considering the unrolled version of the
motor stator and rotor.

Phase A

Phase C

Phase B

(a)

AA

AA

A A

B

B

B

B B

B

B

B

(b)

A

B

Phase A

Phase B

AA A

FIGURE 8.20: Winding types on the stator: (a) distributed winding (i.e., AC induction motors,

brushless DC motors), (b) concentrated winding (i.e., stepper motors).
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8.4.1 Operating Principles of DC Motors

There are three major classes of brush-type permanent magnet DC (PMDC) motors:

1. iron core armature,

2. printed-disk armature,

3. shell-armature DC motors.

Iron core armature PMDC motor is the standard DC motor where the stator has a permanent
magnet and rotor has wound conductors (Figures 8.21a, 8.22, 8.23). The other two types
are developed for applications which require a very large torque to inertia ratio, and hence
the ability to accelerate and decelerate very fast (Figure 8.21). The use of the printed-disk
and shell-armature type motors has significantly reduced in recent years since comparable
or better torque to inertia ratios can be achieved by low inertia brushless DC motors with
better reliability (Figures 8.21b, 8.24).

Brush-type DC motors have the permanent magnet as the stator (typically two pole or
four pole configuration) and the windings on the iron core rotor (Figure 8.22). The rotor is
supported by two ball bearings inside the housing. The ends of the housing are covered by
the end plate and face mount plate. Small washers are placed between the bearings and the

+
_

Magnets N

S

N

S

windings
Lamination

Motion

Armature

(Hollow club shaped
conductor array)

Air gap

Core

Magnet pole

Flux path

Motion

Permanent magnet
(8 pole)

Stator
magnets

Rotor
windings

Brushes
Commutator

Iron-cored motor

Disc-armature "printed" motor

Shell-armature motor

(a) Brush-type

(b) Brushless type

FIGURE 8.21: Permanant magnet DC motor types : (a) brush-types (iron-core, disc-armature,

shell-armature) (b) brushless type.



ELECTRIC ACTUATORS: MOTOR AND DRIVE TECHNOLOGY 643

Brush

Bearing

Commutator

Rotor iron core

Permanent magnet
(ferrite magnet)

Housing

End plate

FIGURE 8.22: Components of a brush-type DC motor: rotor (typically made of laminated

sheets of steel), stator, commutator, brush pair, housing, end and face plates, two bearings.

end plates in order to provide space for the rotor and housing expansion due to temperature
variations. The rotor is typically made of laminated iron sheet metal and each lamination
is insulated from each other. The laminated rotor has slots which house the windings.
The core surface and windings are electrically insulated from each other by insulation
material, coating on the core, or an insulating thin sheet of paper. The slots may be skewed
on the perimeter in order to reduce the torque ripple at the expense of lower maximum
torque.

Patented anti-cog magnets for
smooth low speed operaation. High
overcurrent capacity and dynamic
braking without demag

Polyester impregnated
armature for electrical and
mechanical integrity

Class H insulation

Large sealed bearings
are standard

NEMA or metric mounting

Permanent magnet fields are
more efficient, smaller lighter and
offer wider speed range than
comparable wound field motors

Environmentally protected
models - explosion proof and
wash down duty

Long life, constant force
brush springs with field
replaceable brushes

Rugged, fused
commutator

TEFC and TENV
configurations

Conduit box (gasketed) - large
wiring compartment for easy
termination

FIGURE 8.23: Brush-type iron core armature permanent magnet DC motor assembly

Source: Baldor.
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High voltage
insulation rating

English or metric
dimentions

Optional shaft
configurations

Medium-inertia rotor;
neodymium-iron-boron
rotor magnets

Overtemperature-
protection thermistor

“O” ring prevents rotation
of outer bearing race for
longer bearing life

Rugged TENV, IP65
washdown construction

Secondary feedback
device-optional encoder

Primary feedback
device

Flying lead terminations: flying
leads w/ MS connector at end and
motor mounted MS connector are
standard termination options

FIGURE 8.24: Brushless DC motor cross-sectional view showing the permanent magnet rotor,

stator winding, and position sensor. The rotor has the permanent magnets glued on its

periphery. In high speed and/or high temperature applications, a steel sleeve may be fitted over

the magnets to hold them in place securely. The rotor may be manufactured from laminations

fitted onto the solid shaft. The stator is made of laminations and houses the windings.

Reproduced with permission from Parker Hannifin.

Almost identical mechanical components exists in the brushless DC motors with
three exceptions:

1. there are no commutator or brushes since commutation is done electronically by the
drive,

2. the rotor has the permanent magnets glued to the surface of the rotor and the stator
has the winding,

3. the rotor has some form of position sensor (i.e., Hall effect sensors or encoder are the
most common) which is used for current commutation.

In order to understand the operating principle of a permanent magnet DC (PMDC)
motor, let us review the basics of electromagnetism (Figure 8.25). A current carrying
conductor establishes a magnetic field around it. The electromagnetic field strength is
proportional to the current magnitude, and the direction depends on the current direction
based on the right hand rule. The magnetic field shape can be changed by changing the
physical shape of the current carrying conductor, that is form loops of the conductor as in
the case of a solenoid winding. When the current passes through the winding of a solenoid,
the magnetic field inside the coil is concentrated in one direction, which in turn temporarily
magnetizes and pulls the iron core of the solenoid. This is an example of electromechanical
power conversion for linear motion.

Let us consider that a current carrying conductor is placed inside a magnetic field
established by two permanent magnet poles (or the magnetic field can be established by a
field-winding current in the case of field-wound DC motors). Depending on the direction of
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FIGURE 8.25: Basic principles of electromagnetism: (a) a current carrying conductor

generates a magnetic field around it, (b) the magnetic field generated by permanent magnets.

the current flow, a force is generated on the conductor as a result of the interaction between
the “stator magnetic field” and the “rotor magnetic field” (Figures 8.26a, 8.27).

F⃗ = l i⃗ x B⃗ (8.172)

Next, let us consider that we place a loop of conductor into the magnetic field and feed
DC current to it using a pair of brushes (Figure 8.27). Since the current directions in the
two opposite sides of the conductor are in opposite directions, the exerted force on each
leg of the conductor loop is in opposite directions. The force pair creates a torque on the
conductor.

Tm = F ⋅ d (8.173)

Considering the fact that B⃗, l, d are constant, we can deduce that

Tm = Kt ⋅ i (8.174)

where Kt(B, l, d), the torque constant, is a function of the magnetic field strength and size
of the motor. For a practical motor, the conductor loop would contain multiple turns, not
just one pair. As a result, the Kt constant is also a function of the number of conductor turns
(n) or equivalently the surface area (Ac) over which flux density acts on the conductors,
Kt(B, l, d, n) = Kt(B, l, d, Ac). This is the main operating principle of a DC motor where
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FIGURE 8.26: DC motor operating principles: a current carrying conductor in a magnetic

field.

electrical power is converted to mechanical power. This is called the motor action. The
current in the coil is controlled by controlling the terminal voltage and is affected by the
resistive, inductive and back EMF voltages. The electrical circuit relationship is

Vt(t) = R ⋅ i(t) + d𝜆(t)
dt

(8.175)

= R ⋅ i(t) + L
di(t)
dt

+ ke ⋅ �̇�(t) (8.176)

where the d𝜆(t)∕dt is the induced voltage as a result of Faraday’s law of induction. It has
two components: the first is due to the self-inductance of coils, and the second is due to the
generator action of the motor.

Notice that when the rotor turns 90 degrees, the moment arm between the forces is
zero and no torque is generated even though each leg of the conductor has the same force.
In order to provide a constant torque independent of the rotor position, for a given magnetic
field strength and current, multiple rotor conductors are evenly distributed over the rotor
armature. In order to switch the current direction for a continuous torque direction, a pair of
brushes and commutators are used. Without the current switching commutation, the motor
would only oscillate as the torque direction would oscillate between clockwise and counter
clockwise direction for every 180 degree rotation. Consider the line connecting the two
brushes and the coils above and below that. At any given position, the current in one half
of the coil is in the opposite direction to the current in the other half of the coils.

Also shown in Figure 8.26 is the generator action of the same device. This is the
result of the Faraday’s induction principle which states that when a conductor is moved in
a magnetic field, a voltage is induced across it in proportion to the speed of motion and
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FIGURE 8.27: DC motor operating principles: obtaining a continuous torque by winding a coil

around a rotor.

the strength of the magnetic field. This is represented by the ke�̇�(t) term in Equation 8.176.
Therefore, both the motor and generator actions are at work at the same time during the
operation of a DC motor.

Figure 8.28 shows the brush and commutator arrangement and torque as a function
of rotor position for a different number of commutator segments. Ideally, the larger the
number of commutators, the smaller the torque ripple is. However, there is a practical
limit on how small the brush-commutator assembly can be sectioned. If we neglect the
torque ripple due to commutation resolution, torque is proportional to the armature current
for a given permanent magnet field and independent of the rotor angular position. In a
PMDC motor, the magnetic field strength is fixed, and current is controlled by a drive (the
term drive is used to describe the amplifier and power supply components together as one
component).

A brushless permanent magnet DC (BPMDC) motor is basically an “inside-out”
version of the brush-type PMDC motor (Figure 8.29). The rotor has the permanent magnets,
and the stator has the conductor windings, usually in three electrically independent phases.
The stator winding of brushless servo motors is similar to the stator winding of traditional
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FIGURE 8.28: Commutation and torque variation as a function of the angular position of the

rotor. Torque ripple magnitude and frequency is a function of the number of commutation

segments. At any given time, coils on one side of the line between the brushes (and the coils on

the other side) have a current in the opposite direction. The contribution of each coil to torque

production under a constant current depends on its angular position relative to the magnetic

field of the permanent magnets at that instant.

induction motors and lends itself to the same well established winding processes used in
manufacturing induction motors.

The operating goal is the same: maintain the field (stator) and armature (rotor)
magnetic fields perpendicular to each other at all times. If this can be accomplished,
the electromechanical power conversion relationship and torque generation in a BPMDC
motor would be identical to that of a brush-type PMDC motor. Of course, the difference
is in the commutation (Figure 8.29). In a brush-type motor, the magnetic flux generated
by permanent magnets (or electromagnets) of the stator is fixed in space. The magnetic
field generated by armature is also maintained fixed in space by the mechanical brush-
commutator assembly and perpendicular to that of the stator. In the case of the brushless
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PMDC motor, we have the same objective. However, the field magnetics is established by
the rotor and it rotates in space with the rotor. Therefore, the stator winding current has to
be controlled as a function of the rotor position so as to keep the stator generated magnetic
field always perpendicular relative to the magnetic field of the rotor, although both rotate in
space with the rotor speed. In other words, not only the magnitude of current in the stator
winding, but also the vector direction of it must be controlled. This switching of the currents
into the stator windings is achieved by controlling solid-state power transistors as a function
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FIGURE 8.30: Block diagram of the brush-type DC motor drive: PWM amplifier with current

feedback control.

of the rotor position. Hence, the brushless motor requires a rotor position sensor for its
power stage.

8.4.2 Drives for DC Brush-type and Brushless Motors

Drive is considered as the power amplification stage of an electric motor. It is the drive
that defines the performance of an electric motor. The most common type of power stage
amplifier used for DC brush-type motors is an H-bridge amplifier (Figure 8.30). The H-
bridge uses four power transistors. When controlled in pairs (Q1 & Q4 and Q2 & Q3), it
changes the direction of the current, and hence the direction of generated torque. Notice
that the pair Q1 & Q3 or the pair Q2 & Q4 should never be turned ON at the same
time since it would form a short-circuit path between supply and ground. The diodes
across each transistor serve the purpose of suppressing voltage spikes and provide a free-
wheeling path for the current to follow. Large voltage spikes occur across the transistor
in the reverse direction due to the inductance of the coils. If a current flow path is not
provided, the transistors may be damaged. The diodes provide the alternative current path
for inductive loads and let current pass through the coil. When a diode is ON, the current
flows from the negative end of the power supply to the positive end due to the fact the
inductive voltage raises the negative side of the potential temporarily (transient) higher
than the positive side. The use of diodes in all power amplifiers for different motor types
serves the same purpose.

Transistors take a longer time to change from the ON to OFF state than they do to
change from OFF to ON state. In other words, transistors turn OFF slower than they turn
ON. When transistor states in one leg of the H-bridge are changed (i.e., Q1 is ON, and
Q2 is OFF, then we command Q1 to be OFF and Q2 to be ON, and visa versa), Q1 will
stay partially turned ON when Q2 is fully turned ON. This difference is in the tens of
microseconds range. As a result, this would result in a short circuit between supply and
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ground voltage. In order to eliminate this problem, when H-bridges are controlled (i.e.,
by a microcontroller), either in software or hardware, a dead time (or delay) is introduced
between the ON to OFF command to one transistor and OFF to ON command to the other
transistor (this one is delayed in microsecond range) in order to avoid a short circuit. Most
microcontrollers have PWM output peripheral where this delay is programmable by writing
to a setup register associated with the PWM output channel.

If the top two transistors are both turned ON and the bottom two are turned OFF (or
the reverse; top two transistors are OFF, bottom two transistors are ON), the terminals of the
motor winding are effectively shorted without connection to the power supply, Vt(t) = 0.0.
This results in the so-called dynamic braking.

Vt(t) = R ⋅ i(t) + d𝜆(t)
dt

(8.177)

0 = R ⋅ i(t) + L ⋅
di(t)
dt

+ ke ⋅ �̇�(t) (8.178)

− ke ⋅ �̇�(t) = R ⋅ i(t) + L
di(t)
dt

(8.179)

Due to the back EMF voltage, there will be a current developed in the motor winding
(hence torque) in the opposite direction to the rotation speed. As a result, it will brake
(slow down) the motion. The generated current is approximately proportional to the speed,
hence the dynamic braking torque is large at high speeds and small at low speeds. One of
the transistors and the diode on the other side provides the conductive path. Let us assume
the top two transistors were turned ON, and the bottom two were OFF. Then for CW motion
of the motor, Q1 transistor and D2 diode provide the conductive path for current flow from
left to right across the motor. For CCW direction, Q2 diode and D1 transistor provide the
conductive path for current flow from right to left (opposite). Similar behavior occurs if the
bottom two transistors were ON and the top two transistors were OFF.

By controlling the current magnitude through the power transistors, the magnitude
of the torque is controlled. In very small size motors (fractional horsepower), linearly
operated transistor amplifiers are used. The pulse width modulation (PWM) circuit operates
the transistors in all ON or all OFF modes in order to increase the efficiency. The linear
amplifiers provide lower noise but are less efficient than the PWM amplifiers. The most
important difference between the linear mode and PWM mode of operating the power
transistors is the efficiency. Power loss at the transistor is approximately the voltage drop
across the transistor times the current it conducts,

Ploss = VCE ⋅ iCE (8.180)

In the linear mode of operation, that is 50% turned ON, the voltage VCE across the transistor
will be 50% of the supply voltage and the current will be the equal to the current amplification
gain of the transistor (between the base current and output current). Both values are finite
values, and there is significant power loss across the power transistor in linear operating
mode. In PWM mode, the transistors are always in one of two states: fully ON or fully
OFF. When the transistor is fully ON, voltage drop across the transistor is almost zero,
VCE ≈ 0.0, hence Ploss = 0. When the transistor is fully OFF, the iCE is almost zero, hence
hence Ploss = 0. As a result, the PWM mode of operation of a transistor results in much
less power loss than the linear mode of operation. The only drawback of the PWM mode
of operation compared to linear mode of operation is that in PWM mode there will be
more noise in the current due to the switching frequency. Typical switching frequencies
for the PWM mode of operation for power transistors is in the range of 2–20 kHz. The
PWM switching frequency should be significantly larger than the desired current control
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PWM output signal (PWM equivalent version of the analog input signal)

FIGURE 8.31: PWM circuit function: the carrier signal is a high frequency triangular signal.

The input signal is an analog signal value. The output pulse has a fixed frequency which is the

carrier frequency. The ON/OFF pulse width is varied as a function of the value of the input

signal relative to the carrier signal.

loop bandwidth (i.e., at least 10 to 25 times larger) in order to minimize the effect of PWM
frequency on the overall performance of the control system.

The PWM circuit converts an analog input signal (i.e., amplified error signal from the
current loop which is an analog signal) to a fixed frequency but variable pulse width signal.
By modulating the ON-OFF time of the pulse width at a high switching frequency, hence
the name “pulse width modulation,” a desired average voltage can be controlled. The PWM
circuit (Figure 8.31) uses a triangular carrier signal with a high frequency (also called the
switching frequency). When the analog input signal is larger than the carrier signal, the
pulse output is ON, when it is smaller, the pulse output is OFF.

PWM is another way of transmitting an analog signal which takes on a value
between a minimum value and a maximum value, that is a value between 0–10 VDC or
−10–10 VDC. Instead of transmitting the signal by an analog voltage level, PWM transmits
the information as a percentage of the ON cycle of a fixed frequency signal. When the signal
value is to have the minimum value, the duty cycle (ON cycle) of the signal is set to zero
percent. When the signal value is to have the maximum value, the duty cycle (ON cycle)
is set to 100 percent. In other words, the analog value of the signal is conveyed as the
percentage of duty cycle of the signal.

Figure 8.32 shows the block diagram of a current controlled drive for a three-phase
brushless DC motor. The switch set is based on the familiar H-bridge, but uses three bridge
legs instead of two legs as is the case for an H-bridge drive for brush-type DC motors.
Since each leg of the H-bridge has two power transistors, the brushless motor drive has
six power transistors. The stator windings are connected between the three bridge legs as
shown in Figure 8.32. The so-called Y-connection shown is the most common type of phase
winding connection, while Δ-connection is used in rare cases. At any given time, three of
the transistors are ON and three are OFF. Furthermore, two of the windings are connected
between the DC bus voltage potential and have current passing through them in a positive
or negative direction, whereas the third winding terminals are both connected to the same
voltage potential (either VDC or 0 V) and act as the balance circuit. The combination of
the ON/OFF transistors determines the current pattern on the stator, hence the flux field
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FIGURE 8.32: Brushless servo motor drive block diagram.

vector generated by the stator. In order to generate the maximum torque per unit current,
the objective is to keep the stator’s magnetic field perpendicular to that of the rotor. By
controlling the phase currents in the stator phase windings, we control the stator’s magnetic
field (magnitude and direction, a vector quantity). Therefore, the torque direction and
magnitude can be controlled by controlling the stator’s magnetic field relative to that of
the rotor.

There are two types of brushless drives based on the commutation algorithm:

1. sinusiodal commutation, and

2. trapezodial commutation.

If the winding distribution and the effective magnetic circuit of the motor is such that the
back EMF function is a sinusoidal function of rotor angle, such a motor should be controlled
using a drive that uses the sinusoidal commutation algorithm. Similarly, if the motor back
EMF is of trapezoidal type, the drive should be the type which uses the trapezoidal current
commutation. The variation of the back EMF voltage as a function of rotor angle is the
same a function for torque gain as a function of the rotor position under constant current
conditions.

The sinusoidal commutation drive provides the best rotational uniformity at any
speed or torque. The primary difference between the two types of drives is a more complex
control algorithm. For best performance, the commutation method of the drive is matched
to the back EMF type of the motor. The back EMF of the motor is determined primarily by
its winding distribution, lamination profile, and magnets. The feedback sensor and power
electronics components remain the same. In recent years, as the cost of high performance
digital signal processors has fallen, the use of the sinusoidal commutation brushless drive
has exceeded that of all others.
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and phase current components (three-phase Y

wound).

The current in each of the three phases is controlled by 120 degrees phase shift
relative to each other. The rotor position is tracked by a position sensor. The vector sum of
phase currents are commutated relative to the rotor position such that two magnetic fields
are always perpendicular to each other. The algebraic sum of the currents in three phases
is zero, but not the vector sum (Figure 8.33). A current feedback loop is used in the PWM
circuit to regulate the current in each phase with sufficient dynamic bandwidth. Notice that
the magnitude of the magnetic field generated by the permanent magnets is constant and not
actively controlled and it rotates with the rotor. Whereas the stator field (a vector quantity
which has magnitude and direction) is controlled actively by the drive current control loop.

In digital implementation, the current command, the commutation, and current control
algorithms can reside either in the drive or in a higher level controller. In the latter case, the
drive performs only the PWM modulation and is called “the power block.” In most cases,
current commutation and regulation algorithms are implemented in the drive.

The stator being static by definition, the angle of each stator phase is fixed on the
diagram (Figure 8.33). The magnitude of each phase current (ia, ib, ic) for a given total
current vector (⃗is) is the projection of the current vector onto the phase (Figure 8.33).

in = i⃗s ⋅ u⃗n (8.181)

u⃗n is the unit vector for the phase, u⃗a for phase a, u⃗b for phase b, u⃗c for phase c.
The derivation below shows that the sinusoidal commutation algorithm for a three-

phase brushless motor (which is designed to have a sinusoidal back EMF) produces the
same torque–current relationship as that of a brush-type DC motor. Let us assume that
the brushless motor has three phase winding and each phase has a sinusoidal back EMF
as a function of rotor position. As a result, the current-to-torque gain for each individual
phase has the same sinusoidal function. For each phase, they are displaced from each other
by a 120 degrees angle as a result of the physical distribution of the windings around the
periphery of the stator.

Consider that rotor is at angular position, 𝜃, and each phase of the stator has current
values ia, ib, ic. The torque generated by each winding is Ta, Tb, and Tc.

Ta = ia ⋅ K∗
T ⋅ sin(𝜃) (8.182)

Tb = ib ⋅ K∗
T ⋅ sin(𝜃 + 120◦) (8.183)

Tc = ic ⋅ K∗
T ⋅ sin(𝜃 + 240◦) (8.184)

Let us control the current (with commutation and current feedback control algorithms)
such that each phase is 120 degrees apart from each other and sinusoidally modulated as a
function of the rotor position.

ia = i ⋅ sin(𝜃) (8.185)

ib = i ⋅ sin(𝜃 + 120◦) (8.186)

ic = i ⋅ sin(𝜃 + 240◦) (8.187)
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The total torque developed as a result of the contribution from each phase is

Tm = Ta + Tb + Tc (8.188)

= K∗
T ⋅ i ⋅ (sin2𝜃 + sin2(𝜃 + 120◦) + sin2(𝜃 + 240◦)) (8.189)

Note the trigonometric relation,

(sin(𝜃 + 120◦))2 = (cos𝜃 sin 120◦ + sin 𝜃 cos 120◦)2 (8.190)

=

(√
3

2
cos𝜃 − 1

2
sin𝜃

)2

(8.191)

= 3
4
cos2𝜃 + 1

4
sin2𝜃 −

√
3

2
sin𝜃 cos𝜃 (8.192)

(sin(𝜃 + 240◦))2 = 3
4
cos2 𝜃 + 1

4
sin2𝜃 +

√
3

2
sin𝜃 cos𝜃 (8.193)

Tm = K∗
T ⋅ i ⋅

3
2

(sin2𝜃 + cos2𝜃) (8.194)

Hence, the torque is a linear function of the current, independent of the rotor angular
position, and the linearity constant torque gain (KT) is a function of the magnetic field
strength.

Tm = KT ⋅ i (8.195)

where,

KT = K∗
T ⋅

3
2

(8.196)

Therefore, a sinusoidally commutated brushless DC motor has the same linear rela-
tionship between current and torque as does the brush-type DC motor. Most implementa-
tions make use of the fact that the algebraic sum of three phase currents is zero. Therefore,
only two of the phase current commands and current feedback measurements are imple-
mented. Third phase information for both the command and feedback signal is obtained
from the algebraic relationship (Figures 8.32, 8.33).

Actual back EMF of a real motor is never perfectly sinusoidal nor trapezodial. The
ultimate goal in commutation is to maintain a current-torque gain that is independent
of the rotor position, that is a constant torque gain. In order to achieve that, the current
commutation algorithm must be matched to the back EMF function of a particular motor.
Clearly, if a trapezoidal current commutation algroithm is used with a motor which has a
sinusoidal back EMF function, the current-to-torque gain will not be constant. The resulting
motor is likely to have large torque ripple.

Let us consider the effect of commutation angle error on the current–torque rela-
tionship of the motor. Let 𝜃e be the measurement error in rotor angle. That is 𝜃a is the
actual motor angle, and 𝜃m is the measured angle that is used for commutation algo-
rithm, 𝜃e = 𝜃a − 𝜃m. It can be shown that the current–torque relationship under non-zero
commutation angle error conditions is

Tm = KT ⋅ i ⋅ cos(𝜃e) (8.197)

Notice that

1. when 𝜃e = 0, we have the ideal condition,

2. when 𝜃e = 90◦, then there is no torque generated by the current,

3. when −90 ≤ 𝜃e ≤ 90, effective torque constant is less than ideal,
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4. when 90 ≤ 𝜃e ≤ 270, effective torque constant is less than ideal and negative. If
the normal position feedback and command polarity is used in the closed position
control loop, the motor will run away. In other words, the closed loop position
feedback control of the motor would be unstable.

At the most inner loop, voltage fed into each phase is controlled by the PWM amplifier
circuit in such a way that the current in each phase follows the commanded current. The
dynamic response lag between the voltage modulation and current response in the stator is
small but finite. This lag becomes an important factor at high speeds, since

𝜙lag = tan−1(𝜏e ⋅ 𝜔m) (8.198)

where 𝜙lag is the phase lag, 𝜏e is the electrical time constant of the current loop, and 𝜔m is
the rotor speed. As the speed of the motor increases, the phase lag of the current control
loop can become significant. As a result, the effective angle between the field and armature
magnetic fields will not be 90 degrees. Therefore, the motor will be producing torque at a
lower efficiency. Keeping this in mind, if the time constant of the current loop (𝜏e ≃ L∕R) is
known approximately or estimated in real-time, the commanded current can be calculated
to make not a 90 degree phase with the rotor magnetic field vector but 90 degree plus the
anticipated phase lag. In other words, anticipating the phase lag, we can feed the command
signal with a phase lead to cancel out the phase lag due to the current regulation loop.
This is called phase advancing in the brushless drive commutation algorithm. This can
be accomplished in real-time by modifying the rotor position sensor signal as shown in
Figure 8.32.

Finally, the brushless commutation algorithm requires the absolute position mea-
surement of the rotor within one revolution. This is needed to initialize the commutation
algorithm on power-up. On power-up, incremental position sensors (i.e., incremental opti-
cal encoders) do not provide this information, whereas resolvers and absolute encoders do.
Over 70% of the brushless motors are used with incremental type encoders. Therefore, on
power-up a phase finding algorithm is needed to establish the absolute position information
when an incremental position sensor is used as the position feedback device.

Example: Drive Sizing Motor and drive (amplifier and power supply) sizes must
be matched in a well designed system. Let us assume that we have a motor size selected. It
is characterized by its torque capacity (peak and RMS: Tmax, Trms), current to torque gain
(which is the same as back EMF gain: KT = KE), winding resistance (R), and maximum
operating speed (wmax). Let us determine the required drive size.

The drive size determination means the determination of DC bus voltage (VDC,max)
and current (imax, irms) that the drive must supply.

Given motor specifications: Tmax, Trms, KT = KE, R, wmax
Determine matched drive size: imax, irms, Vmax
As a result, the maximum and RMS current requirements are calculated from,

imax = Tmax∕KT (8.199)

irms = Trms∕KT (8.200)

The maximum DC bus voltage required at worst conditions, that is when providing maxi-
mum torque and running at maximum speed and neglecting the transient inductance effects,

VDC = L ⋅
di(t)
dt

+ R ⋅ i(t) + KE ⋅ w(t) (8.201)

VDC,max ≈ R ⋅ imax + KE ⋅ wmax (8.202)
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where the L ⋅ di∕dt term in the electrical model of the motor is neglected. Then, a drive
should be selected that can provide the required DC bus voltage and current requirements
with some safety margin. Notice that at a given torque capacity, the so-called head room of
supply voltage available limits the maximum speed capacity the drive can support,

Vhead-room = VDC,max − R ⋅ imax (8.203)

= KE ⋅ wmax (8.204)

wmax =
(VDC,max − R ⋅ imax)

KE
(8.205)

Top speed is limited by the back EMF of the motor. At any given torque level Tr, the current
required to generate that torque is ir = Tr∕KT. This means R ⋅ ir portion of the available
bus voltage is used up to generate the current needed for torque. The remaining voltage
VDC,max − R ⋅ ir is available to balance the back EMF voltage. Hence, the maximum speed
at a given torque output is limited by the available “head-room voltage.”

Example: Brush-Type DC Motor Consider a brush-type DC motor with stator coil
resistance of 0.25Ω at nominal operating temperature. The DC power supply is 24 VDC.
The back EMF constant of the motor is 15 V∕krpm. The voltage to the motor is turned ON
and OFF by an electromechanical relay. Consider two cases: (i) motor shaft is locked and
not allowed to rotate, (ii) motor speed is nominally at 1200 rpm. Calculate the steady-state
current developed in the motor when the relay is turned on for both cases.

When the motor is locked and not allowed to rotate, there is not any back EMF voltage
as a result of the generator action of the motor. This is the stall condition. For steady-state
condition analysis, we neglect the transient effect of inductance, the electrical equations for
the motor give

V(t) = R ⋅ i(t) + L ⋅
di(t)
dt

+ KE ⋅ w (8.206)

≈ R ⋅ i(t) (8.207)

i = 24 V
0.25Ω

(8.208)

= 96 A (8.209)

When the motor speed is non-zero, the terminal voltage minus the back EMF is available
to develop current. Then,

V(t) = R ⋅ i(t) + L ⋅
di(t)
dt

+ KE ⋅ w (8.210)

≈ R ⋅ i(t) + KE ⋅ w (8.211)

24 V = 0.25 ⋅ i + (15∕1000) ⋅ 1200 (8.212)

i = 24 − 18
0.25

(8.213)

= 24 A (8.214)

Notice that under no load conditions (i = 0), the maximum speed is limited by the back
EMF and it is

V(t) = R ⋅ i(t) + L ⋅
di(t)
dt

+ KE ⋅ w (8.215)

24 ≈ R ⋅ 0 + (15∕1000) ⋅ wmax (8.216)

wmax = 24 ∗ 1000
15

(8.217)

= 1600 rpm (8.218)
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In SI units, KT = KE, where as in CGS units KT N m∕A = 9.5493 × 10−3KE V∕krpm. Then
we can find the maximum torque developed at stall and at 1200 rpm speed.

Tstall = KT ⋅ i (8.219)

= 9.5493 × 10−3 × 15 × 96 Nm (8.220)

= 13.75 Nm at stall (8.221)

Tr = 9.5493 × 10−3 × 15 × 24 Nm (8.222)

= 3.43 Nm at 1200 rpm (8.223)

Example: PWM Control H-Bridge IC Drive for Brush-Type DC Motors–
TPIC0107B The integrated circuit (IC) package TPIC0107B by Texas Instruments
implements an H-bridge and switching control logic for brush-type DC motors (Fig-
ure 8.34). The drive supply voltage (Vcc) must be in the 27 VDC to 36 VDC range, and
support up to 3 A continuous bridge output current. The two terminals of the DC motor
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FIGURE 8.34: PWM controlled H-bridge integrated circuit chip for brush-type DC motors:

TPIC01017B by Texas Instruments. Source: Texas Instruments.
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are connected between the OUT1 and OUT2 ports. DC supply voltage and ground are
connected to the Vcc and GND terminals.

Logic voltage is internally derived from the Vcc. The operation of the TPIC0107B is
controlled by two input pins: DIR (IN1) and PWM (IN2). The PWM pin should be connected
to the PWM output port of a microcontroller, whereas the DIR pin can be connected to
any digital output. The PWM switching frequency is 2 kHz. The state of OUT1 and OUT2
(H-bridge output) follows the signal in the PWM pin. The actual PWM signal needs to
be formed by the PWM port of the microcontroller. For instance, the current control loop
must be implemented in the microcontroller. The IC is capable of sensing over-voltage,
under-voltage, short-circuit, over and under current, over temperature conditions and shuts
down bridge output and sets the status output pins to indicate the error code (STATUS1 and
STATUS2 pins).

Example: PM DC Motor Consider a permanent magnet DC motor. The armature
resistance is measured to be Ra = 0.5Ω. When Vt = 120 V is applied to the motor, it reaches
1200 rpm steady-state speed and draws 40 A current. Determine the back EMF voltage, IR
power losses, power delivered to the armature, and torque generated at that speed.

The basic relationship for the motor,

Vt(t) = L ⋅
di(t)
dt

+ R ⋅ i(t) + Vbemf (8.224)

120 V = 0 + 0.5 ⋅ 40Ω A + Vbemf (8.225)

Vbemf = 100 V (8.226)

where the transient effects of inductance is neglected in steady-state. The IR power loss is

PIR = Ra ⋅ i2 = 0.5 ⋅ 402 Ω A2 = 800 W (8.227)

and torque generated,

KE =
Vbemf

�̇�
= 100 V

1.2 krpm
(8.228)

KT = 9.5493 ⋅ 10−3 ⋅ KE Nm/A = 0.7958 Nm/A (8.229)

T = KT ⋅ i = 31.83 Nm (8.230)

and the electrical power converted to mechanical power,

Pm = T ⋅ w (8.231)

= 4000 W (8.232)

= Pe (8.233)

Pe = Vbemf ⋅ ia (8.234)

= 100 V ⋅ 40 A = 4000 W (8.235)

Since the motor speed is constant, the motor torque generated by the torque must be used
by a total load torque of equal magnitude but in the opposite direction.

8.5 AC INDUCTION MOTORS AND DRIVES

AC induction motors have been used in constant speed applications in huge quantities. They
have been the work horse of the industrial world. In recent years, they have also been used
as closed loop position servo motors with a sophisticated current commutation algorithm
in the drive being the key to the increased capabilities. Three-phase AC motors are more
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common than single phase AC motors in applications that require high efficiency and large
power. The most common type of multi phase AC induction motors are as follows.

1. The squirrel-cage type AC induction motor is the most common type of AC motor.
The stator has phase windings, and the rotor is a squirrel-cage type conductor (copper
or aluminum conductor bars) placed in the rotor frame. The conductor bars are short
circuited with end rings. The rotor has no external electrical connection.

2. Wound-rotor AC induction motors differ from the squirrel-cage type in the construc-
tion of the rotor. The rotor has wound conductors. External electrical connections to
the rotor winding are provided via slip rings.

3. Synchronous motors are used for constant speed applications. The motor design is
such that the motor torque-speed curve in steady-state provides a constant speed for a
wide range of load torque. If the load torque exceeds a maximum value, motor speed
decreases abruptly. Compared to the squirrel-cage motors, the synchronous motor
speed shows much less variation as load torque varies.

Stator and rotor cores are made from thin steel disk laminations. The purpose of the
laminated core is to reduce the eddy current losses.

Conductors of the stator winding are covered with insulation material to protect them
against high temperatures. Motor temperature rises primarily as a result of resistance losses,
called IR or copper losses. There are four major insulation material classes: class A for
temperatures up to 105 ◦C, class B for temperatures up to 130 ◦C, class F for temperatures
up to 155 ◦C, and class H for temperatures up to 180 ◦C.

8.5.1 AC Induction Motor Operating Principles

The main components of an AC induction motor are the stator winding (single phase or
three phase) and a rotor with conductors (Figure 8.35). The rotor of a squirrel-cage type AC
induction motor is made of steel laminations with holes in its periphery. The holes are filled
with conductors (copper or aluminum) and short-circuited to each other by conducting end
rings (Figure 8.36). The air gap between the stator and rotor ranges from less than one
millimeter (i.e., 0.25 mm) for motors up to 10 KW power to a few millimeters (i.e., 3 mm)
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for motors up to 100 KW (Figure 8.35). The air gap is even larger for motors which are
designed for applications that have very large peak torque requirements.

The number of phases of the motor is determined by the number of independent
windings connected to a separate AC line phase. The number of motor poles refers to the
number of electromagnetic poles generated by the winding. Typical numbers of poles are
P = 2, 4, or 6 (Figure 8.37). The coil wire for each phase is carefully distributed by design
over the periphery of the stator to shape the magnetic flux distribution.

The torque in any AC or DC electric motor is produced by the interaction of two
magnetic fields, with one or both of these fields produced by electric currents. In an AC
induction motor, the current in the stator generates a magnetic field which induces a current
in the rotor conductors. This induction is a result of relative motion between the stator
magnetic field (rotating electrically due to AC current) and the rotor conductors (which are
initially stationary). This is a result of Faraday’s induction law. The stator AC current sets
up a rotating flux field. The changing magnetic field induces EMF voltage, hence current,
in the rotor conductors. The induced current in the rotor in turn generates its own magnetic
field. The interaction of the two magnetic fields (the magnetic field of the rotor trying to
keep up with the magnetic field of the stator) generates the torque on the rotor. When the
rotor speed is identical to the electrical rotation speed of the stator field, there is no induced
voltage on the rotor, and hence the generated torque is zero. This is the main operating
principle of an AC induction motor.

In order to draw a visual picture of how torque is generated, let us consider a two-
phase AC induction motor (Figure 8.38). The principle for other numbers of phases is
similar. Let us consider the case where only phase 1 is energized and the current on the

θ m

(a) (b) (c)

N S

FIGURE 8.37: Stator windings of an AC induction motor: (a) two-pole (P = 2) configuration,

(b) four-pole (P = 4) configuration, (c) six-pole (P = 6) configuration.
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(a) Magnetic field set-up 
when phase -1 is in  positive 
cycle

(b) Magnetic field set-up 
when phase -1 is in  negative 
cycle

(c) Magnetic field set-up 
when phase -2 is in  positive 
cycle

(d) Magnetic field set-up 
when phase-2 is in  negative 
cycle

+X –X

+Y

–Y

FIGURE 8.38: AC induction motor operating principle: a two-phase motor example.

phase is a sinusoidal function of time. The induced magnetic field changes magnitude
and direction as a function of current in the phase. It is basically a pulsating magnetic
field in the X direction (Figure 8.38a,b). Next, let us consider the same for phase 2 which
is spatially displaced by 90 degrees from the first phase. The same event occurs except
the direction of the magnetic field is in the Y direction (Figure 8.38c,d). Finally, if we
consider the case where both phases are energized but by 90 electrical degrees apart and
same frequency, the magnetic field would be the vector addition of two fields and it rotates
in space at the same frequency as the excitation frequency (Figure 8.39). Therefore, we
can think of the magnetic field as having a certain shape (that is distribution in space as a
function of rotor angle) as a result of the winding distribution and current, and it rotates in
space as a result of the alternating current in time. In other words, the flux distribution is a
rotating wave.

In a three-phase motor, the windings would be displaced by ± 120 degrees spatially
and electrically excited with the same frequency source except ± 120 electrical degrees
apart. This rotating magnetic field, generated by the stator winding voltage, induces voltage
in the rotor conductors. As a result of Faraday’s induction law, the induced voltage is
proportional to the time rate of change in the magnetic flux lines that cut the rotor. In other
words, if the rotor was rotating mechanically at the same speed as the electrical rotating
speed of the stator field, there would not be any torque generated.
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FIGURE 8.39: Progression of the magnetic field in a two-phase stator at eight different

instants.

In a P-pole motor, the electrical angle (𝜃e) and mechanical angle (𝜃m) are related by
(Figure 8.37),

𝜃m = 𝜃e∕(P∕2) (8.236)

Therefore, the frequency of the electrical excitation we, is related to the synchronous speed,
wsyn (Figure 8.37)

wsyn = we∕(P∕2) (8.237)

The difference between the electrical field rotation speed, wsyn, and the rotor speed, wrm, is
called the slip speed or slip frequency, ws

ws = wsyn − wrm (8.238)

= s ⋅ wsyn (8.239)

where s, slip, is defined as

s =
wsyn − wrm

wsyn
(8.240)

If we consider the case that the rotor is locked (wrm = 0), then the slip is s = 1 and
ws = wsyn.

The AC motor operating principle is similar to a transformer. Stator windings serve
as the transformer primary winding. The stator structure serves as the transformer “iron.”
The rotor serves as the transformer secondary winding. The only difference is that the
secondary winding is the rotor conductor’s and it is mechanically rotating. The rotor sees
an effective magnetic flux frequency of ws = wsyn − wrm, slip frequency, due to the relative
motion between the electrically rotating stator flux and mechanically rotating rotor. The
induced voltage in the rotor is analogous to the induced voltage in the secondary winding
of a transformer. The voltage in the primary winding generates a magnetic flux as follows.
Let P = 2, hence wsyn = we. The stator AC voltage,

vs(t) = Vs sin(we t) (8.241)

The resulting flux is

Φ = −
Vs

N1 ⋅ we
cos(we t) (8.242)
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where N1 is the number of turns in the primary coil. The rotor sees a magnetic flux frequency
of ws = wsyn − wrm. The induced output voltage as a result of the Faraday’s law of induction
is

vr(t) = N2
dΦ
dt

(8.243)

= −
N2

N1

Vs

we

d
dt

[cos(we − wrm)t] (8.244)

=
N2

N1

(we − wrm)

we
Vs sin(ws t) (8.245)

The operating principle of an AC induction motor in terms of cause and effect
relationship is illustrated below. The stator current is a result of the applied stator voltage
(vs(t)), and induced rotor current is a result of the induced rotor voltage (vr(t)).

Vs(wsyn) ⟹ is(wsyn) ⟹ Bs(wsyn) (8.246)

ws ⟹ Vr(t) induced ⟹ ir(t) induced ⟹ Br(wsyn) (8.247)

Bs(wsyn)&Br(wsyn) ⟹ Tm (torque) (8.248)

Notice that Bs and Br rotate with the synchronous speed, wsyn. The rotor mechanically rotates
close to the synchronous speed with the difference being the slip speed, ws = wsyn − wrm.
When the mechanical speed of the rotor is smaller than the synchronous speed, torque is
generated by the motor (motoring action). Whereas if the mechanical speed of the rotor
is larger than the synchronous speed, torque is consumed by the motor (it is in generating
mode). In the vicinity of the rotor mechanical speed close to synchronous speed, the
torque is proportional to the slip speed. When the slip is zero, the generated torque is zero
(Figure 8.41).

The steady-state torque-speed characteristics of an AC induction motor can be sum-
marized as follows:

1. In the vicinity of a small slip, the torque is proportional to the slip frequency for
a given stator excitation. If the rotor speed is smaller than the synchronous speed
(slip is positive), then the torque is positive. The motor is in motoring mode. If the
rotor speed is larger than the synchronous speed (slip is negative), then the torque is
negative. The motor is in generator mode.

2. At a certain value of slip, the torque reaches its maximum value. For slip frequencies
larger than that, the inductance of the rotor becomes significant and the current is
limited at the higher slip. As a result, torque drops after a certain magnitude of slip
frequency.

3. The shape of the steady-state torque-speed curve can be modified for different appli-
cations by modifying the rotor conductor shape and stator winding distribution.

The torque generation in an AC induction motor can be viewed as the result of the
interaction between the magnetic flux distributions of the stator and the rotor. From basic
reasoning regarding the interaction of magnets and magnetic fields (Figure 8.40), it can be
concluded that

Tm = Km ⋅ Bs ⋅ Br ⋅ sin(𝜃rs) (8.249)

which states that the torque is proportional to the size and design parameters of the motor
(Km), the flux density in rotor and stator, and the angle between the two flux vectors. The
so-called vector control algorithm discussed later in this chapter attempts to maintain a
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FIGURE 8.40: Torque production as a result of the interaction between two magnetic fields.

(a) A permanent magnet in an external magnetic field, (b) torque as a function of the angle

between the two flux vectors. In the case of AC induction motors, the external field flux density

(Bs) is setup by the stator current and the equivalent field of the magnet (Br) is setup by the

rotor conductors as a result of the induced voltage.

90◦ angle between the stator and rotor flux density vectors in order to maximize torque
production per unit current.

Open loop steady-state torque-speed characteristics of an AC induction motor are
shown in Figure 8.41 for the case of constant AC voltage magnitude and frequency supplied
to the stator windings. Note that the shape of that curve can be changed by using different
stator winding and slotting configurations. In fact, different motor designs are used to meet
different steady-state torque-speed curve shapes needed by different applications. Most AC
induction motors have maximum slip in the range of 5–20% of the synchronous speed.
Maximum slip is defined as the slip speed at which maximum torque is reached. Clearly,
the smaller the maximum slip is, the smaller the speed variations of the motor under varying
loads. Likewise, if large speed variation is desired as the load varies, a motor with large
maximum slip should be used.

(C)

100%

Torque

Rated torque

(B)

(A)

Starting torque

Generator Action

Speed

Linear torque -speed
range: between zero slip
 and maximum slip

Motor action

Max torque

syn

s,max 
(Max slip)

Rated point:  (   , T) rated

FIGURE 8.41: Open loop torque speed curve of an AC induction motor. Under a given

constant AC voltage magnitude and frequency, the steady-state torque-speed relationship is

nonlinear. This curve can be given different shapes by different electromagnetic designs.

Curves (A), (B), and (C) show different AC motor torque-speed characteristics that can be

achieved by varying designs.
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It should be quickly pointed out that these performance characteristics are only for the
motor when controlled from a line voltage supply directly without any active commutation
by a drive. The current-torque characteristics of an AC motor can be made to behave like
a DC motor using the so called “field oriented vector control” algorithm which is typically
implemented in the drive. The performance of a motor should always be evaluated together
with the drive it is used in. Depending on the drive type used, the performance characteristics
of the motor-drive combination can be quite different.

Example Consider an AC induction motor driven by a line supply frequency of we =
60 Hz. Assume that it is a two-pole motor, P = 2. The motor design is such that at the
maximum load, the slip is 20% of the synchronous speed, s = 20%. Determine the speed
of the motor for the following conditions: (a) no-load speed, (b) speed at maximum load,
(c) speed at a load that is 50% of the maximum load. Determine the speed variation
(sensitivity) due to the variation of load as percentage of its maximum value. Let maximum
load torque be 100 lb ⋅ in.

Referring to Figure 8.41, let us assume that the curve connecting the no-load speed
and maximum-load speed points is a linear line. In steady-state, the actual motor speed is
determined by the intersection of the torque-speed curve with the load torque. As long as
the load torque is less than the maximum load torque, the motor speed will be somewhere
between the no-load speed and the speed at maximum load. As the load varies up to the
maximum load torque, the steady-state speed of the motor variation follows the linear
torque-speed line.

The no-load speed of the motor is

wrm =
we

P∕2
= 60 Hz

2∕2
= 60 rev∕s = 3600 rev∕min (8.250)

At the maximum load, the motor specifications indicate that it has 20% slip,

s =
wsyn − wrm

wsyn
= 0.2 (8.251)

wrm = wsyn − 0.2 ⋅ wsyn = 0.8 ⋅ wsyn = 2880 rev∕min (8.252)

When the load is 50% of maximum load, the slip will be 50% of the maximum slip.
Therefore, the steady-state rotor speed is

s =
wsyn − wrm

wsyn
= 0.1 (8.253)

wrm = wsyn − 0.1 ⋅ wsyn = 0.9 ⋅ wsyn = 3240 rev∕min (8.254)

The speed varies from synchronous speed at no-load to 20% slip at maximum load, hence

ΔV
ΔTl

=
wsyn − ((1 − s) ⋅ wsyn)

100
(8.255)

=
s ⋅ wsyn

100
(8.256)

= 7.2 rpm∕(lb ⋅ in) (8.257)

8.5.2 Drives for AC Induction Motors

The drive controls the electrical variables, which are the voltage and current, in the stator
windings of an AC induction motor in order to obtain the desired behavior in mechanical
variables, which are torque, speed, and position. In particular, frequency and magnitude
of the voltage control are of interest. Major drive types are discussed below (Figure 8.43)
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where each drive type operates based on varying one or more of the electrical variables,
that is voltage and current and their frequency and magnitude.

The steady-state torque-speed curve of an AC induction motor whose stator winding
phases are fed directly from an AC line is shown in Figure 8.41. The motor synchronous
speed (wsyn) is determined by the line voltage frequency (we). The actual speed of the rotor
(wrm) would be a little below that since there is a slip (ws) between the synchronous speed
and actual rotor speed in steady-state. The slip speed depends on the load torque.

wsyn =
we

(P∕2)
(8.258)

wrm = wsyn − ws (8.259)

The maximum torque characteristic is a function of the motor design and the line voltage
magnitude. This basic relationship indicates that an AC motor driven directly from a supply
line has a speed that is largely determined by the frequency of the supply voltage. The slip
frequency is a function of the load and the type of motor design (Figure 8.40). The exact
mechanical speed of the rotor is determined by the load around the synchronous speed.

Scalar Control Drives If the drive varies the magnitude of voltage applied to the
motor, while keeping the frequency constant, the torque-speed characteristics of the motor
are as shown in Figure 8.43a. Notice that as the voltage magnitude decreases relative to
the rated voltage (Vr), the torque gets smaller. It can be shown that the maximum torque is
proportional to the square of the applied voltage magnitude. If the load is a constant torque
load, by varying the amplitude of the voltage (variable voltage method), we can obtain
some degree of variable speed control in the vicinity of synchronous speed of the motor.

The next method of control is to vary the frequency of the applied voltage while
keeping the magnitude of the voltage constant. The steady-state torque-speed performance
of an AC motor with such a drive is shown in Figure 8.43b. Notice that the synchronous
speed of the motor is proportional to the applied frequency of the voltage, that is if the
applied frequency is 50% of the base frequency, then the synchronous speed is also 50% of
the original synchronous speed. However, the effective impedance of the motor is smaller
at lower frequencies. This leads to large currents and results in magnetic saturation in the
motor. Therefore, in order to improve the efficiency of the motor, it is better to maintain a
constant ratio of voltage magnitude and frequency.

Variable frequency (VF) drives are capable of adjusting the AC voltage frequency,
we, as well as the magnitude of the AC voltage of each phase, Vo. For a three-phase AC
induction motor, phase voltages may be

Va = Vo sin(wet) (8.260)

Vb = Vo sin(wet + 2𝜋∕3) (8.261)

Va = Vo sin(wet + 4𝜋∕3) (8.262)

where the VF drive can control both we and Vo from zero to a maximum value. Hence, the
steady-state torque-speed curve of the motor can be made as shown in Figure 8.43c. The
power electronics of the VF drive are identical to that of a brushless motor drive, that is a
three-phase inverter (Figure 8.42). The only essential difference is in the real-time control
algorithm that operates the PWM circuit. The PWM circuit is controlled in such a way that
the frequency and the magnitude of each phase voltage is changed depending on where on
the torque-speed curve we want the motor to operate. Since both frequency and magnitude
of voltage is controlled, such drives are also called variable frequency and variable voltage
(VFVV) drives. Such a drive control method is also referred to as the Volts/Hertz (V/Hz)
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FIGURE 8.42: Current commutation and regulation in AC motor phases by a field oriented

vector control (FOVC) drive.

method. It is classified as one of the scalar control methods as oppose to the vector control
methods discussed next.

The power stage of a Volts/Hertz drive for a three-phase AC induction motor is a
three-phase inverter. The most common power switching devices are power MOSFETs
and IGBTs. Power MOSFETs are voltage controlled transistors with low power loss, but
they are sensitive to temperature. IGBTs (insulated gate bipolar transistors) are essentially
bipolar transistors where the base is controlled by MOSFETs. IGBTs have higher switching
frequency, but are less efficient than MOSFETs.

For a three-phase AC induction motor control (Figure 8.42), a three-phase drive
(“inverter”) is needed. In each leg of the bridge, power transistors operate in opposite state
to each other, that is Tr1 = ON and Tr2 = OFF or Tr1 = OFF and Tr2 = ON. If both are ON
at the same time, the supply voltage potential would be effectively shorted and most likely
damage the power transistors due to excessive current. Furthermore, it should be kept in
mind that power transistors have a longer turn-OFF time than turn-ON time. Hence, when
the state in the power transistors change, there should be some “dead-time” (delay or wait
time) of the transistor to be commanded to go from an OFF to ON state so that the other
one which is going from ON to OFF state has sufficient time to do so, in order to avoid the
short circuit. PWM peripherals of modern microcontrollers and digital signal processors
automatically handle this issue and dead-time insertion is programmable.

Vector Control Drive: Field Oriented Vector Control Algorithm The
roles of the drive are the commutation and the amplification of current in the stator windings
(Figure 8.42)1 . The only difference is that a DC brushless motor has a permanent magnet
rotor, whereas an AC induction motor has a squirrel-cage rotor with no magnets. Therefore
the magnetic field of the rotor of an AC motor is not physically locked to the rotor, unlike the

1 This section can be skipped without loss of continuity. See [17] for more details.
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FIGURE 8.43: AC induction motor torque-speed performance in steady-state under various

control methods for varying voltage, frequency, and current in the motor stator phase

windings: (a) variable voltage amplitude, fixed frequency, (b) variable frequency, fixed voltage,

(c) variable voltage and variable freqency, while keeping the voltage to frequency ratio constant

for different frequency ranges (Volt/Hertz method), (d) field oriented vector control.

DC brushless motor. In order to commutate the current in the windings so that two magnetic
fields are perpendicular for maximum torque generation per current unit, measuring rotor
angle is not sufficient to know the relative angle between the magnetic field of the stator and
the magnetic field of the rotor. The “field oriented vector control algorithm” is the name
used for AC motor current commutation where the angle between the magnetic fields (the
magnetic field of the stator and the induced magnetic field of the rotor) is estimated based
on the dynamic model of the motor.

Assuming that this angle between the two magnetic fields is known, an AC motor
can be commutated to provide essentially the same torque-speed characteristics of a DC
brushless motor (Figure 8.43d). The only difference may be in the transient response.
The field oriented vector control algorithm are a current commutation algorithm for AC
induction motors. This current commutation algorithm attempts to make an AC induction
motor behave like a DC motor, that is to have a linear relationship between the torque
and commutated current. The hardware components of a drive for AC motors which can
implement the vector control commutation algorithm are identical to that of a drive for
DC brushless motors. Both drives attempt the same thing: to maintain a perpendicular
relationship between the field magnetic flux vector and the controlled current vector.

The AC induction motor differs from the DC brushless motors in two ways. First,
the controlled current is on the stator which induces current in the conductors of the
rotor. That induced current generates its own magnetic field in the rotor. The induced
magnetic field is not locked to the rotor. There is a slip between the rotor and the induced
field. Second, there are two components of the controlled current that are of interest: the
component that is parallel to the rotor field and the component that is perpendicular to it.
It can be shown mathematically [17] that the parallel component (magnetization current)
determines the torque gain of the motor, whereas the perpendicular component determines
the current multiplier for torque generation. Let us express the torque–current relationship
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FIGURE 8.44: Coordinate frames used to describe the dynamics of an AC induction motor.

for a DC motor and the same desired torque–current relationship for a vector controlled
AC motor,

TDC
m = KT ⋅ i (8.263)

TAC
m = KT(ids) ⋅ iqs (8.264)

Notice that the same linear relationship of the DC motor between torque and current can
be obtained. Let the “dq”-coordinate frame be fixed to the field vector of the rotor. Hence,
it rotates relative to the rotor with slip frequency (Figure 8.44). The torque gain KT is a
function of the direct (parallel) component of the current in “dq” coordinate frame, and the
torque producing current is the “q” (perpendicular) component of the current.

8.6 STEP MOTORS

The step motor, also called a stepper motor, electromechanical construction is such that it
moves in discrete mechanical steps. A change in phase current from one state to another
creates a single step change in the rotor position. If the phase current state is not changed,
the rotor position stays in that stable position. In contrast, a brush-type DC motor keeps
accelerating for a fixed supply voltage condition until the back EMF voltage due a top
speed balances the supply voltage.

The basic position control of a stepper motor does not require a position sensor. It
can be position controlled in open loop (Figure 8.45). Whereas a DC motor must use a
position sensor in order to be controlled in position mode.

MotorDriveController Enc

(Optional feedback)

FIGURE 8.45: Stepper motor control system

components. Position sensor feedback is

optional.



ELECTRIC ACTUATORS: MOTOR AND DRIVE TECHNOLOGY 671

NEMA size 23 mounting

Largest available shaft
diameter (0.375”) on a
NEMA 23 stepper
withstands high radial
and axial loads, supports
numerous shaft modifications

Many drive shaft
modifications available

Class B insulation

Exposed laminations aid
thermal dissipation

Neodymium-iron-boron
rotor magnets

All-in-one molded
stator assembly

Integral electrical receplacle provides high retention
force of mating connector—8 flying leads are
standard option

Rugged end bell, encapsulated
windings and electrical connector
utilize high-tech polymer

New end bell runs cooler:
encoder life is enhanced

Optional encoders and
rear shaft extensions

Precision ground rotor
OD and honed stator ID
for concentric air gap

Octagonal shape simplifies
automated assembly

Oversized 30 mm bearings
increase bearing fatigue
life (Lw) 400% over typical
22 mm bearings

FIGURE 8.46: Cross-sectional view of a four stack hybrid type stepper motor.

Source: Reproduced with permission from Parker Hannifin.

The most significant advantages of step motors are their low cost, simplicity of design,
and ruggedness. The disadvantages are that step motors have mechanical resonance and
step loss problems, although most of these drawbacks have been largely eliminated by the
“microstepping drive” technology. Figure 8.46 shows a picture of the most common type
of stepper motor (hybrid-stepper motor). Figure 8.47 shows the construction of the rotor,
where laminations with teeth are assembled over an axially magnetized permanent magnet
pole pair. Furthermore, the north pole group of laminations is mounted on the rotor with
one half pitch of a tooth angular phase from the south pole group of the laminations.

A stepper motor has a rotor (Figure 8.47) and stator (Figure 8.46). The rotor and
stator are made of laminations of soft iron material. Each stator pole has a concentrated
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FIGURE 8.47: Rotor of a hybrid permanent magnet stepper motor: permanent magnet is

polarized axially (north pole on one side and south pole on the other side along the shaft) and

laminated iron core with teeth. Source: Reproduced with permission from Parker Hannifin.
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FIGURE 8.48: Stepper motor control system components: step motor, DC power supply,

power switch set, translator, controller.

coil. The stator and rotor have teeth. For a given state of a stator current, the rotor moves
to align its teeth with those of the stator by the natural tendency to minimize reluctance
to magnetic flux. The air gap between the stator and rotor represents the resistance to
the magnetic flux. The smaller the air gap is, the less the resistance to magentic flux,
hence the higher the torque capacity of the motor. A typical air gap in stepper motors is
in the range of 30–125 μm. The components of a stepper motor control system are shown
in Figure 8.48. A given switch state of a stator represents a magnetic flux field. There is
a corresponding stable rotor position for each stator phase current condition. The “switch
set” block represents the power transistors. The “translator” block represents the logic
block which determines the order and time the power transistors should be switched based
on a planned motion which is generated by the controller. It is the responsibility of the
translator block or the controller block to limit the maximum switching frequency so that
the rotor is not left behind to the point of missing a step. Similarly, the translator block
should minimize operating at a switching frequency range which might excite the natural
resonance frequency of the stepper motor. Today, stepper motor sizes are standardized and
the most common ones are NEMA 17, NEMA 23, NEMA 34, and NEMA 42.

A given phase current condition generates a certain stable rotor position, not con-
tinuous torque. Normally the drive or the controller does not need position feedback. But
position feedback is commonly used as a way to detect possible step loss and compensate
for it when necessary.

The translator, switch set, and DC power supply blocks are collectively called the
“drive.” Drive controls the current in each phase. Velocity or position feedback is used to
control the speed or position of the motor.

8.6.1 Basic Stepper Motor Operating Principles

Let us consider the operating principles of a basic stepper motor. In our basic stepper motor,
the rotor has one north and one south pole permanent magnet. The stator has four-pole,
two-phase winding with four switches (Figure 8.49). At any given time either switch S1 or
S2, and S3 or S4 can be ON to affect the polarity of electromagnets. For each switch state,
there is a corresponding stable rotor position. In this concept figure, a stepper motor with
unipolar winding is shown where each coil is center tapped to the ground.
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FIGURE 8.49: Operating principles of a stepper motor: a unipolar step motor winding with a

unipolar drive model is shown.

Let us consider the switching sequence shown on the left four illustrations at the
bottom of Figure 8.49. In this case, at any given time all of the stator phases are energized.
At all times, each rotor pole is attracted by two winding poles. Following the four switching
sequences, the rotor would take the shown stable positions. The current pattern for these
four discrete switch states are shown in Figure 8.50a. This type of phase current switching,
where both phases are energized, is referred as the “full-step” mode of operation. As
ON/OFF states of switches are changed in the order shown in the figure, the magnetic field
generated by the stator rotates in space. Hence, the permanent magnet (PM) rotor follows it.

Now, let us consider the four sequences of switch states shown on the right hand side
of Figure 8.49. In this case, only one of the stator phases is energized while the other phase
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Phase currents in microstep mode

FIGURE 8.50: Phase currents in a stepper motor in different operating modes: (a) full step

mode, (b) half step mode, (c) modified (increased current during alternate half steps) half step

mode, and (d) microstepping mode.

is OFF (i.e., both S1 and S2 OFF, or both S3 and S4 OFF). The corresponding stable rotor
positions are shown in the figure. However, notice that since the magnetic force pulling the
rotor is provided by only one phase, the holding torque of the motor at these switch states
is less than (approximately 1∕2) that of the holding torque at the full-step mode. This mode
of switching power transistors at the drive is referred to as the “half step” mode. We can,
therefore, energize the motor in alternate modes (one full step and one half step) in every
other step in order to increase its positioning resolution (from 4 stable positions to 8 stable
positions). The current pattern in the phase windings in full and half step modes is shown
in Figure 8.50. In order to make sure the torque capacity is similar at all steps, the current
can be increased during the half step mode compared to the current during full step mode
(Figure 8.50c). The step size is defined as the smallest rotor position change that can be
achieved by switching the current from one state to another state in the stator winding using
full step and half step modes. For this simple concept stepper motor, step size is

𝜃step = 360
8

= 45◦ (8.265)

The standard hybrid permanent magnet (PM) step motor operates in the same way as
our simple model, but has a greater number of teeth on the rotor and stator, giving a smaller
basic step size. The rotor is in two sections axially. The two sections of the rotor, both
sections with teeth, are separated by a permanent magnet (Figure 8.47). North and south
poles are magnetized axially, so the N-pole is on one side and the S-pole is on the other side
along the shaft. Hence, one side is magnetized as the north pole, the other side is magnetized
as the south pole. Furthermore, there is a one-half tooth pitch angular displacement between
the two sections (north and south sections) on the rotor. Let us consider an example hybrid
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step motor. The stator has 8 poles each with 5 teeth on each, making a total of 40 teeth
(Figure 8.47), plus the space between each pole: there are 48 spaces. Let us assume that the
rotor has 50 teeth. Using full step and half step modes, we can advance the teeth alignment
between rotor and stator by the number of rotor teeth times the number of phases times 2.
The step angle of an hybrid PM stepper motor is determined by the number of electrical
phases (Nph) and the number of rotor teeth (Nr),

𝜃step = 360◦

2 ⋅ Nr ⋅ Nph
(8.266)

The number of steps of a PM stepper motor per revolution is the number of electrical phases
times the number of rotor teeth times two,

Nstep = 2 ⋅ Nr ⋅ Nph (8.267)

The switching of power transistors from one state to another from ON-to-OFF and
OFF-to-ON state instantaneously results in an instantaneous change in the magnetic field.
The motor behaves like a mass-spring system. We can take the concept of half step mode
further to ratio (smoothly change) the current in phases instead of making transitions from
full ON to full OFF states. This will result in smoother motion and electronically controlled
finer step sizes. This is the main operating principle of the so-called “micro stepping drives”
(Figure 8.50d). As a result of the smoother current switching between phases, the torque
acting on the rotor shaft between steps is smoother, and the step motion of the rotor is
less oscillatory. In addition, microstepping reduces the resonance and step loss problems
associated with step motors which are operated full step and half step current control drives.

The stator windings typically form two phases. If the step motor is to be operated
by a unipolar drive, each winding must be center tapped to ground and positive voltage
is connected to both ends (Figure 8.51a). The opposite connection can also be made: the
center tap is connected to the DC supply voltage, and the other two ends are connected to the
ground. Per winding, only one of the connections at a time is switched ON in order to control
the direction of the current and hence the generated electromagnetic pole type (north or
south). Only half of a particular winding is used at a switched ON state (Figure 8.51a). If the
step motor is to be operated by a bipolar drive, then the current direction can be controlled
by the drive and all of each winding is used at a switched ON state (Figure 8.51b,c). Some
step motors are wound with two separate windings per pole, and hence can be driven by
a unipolar or bipolar drive by appropriately terminating the winding ends. For unipolar

(a) (b) (c)

Rotor

Stator windings

Rotor Rotor

Stator windings

Stator windings

FIGURE 8.51: Stator winding connections of a two-phase, four winding step motor:

(a) unipolar drive configuration with center tapped connection, (b) bipolar drive configuration

with series connection, (c) bipolar drive configuration with parallel connection.
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Torque
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winding

Parallel connection 
     winding

Speed

FIGURE 8.52: Steady-state torque and speed curves for series and parallel

connected windings.

operation, two windings are connected in series and center tapped to ground. For bipolar
operation, two windings can be either parallel or serial connected and the current direction
is controlled by the drive (Figure 8.51b,c). The implications of connecting the windings in
series or in parallel in terms of the steady-state torque-speed characteristics of the motor
are shown in Figure 8.52.

Step loss and resonance are two fundamental problems inherent in stepper motors. If
the phase currents are switched so fast that the rotor cannot keep up with it, then step loss
occurs. The only way to correct the problem is to use a position sensor to detect the step loss
and command additional steps to compensate for it. Therefore, the maximum switching fre-
quency is limited. Higher switching frequencies can be used only if the rotor is accelerated to
high rotational speeds under controlled acceleration profiles (Figure 8.53). As the switching
frequency increases, there is less time for the phase current to develop due to the electrical
time constant of phase winding (𝜏 = L∕R). Therefore, at higher switching frequency the
torque capacity of the motor drops compared to the torque capacity at lower speeds.

Slew curve

Start-stop
curve

Torque

Start-stop
range

Step / second

Slew
range

Holding 
torque

FIGURE 8.53: Torque capacity and step rate of stepper motors.
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0 FIGURE 8.54: Drive types for

step motor: (a) unipolar drive,

(b) bipolar drive.

8.6.2 Step Motor Drives

Drive controls the direction and magnitude of current in each phase, and hence controls the
direction and magnitude of torque. There are two types of drives which must be matched
to the winding type of a step motor (Figure 8.54),

1. unipolar drive,

2. bipolar drive.

Unipolar drives require the motor windings to be center tapped (Figures 8.54a, 8.51a).
By turning ON the current at one end of the winding versus the other end, the direction
of current in the winding is changed, hence the flux direction. When a phase winding is
energized, only 50% of it is used by a unipolar drive. Unipolar drives require two power
transistor switches per phase. In a unipolar center-tapped motor, each phase has three leads:
two sides and one center tap lead (Figure 8.51a).

Bipolar drives use an H-bridge (four power transistor switches) per phase. A bipolar
drive for a two-phase step motor has two H-bridges (2 × 4 = 8 transistors). The direction
of the current is changed by controlling which two pairs of the H-bridge switches are
turned ON. Although it requires twice as many power switches, it makes 100% use of the
conductors of the energized coil. A stepper motor with bipolar winding has two leads per
phase (Figure 8.51b,c). Some motors are wound such that they can be configured to be
driven by either a unipolar or bipolar drive. In this case, each winding has two identical
windings with four leads. Depending on how the leads are connected, the motor can be
made to operate with a unipolar or a bipolar type drive.

The microstepping drive was developed to solve resonance problems. In microstep-
ping, the current is not simply switched ON/OFF between phases, but gradually changed.
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As a result, the current vector does not change in sudden jumps, but instead it is smoothly
changed. Resonance is greatly reduced, and resolution is sharply increased, because there
are many more equilibrium points as the current is ratioed between multiple phases.
Microstepping is usually performed with two bidirectional phases. These two phases have
similar torque equations as a brushless DC motor. Let us assume that the phase current-
torque gain is a sinusoidal function of the rotor position, 𝜃r. The two phases are 90 degrees
apart. Further, let us assume that the current to each phase is controlled with a sinusoidal
function in order to implement the microstepping mode of current control. The phase
current and torque relationships are,

Ta = K ⋅ ia ⋅ sin(𝜃r) = K i cos(𝜃c) ⋅ sin(𝜃r) (8.268)

where

ia(t) = i ⋅ cos(𝜃c(t)) (8.269)

Tb = K ⋅ ib ⋅ cos(𝜃r) = K i (− sin(𝜃c)) ⋅ cos(𝜃r) (8.270)

where

ib(t) = i ⋅ (− sin(𝜃c(t))) (8.271)

Ttotal = Ta + Tb = K i sin(𝜃c − 𝜃r) (8.272)

where 𝜃r is the real position and 𝜃c is the commanded position, ia, ib are currents in phase
a and b, K is a proportionality constant. In equilibrium, these two positions are identical,
𝜃c = 𝜃r, so the total torque equation becomes:

Ttotal = K i sin(𝜃c − 𝜃r) = 0 (8.273)

and when 𝜃c − 𝜃c = 90◦, the torque is maximized for a given current.
The step motor torque is developed as the rotor is forced to move away from the

equilibrium position for a given state of winding current. The equilibrium position is the
one that minimizes the magnetic reluctance (maximizes the inductance). When the rotor is
at the exact position that minimizes the reluctance, the torque is zero. The holding torque
is developed as the rotor position deviates from the ideal position due to load or current
commutation in the windings.

Example: Unipolar Integrated Circuit (IC) Drive for Step Motors An
integrated circuit (IC) drive which can be used to drive a unipolar stepper motor is shown
in Figure 8.55. The SLA7051M (by Philips Semiconductors) integrates two blocks of
Figure 8.48, the translator and the power switch set. The translator section is made of a
low-power CMOS logic circuit and handles the logic for sequencing, direction, full and
half step operation. The translator decides on the firing sequence of windings for full step
(AB, BC, CD, DA in forward or reverse direction) or for half step (A, AB, B, BC, C, CD,
D, DA in forward or reverse direction) as a function of the input signals at the terminals
STEP (also named Clock), FULL/HALF, CW/CCW. At each low to high transition of the
STEP input signal, the translator checks the state of FULL/HALF pin to determine if full
step mode or half step mode is commanded (high for full step, low for half step mode), and
the CW/CCW input to determine the direction command. Then it decides which one or two
of the windings to be fired according to the sequence defined above (AB, BC, CD, DA or
A, AB, B, BC, C, CD, D, DA).

The PWM current controlled power stage uses FET output and can handle up to
2 A and 46 V per phase. The maximum current is controlled by the reference voltage and
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FIGURE 8.55: An example IC driver for unipolar step motors: SLA7051M by Philips

Semiconductors. The unipolar step motor driver IC has the translator and output power stage

integrated into one small IC package. Source: Adapted from Philips.
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current sense resistors for each phase (pins REF, SENSA, SENSB). The output stages
control the phase currents via terminals OUTA, OUTA∖, OUTB, OUTB∖ of the IC chip.
Notice that this IC drive is capable of controlling only FULL and HALF step modes and
does not support the microstepping mode. For driving step motors which will require power
dissipation more than 20 W, an external heat sink must be added to the FET power transistor
stage.

Example: Bipolar Integrated Circuit (IC) Drive for Step Motors The
LM18293 (by National Semiconductor) integrates two H-bridges on the chip with 1 A
continuous (2 A peak) current capacity per channel. Therefore, it can be used to drive a
two-phase bipolar step motor (Figure 8.56). It can also be used to drive two separate DC
brush motors bidirectionally. The maximum DC supply voltage is 36 V. A separate enable
pin (ENABLE1 and ENABLE2) controls one of the two H-bridges. If the ENABLE pins

Winding L2

Winding L2

VIN1

VIN2

FIGURE 8.56: Integrated circuit drive chip

(LM18293 by National Semiconductor) for

bipolar step motors or brush-type DC

motors. Source: Texas Instruments.
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are floating (not connected), it is assumed that the H-bridges are enabled. Input channels
(TTL level signals) INPUT1 and INPUT2 control the direction and magnitude of current
in one of the H-bridges. Once an H-bridge is enabled, the current is controlled by the pair
of INPUT (1/2 or 3/4) pins for that H-bridge. By modulating the pulse width of the INPUT
lines, the average current can be controlled by an external microcontroller.

8.7 LINEAR MOTORS

In principle, all of the rotary electric motors can be designed and manufactured as linear
electric motors by un-rolling the cylindrical shape of the stator and rotor into linear form.
Such linear motors have rectangular cross-sections and are called flat linear motors. In
addition, the un-rolled linear motor can be rolled back around the axis of linear motion to
obtain a tubular linear motor construction. Such linear motors have circular cross-sections
(Figure 8.57).
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FIGURE 8.57: Principle of linear

motor construction by un-rolling a

rotary motor: (a) a rotary permanent

magnet type electric motor (i.e.,

brushless DC), (b) un-rolling concept,

(c) flat type linear brushless DC motor,

and (d) tubular type linear motor by

rolling again the flat type linear motor

concept around the axis of its force.
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The electromagnetic force generation between the two components follows the same
physical principles as in the case of their rotary counterparts. Figure 8.57 shows the basic
principle of a linear motor by un-rolling the cylindrical shape to a flat shape. The number
of actively controlled stator phases the same. The commutation of the current in each phase
is based on the cyclic linear distance (pitch) of the permanent magnet dimensions instead
of the rotary angle. In a two pole rotary brushless DC motor, the commutation cycle is 360
degrees, whereas the commutation cycle in a linear brushless motor is the distance between
two consecutive pole pairs (i.e., the distance between two north or two south pole magnets,
total length of a north and a south pole magnet). In general, the same amplifiers used in the
rotary version are used for the linear version of the motor. The feedback sensor (if used for
commutation) is a linear displacement sensor instead of a rotary displacement sensor, that
is Hall effect sensors are used to detect the relative position of stator with respect to the
rotor within a cyclic distance of pitch. Similarly, linear encoders may be used in place of
rotary encoders for position sensing.

Linear brushless DC motors have three basic types: iron core, ironless (air core), and
slotless. In a brushless DC tubular linear motor, the permanent magnets are rolled into a
cylindrical shape around the axis perpendicular to the rotary motor axis. The stator has three
phases and is wound around the rotor. The controller and amplification stages of a linear
motor are identical to those used in the rotary version. The commutation in the amplifier is
based on the cyclic pitch distance of the magnet pairs in the rotor, instead of the angular
position in the case of rotary motors.

The dynamic model of a linear DC motor is identical to that of rotary DC motors.
The electrical dynamics of the motor is

Vt(t) = R ⋅ i(t) + L ⋅
di(t)
dt

+ Ke ⋅ ẋ(t) (8.274)

where Vt(t) is the terminal voltage, R is the winding resistance, L is the self-inductance, ke
is the back EMF gain of the motor. The net electrical power converted to mechanical power
is

Pe(t) = Vbemf(t) ⋅ i(t) (8.275)

= KE ⋅ ẋ(t) ⋅ i(t) (8.276)

= KT ⋅ ẋ(t) ⋅ i(t) (8.277)

= F(t) ⋅ ẋ(t) (8.278)

= Pm(t) (8.279)

assuming 100% efficiency in converting the electrical power to mechanical power,

Pm(t) = F(t) ⋅ ẋ(t) (8.280)

= Pe(t) (8.281)

= Vbemf(t) ⋅ i(t) (8.282)

where the force–current relationship is

F(t) = KT ⋅ i(t) (8.283)

which also shows the force/torque gain is equal to the back EMF gain. The gain Kt is
a function of the magnetic flux (flux density times the cross-sectional area linking the
magnetic field to the conductors) and the number of turns of the coil. In other words, it
is a function of the magnetic flux at the operating point of the permanent magnets and its
size, plus the number of coil turns that links the flux. For a practical motor, the solution
of flux is best obtained by finite element based software tools. Therefore, the force gain is
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FIGURE 8.58: Voice coil actuator operating principle and components.

determined by the solution of FEA based software instead of analytical solutions which are
only possible for simple and idealized motor geometries.

A voice coil actuator (also called a moving coil actuator) is made of a tubular
permanent magnet (PM) and a coil winding (Figure 8.58). The interaction between the
current carrying coil assembly and PM generates the linear force. In principle, this is
identical to the brush-type DC motors. At any given instant in time, both motor action
(force generation) and generator action (back EMF voltage) are in effect,

F = k ⋅ l ⋅ N ⋅ B ⋅ i = KF ⋅ i (8.284)

Vbemf = k ⋅ l ⋅ N ⋅ B ⋅ ẋ = KE ⋅ ẋ (8.285)

where F is linear force, Vbemf is the back EMF voltage, l is the length of the winding and N
is the number of turns of the coil, B is the magnetic field strength across the air gap between
the rotor and stator, i is the current in the coil, and ẋ is the linear speed of the rotor. As long
as the geometric overlap between the rotor and stator (coil and PM) is the same, the force is
essentially independent of the displacement of the rotor and only a function of the current.
In order to provide such a force–current–displacement relationship, the axial length of the
PM and the coil must be different (one longer than the other). The current in the coil winding
is non-commutated. There are no commutator-brush components. Only the direction and
magnitude of the current is controlled, that is using an H-bridge amplifier which is the
same type used for a brush-type DC motor. Moving coil actuators are precision motion
versions of the solenoid-plunger or audio-speaker designs. Voice coil actuators typically
have a small travel range (i.e., microns to a few inches range) and very high bandwidth.

8.8 DC MOTOR: ELECTROMECHANICAL DYNAMIC MODEL

The most commonly used model for a direct current (DC) electric motor is shown in
Figure 8.59. This dynamic model includes electrical, electrical to mechanical power con-
version, and mechanical dynamic relations.

The electrical relation between terminal voltage, current, and rotor speed is

Vt(t) = La
di(t)
dt

+ Ra i(t) + ke �̇�(t)
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FIGURE 8.59: DC motor dynamic model.

where ke�̇�(t) term is the voltage generated by the back electromotive-force (back EMF)
as a result of the generator action, La, Ra are inductance and resistance of the winding,
respectively. The electrical to mechanical power conversion (current to torque) is given by

Tm(t) = KT i(t)

where, KT is the torque gain, and Tm is the torque generated by the motor. Finally the
mechanical relation between torque, inertia, and an other load is given by

Tm(t) = (Jm + Jl) �̈� + c�̇�(t) + Tl(t)

where Jm is rotor inertia, Jl is load inertia, c is damping constant, Tl is load torque.
From these three basic relationships, we can derive various transfer functions, such as the
transfer function between terminal voltage to motor speed or motor position, or the transfer
function from armature current to motor speed. Physically, an amplifier manipulates the
motor terminal voltage in order to control the motor motion. This voltage control may be
based on current feedback, voltage feedback or both.

Let us derive the transfer function from motor terminal voltage to motor speed. Taking
the Laplace transform of the above equations for zero initial conditions,

Vt(s) = (Las + Ra)i(s) + ke�̇�(s) (8.286)

→ i(s) = 1
Las + Ra

[Vt(s) − ke�̇�(s)] (8.287)

Tm(s) = KTi(s)

(JTs + c)�̇�(s)y = Tm(s) − Tl(s)

where JT = Jm + Jl.

+
_ +

_

DC motor model
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a a

m

l

(t) (t)

FIGURE 8.60: Block diagram of the DC motor dynamic model.
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torque to motor speed for a typical DC servo motor.

The transfer function describing the effect of terminal voltage and load torque on the
motor speed can be found as (Figure 8.61)

�̇�(s) =
KT

(Jts + c)(Las + Ra) + KTke
Vt(s) −

(Las + Ra)

(Jts + c)(Las + Ra) + KTke
Tl(s)

The transfer function from motor terminal voltage to motor speed is given by

�̇�(s)
Vt(s)

=
KT

(Jts + c)(Las + Ra) + KTKe
(8.288)

=
KT

JTLas2(Lac + JTRa)s + (cRa + KTKe)
(8.289)

=
KT

JTLas2 +
(

Lac+JTRa
JTLa

)
s +

(
cRa+KTKe

JTLa

) (8.290)

The poles of the transfer function are given by

s2 +
(

Lac + JTRa

JTLa

)
s +

(
cRa + KTKe

JTLa

)
= 0

Normally, this equation has two complex conjugate roots.

Special Case: DC Servo Motors DC servo motors have very low inductance
(L small), and very low damping (c small). Using these facts for the DC servo motors case
the transfer function can be approximated as

�̇�(s)
Vt(s)

≃

KT
JTLa

s2 +
(

Ra
La

)
s +

(
KTKe
JTLa

)
where the poles are given by

p1,2 = −
Ra

2La
±

√(
Ra
La

)2
− 4

(
KTKe
JTLa

)
2

(8.291)

= −
Ra

2La
±

√
4KTkeJT

(
R2

a JT

4KTKe
− La

)
2LaJT

(8.292)

≃ −
RaJT

2LaJT
±

RaJT

(
1 − 2LaKTKe

R2
a JT

)
2LaJT

(8.293)
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where we used the approximation√
1 − x ≃ 1 − x

2
; for x ≪ 1

The poles are

p1 = −
KTKe

JTRa
(8.294)

p2 = −
−2RaJT +

(
2LaKTKe

Ra

)
2LaJT

(8.295)

= −
Ra

La
+

KTKe

JTRa
(8.296)

Since Ra

La
≫

KTKe

JTRa
the second pole is approximately

p2 ≃ −
Ra

La
(8.297)

The motor terminal voltage to motor speed transfer function can be approximated as

�̇�(s)
Vt(s)

=

(
KT

JTLa

)
(s − p1)(s − p2)

(8.298)

=

(
1

Ke

)
(𝜏ms + 1)(𝜏es + 1)

(8.299)

where

𝜏m = − 1
p1

=
JTRa

KTke
mechanical time constant (8.300)

𝜏e = − 1
p2

=
La

Ra
electrical time constant (8.301)

and the mechanical time constant 𝜏m is much larger than the electrical time constant 𝜏e for
most motors. The motor speed is also influenced by disturbance or load torque. The transfer
function including the load torque can be derived as follows

�̇�(s) =

KT
JTLa

s2 +
(

Ra

La

)
s +

(
KTKe

JTLa

)Vt(s) −

(
Las+Ra

JTLa

)
s2 +

(
Ra

La

)
s +

(
KTKe

JTLa

)Tl(s) (8.302)

=
1

Ke

(𝜏ms + 1)(𝜏es + 1)
Vt(s) −

(𝜏es + 1)Ra
1

KT

KT
JTLa

s2 +
(

Ra
La

)
s +

(
KTKe
JTLa

)Tl(s) (8.303)

=
1

Ke

(𝜏ms + 1)(𝜏es + 1)
Vt(s) −

1
Ke

Ra
KT

(𝜏es + 1)

(𝜏ms + 1)(𝜏es + 1)
Tl(s) (8.304)

�̇�(s) =
1

Ke

(𝜏ms + 1)(𝜏es + 1)
Vt(s) −

1
Ke

Ra
KT

(𝜏ms + 1)
Tl(s) (8.305)
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FIGURE 8.62: Block diagram of transfer functions for a DC servo motor driven by a voltage

amplifier.

The transfer function from the terminal voltage and load torque to the motor speed
in terms of time constants and dc gains are shown in block diagram form in Figure 8.61.

8.8.1 Voltage Amplifier Driven DC Motor

If a voltage amplifier is used to drive the motor, the transfer function between voltage
amplifier input and motor speed is given by (Figure 8.62)

�̇�(s)
Vin(s)

= �̇�(s)
Vt(s)

Vt(s)

Vin(s)
= Gamp(s) Gmotor(s)

where the voltage amplifier is represented by a first-order filter model,

Vt(s)

Vin(s)
= Gamp(s) =

Av

(𝜏as + 1)
(8.306)

8.8.2 Current Amplifier Driven DC Motor

In the majority of cases, the DC motor terminal voltage is controlled by an amplifier which
regulates armature current (Figure 8.63). Directly regulating current is essentially directly
regulating the torque generated by the motor, since generated torque is proportional to the
current. The transfer function of the current amplifier plus DC motor combination from the

+ _
i

_+

DC motor modelAmplifier
with current F.B.

(t)m

T
T

e

et

aa

FIGURE 8.63: Block diagram of DC motor and amplifier using current feedback.
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FIGURE 8.64: Current amplifier plus DC motor transfer function from commanded current to

motor speed.

amplifier input (commanded current, icmd(t)) to the motor speed can be derived as follows
(neglecting the effect of amplifier terminal voltage saturation, Figure 8.64)

�̇�(s)
icmd(s)

=
K1

KT
(Las+Ra)(JTs+ c)+KeKT

1 + K1
KT

(Las+Ra)(JTs+ c)+KeKT
K2

(
JTs+ c

KT

) (8.307)

=

K1KT
LaJT

s2 +
(

Lac+RaJTs+K1K2JT
LaJT

)
s +

(
KeKT +K1c+K1K2c

LaJT

) (8.308)

= K
s2 + bs + c

(8.309)

=
Ka

(𝜏as + 1)

KT

(JTs + c)
(8.310)

If we consider the transfer function between armature current and motor speed;

Tm(t) = KT i(t) (8.311)

Tm(t) = JT �̈� + c�̇� − Tl(t) (8.312)

�̇�(s) =
KT

(JTs + c)
⋅ i(s) − 1

(JTs + c)
⋅ Tl(s) (8.313)

8.8.3 Steady-State Torque-Speed Characteristics of DC
Motor Under Constant Terminal Voltage

Consider the electrical and electrical to mechanical power conversion relations for a DC
motor.

Vt(t) = La
di
dt

+ Ra i + Ke �̇�(t) (8.314)

Tm(t) = KT i(t) (8.315)

In steady-state the effect of La will be zero. If we set La = 0 for steady-state analysis, the
torque-speed terminal voltage relationship is given by,

Tm(t) =
KT

Ra
⋅ Vt(t) −

KTKe

Ra
⋅ �̇�(t) (8.316)

This is a linear relationship of the type

y = −a x + b (8.317)
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FIGURE 8.65: Steady-state torque-speed characteristics of a DC motor.

Let us consider this equation for various constant terminal voltage values, Vti (Figure 8.65).
The steady-state torque-speed curve has a negative slope of KTKe

Ra
for a given constant

terminal voltage. A given motor maximum torque at stall will saturate at the magnetic field
saturation point and the torque will not increase even if terminal voltage is increased beyond
a certain voltage value. For a given constant terminal voltage, as the speed (Δ�̇�) increases,

the torque capacity of the motor decreases by
(

KTKe
Ra

)
Δ�̇�.

8.8.4 Steady-State Torque-Speed Characteristic of a DC
Motor Under Constant Commanded Current
Condition

When we consider a DC motor driven by a current amplifier, we need to consider the
following additional relation,

Vt(t) = K1(icmd(t) − K2 i(t)); Vt(t) ≤ Vt max

when the amplifier saturates, Vt(t) > Vt max

Vt(t) = Vr,t max

Substituting the above current feedback control to the motor dynamics, and letting
La ≈ 0.0,

Vt(t) = La
di
dt

+ Ra i + Ke �̇�(t) (8.318)

K1(icmd(t) − K2i(t)) = La
di
dt

+ Ra i + Ke �̇�(t) (8.319)

Solve for i(t) in terms of icmd(t) and �̇�(t), and substitute in the torque-current equation to
obtain the steady-state torque versus speed relationship under constant current condition,

Tm(t) = KT i(t) (8.320)

Tm =
KTK1

Ra + K1K2
icmd −

KTKe

Ra + K1K2
�̇� (8.321)

When the amplifier is commanded a constant current, (icmd), the speed torque characteristic
is linear with negative slope. However, the slope is much flatter than the case of the DC
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FIGURE 8.66: Speed-torque characteristics of a DC motor in steady state with current

controlled amplifier.

motor with a constant terminal voltage (Figure 8.66). In other words, the steady-state
torque produced by a DC motor under constant current conditions (i.e., controlled by a
current feedback amplifier) decreases with increasing speed at a much slower rate that the
case when the motor is controlled by a voltage amplifier under constant terminal voltage
condition.

Example Consider a DC motor with the following parameters, KTN m∕A = KEV∕
(rad∕s) = 6.7 × 10−2, Ra = 0.5Ω, La = 2 mH, Jm = 4.8 × 10−5 kg m2, Jl = Jm. Determine
the mechanical and electrical time constant of the motor (consider the case that the motor
and the load inertia are rigidly connected). If the current loop control gains are K1 = 10.0 and
K2 = 1.0, determine the speed-torque slopes under constant voltage and constant current
control conditions.

The mechanical and electrical time constants of the motor with the load connected

𝜏m =
JTRa

KTKE
= 9.6 × 10−5 ⋅ 0.5

6.72 × 10−4
(8.322)

= 0.010 s = 10 ms (8.323)

𝜏e =
La

Ra
= 2 × 10−3 H

0.5Ω
= 4 × 10−3 s = 4 ms (8.324)

The slope of the torque-speed curve in steady-state under constant voltage and constant
current conditions is,

slopev =
KTKE

Ra
(8.325)

= 6.72 × 10−4

0.5
(8.326)

= 89.7 × 10−4 N ⋅ m∕(rad∕s) (8.327)

= 0.0857 N ⋅ m∕rpm (8.328)

slopei =
KTKE

Ra + K1K2
(8.329)

= 6.72 × 10−4

0.5 + 10
(8.330)

= 4.27 × 10−4 N ⋅ m∕(rad∕s) (8.331)
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= 0.00407 N ⋅ m∕rpm (8.332)

The ratio of the slope change in the torque-speed curve is

slopei

slopev
= 4.27

89.7
= 1

21
(8.333)

For a given unit speed change, the torque variation under the current controlled amplifier
operation is 21 times less than that under the voltage controlled amplifier.

8.9 PROBLEMS

1. Consider the solenoid shown in Figure 8.17. Assume that the permeability of the iron core is
much larger that the permeability of the air gap (x). Hence, let us neglect the reluctance of the path
in the iron core.

(a) Draw the equivalent electromagnetic circuit diagram.
(b) Derive the relationship for the inductance as a function of the air gap distance x which is variable.

Let the air gap cross-sectional area Ag = 100 cm2, number of turns of the coil N = 250. Plot the
inductance as a function of the air gap x for 0.0 mm ≥ x ≥ 10.0 mm.

2. Consider the linear motion mechanism shown in Figure 3.3. Draw a block diagram of the closed
loop position control system components for this motion control system. Discuss the advantages
and disadvantages of using a (i) DC motor, (ii) stepper motor, (iii) vector controlled AC induction
motor as the actuator to provide the mechanical power to the ball-screw mechanism. Assume that the
necessary power level is under 1.0 kW.

3. Consider a DC motor (or equivalent) motion control system. Assume that the DC bus voltage
available is Vs = 90 V DC. The back EMF constant of the motor is Ke = 20 V∕krpm. The nominal
terminal resistance of the motor stator windings is R = 10Ω.

(a) Determine the maximum no-load speed and the maximum torque capacity at stall (zero speed)
of the motor in steady-state. Discuss the factors that detemine the peak torque and RMS torque
capacity of the motor and predict peak and RMS torque capacity of the motor.

(b) Assume that the DC motor is controlled by the velocity mode amplifier and speed sensor feedback
(i.e., tachometer). The amplifier sends a voltage command to the motor proportional to the speed
error. Input speed is commanded with a 0–10 V DC voltage source. Determine the sensor gain
and amplifier gain so that the closed loop system has good closed loop response and that a
0–10 V DC command signal results in proportional output speed in the speed range of the motor.

4. Consider a hybrid PM stepper motor.

(a) What is the difference between the half step and full step mode. What is the main advantage and
disadvantage of the half stepping mode?

(b) Discuss how microstepping is accomplished and its advantages/disadvantages.
(c) Discuss the major performance differences between step motors and brushless DC motors.

5. Consider a stepper motor with two phases (Figure 8.67). Phase 1 is wound with two identical
coils. Phase 2 is also wound with two identical coils. Therefore, there are eight wires that come out
from the stator winding, four for each phase.

(a) Connect the phase terminal wires in such a way that the motor can be used as a unipolar wound
motor and draw a schematics for the amplifier circuit of the motor windings.

(b) Connect the phase terminal wires in such a way that the motor can be used as a bipolar wound
motor with series connected windings (two identical windings for each phase are connected in
series). Draw the amplifier circuit and its connections to motor windings.



692 MECHATRONICS

Rotor (P.M.)

Stator
windings:

Phase 1 & 2

Ph 2A Ph 2B Ph 2C Ph 2D

Ph 1A

Ph 1B
Ph 1C

Ph 1D

FIGURE 8.67: Two-phase stepper motor. Each phase is wound with two identical windings.

Each phase has four terminal wires. The phase windings can be terminated to configure the

motor for unipolar or bipolar operation.

(c) Connect the phase terminal wires in such a way that the motor can be used as a bipolar wound
motor with parallel connected windings (two identical windings for each phase are connected in
parallel). Draw the amplifier circuit and its connections to motor windings.

(d) What is the main performance difference between bipolar series and bipolar parallel configuration
of the motor?

6. Consider the drive circuit for a three phase brushless DC motor shown in Figure 8.32. Assume
that the rotor has one south and one north pole (like the one shown in Figure 8.29c). Let us focus on
the ON/OFF state of six power transistors (Tr1,… , Tr6) in order to generate torque in the forward and
reverse direction. Determine the sequence of the ON/OFF conditions of the transistors for forward
and reverse torque generation. Assume a nominal rotor position, hence the magnetic field of the rotor,
as the beginning of the commutation cycle. Hint: make a table with columns being the transistors
1 through 6 states, the position of the rotor at the beginning of each transistor state switching sequence,
and the magnetic field vector generated by the stator at a particular switching pattern. The rows should
be six different transistor states for forward torque generation in sequence and similar information for
the reverse torque generation. In an actual motor, the power transistors would be controlled by a PWM
signal to generate a sinusoidal or trapezoidal current as a function of rotor position as opposed to the
ON/OFF switching discussed in this problem. Nonetheless, the ON/OFF switching of transistors is
still useful in understanding the current commutation on DC brushless motors.

7. The torque versus rotor position under constant current conditions for a DC brush-type motor
(Figure 8.28). Assume that for each coil connected to the commutators, the torque is a sinusoidal
function of rotor position under constant current, as shown in the same figure. Plot the torque versus
rotor position for one revolution, under constant current, for the following cases: a) two coils only (and
two commutators), b) four coils (and four commutators), c) eight coils, and d) 16 coils. What is the
benefit of having a large number of commutator segments? Assume that all coils are symmetrically
distributed, that is in the four coil case, the second coil is 180◦ electrically (1/4 revolution mechanical
degrees) out of phase with the first coil, in the eight coil case each coil is 1∕8 of a revolution
out of phase from the previous one). Use of MATLAB®/Simulink® for the plot and calculations is
recommended.

8. Consider a DC motor, current amplifier, a closed loop PD type controller, and a position
feedback sensor (Figures 8.59, 8.64, 2.42). Consider that the motor dynamics is described by its
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FIGURE 8.68: (a) An electromagnetic circuit example involving a permanent magnet, a coil

wound over a core which has an air gap. (b) Magnetic circuit model.

rotary inertia (Jm kg m2) and current to torque gain (Kt Nm∕A). Let the current amplifier be mod-
eled by a static gain of voltage command to current gain of Ka A∕V. The PD controller has gains
Kp and Kd which define the relationship between the position and velocity error and control signal
(voltage command). Let the position feedback sensor also be represented by its gain and neglect
any dynamic delays, Ks Counts∕Rad. a) Let Jm = 10−4 kg m2, Kt = 0.10 N m∕A, Ka = 2.0 A∕V,
Kf = 2000∕(2𝜋) Counts∕Rad, Kp = 0.02 V∕Counts, Kd = 10−4 V∕(Counts∕s). Find the loop trans-
fer function (the transfer function from the error signal to the output of the sensor (sensor signal),
then determine the frequency at which the magnitude of the loop transfer function is equal to unity.
At that frequency, determine the phase angle of the loop transfer function. b) Similarly, determine
the frequency at which the phase angle of the loop transfer function is equal to 180 degrees (if such
a finite frequency exists) and find the magnitude of the loop transfer function at that frequency. In a
real DC motor control system, such a frequency does exist even if the above analysis may indicate
that such a frequency is not finite. Discuss why in real hardware such a frequency is finite (Hint:
neglected filtering effects and time delays in the above analysis compared to the real system. A pure
time delay can be modeled in the frequency domain as e−jwtd , where td is the time delay. It adds phase
lag to the loop transfer function).

9. Consider the electromagnetic circuit shown in Figure 8.68 where there are two magnetic field
sources: the permanent magnet and the coil. The coil has N turns and current is i. Let the permeability
constant of the core be 𝜇c. Let the air gap, permanent magnet, core cross-section areas be the same,
Am = Ac = Ag, for simplicity.

(a) Determine the inductance of the circuit and,
(b) the Pc, magnitude of the slope of load line, assuming 𝜇c = ∞.
(c) Determine the operating point of the permanent magnet under a given non-zero current condition

at the coil. Neglect the reluctance of the core relative to the reluctance of the magnet and air
gap and let the magnet permeability be the same as that of air (𝜇r = 1.0). Also, let Am = Ag, the
cross-section areas of magnet and air gap be the same. Let the coil current be i and the number
of turns of the coil be N.





CHAPTER 9
PROGRAMMABLE LOGIC
CONTROLLERS

9.1 INTRODUCTION

The programmable logic controller (PLC) is the de-facto standard computer platform used in
industrial control, factory automation, automated machine and process control applications.
PLCs were developed as a result of a need in the automotive industry. In the early 1960s,
the General Motors (GM) Corporation stated that the factory automation systems based
on hard-wired relay logic panels were not flexible enough for the changing needs of the
industry. When a new car model required a difference sequence of control logic, re-wiring
the control panel was taking too much time and the response time of the company was
slow for new car models. With hard-wired relay logic panels, if there is a need to change
the automation logic and functions of a line, the logic wiring between the input and output
signals in the panel had to be physically changed. This is a time consuming and costly
process. It was requested in a design specification that a general purpose wiring of all I/O
devices be brought to a panel, but the logical relationship between the I/O be defined in
software instead of being hard-wired. In other words, it was desired that the logic be soft-
wired instead of hard-wired. That was the beginning of PLCs. PLCs play a very important
role in the automated factories of the industrial world. PLCs replaced the hard-wired relay
logic panels. The current trend is large scale networking via the internet between PLCs
at the factory and enterprise level computers which may be physically distributed all over
the world.

The physical shape of PLCs made by many different companies all have the same
form: it is rack mounted with standard size slots to plug in I/O interface units (Figure 9.1).
A typical PLC rack starts with a power supply and a CPU module plugged into a backplane
of an interface bus. A rack may have a different number of slots,such as 4 slots, 7 slots,
10 slots, 15 slots and so on. A PLC may support multiple I/O racks (main rack that has
the CPU and expansion I/O racks). Typical software development tools for a PLC include
a notebook PC, a serial or ethernet communication interface and cable, and a software
development environment for that particular PLC (Figure 9.2). Depending on the I/O
capabilities, CPU speed and program functions, PLCs are categorized into three to four
major sizes (Figure 9.1). Any of the I/O interface modules can be plugged into the slots.
All of the interface and unit power lines are provided by the snap-on connection to the rack.
Typical I/O units supported by virtually every PLC platform include digital input and output
modules, analog input and output modules, a high speed counter and timer module, serial
communication module, communication network interface modules (i.e., DeviceNet, CAN,
ProfiBus), a servo motor control module, and a stepper motor control module. For a given
application, the necessary I/O units are selected and inserted into the slots. Furthermore, if
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FIGURE 9.1: The PLC hardware configuration

and components: (a) Different PLC catagories in

terms of their number of I/O capabilities and CPU

speed. (b) A PLC CPU rack and three I/O

expansion racks.

the application needs changing, additional I/O modules can be added by simply inserting
them into the available slots on the main rack or the expansion rack. Each I/O module
occupies a finite number of memory in the PLC’s memory space. For instance, a 16-point
discrete input module occupies a 2-byte space in the PLC’s memory space. A four-channel
12-bit analog to digital (ADC) converter occupies 4× 12 = 48 bit = 6 bytes of memory
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- I/O interface

- Scans I/O

- scanner module
  maps I/O to PC scanner
- no local control logic

I/O modules

PS

- Control software

Master
scanner
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FIGURE 9.2: Typically, a PC is used as an offline program development, as well as an online

debugging and monitoring tool (i.e., using the RS-232 serial interface). The PLC is used as the

“brains” of the control system by implementing the control logic, and provides the means for

I/O interface. In another mode (using master and slave scanner modules), the PC is involved in

the real-time control logic implementation. The PLC merely acts as the I/O interface device, and

maps the I/O to the communication bus between the PLC and PC using a scanner (slave) card.
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space. In other words, once the location of each module in the PLC rack is known, the I/O
of all modules are memory mapped to the PLC’s memory space using the configuration
functions of the PLC program development environment. Then, those memory locations
(input/output data) are used in the PLC’s application program logic.

Although there have been claims for the past 30 years that PLCs would be a thing
of the past and that personal computer (PC) based control would take over the industrial
control world, PLCs continue to be strong in the market. Let us compare PLC based control
with the PC based control.

1. PLCs have modular design. If a different type of I/O signal needs to be processed,
all we need to do is to add a different I/O interface module and modify the software.
Furthermore, the I/O modules include the terminals necessary for field wiring. In PC
based systems, for different I/Os, we need to insert a different PC card and provide
a separate terminal block for wiring which connects to the PC card through a ribbon
cable. This tends to be a messy and non-standard wiring process.

2. PLCs have a rugged design suitable for harsh industrial environments against high
temperature variations, dust, and vibrations.

3. Programming of PLCs is mostly done using ladder logic diagrams which are under-
stood by millions of technicians in the field. This proves to be one of the biggest
advantages of PLCs. Even though ladder logic diagram (LLD) programming does
not have the programming environment capabilities provided for PCs, it is well
established, proven to work well, and a large base of technical personnel can work
with it.

The real trend observed in industry is not competition between PLCs and PCs in
industrial control, but rather the complementary use of them. PCs are used in conjunction
with PLCs at two different levels,

1. PCs are used as networking and user interface devices (Figure 9.2).

2. PCs implement the control logic, replacing the role of the CPU on the PLC while the
PLC provides the I/O interface (Figure 9.2). In this configuration, PLC has the I/O
modules and a scanner module which updates the I/O between the PLC rack and the
PC. The PC implements the control logic which may be developed using any of the
programming tools under the PC platform, that is using C, Basic, or PLC specific
graphical program development tools. The key issue is to guarantee hard real-time
performance in the PC using a real-time operating system. As real-time operating
systems become more robust and low cost over time, this model of PC and PLC
combination may be widely accepted in industry.

9.2 HARDWARE COMPONENTS OF PLCs

9.2.1 PLC CPU and I/O Capabilities

Perhaps the biggest reason for the success of PLCs in the industrial control market is
the fact that the hardware of almost all PLCs have very similar designs. The hardware
design is based on a backplane which carries the power and communication bus. A snap-on
input/output (I/O) card into any one of the slots makes the necessary electrical contacts for
power as well as interface (Figures 9.1, 9.2). Each PLC needs:

1. rack(s) with slots: a backplane for the communication bus,

2. a power supply module,
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3. and a CPU module (or a scanner card if PLC is used in conjunction with a master
controller, i.e., PC),

4. as many I/O modules as needed by specific application.

The slots form the electrical interface between the I/O modules and the bus of the PLC
in the backplane. The bus consists of four major group of lines: power lines, address lines,
data lines, and control lines. The end-user does not need to be concerned with the details
of the bus since the interface between the CPU and all of the I/O modules supported for a
given PLC is already worked out and cannot be modified by the user. The real-time kernel
on the PLC and the user program are stored in the memory. The memory can be ROM (read-
only memory), EPROM (electrically programmable ROM), EEPROM (erasable electrically
programmable ROM), or battery backed RAM (random access memory) type.

Each I/O point on each unit must have a unique address on the PLC bus. The I/O
address is generally determined based on the

� rack number,
� slot number, and
� channel number.

Typically, there can be up to three to five racks supported by one PLC. In each rack,
there are 4 to 15 slots. In each slot, there can be a single I/O module. For instance, the address
of a 16-point discrete input module on the main rack, slot number 3, would be determined by
the address code Rack-Slot-IO Channel: 1-3-n, where n is 1 to 16 representing the 16 I/O
channels on the module. Similarly, the I/O modules that have analog signal interfaces
map their I/O values into the memory of the PLCs. Notice that a PLC with 3 racks,
12 slots in each rack, and supporting 16 discrete I/O in each slot, can support a total of
3 × 12 × 16 = 576 discrete I/Os. Similarly, the same PLC can also support the following
combination of discete and analog I/Os:

1. 8 channels of 16-bit A/D converter (8× 16 = 128 bits),

2. 8 channels of 16-bit D/A converter (8× 16 = 128 bits),

3. 320 discrete I/O channels (320 bits).

It was noted above that one of the main advantages of PLCs is the fact that a great
variety of I/O interface modules are available in standard form. A hardware interface of
a simple discrete I/O module has the same difficulty as the interface of a special purpose
I/O module. They all snap-on to one of the slots on the PLC rack. This standard hardware
interface proves to be a very important asset. The I/O data associated with the I/O modules
are memory mapped to the CPU’s address space. Below is a list of I/O interface modules
available for most PLCs.

1. Discete input modules for DC and AC type signals.

2. Discrete output modules for DC and AC type signals. Each discrete I/O module
typically contains 8, 16, or 32 I/O points.

3. Analog input modules (ADC with various voltage OR current range and resolution,
i.e., 0–5 VDC, 0–10 VDC, −10 to 10 VDC, 4–20 mA, 0–10 mA ranges, 10-bit,
12-bit, 16-bit resolutions).

4. Analog output modules (DAC with various voltages and current range and resolution).

5. Timer and counter modules (hardware timers, pulse and event counters). A hardware
timer module can be programmed to generate an input to the PLC as well as to
generate an output to a device when a time period is passed. The beginning (trigger)
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of the timer may be program control, free running, or externally triggered by an input.
Counter modules are used to count pulses. For instance, ON/OFF state transitions
from a proximity sensor which counts the number of teeth on a gear can be used
by the counter module to count the number of teeth on a gear for quality control
purposes. The pulses from an optical encoder can be input to the counter module to
measure displacement.

6. High speed counter modules are used for counting high frequency pulses and detect
very short periods of trigger signals (i.e., a high resolution encoder signal input).
For instance, this module can be used to measure position in high speed and high
resolution encoders.

7. Programmable cam switch module is used to emulate the function of a mechan-
ical cam switch set. A mechanical cam switch set turns ON/OFF a number of
outputs as a function of a master cam shaft position. In the mechanical system,
the state of outputs is determined by the shape of each cam switch shape that is
machined into the cam. In a programmable cam switch module, these functions are
programmable.

8. Thermocouple sensor interface modules (any many other special sensor interface
modules).

9. PID controller modules (i.e., closed loop temperature controller, closed loop pressure
regulator, closed loop liquid level regulator).

10. Motion control modules (servo motor, stepper motor, electrohydraulic valve control
modules) used for the closed servo motion control. The actuators may be electric
motor and drive or hydraulic valve and amplifiers. The motion control module sends
out either the desired number of position pulses as the position command to the drive
or sends a voltage command proportional to the desired speed or torque depending
upon the mode of the amplifier.

11. Most PLCs support a standard module called a ASCII/BASIC module. This module
provides a RS-232 serial interface as well as a separate processor that supports BASIC
programming language. The BASIC program is stored in the module on a battery
backed RAM. A PLC with an ASCII/BASIC module basically is a dual processor
controller. The ladder logic running in the main CPU and the BASIC program running
in the ASCII/BASIC module communicate with each other over a predefined memory
for data exchange. Complicated mathematical calculations, that may be difficult to
code in ladder logic, can be implemented in the ASCII/BASIC module.

12. Master and slave scanner modules when the PLC is used as an I/O interface station
and the control logic is implemented by a master controller (another PLC or PC).

13. Network communication modules (DeviceNet, CAN, ProfiBus, Ethernet, RS-232-
Cm etc.). PLCs are increasingly part of a larger networked control system. Many
so-called fieldbus communication protocols are available.

14. Other special function modules such as fuzzy logic modules. New special function
modules are being added to PLCs.

Network communication protocols suitable for real-time control systems, such as
DeviceNet, have been changing the hardware configuration of PLC controlled systems in
recent years (Figure 9.3). More and more I/O devices (individual sensors, motor starters,
closed loop controllers) are being made available with a network interface (i.e., a proximity
sensor or a motor starter with DeviceNet interface). Therefore, the I/O devices do not need
to be wired into the modules on the PLC’s I/O rack. Instead, each I/O device connects to a
common communication bus using a T-type connector. This reduces the amount of wiring
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needed between the I/O device and the PLC. The network communication I/O module
(i.e., DeviceNet module) handles the data read/write operation between the bus and the
memory of the PLC.

The application programming does not change either way, other than the fact that
there is a real-time network communication driver running in the background, working with
the communication module, which is transparent to the application program developer, and
handles the data between the communication bus and PLC memory. The PLC application
program accesses the memory for I/O data as if the I/O devices were directly wired to the
I/O modules.

Networked PLC control reduces the wiring costs, distributes the intelligence to local
devices, and makes the system I/O expansion easier (Figure 9.3). When a new I/O device is
added, the electrical wires of the I/O device do not need to be run all the way to the physical
location of the PLC rack, but rather, the communication wires of the I/O device simply
need to be connected to the long communication bus cable using a T-type connector.

9.2.2 Opto-isolated Discrete Input and Output Modules

The most common I/O types used in PLC applications are discrete (two state: ON/OFF)
type inputs and outputs. The discrete input can be a conducting or non-conducting state
(ON/OFF) of a DC or AC circuit component. Similarly, the output can be turning ON or
OFF of a DC or AC circuit component. The voltage levels of the input and output circuits
are in the order of 12 V to 120 V either DC or AC. In order to electrically isolate the PLC
hardware from the high voltage levels of the I/O devices, the interface between the PLC
bus and the I/O devices are provided through optically coupled switching devices, namely
LEDs, phototransistors, and phototriacs.

Figure 9.4 shows the four types of opto-isolated I/O modules that are used to interface
two-state input/output (DC or AC circuit) devices to a PLC. Notice that in all cases, the
signal coupling between the PLC side and I/O side is through the light (or optical coupling).
When the conducting/non-conducting state of an AC input circuit is interfaced, a rectifier
circuit is built into the opto I/O module to convert it to DC current and drive an LED.
The resistor in series limits the amount of current flow through the LED. The light emitted
by the LED turns ON a phototransistor on the PLC side. If the input circuit is already a
DC type, then the rectifier would not be necessary. Similarly, the DC and AC outputs are
turned ON/OFF by the PLC by driving an LED (photo-transistor) on the PLC side. For DC
outputs, the LED drives a phototransistor. For AC outputs, the LED drives a phototriac.
Although not shown in the figures, it is important to point out that the solid-state opto-I/O
interface modules also incorporate other functions useful in practical control systems, such
as a switch debouncing circuit or inductive voltage surge protections.

PLC I/O modules provide the same type of I/O interface in groups of 8, 16, or
32 points, that is 8-point DC input module, 16-point AC output module. Figure 9.5 shows
the typical field wiring of the I/O modules. The DC I/O modules can be in current sinking
or current sourcing mode. In current sinking mode, the DC I/O module “sinks” the current
received from the I/O device to the ground. The I/O device is connected between the DC(+)
and the I/O module terminal. In current sourcing mode, the DC I/O module “sources” the
current to the I/O device. The I/O device is connected between the I/O module and the
ground (or DC−) terminal.

9.2.3 Relays, Contactors, Starters

Relays, contactors, and starters are all electromechanical switches. Through an electromag-
netic actuation principle, mechanical motion is obtained. The mechanical motion is used
to open/close a switch which is used to control the continuity of an electric circuit.



702 MECHATRONICS

DC

input

AC

input

AC input module

DC input module

AC output module

DC output module

AC

output

DC

output

FIGURE 9.4: Opto-isolated input and output interface modules for two-state (ON/OFF,

conducting/non-conducting) devices: DC input, AC input, DC output, AC output types.

Relays electromechanical switches. It is the most commonly used electrical switch
in control circuits. It has two states, ON and OFF (Figure 9.6). A relay is used to connect
an electrical line with contacts. It is the electrical equivalent of a manually operated switch
in electrical circuits. It has two main parts:

1. contacts for connecting the main electrical circuit (to turn ON and OFF the main
line),

2. coil to operate the plunger mechanism that moves the contacts.

The basic operating principle follows that of a solenoid winding. A conductor winding
forms the coil. The control voltage is applied to the coil and hence develops a current
proportional to the control voltage and resistance of the winding. The coil then generates an
electromagnetic field. The plunger is pulled as a result of the electromagnetic field. When
the coil is deenergized, the electromagnetic force goes to zero and the plunger moves back
under the effect of a spring. In a relay, the plunger motion is connected to a mechanism so
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FIGURE 9.5: Wiring of PLC I/O modules to the field devices: (a) AC input module, (b) AC
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FIGURE 9.6: Operating principles of relay, contactors, starters.
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that it makes or breaks the contact connections. The plunger may be connected to activate
multiple output contacts in the main line.

The performance ratings of a relay are as follows:

1. Contact ratings: maximum voltage and current the contacts can carry, (Vmax, imax,
i.e., 24 V to 600 V, 50 A) in the main circuit, the number of normally open (NO) and
normally closed (NC) contacts operated by the single coil relay (i.e., 6 NO, 6 NC).

2. Coil ratings: nominal voltage (i.e., 6 V to 120 V range) to operate the control circuit
coil.

A basic relay design requires the coil to be energized to keep its contacts engaged.
Variations in the designs include the so-called latching relay. In this design, the relay uses
two coils: one for latching and one for unlatching. The relay is energized to start the contacts
and move the plunger. Then, a mechanical latch mechanism locks it in place and keeps the
contacts connected. Then, the coil does not need to be kept energized in order to keep the
contacts connected. In order to disconnect the contacts and release the mechanical latching
mechanism, the other coil is energized.

Contactors operate on the same principle and have a similar design to the relays.
The main difference being in their mechanical components so that the main line voltage
and current capacity that is conducted by the contacts can be much larger than the contact
ratings of a relay (Figure 9.6).

Starters are similarly designed to the relay principle except that they may have
overcurrent protection as well as “smooth start” related current shaping and limiting mech-
anisms built in to the design. The overload protection is built in based on the current–
temperature relationship in the contact material. When the current is too high for an
extended period of time, a bimetallic material breaks the contact, just as is the case in a
circuit breaker. Starters are used in motor control applications.

9.2.4 Counters and Timers

When a control logic requires that an action be taken after a certain delay, we use counters
or timers. If the delay is based on counting something, a counter is used. If the delay is
based on time, a timer is used. It should be emphasized that the counter and timer functions
can be implemented either in hardware as PLC I/O modules (counter and timer modules)
or in software by using general purpose I/O. Dedicated counter and timer hardware offers
higher frequency counting and higher resolution timing functions than can be accomplished
in software implementation. Hardware counters and timers may also be used as part of a
hard-wired control circuit without any PLC software involvement.

Both counter and timer hardware modules have three major circuits: the power circuit,
control circuit, and output circuit. The power circuit is needed to power the counter and
timer modules. The control circuit is the signal used to trigger the module. For a counter,
it is the signal transition from one state to another state (OFF to ON or ON to OFF) that is
to be counted. For a timer, it is the signal that triggers the start of the process of timing a
period. The logic about when to keep timing may vary. Once it is triggered, a timer can run
until the present time value, or the timing operation continues only while the control signal
is ON and is suspended when it is OFF. Both counter and timer have preset values. When
the counter counts up to the preset value, the output circuit is turned ON. When the timer
measures that the preset value of time has passed since the control signal triggered it, the
output circuit is turned ON. The output circuit of a timer and counter is similar to the output
circuit of a relay. An electrical contact is made (ON) or broken (OFF) as output action.
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9.3 PROGRAMMING OF PLCs

Every PLC includes a program development software tool which allows the communication
between a PC and the PLC, development of the PLC application software, debugging,
downloads, and tests it (Figure 9.2). A notebook PC is used only as development tool
in this case, not as part of the real-time control. The development tools for different PLC
manufacturers currently are not interchangable. The application development engineer must
use the development tools supplied by the specific PLC vendor.

Assuming that we have the program development tools (i.e., a notebook PC and a
PLC specific ladder logic program development environment), the software that runs on
the PLCs to control a specific industrial application is the issue discussed here.

There are three main types of programming languages available for PLCs:

1. Ladder logic diagrams (LLD) which emulate the same structure of the hard-wired
relay logic diagrams. These have the widest use since most field technicians are
familiar with hardware relay logic diagrams and can understand LLD programs.

2. Boolean language is a statement list and is similar to BASIC programming language.

3. Flowchart language uses graphical blocks. It is more intuitive than the other two
languages. Although the use of flowchart languages has started to increase in recent
years, LLD is still the dominant language.

The flowchart type languages may eventually gain more widespread acceptance. Today,
every PLC has its own LLD language and they are not compatible across different PLCs. A
flowchart language designed based on standards can generate different run-time programs
for different PLCs simply by using a PLC specific compiler. The LLD programming
environment for all PLCs looks very similar from the application program development
point of view. In the rest of this chapter, only the LLD programs will be discussed, not the
specific development environment for a particular PLC.

There is a fundamental difference between the way a PLC executes its program and
the way a PC does. The program flow in a PC is controlled by the flow control statements
such as do-while, for loops, if-else blocks, function calls, jump or go-to statements. In high
level programming languages, it is possible that the program can be limited to a local loop.
Whereas a PLC program runs in the so-called scan mode (Figure 9.7 ). The whole program

Update inputs

Execute

ladder logic

program

..

.

.

Update outputs

Repeat every

scan period

FIGURE 9.7: Ladder logic program execution model in a

PLC. The PLC executes its program in scan mode. All of the

code is checked for execution every scan period.
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logic, from the beginning to the end, is scanned every scan period of the PLC. Depending on
the computational power of a PLC, typical scan times are in the order of a few milliseconds
or less per thousand lines of ladder logic code. The benchmark speed of scan time for
per thousand ladder logic code is generally limited to basic logic functions such as AND,
OR, NOT, flip-flop. Special functions, and trigonometric functions, PID control algorithms
implemented in the ladder logic, take a longer computation time. As a result, the scan time
will be slower for ladder logic programs that include many special functions. Therefore,
the scan time estimates given for a PLC by its manufacturer should be interpreted with
this in mind. The actual scan time of a ladder program for an application can be exactly
measured by the software development tools of the PLC. The software development tools
installed and run on a PC for offline program development and debugging purposes also
include utilities that measure the scan time while the program is executing on the PLC. In
the ladder logic programming, sections of the program can be conditional like the if-else
blocks, and subroutines may be called or skipped based on the coded conditions. All of the
PLC ladder logic program is scanned for execution every scan time. It is useful to imagine
the PLC ladder logic as a circular instruction sequence where the CPU goes through the
circle once every scan time period (Figure 9.7).

From a programming point of view, once the racks and slots of a PLC are populated
with I/O interface modules, all of the I/O is memory mapped. There is a one-to-one
memory map between the I/O points on the PLC hardware and the CPU memory addresses
(Figure 9.8). The logic is implemented between the I/O (memory locations) using the logic
functions provided by the ladder logic program. The ladder logic programming focuses on

HTR

0001

1  OFF

2  ON

3

4

1

2

3

4

Return

CPU and memory

User memory

1001 1002 0001

0001

Input
status

2

3

4

1

2

3

4

Return

Output
status Terminals

I/O processor &
I/O status memory

1002

1001

Stop110 V AC

Input
module: 110 VAC

Output
module: 24 VDC

I/O bus

CPU module

Start

Terminals

1  OFF
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the industrial control and logic, not high level object oriented data structures. Therefore,
typical data structures supported include:

1. bits for discrete I/O,

2. bytes and words for analog I/O and charater data.

There are standard key words reserved for discrete input, output, timer, and counter funtions
in the PLC. For instance, the DIN 19239 standard specifies the following key words for
PLC ladder logic programming concerning I/O and memory addresses:

1. I: for discrete input lines, for instance I0 through I1023.

2. O: for discrete output lines, for instance O0 through O1023.

3. T: for timer functions, for instance T0 through T15.

4. C: for counter functions, for instance C0 through C31.

5. F: for “Flag” to store and recall a bit of data, that is flip-flop operations.

Once the actual I/O terminal points on the I/O modules in the PLC slots are decided, then
there is a memory map established between the I/O variables in the memory and the actual
I/O terminal points of the I/O modules, using the configuration software tools of the PLC
program development enviroment. Furthermore, most PLC program development tools
support symbolic names. In other words, if the discrete input lines 0 and 1 are connected to
two input switches called “START” and “STOP,” they can be symbolically defined to map
to I0 and I1. Then, in the program all references to these switches can be made using the
symbolic variable names “START” and “STOP” which is more descriptive and makes the
program easier to understand.

The logic operators and statements supported by most PLC ladder logic programs
include

1. logic functions: AND, OR, NOT,

2. shift functions: left shift, right shift,

3. math functions : add, substract, multiply, divide, sin, cos,

4. software implemented timer and counter functions,

5. software implemented flip-flops,

6. conditional blocks (similar to if-else),

7. loops (do-while, while, for loops). Since loops can tie up a logic and a PLC must
scan all of the logic, loops in PLC ladder logic are treated differently then the loops
in C-like high level programming languages,

8. functions (subroutines),

9. interrupt service routines to be executed on interrupt inputs.

The AND and OR logic functions between two state variables are implemented in ladder
logic diagrams by series and parallel connections, respectively. The NOT function is imple-
mented by a cross over the contact signal. Other functions are generally supported by a
rectangular box with appropriate input and output lines.

Some of the syntax rules common to all ladder language programs are as follows:

1. A ladder logic program is a sequence of rungs. Each rung must begin with an input
or local data.

2. Output channels can appear at the end of a rung only once.
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3. The discrete input channel state is represented by two vertical lines like a contact.

4. The discrete output channel state is represented as a circular symbol.

5. Timers, counters, and other function blocks are represented by a rectangular shape
with appropriate input source and output lines in the rung.

6. Logic AND is implemented by putting two contacts in series, and logic OR is
implemented by putting them in parallel (Figure 9.8).

One of the standard logics in a ladder logic diagram (LLD) is a seal-in circuit. The
idea is to turn ON an output channel (relay output) and keep it ON based on a momentary
input (START switch). Then keep it ON until another momentary input (STOP Switch) is
pressed. This is shown in Figure 9.8.

The following software concepts are commonly used in PLC programs: shift register,
sequencer, and drums. Shift register and sequencer are both registers. The individual bit
locations in the register are used to indicate the location of a part in a multi station assembly
line or the number of the operation currently performed from a sequence. A bit is associated
with the current product or operation. As the bit is shifted in the register, its location on
the assembly sequence is advanced. Similarly, drum is the software analog of a mechanical
cam. There is a master shaft and multiple cams on it. Each cam actuates (turns ON and
OFF) an output line as a function of the input cam shaft position. This functionality is
duplicated in software with the electronic drum concept. The benefit of the software drum
compared to the mechanical drum is that it is programmable.

9.3.1 Hard-wired Seal-in Circuit

In original hard-wired relay circuits, all of the control logic is physically wired into the elec-
trical connections of input, output, and intermediate control devices. When programmable
logic controllers replaced the hardwired relay logic, the logic between the inputs/outputs is
defined in software (programmed) in the PLC. Very little of the control logic is hard-wired.
Still, some of the safety related functions are hard-wired in case the software fails. Most
emergency shut-down and cycle start functions are hard-wired. One of the most frequently
hard-wired logics is the seal-in circuit used between START and STOP push buttons. The
same diagram is used as the one shown in Figure 9.9. The only difference is that the logic

Start Stop

1 2

3

4

5 6

(a)

(b)

CR
1 2

3 4

5 6

CR

FIGURE 9.9: Hardwired seal-in circuit in

a ladder logic diagram. (a) Ladder logic

diagram of connections, (b) component

connections between START button,

STOP button, and the RELAY.
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is hard-wired instead of programmed in the PLC. A hard-wired seal-in circuit includes the
following components:

1. a START button which is a momentary contact switch,

2. a STOP button,

3. a relay or starter coil from the output device (i.e., coil of a starter used to start a
motor)

When the START button makes a momentary contact, it energizes the coil of the relay
(or starter). Then the contacts from that coil maintain the flow of current since it is wired
in parallel with the START button even when the START button no longer makes contact
since it is a momentary button. The power flow is cutoff (stopped) any time the STOP
button is pressed. This is called the three-wire control. If for some reason the power is lost
to the circuit, the START button must be momentarily pressed again in order to start the
motor again. This is good for safety, but requires human intervention if the power flow in
the circuit is interrupted. In other words, the re-start of the cycle is not automatic.

9.4 PLC CONTROL SYSTEM APPLICATIONS

9.4.1 Closed Loop Temperature Control System

Figure 9.10 shows a closed loop temperature control system in an oven using a PLC. The
PLC based control system uses a temperature sensor (i.e., a thermocouple interfaced to the
PLC using a thermocouple sensor interface module), a proportional valve which regulates
the fuel into the furnace proportional to the displacement of the valve spool, a fuel supply
line (i.e., gas line from utility supply), and a display to inform the operator of the process
variables in real-time (i.e., the desired temperature setting, actual temperature, fuel rate).
The PLC controls the valve with an analog output module. If the current capacity of the
analog drive is not large enough to drive the valve, then there would be a current amplifier
between the analog output module and the valve. The closed loop control algorithm is

Temperature sensor

Display/HMI

Furnace

Fuel 

Valve

PLC

Control

signal

FIGURE 9.10: Example temperature control

system with a PLC using a PID module.
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implemented in the ladder logic diagram using a PID algorithm function block where the
parameters of the algorithm are to be tuned by the application engineer. The PID control
algorithm determines the command signal to the valve (how much it should open) based on
the desired temperature (which may be programmed by the operator using the HMI device
interface) and the actual temperature measurement from the temperature sensor. The PID
algorithm can be implemented either in the ladder logic diagram in software or the PID
implementation can be handled by a dedicated PID I/O module. A PID I/O module would
be placed in the rack of the PLC, and has one analog input connected to the temperature
sensor, and one analog output connected to the valve, and the desired temperature is a data
that is defined by the ladder logic using the HMI and passed to the PID module via the
backplane communication bus.

9.4.2 Conveyor Speed Control System

Conveyor speed control is a very common automation problem. Figure 9.11 shows a motion
control application using incremental encoder input and pulse output modules in the PLC
rack. The PLC controls the speed (and position if desired) of two conveyors. The PLC
program measures the speed of two conveyors using incremental encoders and commands
the drives which control the power to each motor. Typical applications include:

1. Independent speed control of two conveyors. The desired speed of each conveyor
can be set by the operator through a user interface device, and the PLC controls both
conveyor speeds independent of each other.

2. Master-slave speed control: the speed of one of the conveyors may be set as the
master speed and the other conveyor commanded speed is determined in proportion

Pulse I/O board

Pulse input 1
Pulse input 2

Incremental encoder Incremental encoder

Pulse output 2 Pulse output 1

Motor drive Motor drive

Motor Motor

FIGURE 9.11: Example of two conveyor speed control using PLC and pulse input and pulse

output modules.
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to the first one. The second conveyor is controlled in slave mode. The speed of the
first conveyor may be programmed or determined based on a sensor (i.e., speed of
another station in the line).

3. Master-slave speed control with position phase adjustment: in addition to making
one conveyor follow the speed of the other conveyor (master-slave relationship), the
position of one slave conveyor relative to the master conveyor can be adjusted based
on position sensor information. This is very common in packaging applications where
material is transferred from one conveyor to another. In steady-state, two conveyors
run in a certain gear ratio (i.e., 1:1 master-slave relationship). Due to the variation
in material location on each conveyor (product on one and container on the other),
in order to place the product on the container properly, the position phasing must be
adjusted to correct for the placement variations.

9.4.3 Closed Loop Servo Position Control System

Servo positioning using a lead-screw (or ball-screw) drive is a very common high precision
motion control application (Figure 9.12). The ball-screw positioning system is used in
all CNC machine tools, XYZ positioning tables, gantry-type robots, printed circuit board

Position control
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System

Start Stop

CPU
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Home sensor
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switch

Control panel

Outputs

Electric power source

FIGURE 9.12: Example servo positioning control with a PLC and servo control module.
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(PCB) assembly machines, and others. This example shows the components of a PLC based
system to control the position of a linear stage using an electric motor (i.e., stepper motor,
DC brushless motor, DC brush motor) and a rotary incremental encoder. Other real-world
components are also shown, such as the limit sensors to indicate the mechanical limits of
motion, a proximity sensor to establish a reference position (home position) after power-up,
since an incremental encoder can not measure absolute positions, and operator command
buttons (START and STOP). The components of such a closed loop translational position
control system include:

1. Mechanical motion mechanism: lead-screw or ball-screw and moving table.

2. DC servo motor with integrally built incremental encoder on the same mechanical
assembly.

3. DC motor drive: amplifier and DC power supply package.

4. PLC with a servo control module, where the encoder signal is feedback to the module
and the output signal from the module is the command signal to the amplifier.

5. “Home” reference sensor (ON/OFF type) and CW and CCW limit switches (ON/OFF
type) on the translational stage to define the motion limits and starting reference as
an absolute position.

6. START and STOP bush buttons for operator interface.

The sequence of operations, from start up to automated operation is then coded in the
ladder logic diagram. High performance motion profiles are defined in the servo control
module.

9.5 PLC APPLICATION EXAMPLE: CONVEYOR AND
FURNACE CONTROL

Consider the conveyor and heat furnace shown in Figure 9.13. The conveyor moves parts into
a heating chamber. The part is kept inside the temperature controlled furnace for a certain
amount of time (programmable) and at a certain temperature range (also programmable).
Then the conveyor moves to bring in the next part. In the process, the PLC controls the
temperature of the furnace and the speed of the conveyor. In addition, it controls the opening
and closing of the heater doors as well as position of the part inside the furnace using a
presence switch.

The system inputs are:

1. START switch (ON/OFF).

2. STOP switch (ON/OFF).

3. Part presence sensor (ON/OFF).

4. Door open switch (ON/OFF).

5. Temperature range sensor (analog).

The outputs are:

1. Analog output to heater element proportional amplifier.

2. ON/OFF output to motor starter.

3. ON/OFF output to door actuator relay control.
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FIGURE 9.13: PLC control (logic and closed loop control) of a heater and a conveyor motor.

The desired control logic is expressed in pseudo-code as follows:

1. The operation is started when the START button is pressed. When the STOP button
is pressed the cycle is stopped.

2. PLC opens the doors of the furnace and waits until the doors open switch is ON.

3. Then the motor is started. The motor is stopped when the part presence sensor is ON.

4. The furnace doors are closed.

5. The PID loop which controls the furnace temperature is enabled. The PID controls the
heater output based on the preprogrammed desired temperature range and temperature
sensor feedback. The PID control output has a deadband. In other words, when
the temperature is within a desired range, the heater is turned OFF. These aspects of
the PID control loop are specified as part of the PID block setup.

6. After the furnace temperature is within the desired range, a timer is started and the
temperature control continues for a specified amount of time (i.e., 2 minutes).

7. When the heating time expires, the heater is turned OFF (PID loop is disabled).

8. Repeat starting with Step 2.

Figure 9.14 shows the ladder logic diagram program that implements the above
described control logic. Notice that for each I/O, there is a memory location assigned (see
the numbers under the input and output devices as illustration on left and right side of the
diagram). Then the basic cycle logic is implemented in the ladder diagram using the input–
output memory references, timer, and PID functions. Notice that in order to implement the
desired logic, internal memory (local data) is used in addition to the memory mapped to the
I/O channels. The desired temperature range and heating time data should be adjustable by
an appropriate operator interface device, such as a PC communicating with the PLC over a
serial communication bus.
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FIGURE 9.14: Ladder logic diagram for the heater–conveyor control using a PLC.

9.6 PROBLEMS

1. Consider the temperature control system shown in Figure 9.10. Specify the necessary PLC
hardware (PLC plus the required I/O modules). Design a ladder logic diagram so that the PLC
controls the temperature using the temperature sensor as a feedback signal and the proportional fuel
valve as the controlled actuator. The logic should include input switches to start and stop the control
system as well as display status information to the operator.

2. Consider the speed control system shown in Figure 9.11. The objective is to run the conveyor 1
at a programmable speed where that value is entered by the operator via an operator interface device.
The conveyor 2 is suppose to run as if it is mechanically geared to conveyor 1 and the gear ratio is also
programmable by the operator. Specify the necessary PLC hardware and design the LLD program.

3. Consider the position control system shown in Figure 9.12. Our goal is that when the operator
pushes the “Start” button, the automatic cycle of the positioning table starts. When the “Stop” button
is pushed, the table is supposed to stop to a predefined home position. When the start button is pushed,
the motor is to move in a direction to seek the “home” sensor. If it reaches one of the limit switches
before reaching the home sensor, then it must reverse direction, go past the home sensor, stop, and
come back to turn ON the home sensor from a predefined direction. Then stop and establish a “home”
reference. After that, the motor is suppose to make incremental forward and reverse motions, that is
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five in a row, 1.0 in displacement motions separated by 100 ms delay between the completion and
start of each motion. Specify the necessary PLC hardware and design the program logic.

4. Consider the circuit shown in Figure 9.9. What happens if the seal-in circuit at points 3 and 4 was
not connected? If the seal-in circuit is not connected, and we change the “Start” switch to a latching
switch (not momentary), how is the operation of the circuit different than the seal-in circuit operation
(consider that if we started the circuit and stopped it with the “Stop” switch, how would you re-start
the system)?





CHAPTER 10
PROGRAMMABLE MOTION
CONTROL SYSTEMS

10.1 INTRODUCTION

Programmable motion control systems (PMCS) are used in all mechanical systems that
involve computer controlled motion. A robotic manipulator, an assembly machine, a CNC
machine, XYZ table, and construction equipment tool control systems are all examples of
applications of PMCS. As the name indicates, PMCS are motion mechanisms where the
motion is controlled by a digital computer, and hence are programmable. PMCS are good
examples of mechatronic systems in that they involve a mechanical motion system, various
actuators and sensors, and computer control. Figure 10.1 shows the typical components
of an electric motor based programmable motion system, that is a motor with position
sensor, amplifier and power supply (drive), and controller. The figure shows different types
of rotary motors and drives (brushless and brush-type DC, AC induction) as well as linear
motors.

In the past, coordinated motion control in automated machines was achieved by
mechanically connecting various machine components with linkages, line shafts, and gears.
Once the master line shaft is driven by a constant speed motor or engine, the rest of the
motion axes derive their motion from it based on the mechanical linkage relation. This was
what is called “hard automation.” The availability of low cost microprocessors and digital
signal processors (DSP) as well as their high reliability has made it possible to control
motion and coordinate various axes under computer control. The coordination between
axes is not fixed by mechanical linkages, but coded in software. Hence, the coordination
logic can be changed on the fly in software. The same machine can be used to perform with
different coordination relations to produce different parts by simply changing software. In
mechanically coordinated machines this may require a change of gears, linkages which
may require very long setup times. Some of the complicated coordination functions may
not even be feasible to achieve by mechanical coordination while they can be easily coded
in software. The “programmable” aspect of motion control comes from the fact that the
control logic is programmed. Therefore, it is a “soft automation” or “flexible automation.”
The single most significant advantage of “soft automation” over “hard automation” is the
significantly reduced setup times for product changeovers. Figure 10.2 shows an example
of a printing machine with both old mechanical automation and programmable automation
versions. In the mechanical version, each station is coordinated with respect to the master
shaft through mechanical gears. When a different product is required, the gear reducer
ratios are mechanically changed. Therefore, for different products, different gear reducers
have to be kept in the inventory. In addition, physically changing the gear reducers is labor
intensive and time consuming. In the electronically coordinated version of the machine, the

Mechatronics with Experiments, Second Edition. Sabri Cetinkunt.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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FIGURE 10.1: Components of an electric servo control system: motors (rotary and

translational) with built-in position sensors, drives (DC power supply and amplifier), and

controllers. Source: Baldor.

gear ratios between stations are defined in the application software. There are no physical
gears between axes. The same functionality is achieved by software control of the motion
of each axis. So, when a different product requires different gear ratios between axes, the
only change needed is to select a different software parameter set from the database. The
change-over time for different products is almost insignificant.

In a factory automation application, multiple PLCs and programmable motion con-
trollers may be used to control the whole process. PLCs handle the general purpose I/O
and act as the higher level supervisory controller relative to the lower level local controllers
(Figure 9.4). Programmable motion controllers handle the high performance coordinated
motion control aspects of individual stations and communicate to the PLCs. In small
automation applications, a stand alone programmable motion controller may have enough
I/O capability such that the machine control can be handled by it without the use of a PLC
(Figure 10.3).

Every programmable motion control system has the following components
(Figure 10.4):

1. controller,

2. actuators (motor, amplifier, power supply),

3. sensors (encoders, tachometers, tension sensors),

4. motion transmission mechanisms (gears, lead-screws),

5. operator interface devices.

Most of the technologies for the components of a PMCS have already been covered in this
text in various chapters. Here we will focus on the system level control software features
specific to automation applications of PMCS.
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Let us focus on the control of the motion of one axis only. The motor, amplifier, and
power supply form the “muscle” of the axis which we call the “actuator.” The controller
handles the following primary tasks:

1. The closed loop motion control (position loop, velocity loop, and even current loop
in some cases): The position and velocity loop control are typically implemented
as a single closed loop control algorithm. The most dominant servo position and
velocity control algorithm is a form of PID control algorithm with various feedforward
compensation terms, and limits on the contribution of each term. Figure 10.4 shows
a servo position and velocity control algorithm used in industry which is clearly a
variation of the standard PID control algorithm.

2. It handles the other input and output signals associated with the machine control
functions (Figures 10.4, 10.5, and 10.6).
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FIGURE 10.5: An example PID control algorithm implemented by a commercially available

motion controller. Notice that practical PID control algorithms for servo motion control include

feedforward terms in addition to the textbook standard PID gains. Other modifications may

include addition of deadband, limits on integral control, activation and deactivation logic for

integral action, integrator anti-windup, friction and backlash compensation logic.
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3. The controller generates the commanded motion to the closed loop (servo loop) based
on the logic of the application software (Figure 10.4).

4. The axis controller also communicates with the operator interface devices and
communication bus to coordinate its operations with the rest of the control system
(Figure 10.4).

In general, the motion of one axis needs to be coordinated to other external machine
events or to the motion of other axes. In order to coordinate motion between multiple axes,
the controllers need to communicate with each other. Figure 10.7 shows different hardware
options to establish the communication between multi axis controllers. In the first case,
there is a stand alone controller for each axis and the coordination data needed between
axes are simple. In this case, the coordination signals between axes can be handled by
digital I/O lines where one axis tells the other one that it is time to move (i.e., “Go” signal,
Figure 10.7a). If there is more detailed data needed for the motion coordination, such as
more than just the “Go” signal for example the actual speed and position of another axis),
each stand alone axis controller must be on a common communication bus to exchange the
necessary information in real-time. Sercos is one of the serial communication standards
adapted specifically for high performance motion coordination applications (Figure 10.7b).
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Finally, if there is a multi axis controller that is interfaced to all of the tightly coordinated
axes, the controller has access to the motion information of all axes (Figure 10.7c).

10.2 DESIGN METHODOLOGY FOR PMC SYSTEMS

The following is a practical methodology which outlines the typical steps involved in
designing a PMC system.

Step 1: The first step is to define the purpose and functionalities of the machine, that is
what it does and how it does it. The operation sequence can be roughly defined
without fine details. The required motion should be decomposed into various
coordinated moves. Depending on the complexity of each motion axis, the proper
actuation system for each axis should be selected. For instance, simple two
position moves can be implemented more cheaply with solenoid actuated two
position air cylinders than a servo motor driven actuation. However, the speed of
air cylinders is much slower than the speed of servo or stepper motor actuated
mechanisms.
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Step 2: Describe the operation of the machine in more detail.
1. Required modes of operation (setup mode, manual mode, auto mode, power-up

sequence things to do).
2. Required operator interface, that is what commands the operator will give,

what status information the operator will need, what data the operator can
change and monitor.

Step 3: Decide on the required hardware components and design integration of
the electromechanical system (mechanical assembly and electrical wiring of
components).
1. Actuators: servo motors, DC motors, hydraulic or pneumatic cylinders.
2. Sensors: encoder feedback, proximity switches, photo-electric switches.
3. Controllers needed: PLCs, servo controller, sensor controller.
4. Operator interface devices.
5. Motion transmission mechanisms: gears, lead-screws, timing belts.

Step 4: Develop application software
1. Top-down tree structure design of software.
2. Psuedo-code.
3. Code in specific programming language.

Step 5: Set up each programmable motion axis
1. Basic hardware check.
2. Power-up test.
3. Establish serial communication.
4. Servo tuning (Kp, Kv, Ki, Kvf , Kaf ,… , values).
5. Default parameter set-ups (default acceleration, deceleration, jog speed, max-

imum motion planning parameters).
6. Simple moves: Jog, Home, Single incremental motion (“Index”) parameters.

Step 6: Debug, test, verify performance.

Step 7: Documentation: document clearly so that later on someone else can debug and/or
modify the machine.

10.3 MOTION CONTROLLER HARDWARE AND SOFTWARE

The heart of a PMC system is the controller. The same controller can be used with dif-
ferent actuators such as electric servo, hydraulic servo, or pneumatic servo power. The
degree of intelligence and sophistication that can be designed into the system is largely
dependent upon the capabilities of the controller. The custom application software in the
controller uses the I/O hardware to define the logic between them and control the oper-
ation of the machine. The I/O hardware can be grouped into the following categories
(Figure 10.3):

1. Axis level I/O
(a) Servo control I/O:

� Command signal to amplifier in the form of±10 VDC range analog DC voltage
or PWM signal.

� Feedback signal from the position sensor (encoder, resolver).
(b) Axis I/O:

� Travel limits: positive and negative direction limits.
� Home sensor input.
� Amplifier fault input.
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� Amplifier enable output.
� High speed position capture input.
� High speed position trigger output (cam function outputs).

2. Machine level I/O:
(a) Digital inputs (ON/OFF sensors: proximity, photo-electric, limit switches,

operator buttons).
(b) Digital outputs (ON/OFF output: relays, solenoids).
(c) Analog inputs (+I OVDC, tension, temperature, force, position etc.).
(d) Analog outputs (+10 VDC to other device amplifiers).

3. Communication:
(a) Serial RS 232/422 communication with HMI.
(b) Network communication between higher level intelligent devices.

The software functionalities control algorithm involves the following in a general
purpose motion controller (Figure 10.6),

1. Communication functions: “receive commands”, interpret them, “send response” and
report “status” functions over a communication port such as USB, RS-232, CAN,
Sercos, TCP/IP.

2. Coordinated motion functions: interpolation algorithms (linear interpolation, circular
interpolation, cubic spline interpolation), point-to-motion profile generation based
on trapezoidal and modified sine function velocity profiles, Jog command implemen-
tation, HOME command implementation, STOP command implementation, INDEX
command implementation.

3. Servo loop control task: UDAC = PID (desired and actual motion).

4. General purpose digital input status monitor, control output decisions on digital output
lines, including the limit switch states,

5. General purpose analog and PWM input and output ports: reading and writing (based
on a customized application specific logic) of general purpose analog/PWM I/O,
which are not used for the immediate servo loop.

6. Interrupt handling: based on a timer (periodic) or based on input signal triggers,
setup interrupt service routines (ISR) which implement logic (“what to do”) when
that interrupt occurs.

7. Error handling is the functions used to handle programming and software related
errors.

8. Diagnostics functions: maximum following error, fault status on the input signals and
handling of faults and errors (i.e., fault signal from the amplifier, travel limits sensors,
torque limits).

10.4 BASIC SINGLE-AXIS MOTIONS

The following motion types are so often encountered in automated machines that they are
given specific industry standard names and are consider basic motion types: home, jog,
stop, index motions. A typical motion is either a triangular or trapezoidal velocity profile
as a function of time. Furthermore, it is also common to modifiy the trapezoidal velocity
profiles with smoothed sine functions in order to reduce the jerk effect of the commanded
motion. It is customary to define the motion profile in terms of velocity as a function of time.
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HOME: standard name used in the programmable motion control industry to describe the
motion sequence used to establish a reference position for the motion axis. The objective
of the homing motion is to bring the axis to a known reference position, called the “home”
position. All other positions are referenced to that position for the axis. For instance,
the machine tool axes must be at a pre-defined position before the beginning of a cycle.
Figure 10.8 shows an example of homing motion. If there is an absolute position sensor
for the motion axis, the homing can be performed from the current known position to the
desired position in one move where the distance is known. Quite often, a motion axis uses
an incremental position sensor. The position of the axis is not known at power-up. The
axis must search for a reference position using a combination of sensors that indicate a
known position. Typically the encoder index channel and/or external ON/OFF sensor are
used to establish the reference position. Depending on the accuracy required in starting
at the known reference position, different homing motion sequences can be performed.
Figure 10.8 shows three different types of common homing motion sequences. Others can
be designed to meet the needs of a particular application. The first home sequence simply
moves at a constant speed until a sensor signal changes state (i.e., turns ON) and then stops
the motion at a defined deceleration rate. The second home sequence does the same thing
as the first home sequence, plus it moves backward by a predefined distance after stopping.
The third home sequence adds another predefined motion distance in the forward direction.
Notice the small wait periods between the stop and incremental moves. The purpose there
is to allow the axis motion to settle to a complete stop. Parameters used to define a HOME
motion are home search speed, acceleration and decceleration rates, incremental move
distances, and time periods to complete them.

JOG: standard name used to move at a certain speed while the operator holds an input
switch on. Using the JOG function, the machine axes can be moved around to any position
under the operator control. This function is needed in machine setup and maintenance. JOG
motion refers to a constant speed motion of an axis until a condition is met to stop it. The
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parameters used to define the jog motion are jog speed, acceleration and decceleration
rates (Figure 10.9).

STOP: the rate at which the motion must be decelerated to a stop (zero speed) is defined
by some PMC configuration parameters. When the STOP command (or equivalent) is
executed, the motion is decelerated to zero speed from its current speed. The STOP motion
may be initiated by an operator command or a sensor trigger or under program control. The
only parameter needed to define the STOP motion is the rate of decceleration (Figure 10.9).

INDEX: a common name used to describe a move which causes a predefined positional
change in the axes. The described move in position can be either in absolute or incremental
units. Depending on the automation requirement, the typical automated cycle modes consist
of various forms of INDEXes synchronized to other axes’ motion and machine I/O status
(Figure 10.10). Parameters used to describe the INDEX motion are the distance, accelera-
tion and decceleration rates, top speed or total index time period. In some motion control
applications an index motion may have multiple speeds. Such moves are called compound
indexes. Compound indexes can be considered a combination of various trapezoidal and
triangular motion profiles. It is also very common to define an index motion with only
distance and total time period for the motion. In this case, the time period is used in three
equal portions: one third for the acceleration period, one third for the constant speed run
period, and one third for the decceleration period.

Example Consider a DC motor connected to a ball-screw (Figure 3.3). Let the ball-
screw lead be 0.2 in∕rev (or equivalently it has pitch of 5 rev∕in). Assume that there are two
limit switches, one at each end of the ball-screw, to indicate the mechanical limits of travel.
In addition, there is a presence sensor at the mid point of the ball-screw’s travel range to
indicate a home position. Define a home motion sequence, a jog motion, a stop motion, and
an incremental motion of 1.0 in distance movements.

A possible home motion may be defined as follows: the speed at which the home
sensor trigger will be sought is 0.5 in∕s. The acceleration rate is defined by the time allowed
for the motor to reach the home speed, which is tacc = 0.5 s = 500 ms. Then when the home
sensor tigger turns ON, the motion will stop at the deceleration rate defined by the stop
motion. Then the axis will wait for one second, move back 0.2 in in 1.0 s, wait for 1.0 s and
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move with a much lower speed of 0.05 in∕s until the home sensor turns ON again. Then,
it stops.

The jog motion can also be defined using two motion parameters: the acceleration
rate (or the time period tacc to reach jog speed) and the jog speed value.

The stop motion definition requires only the decceleration rate and the condition on
which the stop motion is initiated.

Finally, for index motion of 1.0 in increments in either direction, we can define the
acceleration, run, and decceleration times. Notice that

v = a ⋅ tacc (10.1)

Δxacc = 1
2

a ⋅ t2
acc; during constant acceleration motion phase (10.2)

Δxrun = v ⋅ trun; during constant speed motion phase (10.3)

Δxdec = 1
2

d ⋅ t2
dec; during constant deceleration motion phase (10.4)

x = Δxacc + Δxrun + Δxdec (10.5)
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where a, d are acceleration and deceleration values, v is the top speed, tacc, tdec, trun are
the time periods for acceleration, deceleration, and constant speed run phases of the index
motion (Figure 3.13). Let us assume that the index time period is equally divided between
acceleration, constant speed run, and deceleration time periods,

tacc = trun = tdec =
1
3
⋅ tindex (10.6)

Let tindex = 3.0 s. The motor rotation to make the 1.0 in move is 1.0 in ⋅ 5 rev∕in = 5 rev. It
can be shown that the total traveled distance is

x = 1
2
⋅ v ⋅ tacc + v ⋅ trun +

1
2
⋅ v ⋅ tdec (10.7)

=
(1

2
⋅

1
3
+ 1

3
+ 1

2
⋅

1
3

)
⋅ v ⋅ tindex (10.8)

= 2
3
⋅ v ⋅ tindex (10.9)

v = 3
2

x
tindex

(10.10)

= 3
2

1.0 in
3.0 s

(10.11)

= 0.5 in∕s (10.12)

The pseudo code to define these motion sequences may look as follows. The exact
syntax of the motion control software will depend on the particular motion controller.

% Assume we have two functions “MoveAt(...)” and “MoveFor
(....) ” to generate the desired motion.

% If these motion command (trajectory) generator functions
are defined in C/C++, they can be overloaded to accept

% different argument list.
%
%
% Calculate or set parameters

Home_Speed_1 = 2.5 % [rev/sec]
Home_Speed_2 = 0.25 % [rev/sec]
Home_Sensor = 1 % I/O channel number for the home

sensor
Jog_Speed = 1.0 % [rev/sec]
Jog_Stop = 2 % I/O channel to indicate to stop

motion.
Stop_Rate = 10.0 % [rev]/[secˆ2]
Index_Value = 5.0 % [rev]
t_acc = 1.0 % [sec]
t_run = 1.0 % [sec]
t_dec = 1.0 % [sec]

% Home motion

MoveAt (Home_Speed_1)
Wait until Home_Sensor = ON
MoveAt (Zero_Speed, Stop_Rate)
Wait for 1.0 sec
MoveFor(Index_Value)
Wait for 1.0 sec
MoveAt (Home_Speed_2)
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Wait until Home_Sensor = ON
MoveAt (Zero_Speed, Stop_Rate)

% Jog Motion

MoveAt (Jog_Speed, t_acc )
Wait until Jog_Stop=ON
MoveAt (0, Stop_Rate)

% Stop motion

MoveAt (0, Stop_Rate)

% Index motion

MoveFor (Index_Value, t_acc, t_run, t_dec )

%

10.5 COORDINATED MOTION CONTROL METHODS

In PMCS that involve multiple actuators (also called multi degrees of freedom or multi axis
motion control system), the motion coordination (synchronization) between different axes
can be categorized as follows (Figure 10.11):

1. point-to-point control applications (insertion machines, assembly machines, pick-
and-place machines),

2. speed ratio (electronic gearing) applications (coil winding, packaging, printing, paper
cutting, web handling machines),

3. contouring applications (CNC machine tools, robots, laser cutting machines, knitting
machines),

4. sensor based motion planning and autonomous motion control.

There are two very common motion coordination methods in the web handling automation
industry and they use some of the above coordination methods. They are

1. motion coordination using a “registration” signal from an external sensor (also called
registration application),

2. tension control applications (paper, plastic, wire handling machines).

Both of these applications use electronic gearing as the basis of motion coordination and
add a motion modification to it based on the external sensor (registration sensor or tension
sensor).

10.5.1 Point-to-point Synchronized Motion

Point-to-point position synchronization refers to the positioning of one axis or more with
respect to another axis at a selected number of points during a cycle. In this type of
application, there are a finite number of important points during each cycle where the
relative positions are critical, that is in insertion applications, the pin and the housing must
be properly positioned right before the insertion takes place. When an axis (master) is
in a certain position, the other axis (slave) must be in a certain position relative to the
master axis. The relative position of the slave with respect to the master is important at
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FIGURE 10.11: Motion coordination between two axes: (a) trigger at a certain position,

(b) electronic gearing, (c) camming.

the synchronization reference points. During the motion between these points, the relative
positions between axes is not critical. For instance, in pin-insertion applications, as long
as the pin is in the correct position relative to the housing before the insertion starts, the
motion profile of how each axis reaches that point is not important (Figure 10.11a).

Consider a two axes motion control system. Assume that axis one is the master and
runs at a constant speed. During every cycle of the axis 1 motion, axis 2 is supposed to
make predefined motion when axis 1 is at a specific position in a given cycle relative to the
beginning of the cycle. If the move of axis 2 is defined as a function of time, then the only
information needed to coordinate the motion is:

� Axis one: one cycle distance, zero reference at each cycle, current position within the
current cycle in order to generate the trigger signal for the axis 2.

� Axis two: when triggered by axis 1 position, make a predefined move. In turn, at the
completion of axis 2 motion (or at a certain position of axis 2 during its motion), it
may trigger axis 1 to start a new cycle.

If the desired motion of axis 2 needs to be done within a certain distance of axis 1 motion,
the motion of axis 2 is defined as a function of axis 1, and that requires “electronic gearing”
or “electronic contouring.”
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10.5.2 Electronic Gearing Coordinated Motion

In mechanically coordinated designs, one axis motion can be tied to the other axis through
a mechanical gear. The motion of axis one axis is directly proportional to the motion of
the other axis in position, velocity, and acceleration (neglecting transmission imperfections
due to backlash and tolerances). In mechanical designs, the relationship is fixed by the gear
ratio mechanically.

The drawback of mechanical gearing is that if a different gear ratio is needed for a
different product, the gear ratio between the shafts needs to be mechanically changed by
installing different gears for every different gear ratio. This will increase the setup time. It
may also be economically in feasible for applications involving many different gear ratios
to keep many different gears in stock. The functionality needed here is to provide a motion
to the second shaft which is proportional to the motion of the first shaft. The proportionality
constant may vary for different products.

If both shafts have their independent actuation source, the commanded motion to the
slave axis can be derived from the commanded or the actual motion of the master shaft. In
the process of calculating the commanded motion for the slave shaft, any desired gear ratio
can be used (Figure 10.11b). The gear ratio can be constant or variable. Furthermore, in
certain positions in the cycle additional forward or backward moves can be implemented
to change the phasing of the slave shaft with respect to the master shaft. This type of
motion profile generation is called electronic gearing or software gearing since it is done
electronically by software implementation as opposed to mechanical gears. The position
tracking accuracy should be at least very close to those accuracy that would be obtained if
the shafts were connected to each other through mechanical gears.

The gear ratio is set in software and easily changeable without any time consuming
mechanical disassembly and re-assembly. Electronic gearing is perhaps the most common
type of programmable motion control application encountered in industry today. Let us
consider two axes: each are driven by a separate motor. Axis 1 is the master. The axis 2
desired motion can be generated from the motion of axis 1 using a fixed (or changing)
ratio. As long as the servo loop delivers a good position tracking accuracy, the net result is
a two-axis motion system making geared motion. The commanded motion to axis 2 can be
generated from either the actual or the commanded motion of axis 1. The acceleration and
deceleration rate of the slave axis can be defined as a function of the master axis position
change instead of being defined as a function of time. In all electronic gearing applications,
the slave axis motion profile can be defined as a function of one of two independent
variables:

1. time, or

2. master axis position.

The accuracy of the electronic gear tracking is as good as the tracking accuracy of each
slave axis whatever method of control is used. Therefore, for the electronic gearing to be
successful, the servo loops should be properly tuned. Otherwise, the tracking errors may
deteriorate the performance to the point that it does not resemble the performance that
would be achieved had the shafts been connected to each other by mechanical gears.

Fixed Ratio Gearing This is the simplest form of electronic gearing. It exactly
emulates the relationship between two shafts connected to each other via a fixed gear ratio.
During the cycle, the slave axis (or axes) are commanded to move at a certain gear ratio
relative to the master axis motion. It is also very straightforward to use two or more fixed
gear ratios between two axes where the gear ratio is changed from one fixed value to another
at certain positions during a cycle. For instance, rotating knife applications where the web
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needs to be cut at a certain length (cut length is programmable). During the position range
when the knife is in contact with the web, the linear motion speed of the knife must match
the linear motion of the web (gear ratio z1), and during the position range when the knife
is not in contact with the paper, the knife must speed up or slow down to a different gear
ratio (z2) to let the desired amount of web length move (Figures 10.12, 10.13b).

Gearing with Registration Printing, cutting, and sealing applications in web han-
dling processes require motion coordination which involves gearing plus registration. This
very common form of motion coordination involves the following (Figures 10.12, 10.13):

1. electronic gearing of a slave axis to a master axis with a certain gear ratio, and

2. for each cycle, after a sensor input condition (registration mark or registration signal)
is true, the slave axis must make an incremental move during a certain distance of
the master axis. This is called phase adjustment based on registration mark sensing.
A variation of this approach is to calculate a new gear ratio and change the gear ratio
in order to get the same amount of additional move.

There are many variations of the registration mark applications. The incremental
motion distance may be either a predefined length or calculated based on the difference
between the actual position captured when the registration sensor triggers and a desired
position. The keys to achieving high accuracy in registration applications are to capture
certain motion related conditions very quickly (i.e., less than 25 μs) and respond very
quickly (i.e., a few millisecond).
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For instance, in paper cutting machines, the flying knife can be geared to the master
axis moving the paper. The paper must be cut at a certain offset distance from a registration
mark. However, the registration mark may not be perfectly printed on the machine at
exact distances from each other. The paper may slip in the master axis drive such that the
master encoder reading of paper movement cannot always be perfect. To overcome such
unavoidable problems, a registration mark is always sensed on the paper at a fixed distance
from the cutting point. Regardless of the printing or master ecnoder accuracy loss due to
slippage, there has to be a fixed phase relationship between the cutting knife and the instant
of the registration mark. Therefore, the solution is:

1. run the knife at nominal gear ratio relative to the master axis (i.e., using the master
axis encoder position as the master position) feeding the paper,

2. at each registration mark sensor trigger, capture the knife axis position, compare the
actual position with the desired position, and correct the phase error, if any, with
superimposed incremental moves on top of the current gearing motion.

The position capture on the registration sensor input must be done very fast. This
generally requires the use of axis level high speed I/O lines instead of the general purpose
machine I/O. Let us consider a paper cutting machine example. The paper is cut at a certain
distance from a registration mark. Based on the nominal expected value of the cut length,
a nominal gear ratio is set between the paper line speed (master axis) and the rotation
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knife axis (slave axis). When the controller recieves the registration mark signal, it captures
the knife position. Then it compares that captured position with the desired position that
the knife should be at in order to cut the paper at the right location. Then, the knife is
commanded to make an incremental move to make the phase correction. Let us consider
that the paper cutting machine runs at 1200 ft∕min line speed. When the registration mark
is sensed, the controller will have to capture the knife axis position within a certain finite
time. At 1200 ft∕min rate, paper moves 20 ft∕s or 240 in∕s or 240∕1000 in∕ms. If the paper
is to be cut with ±5∕1000 in accuracy, the position must be accurately captured before that
amount of paper passes. The 5∕1000 in paper movement takes about 40 μs. Therefore, the
position capture on the registration mark must be done within 40 μs. This type of response
requires dedicated axis level high speed I/O. Notice that the correction of the position error
does not (and cannot) need to be made within 4 μs, rather within the period remaining in
the cycle which is typically in the order of tens of milliseconds.

10.5.3 CAM Profile and Contouring Coordinated Motion

Consider a shaft driven by an independent actuation source (i.e., a motor-drive) and a
mechanical cam on the shaft. The cam can be on the face of the shaft or around the shaft.
A tool is connected to the cam profile through a cam follower. As the shaft rotates, the
tool moves up and down as function of the cam profile machined on the cam groove. For
every point on one revolution of the shaft, there is corresponding point on the cam, hence
there is a corresponding position of the tool (Figure 3.9). This relationship is mechanically
determined by the cam design. For every revolution of the shaft, the cam relationship
between the shaft and the tool is repeated. More than one cam can be connected to a shaft to
drive more tools as slaved to the shaft motion. The slave motion synchronization for each
tool is determined by the cam profile machined into each cam. This type of synchronization
is more complicated than a constant gear ratio relationship.

The functionality in cam synchronization is that the slave axis position is directly a
function of the master axis position. The relationship repeats every revolution of the master
axis output shaft.

The same functionality can be more flexibily achieved by electronic cam or software
cam motion coordination. Both master and slave must have their independent actuation
source (motor-amplifier). As the master axis moves, the desired (commanded) motion for the
slave axis can be derived based on the position of the master axis. The desired relationship
in this case happens to be a cam profile. The cam profile is defined only in software as a
mathematical equation or a look-up table. As the master axis moves, the position of the
master axis is periodically sampled. Usually, the sampling rate is the same as the servo
loop update rate. Then the corresponding position where the slave axis should be is derived
from the mathematical cam profile equation or from the look-up table. Furthermore, in
software implementation, the slave axis does not have to be driven by the cam relationship
throughout the whole revolution or cycle. The cam following mode can be entered and
exited at various points during a cycle based on some application dependent condition.

Contouring coordination is mostly used in machine tools and plasma cutting types
of machines. The contour coordination is a more complicated form of cam coordination.
The basic idea is that two or more axes must move in space in order to make a tool trace
a certain path. In two-dimensional x-y motion, this corresponds to drawing an arbitrary
curve in plane, in three-dimensional x-y-z motion, it corresponds to drawing an arbitrary
curve in 3D space. At any given time all of the axes have a position that they must be at
in order to trace the desired path. The way the commanded motion is generated for each
axis can vary: one alternative is that the feedrate along the path (tangential linear speed)
can be the indepedent variable. The feedrate can be planned based on application specific
requirements. Then as the tool travels along the path, the desired motion of each axis is
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calculated and commanded. In this case, the feedrate acts as the master (although it is not
an axis), and all of the motion axes are slaved to it. Another alternative is to select one
of the axis as master and define its motion, then derive the desired motion of other axes so
that the tool traces the desired path. CNC machine tools are an example of the coordinated
motion control application where contour coordination is most commonly implemented.

Consider a two-axis motion control application where the two axes are required to
trace a contour, that is an XY stage holding a tool, and the tool is required to trace a path
in x-y plane. Gearing coordination would generate a path that is a straight line. Contouring
is a more general form of coordination and requires the ability to trace any path in the
motion space.

The path can be defined as function of:

1. Time, each axis motion is separately defined as a function of time to generate the
path.

2. One axis is set as master and its motion for the path is defined, the other axis’ motion
is set as a function of the master axis position.

3. Path length or speed parameter – each axis motion is defined in terms of a path
parameter.

CNC Programming Computer numeric control (CNC) programming is a program-
ming language used to define the motion of machine tools. The most common CNC
language in use today is the G-code. The G-code standard is defined by the Electronics
Industry Association (EIA) standard 274-D. Although this standard exists, there are minor
variations in the implementation of G-code from one manufacturer to another. The meaning
of some codes also varies from one machine tool type to another. For example, G70 code
means programming in units of inches in machining centers, whereas the same G70 code
means edge finding in electric discharge machines (EDM).

10.5.4 Sensor Based Real-time Coordinated Motion

As the sophistication of computer controlled machines increases, the type of motion
demands placed on them becomes more and more complicated. Particularly in robotic
manipulator applications, the desired motion may not be known in advance. The machine
is required to sense its environment (i.e., using vision systems), and decide on a motion
strategy and generate the motion command profiles for each individual axis. The motion
synchronization used may be different for different phases of its motion. Furthermore, this
decision as to what kind of strategy to use is determined online by the control software.
Interpretation of sensory data, and generating intelligent motion planning strategies not
planned in advance, is one of the current challenges of programmable motion control in
robotics devices.

10.6 COORDINATED MOTION APPLICATIONS

10.6.1 Web Handling with Registration Mark

The following applications have very similar motion coordination requirements
(Figures 10.12, 10.13):

1. rotating cutting knife to cut a web (i.e., paper, plastic) to a fixed length,

2. rotating printing head to print over a web,

3. rotating sealing head to seal a web or bag.
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There are three key issues in general web handling applications with registration marks:

1. match linear speeds between the web and tool during contact phase,

2. adjust tool speed to meet the cycle web length requirements during non-contact phase,

3. adjust tool position (phase) with respect to the registration mark.

The common key motion coordination requirement in these applications is that during
a certain length of each cycle of web movement, the tool (cutting knife, print head, sealing
head, etc.) must be moving at the same linear speed as the web. Usually, when the tool is
in contact with the web (i.e., the knife is in the process of cutting the paper, the print head
is in contact with the web), the linear speed of the tool and the web must be the same.
Some printing heads print through the whole circumference of the print cylinder. In that
case, the linear speeds must always be matched. The whole cycle is a contact phase. Only
position phase corrections can be done in order to print at the correct position relative to
the registration mark.

When the tool is not in contact with the web, the tool speed can be adjusted in order
to let the proper amount of web distance pass. If the design was not a programmable motion
control system and it was mechanically geared, a rotating knife machine could only cut one
paper length only which is the length of the knife circumference. The ability to program
the motion of the knife so that while it is in contact with the web it matches the linear speed
for a correct straight cut, and speed up or slow down while it is not in contact with the web,
provides us with the capability to cut many different lengths of web with one rotary knife.
The same discussion applies to print heads and sealing head applications where the cycle
length for which a new print or seal is to be made can be programmed.

If the web does not have a registration mark, the motion coordination problem is
easier. There are only two phases to the coordination:

1. Contact phase – tool and web are in contact.

2. Non-contact phase – tool and web are not in contact.

The web axis motion is always the master since it is difficult to make the web do
whatever we want it to do. Rather, we need to follow and track the web with the tool axis. In
contact phase, the tool axis gear ratio needs to be adjusted so that the linear speed between
the web and tool are equal. If the gear ratio is programmed in linear motion units, it will
be 1 to 1. During the non-contact phase, the gear ratio will be different than 1 to 1 linear
ratio. The gear ratio will be such that the remanning length of web will pass during the time
that the tool moves over the non-contact phase. If the web cycle length happens to be equal
to the circumference of the rotary tool, then the gear ratio will be 1 : 1 during non-contact
phase in linear distance units as well (Figure 10.13a).

More often, a cut must be made relative to a registration mark (Figures 10.12, 10.13b).
A print must be made repeatedly but at a certain offset distance from a registration mark
every cycle. Similar needs exists for sealing type applications. In order words, the tool
will cut/print/seal the web every cycle where the web length per cycle is programmable,
but it must be done relative to a registration mark. If the registration mark and length
requirements are in conflict, the registration mark requirement will supercede. In other
words, let us assume that we would like to cut a paper from a registration mark at 1.00
distance and 12.00 total length. When we receive the registration mark, we record that only
11.5 inches of paper has passed the knife. The conflict is this: if we cut the paper at 1.0 inch
distance, the paper length will be 12.5 inches. If we cut it at 12.0 inch length (0.5 inch
after the registration mark), the offset distance from the registration mark will be 0.5 inches
instead of 1.0 inches. There is no solution to this problem since with one measure, we can
not satisfy two different requirements. Quite often, the offset distance from the registration
mark takes priority over the cycle nominal length since the web can slip and the master
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axis reading may not be accurate. The registration mark provides us with a positive sensing
mechanism for the actual web length passed.

From an electronic gearing motion coordination point of view, the registration mark
requirement adds one more motion coordination problem. That is, the tool must be in correct
positional phase relative to the mark in order to cut it at the right offset location. Assuming
that there is no slip or variation in registration mark location, once the tool and paper are in
phase, they will stay in phase for a fixed cycle length. However, to ensure accuracy in every
cycle against web slippage or variations in web registration mark location, the tool-web
position phase is checked and corrected if necessary.

Motion Coordination Algorithm: Rotating Tool (Cutting Knife,
Print Head, Seal Head) with Registration Mark Application:

Main Program
{

while (TRUE)
{
Initialize the rotating knife with registration mark
application algorithm
Verify HOME motion sequence is done
Check Task 1
Check Task 2

.....
Check Print Phase and Registration Mark
{

When Enterered Contact Phase, execute
Contact_Phase Function once
When Entered Noncontact Phase, execute
Non_Contact_Phase Function once
When Registration mark is received, excecute
Registration_Mark_Phase_Adjustment

}
}

}

Algorithm Initialize:
web_cycle_length = ... % web length per cycle
tool_circumference = .... % pi * diameter
contact_percentage = ..... % 0 to 100
gear_ratio_contact_num = 1
gear_ratio_contact_den = 1
gear_ratio_noncontact_num = web_cycle_length *(100-
contact_percent)/100
gear_ratio_noncontact_den = tool_circumference *(100-
contact_percent)/100

define desired position phase for tool on registration
mark
setup fast position capture (actual or commanded) of
tool axis on registration mark

Return

Contact_Phase:
change gear ratio of tool (slave) to web (master) to
ratios defined by
z = gear_ratio_contact_num / gear_ratio_contact_den

Return
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Non_Contact_Phase:
change gear ratio of tool (slave) to web (master) to
ratios defined by
z = gear_ratio_noncontact_num / gear_ratio_
noncontact_den

Return

Registration_Mark_Phase_Adjustment:
Get the position of the tool captured on registration
mark with high speed capture
Compare the actual position to the position desired
for proper phase
Command additional move (Position desired - Position
captured) to complete fast

Return

10.6.2 Web Tension Control Using Electronic Gearing

Web handling is a generic name used to describe manufacturing processes where a continu-
ous web must be moved and processed. The web material is generally one of the following
(Figures 10.14, 10.15):

1. paper in printing machines, in paper cutting machines,

2. plastic in packaging and in labeling machines,

3. wire in winding and wire drawing processes,

4. sheets of steel in steel mills.

The web handling motion control problem has two components:

1. the web must be moved at a certain process speed, which is usually referred to as
“line speed,”

2. while being moved, web tension must be maintained at a desired level.

Motor
&

encoderMotor

Drive
Drive

Dancer or
load cell

Encoder

Controller

FIGURE 10.14: Web motion control with tension regulation. Either one of the two motors can

be used to regulate tension. The encoder is used to determine the speed of the web. The

dancer/load sensor is used to measure the web tension. The goal is to move the web at a

desired speed while maintaining a desired tension during the motion.
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common implementations: (i) No master axis speed is provided. The commanded speed of this

axis is modified (increased or decreased) based on the tension control loop: i.e.,

�̇�cmd = �̇�cmd0 + Δ�̇�cmd0(Td − Ta). (ii) a master axis speed is provided and the gear ratio between

the master axis and this (slave) axis is modified based on the tension control loop: i.e.,

�̇�cmd = z ⋅ �̇�master, z = z0 + Δz(Td − Ta).

In general, the production rate dictates the line speed at which the web must be
moving nominally. While the web is moving, the tension of the web must also be measured
and corrections must be made to the feed in order to maintain the desired tension. In order
to both control the speed and tension on a web, there needs to be two actuation sources:
one to set the nominal line speed, the other to track the first nominally but to maintain the
desired tension.

Consider that the web speed is set by the nip roller (or similar mechanism) which
is specified by the required process speed. The unwind/rewind roll speed needs to be
adjusted in order to maintain the desired tension while the web is being moved. In unwind
applications, if the tension is less than the desired tension, the unwind roll speed needs to
be decreased. The opposite is true in the rewind applications. That is, if the tension is less
than the desired tension, the rewind roll speed needs to be increased. This is referred to as
the polarity of the tension control loop.

ΔV = (sign) ⋅ k ⋅ (Td − Ta) (10.13)

where the sign is (+1) for unwind applications, and (−1) for rewind applications. The
polarity is defined as the sign (positive or negative) ratios of the change in the tension to
the required change in the speed of the drive used to control the tension. The polarity of
unwind and rewind tension control are opposite (10.14).

The differences between using a strain-gauge based tension sensor versus a dancer
arm based tension sensor are as follows:

1. Strain-gauge based tension sensor results in larger loop gain since small changes in
web in-feed and out-feed results in large tension changes compared to the dancer arm
based tension sensor. On one hand, if the web is too stiff, the loop gain as a result of
small differences in in-feed and out-feed web may be so large that large oscillations
and closed loop instability may occur. With sufficiently flexible web, on the other
hand, this method would provide the fastest closed loop response. The web stiffness
and tension sensor sensitivity combination must be carefully judged to determine
whether they will result in good tight closed loop performance with large loop gain
or they will result in too large loop gain that will create instability problems.
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2. Dancer arm based tension sensor results in lower loop gain since the same change
in web in-feed and out-feed will result in smaller tension variations. This effectively
reduces the loop gain of the closed loop system and instability problems are less
likely to occur. The potential problem with this method is the inertia and spring
effect of this type of tension sensor. The dancer mechanism has some inertia. It also
usually has a preloaded spring. As the dancer moves under the web tension, it may
tend to oscillate. The oscillations are more significant during high acceleration and
deceleration. Therefore, the oscillations of the dancer arm itself causes fluctuations
in actual tension. It may also excite natural resonance of the web and result in large
oscillations. The only solution would be to move the web in such a way that the
dancer arm is not displaced too fast, which means the variation in web in-feed and
out-feed rate must be very slowly varying.

We will consider two different control ideas which differ only in their control algo-
rithms. In both approaches, we use the same nip roller drive and tension transducer. Let us
assume that the nip roller is commanded to run at a certain speed with predefined accelera-
tion and deceleration rates. The only difference is in the way we control the unwind/rewind
roll in order to regulate the tension. All of the following ideas are identically applicable to
both unwind and rewind application with the only exception being polarity difference. A
tension control algorithm for unwind tension control problem can be applied to a rewind
tension control problem by changing the sign of the output of the tension control loop output.

� Approach 1: Tension Control with Adjusted Velocity Command – web tension control
by controlling the roll drive with inner velocity servo loop and outer PI tension
servo loop.

� Approach 2: Tension Control with Electronic Gearing – web tension control by
controlling the unwind/rewind roll drive with inner position loop commanded by
electronic gearing, and outer tension loop which modifies the electronic gear ratio.

Approach 1: Tension Control with Adjusted Velocity Command The
traditional approach is to control the rewind/unwind roll motor using two closed loops: (i)
inner loop is a velocity PI type-loop (compare desired velocity and measured velocity and
command the amplifier based on velocity error) which presumably makes the motor track
the commanded velocity within its bandwidth capability; (ii) outer tension PI-loop which
generates the commanded velocity based on the tension loop error.

This approach has two limitations:

1. closed loop stability problem due to large loop gain,

2. slow acceleration/deceleration rate limitation.

Let us explain these limitations by focusing on the tension control loop control sys-
tem. Figure 10.15 shows the closed loop of the tension control from a different perspective.
The key observation to be made in this block diagram is that the loop gain from web tension
error to roll speed change is large. In other words, small changes in in-feed and out-feed
rates will result in large tension errors, and that in turn will result in large commands and
possibly transient oscillation on the roll speed. Both of the above mentioned limitations are
the result of large loop gain. Large loop gain not only causes stability problems, but also the
acceleration/deceleration rates must be slow enough to avoid large oscillations. Large accel-
eration/deceleration rates will require large changes in commanded speed, which means
large changes in tension. This means that the system will not be able to accurately regulate
tension (keep tension error small) under large accelerations/deceleration cases of motion.
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Approach 2: Tension Control with Electronic Gearing Electronic gearing
refers to a position servo controlled motion where the desired motion command is generated
based on a gear ratio multiplied by a master (reference) motion source. In this case, the
master is the nip roller speed. In software, we monitor the motion of nip roller at the servo
loop update rate, and command the desired motion to the unwind roll proportional to the
master motion speed. The proportional value is the gear ratio defined in the software.

The key difference in this approach is that the variation in tension is not allowed to
get too large as seen by the feedback loop. The gear ratio in software is updated based on
the tension error. The tension error is passed through a PI control algorithm, and the result
is the updated gear ratio. The feedback loop sees much smaller tension error levels. Hence,
it can have larger gain and larger acceleration/deceleration rates without causing closed
loop stability problems. Notice that the gear ratio initial starting value must be accurate for
this approach to be more accurate than the first approach. This can be obtained by either
directly sensing the roll diameter at the beginning of a cycle or always starting with a known
diameter known in advance or entered by the operator as setup information.

Control Algorithm for Tension Control Using Electronic
Gearing

Initialize once:
{Define/Input/Read} tension loop polarity (unwind/

rewind) sign = +1 or -1
{Define/Input/Read} desired tension:

Td = ....
{Define/Input/Read} nip roll diameter

d1 = ....
{Define/Input/Read} current unwind/rewind roll diameter

d2 = .....
Calculate initial gear ratio: z = (d_1 / d_2)

Initialize the parameters of the tension control
algorithm (PI in this example):

z_ I = 0.0
Kp = 0.01
Ki = 0.001

End_Initialize

Update Periodically: (i.e. every 10 msec)

Read tension sensor: Ta
Tension error: e_T = Td - Ta
Integral portion of control dz_i = dz_i +

sign * Ki * e_T
Proportional portion of control dz = sign * Kp *

e_T
P + I portion dz = dz + dz_i
Calculate the new gear ratio z = z + dz
Update the gear ratio ‘z’ in the electronically geared
motion between master and slave axes.

EndUpdate

10.6.3 Smart Conveyors

Conveyors are one of the most common mechanical systems used in industrial automation.
They can be considered “the work-horse” of mass production. A typical conveyor runs at
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FIGURE 10.16: Smart conveyor operation.

a constant speed and continuously moves material from one end to the other. The “smart”
conveyors differ from the typical conveyors in that in addition to running at a certain speed,
they make position or speed adjustments in order to space parts uniformly even though the
in-feed rate into the conveyor is not uniform.

A smart conveyor system typically involves three conveyors (Figure 10.16): 1. input
conveyor, 2. smart conveyor, 3. output conveyor. In some cases, the smart conveyor and the
output conveyor are the same conveyor.

The generic automation problem is as follows:

� The parts come onto the input conveyor at random intervals. There is a fixed average
feed rate, i.e. is 300 parts per minute, but the spacing between them is not uniform.
The objective is to adjust the spacing between the parts to a desired distance.

There are three basic questions about the application which affect the smart conveyor
design:

1. Can the parts touch each other?

2. Does the speed of conveyors need to match the other adjacent conveyor speed during
the part transfer between them?

3. Is there a limit on the acceleration and deceleration rate due to part considerations?

Depending on how the first two questions answered, the design can lead to one of
two different approaches: (i) constant gear ratio spacing conveyors; (ii) position phase
adjusting conveyors. The third question affects the number of smart conveyors to be used.
If there is an acceleration/deceleration limit, multiple smart conveyors may need to be used
in order to give more time for the acceleration/deceleration moves. Soft or liquid products
have acceleration/deceleration limits so that their shape is not changed or spilled due to
excessive inertial forces.
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Constant Gear Ratio Spacing Conveyors with a Queue (Smart)
Conveyor This design is appropriate when the parts can touch each other and the
speeds of two adjacent conveyors do not have to match during the transfer. In this case,
there will be three conveyors: 1. input conveyor, 2. queue conveyor (the smart conveyor),
3. output conveyor. Parts come to the input conveyor at a fixed average rate (N1), but with
non-uniform spacing. The queue (smart) conveyor runs slower than the input conveyor to
provide a constant supply of continuous parts (Figure 10.16). The output conveyor runs
faster to adjust the proper spacing. If the queue conveyor is always full and parts are touch-
ing, the spacing will be proportional to the speed ratio. Let us assume the part transfer
rate is N1. In continuous operation, the part rate in the conveyors must be same. Length of
each part is Lp, and the average spacing is L1. The speed of the queue conveyor will be
determined by the requirement that the average part rate must be same in both conveyors:

N1 = N2 (10.14)
V1

(Lp + L1)
=

V2

Lp
(10.15)

V2 = Lp ∗ N1 (10.16)

=
Lp

Lp + L1
⋅ V1 (10.17)

On the output conveyor, if the desired spacing between the parts is L3, then the spacing
conveyor speed needs to satisfy the same average part rate requirement,

V2

Lp
=

V3

(Lp + L3)
(10.18)

V3 =
Lp + L3

Lp
⋅ V2 (10.19)

On the output conveyor, if the difference between V2 and V3 is so large that the acceleration
rate is too high for the part integrity (i.e., soft parts or fluid content), then more than one
spacing output conveyor would be used in order to reduce the maximum acceleration levels
experienced by the part. From the queue conveyor point of view, the cycle time per part is

tcycle =
Lp

V2
(10.20)

Let us assume that Lpt is the portion of the part length Lp during which the part is in contact
with both conveyors and changes speed from V2 to V3. The acceleration rate is then

ttransfer =
Lpt

Lp
⋅ tcycle (10.21)

A =
(V3 − V2)

ttransfer
(10.22)

The number of spacing output conveyors needed is determined by rounding the following
result to the next highest integer value

Nspacing = Int

(
A

Amax

)
(10.23)

where Amax is the maximum allowed acceleration/deceleration. If the maximum allowed
acceleration or deceleration is a limiting factor, the conveyor design parameters can be
calculated to satisfy this constraint. Given Amax, calculate either L3,max in tcycle or the
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tcycle necessary for L3. If we calculate the L3,max, it will determine the number of spacing
conveyors necessary following the queue conveyor. The result is same as

Nspacing = Int

(
A

Amax

)
(10.24)

= Int

(
L3

L3max

)
(10.25)

If we choose to use only one spacing conveyor and meet the acceleration/deceleration
limits, then the tcycle requirement is calculated for the desired L3 spacing, which sets the
maximum line speed achievable with one spacing conveyor while meeting the accelera-
tion/deceleration limits.

In summary, the queue conveyor design is affected by the following parameters:

{Amax, L3, ttransfer, Nspacing}.

If three of these parameters are specified, the fourth one can be calculated. The maximum
allowed acceleration and deceleration rate and the desired spacing is given. Then, if we
choose to use Nspacing conveyor (i.e., Nspacing = 1 or 2), that determines the minimum
ttransfer (hence tcycle) time period in order not to exceed the acceleration limit. That sets the
maximum through-put rate for a conveyor with specifications: 1∕tcycle

{Amax, L3, Nspacing}

Let us consider the case that the input conveyor part feedrate may fluctuate. If it is
desired that the conveyor system should be able to adjust to that condition, we need to
add additional sensors. Assume we know Lp, and the desired spacing L3. First, we need to
measure the moving average part input rate, N1. From that, we can calculate the nominal
speed of the queue conveyor and the output conveyor. In addition, we can add three ON/OFF
sensors on the queue conveyor to indicate the following conditions: queue high, queue low,
queue empty. If the queue is low, the conveyor speed V2 can be reduced by a percentage, if
the queue is high it can be increased by a percentage. If the queue is empty, it should stop and
go into a homing routine to fill the queue before continuing the normal cycle. As we modify
the motion of the queue conveyor, the output conveyor will track it with the appropriate
ratio since the output conveyor speed is gear ratioed to the queue conveyor as its master. A
possible homing sequence before the automatic cycle begins is shown in Figure 10.16.

Algorithm: Constant Gear Ratio Spacing Conveyors with a
Queue Conveyor

I/O Required:

Sensors (Inputs):
One presence sensor (Photo electric eye or proximity
sensor) and control logic to count the part rate input

Three presence sensors to detect queue conveyor part
level: high, low, empty

Actuators (Outputs):
Queue conveyor speed control,

Output conveyor speed control by electronically gearing
(slaved) to the speed of the queue conveyor

Control Algorithm Logic:
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Initialize:

Given the process parameters: L_p - part length,
L_3-desired part spacing,

Given algorithmic parameter: V_percent (i.e. 0.9 = 90 %
speed reduction if queue is
full)

Output conveyor speed is electronically geared to the queue
conveyor speed by: V_3 = ((L_p+L_3)/L_p ) * V_2
Where the gear ratio between queue conveyor (master) and
the output conveyor (slave) is: (L_p+L_3)/L_p

Repeat Every Cycle:
Measure, N_1, the part rate,
Calculate queue conveyor speed: V_20 = L_p * N_1
Check queue level and modify V_2 accordingly,
Update speed command to the queue conveyor (V_2)
If V_2 = 0, call homing routine to fill-up the queue
conveyor.

Repeat Loop End

Return

Check queue level and modify queue speed algorithm:
If (Queue is low (PRX-1 and PRX-2 are OFF) and
PRX-3 is ON)

V_2 = V_20 / V_precent
Else if (Queue is High (PRX-1 and PRX-2 are ON )
and PRX-3 is ON )

V_2 = V_20 * V_precent
Else if (Queue is Empty: PRX-3 is OFF)

V_2 = 0.0
Else

V_2 = V_20
End if

Return

Homing Routine:
’ Queue conveyor is empty.

Start input conveyor if it is stopped
Disengage electronic gearing of output conveyor
While (PRX-3 is OFF)
Wait until PRX-1 triggers, then move for L_p distance.

Repeat
Engage gearing of output conveyor

’ On return, queue conveyor is full and all parts are
touching each other.

Return

Position Phase Adjusting Conveyor: Smart Conveyor Slaved to both
the Input and the Output Conveyor In most general form, the smart (also
called shuttle) conveyor must coordinate its motion both with input and output conveyors
at different phases of the motion. In some applications, coordination only to the input or
only to the output conveyor may be sufficient. The smart conveyor acts as a very fast slave
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FIGURE 10.17: Another smart conveyor concept using a so-called “smart shuttle conveyor.”

between two masters (Figure 10.17). The spacing conveyor is the slave. There are two
masters, input and output conveyors, for the spacing conveyor to match linear speeds with
during two phases out of three phases of each cycle.

Each cycle is divided into three phases:

1. Transfer phase from input conveyor to spacing conveyor (spacing conveyor matches
linear speed to the input conveyor by considering the input conveyor as the master).

2. Non-transfer phase of spacing conveyor with no part contact to adjacent conveyors
(spacing conveyor does not have to match linear speeds to any conveyor).

3. Transfer phase to output conveyor (spacing conveyor matches linear speed to output
conveyor by considering the output conveyor as the master).
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During each transfer (between input and smart conveyor, and smart conveyor and
output conveyor), there are two phases of motion:

1. contact phase, and

2. non-contact phase.

During the contact phase, a part is on both conveyors and the speed of both conveyors must
be matched during that phase. During the non-contact phase, a part is on only the smart
conveyor and it can move independently of the other conveyors. It is this period during
which the smart conveyor makes the position corrections. In order for this approach to
work, the time period during which input and smart conveyors are coordinated should not
have an overlap with the time period that the smart and output conveyors are coordinated. If
the smart conveyor transfers one part at a time, this condition would be automatically met.

A possible design of a smart shuttle conveyor is shown in Figure 10.17.

1. A photo-electric sensor #1 (PE #1) is used to detect the beginning of the contact
transfer phase of the part from the input conveyor to smart conveyor. This sensor
must detect the incoming part before the physical contact between the part and
smart conveyor. Over a distance from the detection point to the part contact to smart
conveyor (l12m), the smart conveyor must match the speed of the input conveyor.
The PE#1 sensor must be located such that l12m distance is long enough to satisfy
the maximum acceleration/deceleration limits. If the l12m distance is too short, the
maximum acceleration/deceleration limit condition cannot be met.

2. After that, the smart conveyor must maintain the speed matching until it is time to
prepare the transfer to the output conveyor, which is indicated by another sensor
PE#2.

3. When the PE#2 signal indicates that the part is in the right position to start changing
the speed to match the output conveyor’s speed. Then the smart conveyor speeds
up or slows down to bring the part to the output conveyor with proper spacing. The
proximity sensor (PE#2) detects the trigger position when it is time to feed a new part
to the output conveyor. Again, with a defined distance, the smart conveyor brings the
part in contact with the output conveyor. Then, the smart conveyor matches speed
with the output conveyor within the l23m distance, and maintains that speed until the
transfer is complete.

4. If before the transfer to the output conveyor is completed another part is about to
enter the smart conveyor from the input conveyor, then the gate cylinder is actuated to
stop the incoming part since the smart conveyor cannot match the conflicting motion
requirements of two different conveyors at the same time. When the new transfer
cycle begins, the gate cylinder is deactivated to start a new cycle.

10.7 PROBLEMS

1. Consider an xy table where x axis is stacked on top of the y axis. Each axis is driven by a
brushless DC motor. Each ball-screw has 2.0 rev∕in pitch. The motors have incremental encoders
with 1024 lines∕rev and the controller has ×4 encoder decoder circuits. a) Define the external sensors
necessary so that each axis can be stopped before hitting the travel limits as well as a physical
home reference position to be established after power-up. b) Assume that the homing search speed is
1.0 in∕s. Write the pseudo-code of a homing motion. c) Calculate the parameters of an incremental
move of 0.1 in increments made in 300 ms. Command this motion in forward direction five times and
in reverse direction five times and allow 200 ms wait period between each incremental motion.
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2. Consider two independely driven rotary motion axes: axis 1 and axis 2. Our objective is to make
axis 2 follow axis 1 as if they are connected with a mechanical gear ratio. Let the gear ratio be z. a)
Draw the command motion generation block diagram for axis 2 for the case where the master motion
it follows is the commanded motion of axis 1. b) Do the same, however this time the master motion
it follows is the actual position of the axis 1. c) Further consider the case that axis 1 is the drive for
an unwind roll and axis 2 is the drive for a rewind roll for a web application. Axis 2 needs to modify
the gear ratio as a function of the sensed tension. Draw the block diagram and write the pseudo-code
to accomplish this.

3. Consider the registration application shown in Figure 10.12. The rotating axis moves at a constant
gear ratio relative to the speed of the web which is measured by an encoder. The objective is to make
sure the rotating tool axis (print head or knife head) has to be at a certain position within one
revolution when the registration mark passes under the registration sensor. When the registration
mark sensor turns ON, we capture the position of the rotary axis and compare it with the desired
position. Then, the rotating axis makes a corrective index motion on top of the gear ratio motion.
Assume that the web is moving at 2000 ft∕min. and a cycle is repeated every 1.0 ft. It is desired that
the accuracy of the positioning and operation done by the rotating tool axis relative to the web must
be with in ±1∕1000 in. a) Determine the minimum psoition sensor resolution on the rotating axis. b)
What happens to the accuracy if the registration mark sensor has 1.0 ms variation in its accuracy of
responding to the mark? c) What is the maximum allowed variation in the registration mark sensor’s
response time? d) If the position capture is done under software polling and the application software
may have 5 ms variation when it may sample the position of the rotating axis relative to the instant
the registration mark sensor comes on, what would be the positioning error? e) What is the viable
position capturing method in such applications?

4. Consider an xy table. Our objective is to design a programmable motion control system such that
the xy table makes various contour moves. Assume the table x and y axes have already established a
home position. a) Design a pseudo-code so that xy table draws a line with a given slope and length.
b) Design a pseudo-code so the xy table draws a circle with a given center coordinates and diameter.

5. Consider the tension control system shown in Figures 1.7, 10.14 and 10.15. The example on
page 7 shows a web control method that changes the speed command to one of the motorized rolls
in proportion to the tension error. Assume that Figure 10.13 is a more complete and updated version
of Figure 1.7 where the analog op-amp controller circuit is replaced with a digital controller. In
addition, the wind-off roll is also a motorized drive, and there is a line position sensor (encoder).
Update the control system using the electronic gearing method to control the wind-up roll. Assume
the wind-off roll is running at a constant speed. The control algorithm should use the line speed
encoder in Figure 10.13 as the master position to follow with a gear ratio, where the gear ratio is
modified based on tension error through a PI type controller (Figure 10.14). Show the benefits of the
electronic gearing based control method over the traditional direct speed control based on tension
sensor method.



CHAPTER 11
LABORATORY EXPERIMENTS

11.1 EXPERIMENT 1: BASIC ELECTRICAL CIRCUIT
COMPONENTS AND KIRCHOFF’S VOLTAGE AND
CURRENT LAWS

Objectives

1. Confirm by measurements the input–output behavior of basic electrical and elec-
tronic circuit components: resistance measurement, capacitance measurement, diode
test.

2. Confirm Kirchoff’s voltage law and current law in a simple DC circuit with resistors.

3. Build a voltage divider circuit and verify the predicted results from Kirchoff’s laws
by measurement.

4. Build a current divider circuit and verify the predicted results from Kirchoff’s laws
by measurement.

5. Build an RC circuit and an RL circuit, measure their input output voltage relationships,
and compare the differences between their responses. Measure the R, C, and L
components in the RC and RL circuits.

Components

Item Quantity Part No. Supplier

Resistors Assortment Kit 1 81832 Jameco Electronics (www.jameco.com)

Capacitors Assortment Kit 1 130232 Jameco Electronics (www.jameco.com)

Inductor Assortment Kit 1 388042 Jameco Electronics (www.jameco.com)

Breadboard 1 20722 Jameco Electronics (www.jameco.com)

Set of connection wires 1 set 20079 Jameco Electronics (www.jameco.com)

Theory

The passive components make up the main building blocks of electrical circuits: resistor,
capacitor, and inductor. The input–output relationship of these “ideal” components are as
follows.

An “ideal” resistor has the following current–voltage relationship, also called Ohm’s
Law,

V12(t) = R ⋅ i(t) (11.1)
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where V12 is the voltage potential across the resistor, i(t) is the current across the resistor,
and R is the resistance of the component.

Resistors are marked with a color coding standard. Using this color code, one can
determine the value of a resistor, including its possible tolerance (variation in value due to
manufacturing tolerances). Using a DMM (digital multimeter), the exact value of a resistor
can be easily measured.

An “ideal” capacitor has the following current–voltage relationship,

V12(t) = V12(t0) + 1
C ∫

t

t0

i(𝜏)d𝜏 (11.2)

which says that the voltage across a capacitor is the initial voltage of the capacitor plus
the integral of the current flowing through the capacitor scaled by the capacitance value C.
V12(t) is the voltage across the capacitor at a given time t. Any capacitor will eventually
saturate when it stores the maximum charge it can store. In order to limit the current coming
into a capacitor from a DC power supply, a capacitor is never directly connected to a supply,
but through a resistor. A mechanical analogy for a “capacitor” is a “water tank”: initial
water level (water height) in the tank is V12(t0), water flow rate into the tank is i(t), cross
sectional area of the water tank is C, and water level at anytime is V12(t).

An “ideal” inductor has the following current–voltage relationship,

V12(t) = L ⋅
di(t)
dt

(11.3)

which says that the voltage across the inductor is proportional to the time rate of change
of current. Another way of interpreting it is that the current is integral of voltage applied
across it. If a constant voltage source is applied, the current would increase as integral of
it, scaled by the inductance.

Kirchoff’s voltage law states that the sum of voltages in a closed path of an electrical
circuit is zero (conservation of voltage potential) at any given instant,

V14 = V12 + V23 + V34 (11.4)

Kirchoff’s current law states that the algebraic sum of currents at any point in an electrical
circuit is zero, that is, the sum of incoming currents is equal to the sum of outgoing currents
(conservation of electrons), ∑

i1 + i2 + i3 = 0 (11.5)

Consider the voltage divider circuit shown in Figure 11.1a and the current divider circuit
shown in Figure 11.1b. Notice that a series of resistors and a voltage supply form a voltage
divider. The voltage across each resistor is proportional to that resistor value relative to
others. Whereas, a set of parallel resistors make up a current divider circuit. Larger current

(a) (b)

i(t)

2R

Vs(t) Vs(t)
i1(t) i2(t)

i(t)

2 3

1
R

1R

2R

2

11

FIGURE 11.1: (a) Voltage divider circuit, (b) current divider circuit.
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goes through the smaller resistor since there is smaller resistance to the flow of electrons.
For the voltage divider circuit

Vs(t) = V12(t) + V23(t) (11.6)

= R1 ⋅ i(t) + R2 ⋅ i(t) (11.7)

i(t) = 1
R1 + R2

Vs(t) (11.8)

V12(t) =
R1

R1 + R2
Vs(t) (11.9)

V23(t) =
R2

R1 + R2
Vs(t) (11.10)

The last two equations show how the voltage is divided between the series resistors.
For the current divider circuit,

Vs(t) = V12(t) (11.11)

= R1 ⋅ i1(t) (11.12)

= R2 ⋅ i2(t) (11.13)

i(t) = i1(t) + i2(t) (11.14)

=
Vs(t)

R1
+

Vs(t)

R2
(11.15)

=
(

1
R1

+ 1
R2

)
⋅Vs(t) (11.16)

Vs(t) =
R1 ⋅R2

R1 + R2
⋅ i(t) (11.17)

= R1 ⋅ i1(t) (11.18)

= R2 ⋅ i2(t) (11.19)

i1(t) =
R2

R1 + R2
⋅ i(t) (11.20)

i2(t) =
R1

R1 + R2
⋅ i(t) (11.21)

Notice that the last two equations show how the current in the main line is divided over
the two parallel branches of resistors. Current measurement requires the measurement
instrument to be placed in series between the two points through which the current flow
is being measured. This requires disconnecting the circuit at a point, and inserting the
current measurement instrument (i.e., DMM in current measurement mode, ammeter) into
the circuit. Such circuit modifications are not always possible nor convenient. Another way
to measure current indirectly is to measure the voltage across a known resistor, then use
Ohm’s Law to calculate the current. If there is a resistor of known value at the circuit branch
that we want to measure current, then we can measure the voltage across it, and divide
the measured voltage by the resistor value to calculate the current that passes through that
resistor. This method is easier and accurate enough for us to use in the experiments.

Procedure

1. Using the digital multi-meter (DMM), measure the resistance and capacitance of a
few resistors and capacitors. Confirm your measurement with the specifications of
the component.
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(a) (b)

i(t)

R
L

V(t)
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B
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R

C

A

B

FIGURE 11.2: (a) RL circuit (b) RC circuit.

2. Using DMM, measure and determine the direction of current conduction of a diode.

3. Using DMM, measure the continuity across a mechanical switch by turning ON/OFF
the switch (this is called the continuity test between two points in an electrical circuit).

4. Build a voltage divider circuit (Figure 11.1a). Confirm the Kirchoff’s voltage and
current law on the circuit.

5. Build a current divider circuit. Confirm the Kirchoff’s voltage and current law on
the circuit using various closed paths for voltage law and nodes for current law
(Figure 11.1b).

6. Build the RL and RC circuits discussed in the Section 5.5 of the textbook (Figures 11.2
and 11.4), and duplicate the predicted results obtained from simulations. Use the
R, L, C values you have on your experiment for the R, L, C values in your simulation
model. To do that, measure R with DMM, and then the step response of the circuit
voltages as discussed below, and estimate the C and L values from the step response
measurements.

R1

GND

(a)

Voltage divider Current divider

(b)

+V

R1

R2 R2

FIGURE 11.3: Picture of the circuits for: voltage divider and current divider RL circuit and RC

circuit.
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R
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GND

GND

+V

+V

C

R

FIGURE 11.4: Picture of the circuits for: RL circuit and RC circuit.
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7. In the RC circuit, measure the step response: input voltage is Vs(t) which can be
connected to a function generator to generate a square (or rectangular) wave signal
instead of using battery and mechanical switch and output is the voltage across the
capacitor. Measure the time constant of the response, 𝜏: the time duration during
which output voltage reaches 63% of its steady-state value. Note 𝜏 = R ⋅C for this
RC circuit input–output transfer function.

8. Do the same for the RL circuit for step response. This time measure the voltage across
L to measure the time constant. Note 𝜏 = L∕R s for the RL circuit input–output transfer
function.

9. Experiment with different values of the R, L, C in the RC and RL circuit and
measure results in terms of input voltage, output voltage, and current. Verify these
measurements with numerical simulations in MATLAB®/Simulink®.

Note that the mechanical switch can be removed from the circuit. Then, Vs supply
voltage and ground can be connected to the function generator which is configured to
generate a square (or rectangular) wave signal. This approach may be easier to capture the
step response of the input–output relationships in the RC and RL circuit.

11.2 EXPERIMENT 2: TRANSISTOR OPERATION:
ON/OFF MODE AND LINEAR MODE OF OPERATION

Objectives

1. Understand operating principles of a NPN type BJP transistor.

2. Design and build a circuit involving a NPN type BJP transistor in common emitter
configuration.

3. Experimentally determine the ON/OFF mode and linear mode of operation, and
measure the relevant voltages.

Components

Item Quantity Part No. Supplier

Resistors as calculated,

Assortment Kit

1 81832 Jameco Electronics (www.jameco.com)

BJP transistor, NPN type 1 38359PS Jameco Electronics (www.jameco.com)

Breadboard 1 20722 Jameco Electronics (www.jameco.com)

Set of connection wires 1 set 20079 Jameco Electronics (www.jameco.com)

Theory

The transistor is like an “electron valve.” It is the electrical analogy of the hydraulic valve.
A hydraulic valve regulates the flow of fluid: it can be fully closed, fully open, or partially
open. Rate of fluid flow is a function of the hydraulic pressure across the valve and the
amount of opening of the valve. A transistor is an electrical valve. It regulates the flow of
electrons. It can be fully OFF, fully ON, or partially ON. If a transistor is operated only in
either fully ON or fully OFF mode, we call it ON/OFF mode operation. In the OFF mode,
transistor state is called the cutoff state. In the fully ON mode, it is called the saturation state.
In between them, it operates proportional to the base current and is said to be in linear mode.

www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
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Vin

Vs

R2

R1 B

E

C ic

iB

A

D

FIGURE 11.5: Circuit of a voltage

amplifier using a transistor in a

common emitter configuration.

The relationships between electrical variables (voltages and currents) and electri-
cal parameters (resistance, transistor parameters) can be shown as follows (Figure 11.5).
Kirchoff’s voltage law between base (B) and emitter (E) indicates

Vin = VAB + VBE (11.22)

= R1 ⋅ iB + VBE (11.23)

where VBE = VFB = 0.6 V to 0.8 V range. VFB is the forward bias voltage between base
and emitter and it can be up to 0.6 V to 0.8 V range typically. This value is a property of a
transistor and is given in the datasheet of the transistor. If Vin is so small that that VBE < VFB,
then no current flows at the base iB = 0 and the transistor is in the cutoff (OFF state) mode.
Similarly, applying Kirchoff’s voltage law on the output side of the transistor, and noting
that the transistor acts as a current amplifier between its fully OFF (cutoff) and fully ON
states (saturation). The current gain (𝛽) is a property of the transistor and provided in its
datasheet. There can be variations in that gain up to 100% due to manufacturing variations.
Robust circuit designs should not rely on the exact value of the current gain of the transistor.

iC = 𝛽 ⋅ iB (11.24)

Vs = VDC + VCE (11.25)

= R2 ⋅ iC + VCE (11.26)

= R2 ⋅ (𝛽 ⋅ iB) + VCE (11.27)

Vs = R2 ⋅ 𝛽
(

Vin − VFB

R1

)
+ VCE ; for Vin ≥ VFB (11.28)

VCE = Vs −
(

R2 ⋅ 𝛽
R1

)
⋅ (Vin − VFB) (11.29)

VDC = Vs − VCE (11.30)

=
(

R2 ⋅ 𝛽
R1

)
⋅ (Vin − VFB) (11.31)

Notice that VCE can be between maximum value of Vs (when iC = 0 for iB = 0 when Vin <

VFB), transistor is in cutoff (OFF) mode), and minimum value of about VCE,min = 0.2 V
(when the transistor is saturated, fully ON) which is a property of the particular transistor.

We can measure the two input voltage values of interest: first, the minimum input
voltage necessary to start making the transistor conduct, Vin,min. For input voltages below
that the transistor will not conduct (OFF). Second, the value of the input voltage for which
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the transistor saturates (fully ON) and collector current and VCE output voltage does not
change, VCE = VCE,min if input voltage is increased beyond that value (Vin,sat).

The Vin,min is the voltage value which is necessary to provide the forward bias
voltage plus just a bit more in order to make the transistor start conducting. So, this value
is expected to be close to the forward-bias voltage of the transistor. This can be determined
experimentally by slowly increasing Vin and monitoring the change in VCE.

The Vin,sat value is the value which provides a base current (iB), and after being
amplified results in iC = 𝛽 iB such that VCE = VCE,min. Voltages more than that will not
result in any change in the output since the VCE can be no less that VCE,min ≈ 0.2 V and
the rest of the available supply voltage is used to generate the current iC. From the voltage
relations of the output and input circuits, we can calculate the input voltage saturation value
and experimentally measure to confirm it approximately,

iC =
Vs − VCE

R2
(11.32)

=
Vs − 0.2

R2
(11.33)

iB = 1
𝛽
⋅ iC (11.34)

= 1
𝛽
⋅

Vs − 0.2

R2
(11.35)

Vin,sat = R1 ⋅ iB + VBE (11.36)

= R1 ⋅
1
𝛽
⋅

Vs − VCE,min

R2
+ VFB (11.37)

Vin,sat ≈ R1 ⋅
1
𝛽
⋅

Vs

R2
+ VFB (11.38)

where VBE ≈ VFB = 0.6 V to 0.8 V range, VCE,min ≈ 0.2 V. Exact values of these voltages
may vary a little from transistor to transistor. However, we can accurately measure them
experimentally by carefully recording when the transistor makes the transition from cutoff
state to conducting state in the linear region and from linear region to fully ON saturation
region.

Procedure

1. Design and build the circuit shown in Figures 11.5 and 11.6.

2. Choose R1 = 10 kΩ, R2 = 1.0 kΩ, Vs = 9 V. Other values for R1 and R2 can be
chosen. And other available DC voltages can be used for Vs.

3. Provide a means of adjusting the voltage input at the base of the amplifier at point A.
This can be done by using either a DC power supply or a battery (i.e., 9 V plus an
adjustable series resistor (Rs) that would act as a voltage divider when used in series
with the R1 resistor) or through the DAC output channel of the PIC microcontroller.

4. Measure the voltage at the following points, Vin, VAB, VBE, VCE, VDC, and make a
table of them, each voltage representing a column on Table 11.1.

5. Set Vin to different values in increments, that is, 0.0 V, 0.1 V,… , 2.0 V, and measure
the other four voltages and record them using your digital multimeter (DMM) or
oscilloscope.

6. Plot the input voltage (Vin) and output voltage relationships (VCE, VDC) and conclude
in what range of input voltage the transistor is fully OFF, fully ON, and in proportional
(linear) amplifier mode.
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A B

FIGURE 11.6: Picture of the experiment setup for the transistor circuit.

7. Discuss how the input voltage and output voltage relationship would change if the
resistor values R1 and R2 were to change, that is R1 = R2 = 10 kΩ.

8. (Optional) Obtain a way to generate PWM input voltage at the Vin location, that
is PIC microcontroller PWM output, or an op-amp circuit. Select the magnitude
of Vin to be large enough to fully turn on the transistor. Select a PWM frequency
that is large enough compared to a typical electromechanical actuator bandwidth
(for actuator control applications, i.e., actuator bandwidth 100 Hz), yet small enough
for the transistor bandwidth (i.e., 1 MHz). Then the PWM frequency maybe chosen

TABLE 11.1: Measurements for Experiment 2.

Vin VAB VBE VCE VDC

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0
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1 kHz or 10 kHz. Then set the duty cycle (pulse width) of the signal to the following
percentages: 0, 25, 50, 75, 100%. Record the Vin(t) and VCE on the dual-channel oscil-
loscope. Discuss your results. Discuss the following condition: if the output circuit of
the transistor was connected to an electromechanical actuator’s amplification circuit,
what would be the voltage in the output circuit? Assume the actuator and amplifi-
cation circuit combined have a bandwidth of 100 Hz. Simulate this condition using
Simulink® or MATLAB®. What is the main advantage and disadvantage of PWM
base signal control versus linear base signal control?

11.3 EXPERIMENT 3: PASSIVE FIRST-ORDER RC FILTERS.
LOW PASS FILTER AND HIGH PASS FILTER

Objectives

1. Understanding the theory of filter circuits and their applications.

2. Circuit design of a passive low pass filter. Build and test the complete circuit.

3. Circuit design of a passive high pass filter. Build and test the complete circuit.

4. Getting familiar with standard measurement tools and signal generators. Measure the
input and output voltage signals of the filter circuit and confirm the expectations with
measurements.

Components

Item Quantity Part No. Supplier

Resistor as calculated 1 81832 Jameco Electronics (www.jameco.com)

Capacitor as calculated 1 130232 Jameco Electronics (www.jameco.com)

Breadboard 1 20722 Jameco Electronics (www.jameco.com)

Set of connection wires 1 set 20079 Jameco Electronics (www.jameco.com)

Theory

Filters are used to “filter” the frequency content of the input signal and present the“filtered”
or “cleaned-up” version of the input signal as its output signal. Low pass filters pass the low
frequency content and remove (more accurately “attenuate” or reduce) the high frequency
content of the input signal. High pass filters do the opposite: remove (filter-out, more
accurately “attenuate” or reduce) the low frequency content and pass the high frequency
content. Band pass filters pass the frequency content in a specific frequency range, and
remove the frequency content below and above that range. Notch filters do the opposite:
pass all frequency content except a selected range which is removed.

In this experiment, we will build and test a passive low pass filter and a passive high
pass filter. The filters will be built using passive components: a resistor and a capacitor.
Figure 11.7 shows the circuit diagram for a low pass and a high pass passive filter.

The input–output voltage relationship for the low pass filter can be derived as follows.
The voltage across the capacitor is the output voltage and is related to the current and
capacitance value as (assuming zero initial voltage at t = 0, Vo(0) = 0.0),

Vo(t) = 1
C ∫

t

0
i(𝜏)d𝜏 (11.39)

Vo(s) = 1
Cs

i(s) (11.40)

www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
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Vi(t)

(b)

R

C Vo(t)

(a)

Vi(t) R
C

Vo(t)

FIGURE 11.7: Circuit of a first-order passive filters: (a) passive low pass first-order filter,

(b) passive high pass first-order filter.

The current in the circuit is

i(t) =
Vi(t) − Vo(t)

R
(11.41)

i(s) =
Vi(s) − Vo(s)

R
(11.42)

R ⋅ i(s) = Vi(s) − 1
Cs

i(s) (11.43)(
R + 1

Cs

)
⋅ i(s) = Vi(s) (11.44)

i(s)
Vi(s)

= Cs
RCs + 1

(11.45)

Hence the transfer function between the output voltage and input voltage is

Vo(s)

Vi(s)
= 1

RCs + 1
(11.46)

Vo( jw)

Vi( jw)
= 1

1 + jRCw
(11.47)

Notice that when w = 1
RC

rad/s, the magnitude ratio of the output voltage to input voltage
is ||||Vo( jw)

Vi( jw)

||||w=wc=
1

RC

=
|||| 1
1 + jRCwc

|||| (11.48)

=
||||||

1

1 + jRC 1
RC

|||||| (11.49)

= 1
(12 + 12)1∕2

(11.50)

= 1√
2

(11.51)

= 0.707 (11.52)

where the value wc =
1

RC
rad/s or fc =

1
2𝜋RC

Hz is called the cutoff frequency of the filter,
that is the frequency at which the output signal magnitude is 0.707 times the input sig-
nal magnitude in steady-state. In other words, the output signal is attenuated by 3 dB in
comparison to the input signal.

20 ⋅ log10(0.707) = −3.0 dB (11.53)
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In a MATLAB® command window, this can be calculated as shown,

>> 20*log10(0.707)

ans =

-3.0116

Similarly, the input–output voltage relationship can be derived for the high pass filter.
Notice that the location of resistor and capacitor on the circuit is swapped compared to the
low pass filter. Following the similar derivation process, it is straightforward to derive the
input–output voltage relationship.

Vo(t) = R ⋅ i(t) (11.54)

Vo(s) = R ⋅ i(s) (11.55)

The voltage across the capacitor, assuming zero initial voltage across the capacitor,
Vc(0) = 0

Vc(t) = Vi(t) − Vo(t) (11.56)

Vi(t) − Vo(t) = Vc(0) + 1
C ∫

t

o
i(𝜏)d𝜏 (11.57)

Vi(t) − Vo(t) = 0 + 1
C ∫

t

o
i(𝜏)d𝜏 (11.58)

Vi(s) − Vo(s) = 1
Cs

i(s) (11.59)

By substituting the relationship for i(s) = 1
R

Vo(s), it can be shown that

Vo(s)

Vi(s)
= RCs

1 + RCs
(11.60)

Vo( jw)

Vi( jw)
=

jRCw

1 + jRCw
(11.61)

which represents the high pass filter transfer function. Again, notice that at w = wc where
wc =

1
RC

rad/s or fc =
1

2𝜋RC
Hz, the magnitude ratio is 0.707. Except that in the high pass fil-

ter, the filter passes the frequency content above this frequency and attenuates the frequency
content below that frequency. The low pass filter does the opposite.

Procedure

1. Design and build a passive low pass filter and a passive high pass filter as shown in
Figures 11.7, 11.8, and 11.9 with a cutoff frequency in the range of fc ≈ 1.0 kHz.
Select proper R and C values.

2. Setup the function generator to produce a sinusoidal wave with an amplitude of
6 V (peak-to-peak). Notice that we do not need to provide any power to the circuit,
only the input signal, since it is a passive circuit. When we build active filters with
op-amps, we need to provide power to the op-amp in addition to providing the input
signal.

3. Connect an oscilloscope to the input and output of the low pass filter. Sweep the input
signal frequency range of 10 Hz to 100 kHz and measure the output voltage at each
selected frequency. In particular, record 1) the magnitude ratio of output magnitude
to input magnitude, and 2) phase shift between input and output signal at selected
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FIGURE 11.8: Picture of the experiment setup for a first-order passive filter.

frequencies. In order words, record a table of three columns: column 1 = frequency,
column 2 = magnitude ratio, column 3 = phase shift.

4. Obtain oscilloscope screen images (or simply draw a sketch at selected frequencies)
to show the input voltage and output voltage relationship of each filter in the time
domain.

5. Compare your experimental measurements of frequency response with the analytical
predictions. For analytical predictions, plot the transfer function magnitude and phase
angle as a function of frequency, that is using MATLAB®.

6. Do the same for the high pass filter.

Vi(t) Vo(t)

GND GND

Vi(t) Vo(t)

Low-pass filter High-pass filter

FIGURE 11.9: Picture of the assembled circuit on bread-board for a first-order passive low

pass and high pass filter.
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7. Compare the input–output voltage relationship for the low pass filter and high pass
filter. Describe the differences.

8. Discuss how you can build a band pass filter using a combination of low pass and
high pass filter.

9. Discuss how you can build a band reject (Notch) filter using a combination of low
pass and high pass filter.

10. (Optional) Complete the same experiment for band pass filter and Notch filter.

11.4 EXPERIMENT 4: ACTIVE FIRST-ORDER LOW PASS
FILTER WITH OP-AMPS

Objectives

1. Understanding the theory of active filter circuits and their applications.

2. Circuit design of an active op-amp low pass filter. Build and test the complete circuit.

3. Measure the input and output voltage signals of the filter circuit and confirm the
expectations with measurements.

Components

Item Quantity Part No. Supplier

LM358 Op-Amp IC 1 23966 Jameco Electronics (www.jameco.com)

Resistors as calculated 2 81832 Jameco Electronics (www.jameco.com)

Capacitor as calculated 1 130232 Jameco Electronics (www.jameco.com)

Breadboard 1 20722 Jameco Electronics (www.jameco.com)

Set of connection wires 1 set 20079 Jameco Electronics (www.jameco.com)

Theory

For our purpose, a filter is designed as an electronic circuit that produces a prescribed
frequency response characteristic, of which the most common objective is to pass a certain
frequency range while rejecting others. Filters may be classified into two major groups:
passive filters and active filters. Passive filters consist of combinations of resistors, capac-
itors, and inductors. Passive RLC filters are capable of achieving relatively good filter
characteristics in applications in the audio frequency range. But at the lower end of the
audio frequency range, a problem occurs due to the high internal loss of inductors at low
frequencies. Active filters consist of combinations of resistance, capacitance, and one or
more active devices, such as op-amps, employing feedback. Since inductances are not
required, the difficulties associated with them at low frequencies are eliminated.

The low pass filter built in this experiment is different from the one discussed in the
Chapter on Electronics in that the DC gain of the low pass filter discussed in Figure 5.32
is equal to +1 if Rf = Ri, whereas the DC gain of the low pass filter discussed in this
experiment is equal to −1 if R1 = R2. Otherwise, they both are first-order (single-pole) low
pass active filters.

From the point of view of the amplitude of the frequency response, most filters
can be classified as low pass, high pass, band pass and band rejection (notch) filters. In
this experiment we will concentrate on a low pass filter design. Figure 11.10 shows an

www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
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Pass band
Transition

band

Idealized
response

Stop band

Frequency
0

fc

Amplitude ratio (Output signal/input signal)
response

FIGURE 11.10: Representative amplitude response of a realistic low pass filter.

amplitude response of a realistic low pass filter. The quantity fc represents the the cutoff
frequency. In an ideal case, the amplitude response for f < fc is unity, so frequencies in this
range are passed by the filter. For f > fc, the amplitude response is zero, so frequencies in
this range are completely eliminated by the filter. In reality, however, there is a transition
band in between the pass band and the stop band, where the amplitude response decreases
continuously.

Figure 11.11 shows a first-order active low pass filter circuit. The transfer function in
the frequency domain between input and output voltages can be derived by following the
op-amp idealized assumptions and Kirchoff’s current and voltage laws. The voltage at the
positive terminal is grounded, hence the voltage potential at the negative terminal is also
grounded since v+ = v−,

v+ = 0 (11.62)

v− = 0 (11.63)

Then we can calculate the current over the resistor R1.

i1 =
Vi

R1
(11.64)

C

–

+

R2

R1

Vi Vo

FIGURE 11.11: Circuit of a first-order active low

pass filter.
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Also note that no current would flow into the op-amp, then the same current must pass
through the R2 and C combination (noting Kirchoff’s current law),

i1(t) =
Vi(t)

R1
= iR2(t) + ic(t) (11.65)

=
Vo(t)

R2
+ ic(t) (11.66)

Vo(t) = 1
C ∫

t

0
ic(𝜏)d𝜏 (11.67)

where we use the fact that the current flow over the R2 and C is determined by the output
voltage and the ground voltage at the negative input (inverting) terminal. We will add the
negative sign to the input–output voltage relation at the end of the derivation. If we take the
Laplace transform of the above equations, we can easily find the transfer function betwen
input voltage and output voltage,

i1(s) =
Vi(s)

R1
=

Vo(s)

R2
+ Cs ⋅Vo(s) (11.68)

Vo(s)

Vi(s)
= −

R2

R1
⋅

1
1 + R2Cs

(11.69)

where we added the negative sign to indicate the sign relationship between input voltage and
output voltage is opposite. In order to obtain the frequency response relationship between
input voltage and output voltage, let s = jw,

H( j𝜔) =
Vo( jw)

Vi( jw)
= −

R2

R1
⋅

1
1 + j𝜔R2C

(11.70)

For the case of R1 = R2 = R we have

H( j𝜔) = − 1
1 + j𝜔RC

(11.71)

The cutoff frequency fc is defined as the point where

|H( j𝜔)| = |Vo( jw)

Vi( jw)
| = 1√

2
(11.72)

20 ⋅ log10 |H( j𝜔)| = 20 ⋅ log10
1√
2
= −3 dB (11.73)

Thus, we can write

1 = j
𝜔

𝜔c
RC (11.74)

from that it follows

𝜔c = 2𝜋fc =
1

RC
rad/s (11.75)

and finally

fc =
1

2𝜋RC
Hz (11.76)
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FIGURE 11.12: Picture of the experiment for a first-order active low pass filter: circuit on

breadboard and the oscilloscope.

Procedure

1. Design an active low pass filter as shown in Figures 11.11, 11.12, 11.13 with a
cutoff frequency of fc ≈ 1.9 kHz and a DC gain of |GDC| = 1. Use R1 = 820 kΩ
and calculate R2 and C to meet the design specifications.

2. Build up the circuit and power the op-amp with a 9-V battery or a DC power supply.

3. Set up the function generator to produce a sinusoidal wave with an amplitude of
6 V (peak-to-peak). Adjust the offset voltage so that input excitation voltage range is
within the DC power supply voltage range.

V+

V–

GND

IN
OUT

FIGURE 11.13: Picture of the circuit of a first-order active low pass filter on the solderless

breadboard.
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4. Connect an oscilloscope to the input and output of the low pass filter. Sweep the
frequency range of 10 Hz to 100 kHz and measure the output voltage at each selected
frequency, that is 10 Hz, 100 Hz, 1, 10, 50, 100 kHz. Create a table showing the ratio|Vout

Vin
| = |H( jw)| for the selected frequencies. Do the same for phase shift (phase

angle) between Vout( jw) and Vin( jw).

5. Use logarithmic scale to plot the amplitude response and phase angle of the filter
(Bode plot). Show |H( j𝜔)| over frequency. Mark in the 20 log10 |H( jw)| = −3 dB
(equivalently, |H( jw)| = 0.707) cutoff frequency. Compare the experimental results
with analytical results obtained by plotting Equation 11.71 using MATLAB®.

6. What is the attenuation of the filter per decade in the transition band (that is the slope
in log-log scale, 20 log10 |H( jw)| versus log10 w)?

7. Set up the function generator to produce a square wave with a frequencies of 100 Hz,
2.0 kHz, 10 kHz. Measure the output signal and make a sketch in your solution sheet.
Explain the result in terms of frequency content.

8. (Optional) If your digital storage oscilloscope is capable of taking FFT (Fast Fourier
Transforms), take the FFT of both the input signal and output signal. Discuss the
results. From the FFT of input and output signals, obtain the experimental transfer
function of the low pass filter circuit in the frequency domain. Discuss the frequency
response (the transfer function in the frequency domain, that this the ratio of FFT
of output signal to the FFT of the input signal) compared to the analytical transfer
function evaluated as a function of frequency.

9. (Optional) Discuss how you could take the FFT of the input and output signals using
the PIC microcontroller. (Hint: Use ADC channels 0 and 1 for input and output
signals. What is the limitation of the PIC microcontroller: available RAM memory
for data?)

10. (Optional) Repeat the same experiment for an active high pass filter.

11.5 EXPERIMENT 5: SCHMITT TRIGGER WITH VARIABLE
HYSTERESIS USING AN OP-AMP CIRCUIT

Objectives

1. Understanding the theory of the Schmitt trigger circuit (relay control with hysteresis)
and its applications.

2. Circuit design of a variable hysteresis Schmitt trigger circuit using op-amp.

3. Measuring the hysteresis band of the Schmitt trigger circuit.

4. Application of this circuit as a relay control (with hysteresis) for closed loop control
(i.e., as analog controller).

Components

Item Quantity Part No. Supplier

LM358 Op-Amp IC 2 23966 Jameco Electronics (www.jameco.com)

Potentiometer (2 kΩ) 2 41865 Jameco Electronics (www.jameco.com)

Resistor 4.7 kΩ 1 107633 Jameco Electronics (www.jameco.com)

Resistor 1 kΩ 5 29663 Jameco Electronics (www.jameco.com)

Battery 9 V 2 198791 Jameco Electronics (www.jameco.com)

Breadboard 1 20722 Jameco Electronics (www.jameco.com)

Set of connection wires 1 set 20079 Jameco Electronics (www.jameco.com)

www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
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Theory

Comparator op-amp circuits employing positive feedback are widely known as Schmitt
trigger circuits. The addition of positive feedback results in an effect called hysteresis.
Hysteresis is a phenomenon in which the transition point of the output signal as function
of the input signal is different when switching from the low state to the high state as
compared with switching from the high state to the low state. In other words, the transition
point is direction sensitive. Op-amp comparator circuits with hysteresis are used to reduce
the possibility of undesirable state changes due to spurious noise pickup. Schmitt trigger
circuits are also used in the digital I/O interfaces to remove the intended ON/OFF switching
of the digital I/O, such as the so-called switch debouncing.

The hysteresis effect is often a desirable feature in many ON/OFF control systems.
Such control systems are called relay (ON/OFF) control with hysteresis.

Consider an inverting Schmitt trigger op-amp (Figure 11.14). The voltage at the (+)
terminal is the same as the voltage across R2,

v+ = VR2 =
R2

R1 + R2
⋅Vo =

R2

R1 + R2
⋅Vsat (11.77)

Let VT = VR2. The output of the amplifier is essentially always saturated depending on the
signals on its input terminals (+) and (−). The hysteresis band between input and output,
VT is

VT =
R2

R1 + R2
⋅Vsat (11.78)

Let us trace the operation on the op-amp along the input–output relationship curve
that has the hysteresis loop. Note that the input–output relationship of the op-amp is

V0 = Vsat if v+ > v− (11.79)

V0 = −Vsat if v+ < v− (11.80)

VT =
R i

R f

Vsat

R i
R f

Vo

Vi

+

_

v+

R1

Vo
Vi

+

_

v+

R2
VT = Vsat

R1 R2

R2

+

VT
–VT

A

B

CD

Vo

+Vsat

V– sat

Vi

VT–VT

A

B

CD

Vo

+Vsat

V– sat

Vi

(a) (b)

FIGURE 11.14: Schmitt trigger: (a) non-inverting, and (b) inverting configuration, ON/OFF

output with hysteresis function.
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Assume that initially we start on the curve from the left hand side,

Vo = Vsat, v+ = VR2, Vi < 0 (11.81)

For the op-amp output to change state, Vo = −Vsat (move to the C part of the curve), the
inverting input (v−) must slightly exceed the noninverting input (v+), (Vi = v−) > (v+ =
VR2). In other words, we move along B on the input–output curve to C, neglecting the
transient response details of the change in the output state of the op-amp, when Vi = v−

becomes larger than the value of v+ = VT. At this point and for larger values of Vi, the output
of the op-amp switches to the negative saturation value, Vo = −Vsat. In order for the op-amp
output to return to the previous state, now the inverting input must be slightly more negative
than the noninverting input which is at the value of −VT, (vi = v−) < (v+ = −VT). Then,
the state of the op-amp output will switch back to ON (D line along the hysteresis loop).

The noninverting Schmitt trigger circuit works with the same principle except the
output polarity is different (Figure 11.14a), where,

VT =
Ri

Rf
⋅Vsat (11.82)

This circuit can be used as an analog controller in a closed loop control system. In
order to apply and test this circuit in such an application, we would need to provide

1. a subtraction function: Reference Signal − Feedback Signal, using a difference ampli-
fier (Figure 5.31a)

e(t) = r(t) − y(t) (11.83)

= Vref(t) − Vsensor(t) (11.84)

2. two potentiometers to simulate the “Reference Signal” and “Feedback Signal from
Sensor,” to generate (simulate)

Vref (t) (11.85)

Vsensor(t) (11.86)

Then, moving the potentiometers by hand to simulate real-application conditions (i.e.,
fixed reference signal, varying sensor signal), we can monitor the output of the Schmitt
trigger circuit working as a closed loop controller (Figure 11.15).

Procedure

1. Design the noninverting Schmitt trigger circuit in Figure 11.15 with hysteresis voltage
VT varying from 0.25 to 0.6 times Vsat.

2. Assemble the circuit on the breadboard as shown in the circuit diagram. Take care not
to connect the 9-V batteries until the entire circuit has been assembled (Figures 11.16,
11.17).

3. Set up the function generator to produce a triangular wave with an amplitude of 6 V.

4. Connect the oscilloscope to the input and output of the noninverting Schmitt trigger
circuit. Measure the input voltage and output voltage.

5. Sketch the input and output voltage signals. Verify the hysteresis effect between the
input and output voltages.

6. Vary Ri value on the circuit and confirm its effect of the hysteresis band.

7. The students may also build and test an inverting version of this circuit as shown in
Figure 11.14b.

8. Assemble a difference amplifier, and two potentiometers. Connect them together to
the Schmitt trigger circuit, to effectively implement the closed loop analog controller.
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Vi

Vo

R i

R f

–

+

+9 V

–9 V

Vref

Vs

Vsensor

Vs

2

–

+

FIGURE 11.15: Noninverting Schmitt trigger circuit.

FIGURE 11.16: Noninverting Schmitt trigger lab setup.
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GND

+V

OUT
IN

–V

FIGURE 11.17: Picture of a noninverting Schmitt trigger circuit built on a breadboard (without

the difference amplifier).

11.6 EXPERIMENT 6: ANALOG PID CONTROL
USING OP-AMPS

Objectives

1. Understanding the theory of summing, inverting, differential, derivative, and integra-
tor op-amps.

2. Build a complete analog PID control circuit.

3. Test the input–output signal relation of a PID circuit (i.e., P-only, D only, I only, PD,
PI, PID versions of the circuit).

Components

Item Quantity Part No. Supplier

LM358 Op-Amp IC 3 23966 Jameco Electronics (www.jameco.com)

Resistor 1 kΩ 8 29663 Jameco Electronics (www.jameco.com)

Resistor 4.7 kΩ 4 107633 Jameco Electronics (www.jameco.com)

Resistor 100 kΩ 4 29997 Jameco Electronics (www.jameco.com)

Resistor 470 Ω 1 107537 Jameco Electronics (www.jameco.com)

Capacitor 0.22 μF 2 25540 Jameco Electronics (www.jameco.com)

Battery 9 V 2 198791 Jameco Electronics (www.jameco.com)

Breadboard 1 20722 Jameco Electronics (www.jameco.com)

Set of connection wires 1 set 20079 Jameco Electronics (www.jameco.com)

Theory

The “pure” derivative has a large gain at high frequency and will amplify the noise in the
closed loop, and hence lead to stability problems. In order to reduce the gain of the pure
derivative at high frequency, a practical derivative op-amp circuit is modified so that it has
a first-order pole in addition to the derivative, hence reducing the high frequency gain of
the transfer function thereby reducing the problem of noise amplification. This is done by

www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
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100 kΩ
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4.7 kΩ
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–

–
–

–

+

+

+

+

+

–9 V

+9 V

–9 V

–9 V

+9 V

–9 V

+9 V

–9 V

+9 V

+9 V

R4 = 220 Ω , 2.0 MΩ

R3 = 330 kΩ

R1 = 4.7 kΩ

R2 = 4.7 kΩ

C = 0.22 μF

C = 0.22 μF

FIGURE 11.18: Analog PID control circuit.

adding a resistor R1 in series with the capacitor C (Figures 11.18, 11.19, 11.20, and 11.21).
Let us derive the transfer function for this practical derivative circuit. Notice that v+ = GND
and v+ = v− at the input terminals of the op-amp. Since there cannot be current drawn into
the op-amp, then

i1(t) = i2(t) (11.87)

where i1(t) is the current on the input side of the op-amp through R1 and C, and i2(t) is the
current on the feedback loop of the op-amp through R2. It is easy to show that

Vi(t) = R1 ⋅ i1(t) + 1
C ∫

t

0
i1(𝜏)d𝜏 (11.88)

Vi(s) = R1 ⋅ i1(s) + 1
C

1
s

i1(s) (11.89)

i1(s) = Cs
R1Cs + 1

Vi(s) (11.90)
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FIGURE 11.19: Analog PID control circuit lab setup.

Similarly,

i2(t) =
0 − Vo(t)

R2
(11.91)

i2(s) =
−Vo(s)

R2
(11.92)

FIGURE 11.20: Picture of the analog PID control circuit based on op-amps on a breadboard.
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FIGURE 11.21: Picture of the complete circuit for LED control via the digital output of a PIC

microcontroller.

Hence,

i1(s) = i2(s) (11.93)

Cs
R1Cs + 1

Vi(s) =
−Vo(s)

R2
(11.94)

Vo(s)

Vi(s)
= −

R2Cs

R1Cs + 1
(11.95)

which shows that the new transfer function is a modified version of the differentiator. It not
only has a zero at the origin s = 0, but also has a pole at s = −1∕(R1C). This added pole
eliminates the high noise amplification problem of the “pure” differentiator.

In practice, an integral op-amp circuit typically includes a parallel resistor with the
capacitor (R4 in Figure 11.18). The reason for this is that a “pure” integrator adds a −90
degree phase (phase lag) to the loop at all frequencies. If we could reduce that phase lag at
least at lower frequencies, it would improve the stability of the closed loop system. Hence,
a pure integrator may be modified with a resistor R4 in parallel with the capacitor in the
feedback path to accomplish this. Let us show the new transfer function by derivation. Let
i1(t) be the current across R1, i2(t) be the current across R2, and i3(t) be the current across
C. From the same op-amp relations, it follows that

i1(t) = i2(t) + i3(t) (11.96)

i1(s) = i2(s) + i3(s) (11.97)

It is straightforward to show the relationships between currents, voltages, and resistors/
capacitor,

Vi(t)

R3
=

0 − Vo(t)

R4
+ C

d(0 − Vo(t))

dt
(11.98)

Vi(s)

R3
=

−Vo(s)

R4
+ Cs(−Vo(s)) (11.99)
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Vo(s)

Vi(s)
= −

R4

R3

1
(R4Cs + 1)

(11.100)

Vo(s)

Vi(s)
= − 1

RCs + 1
; for R3 = R4 = R (11.101)

which shows that the addition of R4 in parallel with the C capacitor on the feedback path
changes the “pure integrtor” (which has a pole at s = 0.0) into a first-order filter with a
pole at s = −1∕(R4C), where R and C parameters should be chosen such that the pole at
s = − 1

R4C
≈ 0.0 is close to the origin in order to approximate the integrator function.

The textbook PID controller transfer function is

u(s) =
(

Kp +
Ki

s
+ Kds

)
⋅ e(s) (11.102)

u(t) = Kp ⋅ e(t) + Ki ⋅ ∫ e(𝜏)d𝜏 + Kd ⋅
de(t)

dt
(11.103)

where e(s) is the Laplace transform of the error signal, s(s) is the PID controller output.

Procedure

1. Assemble the circuit on the breadboard as shown in Figure 11.18. Take care not to
connect the 9-V batteries until the entire circuit has been assembled.

2. Derive the complete transfer function of the PID controller. Calculate the proportional,
derivative, and integrator gains: Kp, Kd, Ki, and the additional pole location of the
modified derivative term, and pole location and gain of the modified integral term.
Experiment with both pure-derivative and pure integral, and modified derivative and
modified integral, versions of the circuit. That is, remove R4 from the integrator
circuit to implement a pure integrator, and remove R1 from the derivative circuit to
implement a pure derivative function.

For the measurements to be taken below, remove R1 from the derivative circuit
and remove R4 from the integrator circuit. There are ten (10) results to capture.

3. Set up the function generator to produce two different wave forms with an amplitude
of 6 V: square wave and sine wave. The frequency of the wave functions can be easily
adjusted on the function generator, for example to 1.0 Hz. Connect the function
generator signal to Vi (feedback signal). Connect the Vref signal to the ground voltage
level.

4. Connect the oscilloscope channel 1 to the input signal from the function generator,
and oscilloscope channel 2 to the output of the differential op-amp, and sketch (or
take a picture of the oscilloscope screen) the input and output waveforms.

5. Connect the oscilloscope channel 1 to the input signal of the proportional op-amp
(output of the differential op-amp), and oscilloscope channel 2 to the output of the
proportional op-amp, and sketch (or take a digital picture of the oscilloscope screen)
the input and output waveforms.

6. Connect the oscilloscope channel 1 to the input signal of the derivative op-amp
(output of the differential op-amp), and oscilloscope channel 2 to the output of the
derivative op-amp, and sketch (or take a digital picture of the oscilloscope screen)
the input and output waveforms.

7. Connect the oscilloscope channel 1 to the input signal of the integrating op-amp
(output of the differential op-amp), and oscilloscope channel 2 to the output of the



LABORATORY EXPERIMENTS 775

integrator op-amp, and sketch (or take a digital picture of the oscilloscope screen) the
input and output waveforms.

8. Connect the oscilloscope channel 1 to the input signal of the op-amp (output of the
differential op-amp), and oscilloscope channel 2 to the output of the summing op-amp
(which is the output of the PID controller circuit), sketch (or take a digital picture
of the oscilloscope screen) the input and output waveforms. Confirm that the output
voltage of the summing op-amp is the sum of the voltages from the P-I-D sections of
the circuits (voltage outputs from P, I, and D circuits) multiplied with −1.

9. (Optional) Repeat the above 10-result test with the modified derivative (R1 is in the
circuit) and the modified integral term (R4 is in the circuit). Note that the values of the
added R1 and R4’s affect the performance of the PID controller and must be selected
properly for the intended performance.

10. (Optional) Repeat the above 10-result test with the modified derivative (R1 is in the
circuit) and the modified integral term (R4 is in the circuit). Except that in this case,
select a poor value for R4 on purpose so that the circuit is not a good approximation
to the integral function circuit.

11. (Optional) Closed loop control test: build a mathematical model of the PID circuit
(using MATLAB® or Simulink®) and simulate for the same circuit parameters and
input signal conditions, and compare your simulation results with the experiments.
Comment on the causes of the differences between simulation and experimental
results.

12. (Optional) Build a second-order system, that is double integrator (mass-force anal-
ogy), circuit to “simulate” the plant dynamics. Simply connect two integrators in
series. Then connect the output of the PID controller circuit to the input of the
double-integrator (plant), and the output of the double integrator into the negative
port of the PID’s comparator circuit at the input (Figures 2.35 and 2.36 in the text-
book). Using a potentiometer, generate the desired (commanded) output voltage.
Simulate the whole system in MATLAB® or Simulink®. Test the same simulated
conditions on the actual circuit and compare the closed loop system response results
(simulation results and hardware test results). Digital implementation of the PID con-
troller in real-time is given by Equations 2.42–2.44 in the textbook. If the sampling
period T is fast relative to the bandwidth of the system, the digital implementation
should give almost identical results to the analog implementation. The difference
between digital and analog implementation can be tested in simulation only using
MATLAB®/Simulink® without any hardware involvement, in that we should be able
to confirm a selection of a sampling period that is fast enough that the difference
between analog and digital implementation of the PID controller is insignificant. In
the simulation, we can also include the quantization errors due to finite word-length
(finite resolution) of the ADC and DAC converters. Equations 2.42 and 2.44 do not
include the effect of the quantization errors introduced by DAC and ADC.

11.7 EXPERIMENT 7: LED CONTROL USING
THE PIC MICROCONTROLLER

Objectives

1. Learn to use the integrated development environment (IDE) software and PIC micro-
controller development board.

2. Learn basic hardware interface between a microcontroller, digital input devices (DIP
switches in this case), and digital output devices (LEDs in this case).
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3. Learn the basic hardware and software features of PIC 18F452 or PIC 18F4431, and
software control a digital I/O channel.

4. To read the status of digital inputs: status of the DIP switches under software control.

5. To drive LEDs under software control by using digital output pins of an I/O port of
the PIC18F452 (or PIC 18F4431) microcontroller, and to change the status of LEDs
under software control based on digital inputs to the PIC microcontroller.

Microcontroller discussion is based on PIC 18F452. However, PIC 18F4331 has a
peripherial interface for quadrature encoder, and hence makes Experiment number 12 much
easier to handle. There are minor differences between the two models of this microcontroller
family. The reader should make the necessary adjustments depending on which model is
being used.

Components

Item Quantity Part No. Supplier

LED 4 119634 www.jameco.com

100 Ω and 100 kΩ resistors 12 107465 www.jameco.com

DIP Switch 1 38818 www.jameco.com

PIC demo board/connector 1 set DV164006 or

DM163022

www.microchipdirect.com

Theory

The PIC 18F452 microcontroller has five input–output ports, labeled PORTA, PORTB,
PORTC, PORTD, and PORTE. These are used to interact with the world outside, consisting
of various sensors and actuators. The interface circuit schematic is shown in Figures 11.22
and 11.23. Of these, Ports A and E are 6-bit ports, while B, C and D are 8-bit ports. These
ports can be configured as either input or output through the use of the TRIS command.

The command syntax for output is:

TRISx = 0;
PORTx = <value>;

where x refers to any of the ports A,B,C,D or E.
The syntax for input is:

TRISx = 1;
value = PORTx

Once a particular port is configured as an output, any (binary) data that is sent to the
port is placed on the port pins on the microcontroller chip. When used as an input, any
binary signal value applied to the input ports is written into that port register in the memory.

The default state of digital inputs can be defined by either connecting the input port
pin to a supply voltage (i.e., 5 VDC) or to ground via a resistor. If the connection is
made to the supply voltage (i.e., default ON state), it is called pulled-up and the resistor
is called the pull-up resistor (Figure 11.23). If the connection is made to the ground (i.e.,
default OFF state), it is called pulled-down and the resistor is called the pull-down resistor
(Figure 11.22). The appropriate value for the pull-up and pull-down resistors are determined
by the supply voltage and maximum current draw specifications of the microcontroller. In
this experiment, it is recommended that both types of digital input connections be tested
and the switch state is properly interpreted in the application software.

www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.microchipdirect.com
www.microchipdirect.com
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Application Software Description

The program code for all the experiments is written in C programming language and
compiled with MPLAB C18 C-compiler. The code can be typed in the MPLAB Integrated
Development Environment (IDE) using the built-in editor or in any standard ASCII editor
such as Notepad. The code is then compiled using the C-18 compiler in the MPLAB IDE.

The program code must contain at least two sections: a setup section and logic section.
Depending on the state of input switches selected by the user, the program execution is
transferred to a particular section, and that section is executed. Points to be noted are:

1. Include proper header files provided with the C-18 compiler,
if PIC 18F452 microcontroller is used

#include <p18f452.h>
#include <delays.h>

or if PIC 18F4431 microcontroller is used

#include <p18f4331.h>
#include <delays.h>

2. Configure the correct ports as input and output using the TRISx command that
matches your hardware interface choices for input and output. Clear any existing
values on the ports by setting them to zero.

3. If you are using the “Watch” option while debugging in MPLAB to keep track of
register values, note that the values are in hexadecimal (0-9, A-F).

4. As an example, if we wanted to send out a high signal on pin 0 and pin 5 of Port D,
the code is:

TRISD = 0; /* Set Port D as output */

PORTD = 0; /* Clear existing Port D value */

PORTD = 33; /* Decimal equivalent of 00100001 */

/* Value for Port D in the Watch window in MPLAB is 21
(hex equivalent of 33) */

Procedure

1. Assemble the circuit on the breadboard as shown in Figures 11.22 or 11.23.

2. Connect the four LEDs to each of four pins of PORTB of the PIC microcontroller on
the demo board. The resistors in series with the LEDs are used to limit the maximum
current through the LED, hence the current load (draw) from the PIC microcontroller
per LED. Resistor values in the range of 100Ω to 1 kΩ are typically used.

3. Connect four switches on the 8-pin DIP switch to pins on the PORTC of the PIC
demo board. Notice the resistors (i.e., 10 kΩ or 100 kΩ) connecting the input ports
to the ground. As a result of this connection, when the input switch is open (OFF),
the input pin is at ground (OFF) level. When the input switch is closed (ON), the
input pin is at high level (5 V) in ON state. This is called the pull-down resistor
configuration, because the resistor “pulls-down” the pin to the ground. If we had
swapped the location of the switches and resistors, the ON/OFF relationship would
be reversed. In that case, when a switch is OFF (open), the corresponding input
pin status would be high (ON). When the switch is ON (closed), the corresponding
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input pin status would be low (OFF). This is called the pull-up resistor configuration,
because the resistor “pulls-up” the pin to the supply voltage.

4. Open MPLAB environment, and load your project or open a new project. Your code
for the project must contain two separate sections as described earlier: a setup section
and logic section.

5. Polling method of programming: the logic implemented between the input DIP
switches and output LEDs is left to the student. One simple logic implementation
may be to display the same state of DIP switches on the LEDs.

6. Implement an interrupt driven program using a timer: use one of the timers modules
(i.e., TIMER0, TIMER1, TIMER2) to generate an interrupt at a programmed fre-
quency. Write the interrupt service routine (ISR) for the timer interrupt which will
read the input switches, and write the status of the inputs to the output LEDs. Setup
the priority of the interrupt. Direct the timer interrupt to the written ISR function.

7. Implement an interrupt driven program based on an external event (instead of a timer):
a change of state in any of the input switches is defined as the interrupt. Perform the
same function.

11.8 EXPERIMENT 8: FORCE AND STRAIN MEASUREMENT
USING A STRAIN GAUGE AND PIC-ADC INTERFACE

Objectives

1. Build a complete circuit to interface a strain-gauge sensor to the A/D converter of the
PIC microcontroller. This includes building a Wheatstone bridge and an operational
amplifier to amplify the voltage output of the Wheatstone bridge, and interfacing it
to one of the ADC channels of the PIC controller.

2. Develop application software to sample the strain-gauge output voltage using the
ADC and estimate/measure the force and strain due to load applied (Figure 11.24).

FIGURE 11.24: Picture of the complete circuit for the strain gauge sensor experiment.
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Components

Item Quantity Part No. Supplier

Aluminum beam (2 mm x 15 mm x 1000 mm) 1 1663T12 McMaster

(Cut into shorter lengths)

Strain gauge G = 2, R = 120 Ω 1 SG-6/120LY11 www.omega.com

(and bonding adhesive) 1 SG401 www.omega.com

LM358 Op-Amp IC 2 120862 (www.jameco.com)

Potentiometer (200 kΩ max) 1 241349 (www.jameco.com)

Resistor 120 Ω 2 30082 (www.jameco.com)

Resistor 100 kΩ 1 107764 (www.jameco.com)

Resistor 1000 Ω 1 30081 (www.jameco.com)

Breadboard 1 20722 (www.jameco.com)

Set of connection wires 1 set 20079 (www.jameco.com)

PIC Demo Board/connectors 1 DM163022 (www.microchip.com)

Theory

Force and Strain Relationship The strain gauge setup consists of an aluminium
beam that is fixed at one end to a frame, and is free at the other. A picture of the exper-
iment setup is shown in Figure 11.24. A schematic of the mechanical setup is shown in
Figure 11.25. The aluminum cantilever beam is loaded by deflecting the free end with the
aid of a vertically mounted screw.

Application of a force, F, on the tip of a cantilever results in a bending moment

M = F ⋅ ls (11.104)

where ls is the distance between the force application point and the center of the measure-
ment point (the strain gauge location). This moment is balanced by “stress,” 𝜎, that causes

Height: h

Max deflection

Width: b

ls

FIGURE 11.25: Strain gauge sensor experiment.

www.omega.com
www.omega.com
www.omega.com
www.omega.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.microchip.com
www.microchip.com
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lengthening and shortening of fibers of material. The amount of extension is called “strain,”
𝜖, and is defined as

𝜖 = Δl
l

(11.105)

As long as the deformation of the material stays within the linear elastic region, the relation
between stress and strain is provided by the constitutive law of the material:

𝜎 = E ⋅ 𝜖 (11.106)

where E is the Young’s modulus of the material.
There is a linear relationship between the applied force and the induced strain,

as long as the deformation is limited to the elastic region of the deformation of the
material. For a cantilever beam with rectangular cross-section we have the following
relations,

𝜎max =
M ⋅ (h∕2)

I
(11.107)

=
F ⋅ ls ⋅ (h∕2)

(1∕12) ⋅ b ⋅ h3
(11.108)

=
6 ⋅F ⋅ ls ⋅ h

b ⋅ h3
(11.109)

=
6 ⋅F ⋅ ls
b ⋅ h2

(11.110)

𝜖max = 1
E
𝜎max (11.111)

=
6ls

E b h2
⋅F (11.112)

where b, h are the width and thickness of the cantilever beam used in this experiment, ls
is the distance from the force application point to the strain gauge (measurement) point. I
is the area moment of inertia of the cross-section of the beam around the neutral axis of
bending, I = 1

12
⋅ b ⋅ h3.

Equation 11.112 shows that measuring the strain results in an indirect measure of the
applied force. If we can measure strain, then we can estimate/calculate force if we have the
geometric and material property information of the beam (ls, b, h, E).

F =
(

E b h2

6 ls

)
𝜖max (11.113)

Strain Gauge The strain measurement may be performed by strain gauge sensors.
These devices are applied on the test part in such a way that they are subjected to the same
strain (deformation) as the test part. In other words, the strain-gauge is bonded (glued)
on the test surface with a high strength adhesive. The resistance of the small wires that
constitute the strain gauge increases when they lengthen, and decreases when they shorten.
It follows that strain variations results in small resistance variations.

The resistance of a conductor of length L and cross-section A is given by:

R = 𝜌
L
A

(11.114)
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where parameter 𝜌 is the resistivity of the material. Taking the logarithm of Equation 11.114
and differentiating, we obtain:

lnR = ln 𝜌 + lnL − lnA (11.115)
dR
R

= d𝜌
𝜌

+ dL
L

− dA
A

(11.116)

ΔR
R

= Δ𝜌
𝜌

+ ΔL
L

− ΔA
A

(11.117)

Assuming that the section of the conductor wire is circular, A = 𝜋
D2

4
, it follows

ΔA
A

= 2ΔD
D

= −𝜈 2
ΔL
L

(11.118)

where it can be shown that

dA
A

= d
dA

(lnA) (11.119)

= d
dD

(ln(𝜋D2∕4)) (11.120)

=
(𝜋∕4)2D ⋅ dD

(𝜋∕4)D2
(11.121)

= 2 dD
D

(11.122)

Hence,

ΔA
A

= 2ΔD
D

(11.123)

In Equation 11.118 the coefficient of Poisson, 𝜈, of the material has been used in order to
relate longitudinal and transverse deformations of the wire.

Substituting Equation 11.118 into 11.117 the following is obtained:

ΔR
R

= (1 + 2𝜈)
ΔL
L

+ Δ𝜌
𝜌

(11.124)

It is common to define the gauge factor G as:

G =
ΔR∕R

ΔL∕L
= (1 + 2𝜈) +

Δ𝜌∕𝜌
ΔL∕L

(11.125)

=
ΔR∕R

𝜖
(11.126)

Then,

ΔR
R

= G ⋅ 𝜖 (11.127)

Equation 11.125 shows that the sensor’s gauge factor G depends on a geometric
term 1 + 2𝜈 and on a microstructural term Δ𝜌∕𝜌

ΔL∕L
that relates the variation of resistivity to

deformation. This term characterizes the piezoresistive behavior of the material.
For some materials (like constantan), the piezoresistive component is much smaller

than the geometric one. The strain gauges obtained from these materials are called “metal-
lic.” They have a relatively small gauge factor (G = 2). They are stable under temperature
variations and linear in the operating range.

Other strain gauges, made from different materials (i.e., semiconductors) exhibit
gauge factors in the range of G = 70–200. Despite the increased sensitivity, their use is
more difficult since they are nonlinear and may need temperature compensation.
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Strain
gauge120 Ω

120 Ω

LM 358

LM 358

To ADC

LM 358

R1 = 1 kΩ

R2 = 100 kΩ

+

–

+

–

+

–

200 Ω (Var)

Vi 5 V
+ –

FIGURE 11.26: Circuit diagram to amplify the voltage output of the strain gauge sensor.

For a given strain gauge, the gauge factor G is known. Then, if we can measure the
change in resistance (ΔR∕R), we can calculate the strain 𝜖.

Signal Conditioning The signal conditioner has to convert the variations of resis-
tance of the sensor into a proportional electrical voltage signal that is compatible with the
PIC microcontroller.

The resistance variation is converted to a voltage differential by a Wheatstone bridge.
For the applied circuit, see Figure 11.26, the output voltage is

Vo =
Vi

4
ΔR
Ro

(11.128)

Notice that the location of the variable resistor for the sensor in the Wheatstone bridge
in the figure shown for the experiment is at location for R2, whereas it was at location for R1
in Chapter 6. It can be shown that the same output voltage and resistance change relationship
holds except the polarity of the output voltage between these cases. It is instructive for the
student to show that this is true. In Chapter 6, in Equation 6.20, let R1 = R3 = R4 = R0 and
R2 = R0 + ΔR. And substitute these in Equation 6.20 and make the same approximations in
deriving Equation 6.23. Simply let R1 = R3 = R4 = R0 and R2 = R0 + ΔR in Equation 6.20.

Since V0 is typically in the order of millivolts, an amplification stage has to be
provided. An operational amplifier can be used for this purpose. Resistors R1(1 kΩ) and
R2(100 kΩ) (see Figure 11.26) determine the gain

Ka = −
R2

R1
(11.129)

The low impedance R1 of the amplification stage will strongly affect the output of
the bridge if it is directly connected to it. In order to avoid this effect, a voltage follower
stage is provided (referred to also as voltage buffer stage or impedance isolation buffer,
using two op-amps LM 358).

Application Software Description

The measurement principle here is that given the strain gauge properties, that is G, Wheat-
stone bridge parameters, Vi, R0, and in the signal amplification stage, R1, R2, we can
calculate the strain 𝜖 from the output voltage measurement VADC. Then, given the beam
material and geometric parameters, E, b, h, ls, we can calculate the force, F.

The software development task includes setting up the registers to configure the pin
connected to the strain gauge sensor as one of the ADC channels to be used. This can be
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done directly by writing to the specific registers in C or assembly language or by calling
the appropriate C library functions which hide the details of register configuration. The
main purpose is to be able to read (and display) the voltage level at the ADC pin of the
microcontroller. In this lab, no output operation at the I/O ports are performed. It is only
an analog input experiment. Variations on the software can be made to handle the ADC
conversion process either using

1. the polling method (i.e., by repeatedly checking if the ADC conversion is done), or

2. the interrupt method (i.e., a timer generate periodic signal triggers ADC conversion
to start, and the ADC registers can be setup to generate interrupt every time an ADC
conversion is completed). If the interrupt method is used, then an interrupt service
routine (ISR) must be written and interrupt conditions must be configured by setting
appropriate register bits.

Relevant header files to be included with C-18 compiler are as follows,

#include <p18f4331.h>
#include <adc.h>
#include <timers.h>
#include <delays.h>

Procedure

1. Assemble the circuit on the breadboard as shown in the circuit diagram. Take care
not to connect the 5-V supply until the entire circuit has been assembled.

2. Glue the strain gauge onto the fixture using the strain gauge adhesive provided.

3. Connect the strain gauge outputs to one arm of the Wheatstone bridge setup and the
operational amplifier. Notice that one arm of the Wheatstone bridge is made as an
adjustable resistor (potentiometer). This will help us adjust the offset voltage output,
hence it will be used in the calibration of the sensor. We will use the adjustable
potentiometer to make sure the sensor output voltage is zero when there is zero
deformation. Note that, in order to build an accurate Wheatstone bridge, the resistor
values should be the same. As a result, for higher accuracy applications, resistors with
higher tolerance (smaller variation in their value due to manufacturing variations)
should be used.

4. Open MPLAB and load your project into the workspace. The source code must
contain commands to configure the analog to digital converter on the PIC, and read
input voltage at the ADC pin to which the sensor signal is connected to, and display
the results.

5. Download and run the program on the PIC microcontroller. Then, deflect the alu-
minum beam on the strain gauge fixture by lowering the screw at the tip. Take care
not to deflect it by more than a few millimeters (about an eighth of an inch at most).

6. Verify that the ADC now shows a value. Now raise the screw by a few turns. This
will reduce the strain on the beam; read the value of the ACD again. The value in the
ADC should now have reduced to reflect lower strain value.

7. Repeat the procedure for various deflections of the beam, all the while taking care
not to deflect the beam by more than 2 or 3 mm. Record the deflection versus the
strain measurements. Calculate the force applied at the tip of the beam. Note that
for the calculation of force, you need the beam material and geometric parameters
(E, b, h, ls), strain gauge gauge factor (G), Wheatstone bridge parameters Vi, R0, and
signal amplifier gain Ka = −R2∕R1. Plot the results:
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(a) measured ADC voltage versus the deflection distance of the beam,
(b) calculated force versus the deflection distance of the beam.
In order to be sure of your force estimation accuracy, the deformation can be induced
by a known set of weights at the tip of the beam instead of the screw mecha-
nism. Then, the student can compare the estimated force to the actually applied
weight (weight = force = mass ⋅ gravity, W = F = m ⋅ g). It is equally important to
be able identify the sources of error in the measurement. Discuss how this prin-
ciple can be used to design a digital weight measurement device (scale) used in
homes.

8. (Optional) In order to improve the signal amplification quality against noise and
temperature variations; design, build and test an instrumentation amplifier instead of
the amplifier used above.

9. (Optional) Develop two different software versions to handle ADC conversion: 1.
ADC conversion under program control, 2. ADC conversion under interrupt control.
In version 1, the program logic must:

(a) Setup the ADC conversion channel.
(b) Start the ADC conversion.
(c) Wait for ADC conversion to complete.
(d) Read the ADC conversion result and display it.
(e) Repeat steps (b–d) for every ADC conversion under program control.

In version 2, the program sets up the ADC conversion process to be triggered by
a timer, and every time the ADC conversion is completed, it generates an interrupt
to the CPU, then the CPU simply handles the ADC ISR (interrupt service routine)
which should just read and display the ADC conversion result.
(a) Setup the ADC conversion channel for timer driven periodic ADC conversion,

and for ADC to generate an interrupt whenever an ADC conversion is completed.
(b) Write the ISR routine for “ADC conversion complete” interrupt handling: read the

ADC register and display result. Setup this ISR as the ADC conversion complete
interrupt handling routine.

(c) Enable interrupts and start normal program execution. In the background, ADC
conversion will be periodically triggered by the timer, every time ADC conversion
is completed, the ADC will interrupt the CPU. Then, the CPU will execute the
defined ISR which reads and displays the result. Then returns to its previous
task.

We can experiment with the functionality of ADC operation by simply providing a voltage
to the ADC pins via a potentiometer which is connected to a 0–10 VDC or ± 10 VDC (or
smaller range) DC power supply (i.e., batteries). In the process of making this experiment
work, there are two aspects to debugging the potential problem:

1. First is the ADC operation of the microcontroller: does the ADC converter interface
and software work – does it read the analog voltage present at the pins correctly. We
can test that by proving a known voltage with a simple potentiometer and DC supply.
We can measure the voltage with a DMM or oscilloscope, and confirm if the ADC
reads it correctly.

2. The second aspect of the experiment is the strain gauge sensor, its signal processing
via the Wheatstone bridge and amplification of that signal. We can test that part of the
experiment simply by imposing deformation on the strain gauge mounted beam, then
measuring the output voltage at the output of the amplifier as well as at the output of
the Wheatstone bridge.
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11.9 EXPERIMENT 9: SOLENOID CONTROL USING
A TRANSISTOR AND PIC MICROCONTROLLER

Objectives

To control a DC solenoid using a power transistor and PIC 18F452 (or PIC 18F4331)
microcontroller.

Components

Item Quantity Part No. Supplier

On/Off (pull) type DC solenoid 1 142463 www.jameco.com

On/Off (push-pull) type DC solenoid 1 145314 www.jameco.com

Transistor: IRF510 (MOSFET) 1 06F8238 www.newark.com

Diode 1 76970 www.jameco.com

PIC Demo Board/Connectors 1 set DM163022 or

DV164006

www.microchipdirect.com

Theory

A solenoid is a linear displacement actuator. It has a coil, a plunger, and a core to guide
the electromagnetic field between the coil (stator) and the plunger (rotor). When current is
applied to the coil, force is generated in the direction to minimize the magnetic reluctance.
The direction of the current does not affect the direction of the force. The force generated
is proportional to the square of the current and inversely proportional to the square of the
air gap between the plunger and the stopper. By design, some solenoids are designed to
be operated in ON/OFF mode and some are designed to be operated in proportional mode.
In the ON/OFF mode of operation, the plunger is intended to take one of two positions
(fully OPEN or fully CLOSED) based on the current in its coil. In the proportional mode of
operation, the solenoid can take intermediate positions as a function of the coil current. In
this experiment we use a solenoid designed to be operated in ON/OFF mode. With careful
real-time control software, it can still be operated in the proportional mode. To control the
solenoid in ON/OFF mode, the output signal from the microcontroller to the transistor,
which switches the load current to the solenoid, can be a digital output signal. If we wanted
to control it in proportional mode, then a PWM output pin of the PIC should be used to drive
the transistor. We can also use a digital output channel and drive it with a PWM type signal
under software control, since the PWM frequency to drive the solenoid does not have to be
very high and such low frequency PWM signals can be generated under software control
at a standard digital output pin. For instance, if we wanted to generate a PWM signal at
50 Hz with 5% duty cycle control resolution, it requires us to update the digital output pin
at the following rate: 50 ⋅ 100

5
= 1000 Hz.

Hardware

The circuit is designed to switch the voltage across the solenoid during the ON/OFF periods
of the cycle. In every cycle, when the voltage is high (12 V) the coil is energized by the
current flowing through it. A magnetic field, and the resulting actuation force, is produced
due to the tendency of the ferromagnetic plunger and coil generated magnetic flux to seek
the minimum reluctance point. This magnetic field pulls the plunger in towards the stopper.
When the voltage is low (0 V) for the remainder of the cycle (OFF period) the base current of

www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.newark.com
www.newark.com
www.jameco.com
www.jameco.com
www.microchipdirect.com
www.microchipdirect.com
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the transistor falls below a minimum value and it stops transmitting current to the solenoid.
As a result the magnetic field collapses and the plunger is released. A protection diode is
connected in parallel to the solenoid.

Application Software Description

The program code essentially configures the PIC microcontroller to give out a step signal
that varies between high and low based under software control. The header files of interest
to be included in the code are as follows,

#include <p18f4331.h>
#include <pwm.h>
#include <timers.h>
#include <delays.h>

Procedure

1. Assemble the circuit as shown in the circuit diagram (Figures 11.27 and 11.28). Take
care not to connect the power supply until the entire circuit has been assembled.

2. Configure the pin 2 of Port C of as a digital output, and turn ON and OFF the output
pin under software control and verify the solenoid motion and force in response to
your software.

3. Configure the output pin as a PWM output (and rewire the transistor base signal to
one of the PWM pins. Note that RC2 pin can be configured either as a digital I/O or
PWM output). Then decide on the PWM frequency and duty cycle.

12 V

Solenoid
12 VDC

Port C, Pin 2

IRF511

1 kΩ

PIC 18F452
 

or

PIC 18F4331

FIGURE 11.27: Circuit diagram for the DC solenoid control experiment.
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FIGURE 11.28: Picture of the complete circuit for the DC solenoid control experiment.
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4. Experiment with different PWM duty cycles and PWM frequencies. Try to feel the
net force generated as a function of PWM duty cycle while holding the solenoid at a
fixed mid position.

5. (Optional) Obtain a proportional single stage valve with two proportional solenoids,
spool position sensor, and centering spring. Connect two PWM output pins from
the PIC microcontroller to drive two transistors to control two solenoids. Under
software control, control either one of the solenoids proportionally under software
control. Verify the spool position change as function of the solenoid (number 1 or
number 2) and the magnitude of the command signal sent to the solenoids by the PIC
microcontroller.

11.10 EXPERIMENT 10: STEPPER MOTOR MOTION
CONTROL USING A PIC MICROCONTROLLER

Objective

Design a complete system for motion control of a stepper motor using the PIC microcon-
troller and a step motor controller integrated circuit (IC). Write software to control

1. magnitude of speed,

2. direction of speed,

3. run the motor in full-step mode and half-step mode.

Components

Item Quantity Part No. Supplier

EDE1200 IC (translator chip) 1 141532 www.jameco.com

Stepper Motor 1 151861 www.jameco.com

Potentiometer (200 Ω) 1 181972 www.jameco.com

DIP Switch 1 38818 www.jameco.com

PIC Demo Board/connectors 1 set DM163022 or

DV164006

www.microchipdirect.com

ULN2003A - Transistor array 1 60K7049 www.newark.com

IN4744 - Zener diode 1 36185 www.jameco.com

Resonator: AWCR 4.00 MD 1 13J2002 www.newark.com

Theory

Stepper Motor A stepper motor rotates one step per change in the energized state of
its stator windings. The stepper motor used in the experiment is a unipolar, 2-phase (center
tapped), 7.5 degrees/step, 5 VDC stepper motor.

EDE1200 Unipolar Stepper Motor IC and ULN2003A Driver EDE1200
is an integrated circuit (IC) logic chip (also called the translator) for a unipolar step
motor. The actual current control in the motor phases is done by another high current
driver, which is ULN2003A chip in this case. EDE1200 accepts 5 V logic level signals
and generates output commands which define how the current in each phase should be
controlled. EDE1200 provides four TTL level output signals. These TTL-level output
signals control the sequence of the amplifier drive circuit, which generally consists of

www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.microchipdirect.com
www.microchipdirect.com
www.newark.com
www.newark.com
www.jameco.com
www.jameco.com
www.newark.com
www.newark.com
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standard power transistors or a transistor array integrated circuit (IC). ULN2003A is the
stepper drive circuit (power transistor “switch set”). Hence, the ULN2003A high voltage
and high current transistor array is used to connect between the EDE1200 integrated circuit
chip (translator) and the stepper motor. It is capable of controlling full-step and half-step
modes and direction as well. It does not have an in-built oscillator, so a 4 MHz external
oscillator is connected to it.

The following are the input command signals to the translator EDE1200 IC that must
be controlled by the microcontroller,

1. Step: Pin 9 = 1, should be maintained high for a step motion.

2. Direction: Pin 7, 1 = clockwise, 0 = counter-clockwise.

3. Full/Half Stepping: Pin 8, 1 = for full stepping, 0 = for half stepping.

When the EDE1200 is running at an external clock speed of 4 MHz, the “Step”
pin signal can range up to 5 kHz resulting in a motor speed over 6250 RPM with a 7.5
degree per step motor. Very high acceleration rates should be avoided. That is, we should
not instantly apply high speed requests to a stopped motor. In other words, commanded
acceleration should not exceed a maximum value. Otherwise, the motor may not be able
follow the very high acceleration rate and this results in “step loss,” meaning that the motor
does not make the commanded number of step motions. The only way to detect the step
loss is to measure the rotor position with a position sensor (i.e., incremental encoder). Once
we determine that the motor did not make the commanded number of steps, the additional
missing number of steps can be re-commanded in a closed loop control algorithm.

Application Software Description

The stepper motor is driven by the stepper motor driver chip, which in turn is given a step
input by the PIC microcontroller. A schematic of the arrangement is shown in Figure 11.29
and a picture of the assembled circuit is shown in Figure 11.30.

The code generates a pulse signal of the required frequency using one of the port
output pins of the PIC. This is done by simply raising that particular pin to a high status,
waiting a certain delay time, and then lowering it to low. The basic code layout is given
below. Figure 11.29 shows that Port B, pins 0, 1, 2, 3 are used to interface the PIC
microcontroller to the EDE 1200 IC.

1. Clear selected port values, and configure ports to act as outputs for Step, Direction,
and Full/Half Step Mode commands.

2. Select “Direction” and “Full/Half Step” mode by writing 1 or 0 to the corresponding
port pins (which should be connected to Pins 7 and 8 on the EDE1200 IC).

3. Raise the “Step” pin (which should be connected to Pin 9 on the EDE 1200) to high.
Wait for a specified time (depending on the required stepping frequency).

4. Drop pin to low. Wait for a specified time (depending on the required stepping
frequency).

5. Experiment with different numbers of steps. Verify that the step motor runs as
expected and moves the expected number of steps.

6. Experiment with different directions.

7. Experiment with Full Step and Half Step mode.

8. Experiment with different rates of step signals (speed control).
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FIGURE 11.30: Picture of the complete circuit for the stepper motor control experiment.

Procedure

1. Assemble the circuit as shown in the circuit diagram.

2. Compile and run the code to rotate the stepper with a pre-specified speed and number
of steps.

3. Change the stepping direction.

4. Change the status of the stepping-mode input signal to switch between Full and Half
Step modes. Experiment and compare the difference in the motion between Full and
Half Step modes. Note the difference for your lab report.

5. While holding a position in Full Step mode and in Half Step mode, test the holding
torque magnitude with your hand by trying to move the shaft. Verify the difference
in the holding torque magnitude between Full Step mode and Half Mode.
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11.11 EXPERIMENT 11: DC MOTOR SPEED CONTROL
USING PWM

Objectives

To control the speed of a DC motor using a PWM signal from a PIC 18F452 microcontroller
in conjunction with an H-bridge amplifier circuit.

Components

Item Quantity Part No. Supplier

DC Motor 1 154915

Optoisolator 1 114083 www.jameco.com

Potentiometer (200 Ω) 1 181972

IRF510 (MOSFET) 2 06F8238 www.newark.com

IRF9520 (MOSFET) 2 07B1521 www.newark.com

1N4003 Diode 4 76970 www.jameco.com

PIC Demo Board/connectors 1 set DM163022 or

DV164006

www.microchipdirect.com

Theory

Pulse Width Modulation A PWM signal has two variables that must be decided
by the control software:

1. PWM signal carrier (or base) frequency,

2. PWM signal duty cycle.

The PWM frequency is generally a constant frequency in the kHz range. The duty
cycle is the value decided in real-time to indicate the equivalent analog value of the signal.

This is accomplished by generating an ON-OFF signal of a high frequency, and then
varying the percentage of time that the signal is in the ON state versus the OFF state. This
is called varying the duty cycle. The average value of the signal is equivalent to an analog
signal, provided that the PWM switching frequency is much higher than the bandwidth
frequency of the electromechanical system. For example, assume that a voltage signal
between 2.5–3.0 V is required to drive a motor, while the supply voltage is a fixed 5 V.
The PWM signal will consist of a voltage that varies at a high frequency (i.e., 1 kHz)
between 0–5 V. If, in every time period (1 ms), the voltage level is kept high (5 V) for
50% of the period, and low (0 V) for the remaining 50%, then the average voltage seen at
the output will be 2.5 V. In this case, the duty cycle is 50%. Similarly, if a high voltage is
maintained for 60% of the period, and low for the remaining 40%, then the average voltage is
0.6 × 5 V = 3 V.

Care must be taken to ensure that PWM frequencies are kept reasonably high com-
pared to the bandwidth of the control system, since a low frequency PWM signal may
actually be seen as varying, and not continuous, voltages, especially for loads with a
smaller electrical time constant. Typical PWM frequencies are of the order of a few kHz.

The PWM signal format is used in two different contexts:

1. Power transistor circuits, where the transistors are operated in all ON and all OFF
alternating states, which is called the PWM mode. In this mode of operation, as
opposed to the linear mode of operation where the transistor is partially turned
ON/OFF, the efficiency of the power transistors is significantly improved. In high

www.jameco.com
www.jameco.com
www.newark.com
www.newark.com
www.newark.com
www.newark.com
www.jameco.com
www.jameco.com
www.microchipdirect.com
www.microchipdirect.com


LABORATORY EXPERIMENTS 795

power transistor applications, the PWM mode of operating the transistors is invariably
more efficient than the linear (proportional) mode of operating them. However, due
to the high switching frequency of the PWM circuit, there could be a small high
frequency noise (in same cases, also audible) induced on the power output lines.

2. Low power sensor or signal processor signals: when a signal is transmitted as an
analog voltage level, it is susceptible to noise. If it is transmitted as a PWM signal,
small changes in the voltage due to noise do not affect the information coded in the
signal magnitude unless the noise is so large that it changes the ON/OFF state of the
signal, and the resulting duty cycle. Hence, the PWM mode of transmitting an analog
signal is more immune to noise than the analog voltage mode of transmission.

H-Bridge Circuit The DC motor is driven using the H-bridge amplifier circuit com-
prising of four MOSFET power transistors (two of them are p-channel (IRF9520) and the
other two are n-channel (IRF511/IRF510) MOSFET transistors), four diodes (1N4003) and
the motor itself. Each MOSFET pair on each side of H-bridge consist of a p-channel on the
top and a n-channel on the bottom as shown in the figure. The motor connects in between
the two legs. The p-channel source terminals are connected to 9 V and the drain terminals
are connected to motor leads, whereas the source terminals of n-channel are connected to
ground and the drain terminals are connected to motor leads.

When PWM channel 1 is turned ON, the transistor pair on the top-left and bottom-
right will be conducting, hence the current will flow from left to right direction. When
the PWM channel 2 is turned ON, the opposite pair will be conducting (bottom-left and
top-right), hence the current will flow through the motor winding in the opposite direction
(from right to left).

When all four transistors are OFF, the motor is in uncontrolled “coast” state. When
only the bottom two transistors are turned ON, then both leads of the motor are grounded
and the motor is in “dynamic braking” state.

It is important that the two transistors on any one side of the H-bridge should not be
turned ON at the same time since it would create a short-circuit between the DC bus supply
voltage and ground, resulting in a very large current and possibly destroying the transistors.
Keeping in mind that power transistors have longer turn-OFF time than turn-ON time, there
should be some “dead-time” between turn-OFF and turn-ON time of the two transistors on
any one side. This can be accomplished either in software or by H-bridge integrated circuits
(IC) which have dead-time insertion and short-circuit protection capabilities. PWM output
peripherals in microcontrollers have dead-time insertion capability as a programmable
feature.

Application Software Description

The program code configures the PIC to output two PWM signals of constant frequency
and variable duty cycle. These are controlled by the:

� CCP1RL and CCP1CON registers for PWM channel 1 on pin RC2, and
� CCP2RL and CCP2CON registers for PWM channel 2 on pin RC1.

PWM channel 1 (RC2) controls the current in one direction, while PWM channel 2 (RC1)
controls the current in the opposite direction in the H-bridge. By choosing which one of
the PWM outputs to turn on, we control the direction of current, and hence the direction of
the torque generated by the motor. By controlling the magnitude of the current in the PWM
pin, we control the magnitude of the current, and hence the magnitude of the torque.
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Commercial H-bridge amplifiers accept two different types of PWM command signals
and there is a “H-bridge driver/controller” section of the circuit which translates the input
command signals to corresponding H-bridge drive signals to operate the transistor pairs:

1. PWM command signal (0–100% duty cycle, corresponding to 0–100% of maximum
current command) and direction signal. The direction signal (ON for clockwise
or positive, OFF for counterclockwise or negative) decides on the direction of the
current, the PWM signal’s duty cycle determines the magnitude of the commanded
current. Using these two signals, the H-bridge driver circuit generates two command
signals that drive one of the pair (two transistors) at a predefined PWM frequency.

2. PWM command signal only in (0–100% duty cycle), where 50% duty cycle is
considered as zero current command. A PWM duty cycle less than 50% is interpreted
as counterclockwise direction, and a PWM duty cycle above 50% is interpreted as
clockwise direction. Then, the H-bridge controller activates the two PWM channels
to control one of the two pair of power transistors.

The type of PWM command signal an H-bridge expects is a matter of interpreting the
command signals in a clear way so that the direction and magnitude of the signal is defined.
The direction information determines which one of the two pairs of transistors will be
activated. The magnitude information determines what percentage of the time (duty cycle)
the active transistor pair is kept ON and OFF.

If the H-bridge expects an analog voltage signal for current command, it again needs a
way to determine the magnitude and direction. For instance, 0–10 VDC analog input signal
defines the magnitude of desired current, and a direction input signal determines the sign
(direction) of the desired current. Likewise, an analog voltage command range of −10 V to
+10 V alone can be used to define both magnitude and direction of the commanded signal
as well.

Regardless of the type of command signal used, the H-bridge controller needs to be
able to determine the desired current direction and magnitude. Once that is known, then
the corresponding transistor pair is activated with a proper duty cycle of a fixed frequency
PWM signal.

Procedure

1. Assemble the circuit as shown in the circuit diagram (Figures 11.31 and 11.32).

2. Calculate the values of the PWM frequency and duty cycle, and implement the code
for these values.

3. Download and run the program. The motor speed should change based on the duty
cycle.

4. Vary the duty cycle value in the code gradually to force the motor to correspondingly
increase or decrease its speed. Notice that if we simply control the PWM signal based
on open loop logic, we are controlling the H-bridge amplifier in voltage mode. The
average voltage applied across the motor terminals will be simply proportional to the
PWM output signals from the microcontroller. We refer to this type of amplifier as a
“voltage amplifier.”

5. Change the direction and magnitude of the speed under software control.

Closed Loop Current Control If we can measure the current passing through the
motor windings, and read it back to the microcontroller, then we can use it to implement a
closed loop current control algorithm to decide on the PWM output. For instance,

PWM = K ⋅ (icmd(t) − imea(t)) (11.130)
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FIGURE 11.32: Picture of the complete circuit for the DC motor control experiment.

where icmd(t) is the desired current, imea(t) is the actual (measured) current, K is the current
loop gain, PWM is the output signal value (duty cycle) of the PWM channel.

In order to implement such a closed loop current control algorithm, we need to
measure the current through the motor and interface it to the PIC microcontroller’s ADC
input channel (one of the channels), and sample it at a high sampling rate (i.e., at least ten
times faster than the desired current loop bandwidth).

The motor current is measured by inserting a precision resistor at the bottom leg and
ground connection of the H-bridge (C and GND on the H-bridge circuit). The key here is
that the resistor value should be accurate and stable (not changing much due to temperature)
so that current times the resistor gives us a voltage which we can sample through the ADC
converter. Since the motor amplifier is PWM controlled, the measured voltage may be
passed through a low pass filter before being interfaced to the ADC converter. The low pass
filter bandwidth should be low compared to the PWM frequency, but high enough not to
filter out the current loop dynamics. For instance, if PWM frequency is 10 kHz, and current
loop bandwidth desired is 100 Hz, we can pick a low pass filter with cross-over frequency of
500 Hz or 1000 Hz. The motor current and voltage across the precision resistor is related as

Vmea(t) = Rs ⋅ imea(t) (11.131)

where Rs is the precision resistor, imea(t) is the motor current, and Vmea(t) is the voltage
proportional to the current. Rs should be as small a value as possible in order to not add
additional resistance to the circuit for the purpose of current measurement. Since the current
measurement resistor acts as a series resistor with the motor resistance, it should not be
significantly increasing the total resistance. Relative to the motor winding resistance, Rm,
Rs should be in the range of 1∕1000 ⋅Rm. For instance, in an application where Rm = 10Ω,
im = imax = 10 A, Vss = 100 VDC DC bus voltage supply, the maximum power of the
motor is 1000 W = 1 kW. If we use a current measurement precision resistor Rs = 0.1Ω,
at maximum current, there would be Rs ⋅ i2 = 10 W power dissipation (wasted power) in
order to accomplish the current measurement.
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Furthermore, this voltage may be passed through a low pass filter before it is connected
to the ADC,

VADC( jw) = LPF( jw) ⋅Vmea( jw) (11.132)

where LPF( jw) is the frequency response of the low pass filter.

11.12 EXPERIMENT 12: CLOSED LOOP DC MOTOR
POSITION CONTROL

Objectives

Closed loop position control of a DC motor using a position feedback sensor and PWM
output signal in conjunction with an H-bridge amplifier circuit, and PIC microcontroller.

Components

Item Quantity Part No. Supplier

DC Motor 1 154915 (www.jameco.com)

Optoisolator 1 114083 (www.jameco.com)

Potentiometer (200 Ω) 1 181972 (www.jameco.com)

IRF511 (MOSFET) 2 39C4310 www.newark.com

IRF9520 (MOSFET) 2 07B1521 www.newark.com

1N4003 Diode 4 76970 www.jameco.com

Opto-interrupter 2 273560 www.jameco.com

Disk with holes 1 Can be constructed in lab A tick paper or plastic disk

PIC Demo Board/connectors 1 set DM163022 or DV164006 www.microchipdirect.com

Theory

In this lab, we implement a closed loop position control of a DC motor using a PIC
18F452 (or PIC 18F4431) microcontroller. In order to perform closed loop position control,
we need a position sensor. For the purpose of understanding the incremental encoder
working principles and keeping the cost low, we will construct a very simple “home-made”
incremental encoder. For that we need two things (Figure 11.33):

1. A disk that has evenly spaced holes that will block and pass the light alternately. For
our purposes, we will have 4 holes on the disk. The higher the number of holes, the
better the position sensor resolution, but the more difficult it is for us to mechanically
assemble the experiment. So, we will experiment with a relatively low resolution
home-made incremental encoder. This disk can be made from a thick paper or plastic
or glass.

2. Two opto-interruptors. Opto-interruptors are placed over the disk. As the disk rotates,
the light path is interrupted by the solid sections and passed by the hole sections of the
disk. If we use only one opto-interruptor, we can detect the change of position, but we
cannot detect the direction of position change, that is we cannot detect the direction
of speed. So, the second opto-interruptor is used for that purpose. The second opto-
interruptor is mechanically placed at a 90◦ mechanical phase angle relative to the
first opto-interruptor position over the hole–solid sections of the disk. Note that 360◦

is considered a complete cycle of the one hole and one solid section of the disk. If
the disk is rotating in a clockwise direction (forward), the digital output signal from

www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.newark.com
www.newark.com
www.newark.com
www.newark.com
www.jameco.com
www.jameco.com
www.jameco.com
www.jameco.com
www.microchipdirect.com
www.microchipdirect.com
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2  Opto-interrupters

"Home-made" incremental encoder 

To microcontroller

100 kΩ

100 Ω

+5 VDC +5 VDC

Opto interruptor 
(Opto coupler)

+

E

+

FIGURE 11.33: A “home-made”

incremental encoder to sense the

position change of the motor shaft.

Two opto-interrupters and a disk are

used to make a simple incremental

encoder.

opto-interrupter #1 would lead the signal from the opto-interrupter #2 by 90◦ phase
angle. If the disk is rotating in a counterclockwise direction (reverse), the opposite
would happen.

We can also implement quadrature (times 4, ×4) resolution improvement in the
position measurement accuracy by noting that fact that the two opto-interruptors are 90◦

out of phase. At any given time, by evaluating the state of two opto-interrupters within a
cycle, we can determine where the position is within 1/4 of that cycle.

Below we provide two simple ways to keep track of encoder interface and position
measurement without using a dedicated quadrate decoder interface perhipheral (without
using QDEC) on the microcontroller. Modern microcontrollers for motion control have
a quadrature decoder interface peripheral for an incremental encoder interface. Once the
encoder A and B channels are connected to the QDEC pins, and software setup is done, one
has to only read a register in the QDEC peripheral at any time to get the current position. This
is the preferred method of incremental encoder interface since the QDEC peripheral handles
the encoder interface and position measurement details, relieving the CPU for other tasks.
For the CPU, the position reading from the encoder is simply accessing a register location.

The following is an interrupt-driven software driver to keep track of the encoder
position (×1 decode, not ×4) without using QDEC peripheral. This method would work
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only at relatively low speeds of motor, that is the speed of the motor is so low that the
time period between each pulse of the encoder is long enough for the microcontroller
to have sufficient time to handle each pulse as an interrupt, execute the ISR (Interrupt
Service Routine) routine to keep track of position count, and also perform other logic
functions.

1. Hardware interface: Encoder channel A is connected to a digital input pin, Encoder
channel B is connected to another digital input pin of the microcontroller.

2. Software driver:
(a) Software setup: Digital input pin connected to Encoder channel A is setup to

generate interrupt on rising-edge. Initially, the position count is set to zero. An
ISR is setup for the interrupt handling.

(b) Interrupt Service Routine (ISR): when Channel A has rising-edge, an interrupt is
generated and ISR is called automatically.

ISR()
{

If Channel_B == OFF
Position = Position + 1 ;

else
Position = Position - 1 ;

endif
}

A possible implementation for encoder position tracking with ×4 decoding under
software control is as follows:

1. Hardware interface: Encoder channel A is connected to a digital input pin, Encoder
channel B is connected to another digital input pin.

2. Software driver:
(a) Software setup: Both digital input pins connected to Encoder channel A and B

are setup to generate interrupts on rising-edge and falling-edge: ISR1 and ISR2.
Initially, the position count is set to zero. Two ISRs are setup for the interrupt
handling.

(b) Interrupt Service Routine 1 (ISR1): when Channel A has rising-edge or falling-
edge, an interrupt is generated and ISR1 is called automatically.

ISR1()
{

If (Channel_A== ON && Channel_B == OFF )
Position = Position + 1 ;

else if (Channel_A == OFF && Channel_B == ON)
Position = Position + 1 ;

else if (Channel_A == ON && Channel_B == ON)
Position = Position - 1 ;

else if (Channel_A == OFF && Channel_B == OFF)
Position = Position - 1 ;

endif
}

(c) Interrupt Service Routine 2 (ISR2): when Channel B has rising-edge or falling-
edge, an interrupt is generated and ISR2 is called automatically.

ISR2()
{

If (Channel_A== ON && Channel_B == ON )
Position = Position + 1 ;
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else if (Channel_A == OFF && Channel_B == OFF)
Position = Position + 1 ;

else if (Channel_A == ON && Channel_B == OFF)
Position = Position - 1 ;

else if (Channel_A == OFF && Channel_B == ON)
Position = Position - 1 ;

endif
}

Application Software Description

In most microcontrollers for motion control applications, there is a dedicated chip to
interface to the encoder and count the position change pulses as well as calculate the speed.
However, in the PIC 18F452 microcontroller we have used so far, such a peripheral is not
available, whereas PIC 18F4431 does have an incremental encoder interface peripheral. For
PIC 18F452, we can implement the incremental encoder interface using discrete input lines.
We can either connect the two opto-interrupter signals to two digital inputs and sample them
fast enough so that we do not lose any pulse, or we can connect them to hardware interrupt
lines. In the latter case, everytime a pulse transition occurs, an interrupt is generated. At the

To Microcontroller

+

E
D

+

100 kΩ 100 kΩ

+ 5 V + 5 V

+

E
D

+

100 Ω100 Ω

+ 5 V + 5 V

To Microcontroller

Opto #2 signalOpto #1 signal

Optointerrupter
circuit

PIC 18F4331

PWM 1 O/P
PORT B, Pin 1

PWM 0 O/P
PORT B, Pin 0

Opto#1 I/P
QEB, PORT A, Pin 4

Opto#2 I/P
QEA, PORT A, Pin 3

90 degrees phase shift

Encoder

9 V

9 V

IN4003

IN4003

IN4003

IN4003

1 kΩ

1 kΩ

1 kΩ

1 kΩ

FIGURE 11.34: Circuit diagram for DC motor closed loop position control experiment.
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interrupt service routine, we would determine the direction of the motion and increment or
decrement the position count.

In microcontrollers with a dedicated incremental encoder interface (also called a
quadrature decoder circuit), the microcontroller does not have to service the interface for
each pulse. Rather, at any given time it would read the counter register since the interface
circuit handles the counting process. PIC microcontroller 18F4431 has one incremental
encoder interface (Figure 11.34). As a result, implementing this experiment with PIC
18F4331 is much easier than with PIC 18F452. The interface is capable of decoding
the incremental position information with ×4 multiplication, as a result, it is commonly
referred to as the “quadrature decoder” or QDEC interface. The pin numbers RA2, RA3,
RA4 are programmable to interface to the INDEX, channel A, and channel B of the encoder,
respectively. In our experiment, we do not use the INDEX signal. PWM output channels
can be assigned to pin RB0 for PWM channel 1, and pin RB1 for PWM channel 2. We
can then use PWM channel 1 to control one pair of the transistors of the H-bridge, and the
PWM channel 2 to control the other pair of the transistors of the H-bridge.

Once we know the actual position, we can digitally calculate the actual (estimated)
speed of the shaft. Then, if we have a programmed (desired) position or velocity, we can
determine the PWM output based on a PID type control algorithm, that is PD algorithms

// Assume
// xd - the desired position variable, programmed.
// vd - the desired speed variable, programmed.
// x - the measured position
// v - calculated speed based on measured position
// Kp - proportional gain of the PD control algorithm: a

constant.
// Kd - derivative gain of the PD control algorithm: a

constant
// Ki - integral gain control
// ui - integral control

// The PD closed loop control position control algorithm

PWM_Out = Kp * (xd - x ) + Kd * (v - vd)

// If the objective is only to control speed, but not the
// position, then the PWM output calculation should not be
// function of position information, i.e. a proportional
// closed loop speed control algorithm.

PWM_Out = Kd * (v -vd)

// PID algorithm for position control loop
// Initialize integrator term on startup;
// Set “first_call = true ;” on startup.

if (first_call == true)
ui= 0.0 ;
first_call = false;

endif

ui = ui + Ki * (xd -x )

PWM_Out = Kp * (xd - x ) + Kd * (v - vd) + ui ;
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FIGURE 11.35: Picture of DC motor closed loop position control experiment.

Procedure

1. Decide on the hardware interface method of the opto-interrupters, that is the electrical
signals coming from the “home-made” incremental encoder, to the PIC microcon-
troller. It is highly recommended that a microcontroller with incremental encoder
(QDEC) interface peripheral is used, such as the PIC 18F4331 microcontroller.

2. Keep the motor current (or voltage) control and PWM circuit as in the previous lab
(Figure 11.35), that is the H-bridge amplifier (power stage) and the PIC microcon-
troller interface to it via PWM output channels.

3. Assemble the circuit.

4. Implement software to measure actual position and speed.

5. Program a closed loop PID control algorithm that can be used either for closed loop
position control or closed loop speed control. The program or user should select
which mode (closed loop position or speed control mode) to operate and update
frequency.

6. Program desired position and speed control trajectories as a function of time in the
control algorithm and test the closed loop position control. For instance, command
1/4 rev rotations in forward and reverse directions, command slow and fast speeds in
forward and reverse direction.

7. In closed loop position control mode, while holding current position (no change in
the desired position), try to disturb the rotor position, does the motor react to keep its
current position?

8. Demonstrate that you can control the motor position or velocity to any desired value
and direction.

9. What is the smallest positioning accuracy you can achieve with this system?



APPENDIX

MATLAB®, SIMULINK®, STATEFLOW,
AND AUTO-CODE GENERATION

MATLAB® (and its tools such as Simulink®, Stateflow) is the standard software
tool used for control system design by engineers. In addition to MATLAB®, the following
tools are used as part of control system development, proto-type deployment, and testing:
Simulink®, Stateflow, and an auto-code generator tool called Similink Coder (formerly Real
Time Workshop (RTW) and Stateflow Coder (SFC)). Programs for control and simulation
are written in MATLAB® as text files using MATLAB® script language, which is similar
to C language. Simulink® and Stateflow are graphical tools to define the control logic.
Simulink® Coder is the tool to automatically generate C-code (ANSI/ISO C and C++
code) for a target embedded hardware ECM (electronic control module).

Simulink® is the main graphical modeling tool for control system design. Stateflow
is a complementary tool that is most suitable for modeling event-driven supervisory logic
aspects of a control software, whereas Simulink® is more suitable for more mathematical
aspects of it, such as PID control algorithms. The Simulink® Coder auto-code generation
tool is used to automatically convert Simulink®, Stateflow, and MATLAB® files to C-
language files, compiled with a C-compiler, and deployed on a target microcontroller
hardware. There are many, and growing, numbers of target microcontroller/DSP hardware
supported by MATLAB® and its tools. One of the most general purposes of those is xPC
hardware. xPC is an industrial PC/104 bus based controller hardware architecture. It is
a flexible and general purpose real-time controller hardware platform for development
purposes, with a lesser degree of ruggedness compared to commercial ECMs. MATLAB®

and its tools support the xPC hardware through the “xPC Target” software tool that allows
the Simulink® Coder to generate C-code for the xPC target hardware. The xPC hardware
runs the DOS operating system and the xPC Target Kernel as its real-time operating system.

A.1 MATLAB® OVERVIEW

MATLAB® is a general purpose modeling and simulation software, widely used in the
world by control engineers. Students can use this introduction as a starting point, and
get more details on specific points using the online help for MATLAB®. The MATLAB®

software package is an integrated software tool with many components and new components
are being added continuously. These components are:

1. MATLAB® being the main front end tool, text based programming environment.
In addition to these basic MATLAB® components, there are Toolboxes that can be
added to increase its capabilities. For instance, the Control Systems Toolbox can

Mechatronics with Experiments, Second Edition. Sabri Cetinkunt.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/cetinkunt/mechatronics
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be added to MATLAB® to extend its function libraries for that purpose. Similar
toolboxes exist for Simulink®, Stateflow, and other software components.

2. Simulink® for graphical block diagram modeling of dynamic systems and control
algorithms.

3. Stateflow for event-driven system and supervisory control logic modeling (also with
graphical interface).

4. Simulink® Coder (SC) for auto-code generation in C-language from Simulink®,
Stateflow, and MATLAB® files (formerly called Real Time Workshop (RTW) and
Stateflow Coder (SFC)). The Embedded Coder tool generates auto-code in C for
specific microcontrollers and DSPs. The MATLAB® Coder tool generates auto-code
in C from the MATLAB® text m-function files.

5. xPC-Target software for the PC-based embedded hardware tool called xPC-
hardware. There are other embedded target microcontroller software and hardware
combinations supported, such as Real-time Windows environment to run real-time
code on a PC with relevant I/O cards. For other specific commercial ECMs (i.e., for
engine control, transmission control etc.), MATLAB® provides “target ECM hard-
ware” specific tools which work with Simulink® Coder (SC), Embedded Coder, and
MATLAB® Coder in order to generate C-code automatically for that target ECM.

6. C-Compiler to compile the generated code for the target embedded controller hard-
ware. MATLAB® installation includes the LCC C-Complier.

Figure A.1 shows the relationship between MATLAB® and its main “add-on” tools.
In the discussion that follows, we used the term MATLAB® or MATLAB®/Simulink® to
refer to this whole suite of tools in the MATLAB® package. If testing on actual embedded
controller hardware is not needed and simulations are sufficient for a given purpose, then
only the MATLAB®, Simulink®, and Stateflow package components are needed. It should
be noted that the supervisory and event driven logic can also be coded in MATLAB® and
Simulink® alone without the use of Stateflow. However, the Stateflow environment makes

C-files 

(S-functions)
C-files 

C-Compiler
Executable

file
Matlab C-files 

Simulink

Stateflow

Simulink
coder

PC
USB/CAN

ECM

Matlab development environment

FIGURE A.1: MATLAB®, its add-on tools and their typical relationships in an embedded

control software development.
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it more convenient and easy to code the event driven nature of logic. Many examples are
provided under the

MATLAB® > Help > Demos

menu with example categories in automotive, aerospace, and heating systems.
The main benefit of the MATLAB®/Simulink® environment over the standard high

level programming languages such as C/C++ are:

1. faster program development due to reduced detail in defining data structures (i.e.,
in MATLAB®, we do not have to declare data types before usage) and easy to use
library functions (including I/O functions),

2. good graphical communication of the model structure in Simulink® and Stateflow as
oppose to text based programming language description,

3. auto-code generation tools for real-time implementation.

In addition, the MATLAB®/Simulink® environment can interface with external user
written C functions. However, use of external functions should be balanced with the diffi-
culty they impose and maintaining the advantages of the MATLAB® environment.

MATLAB® is started by double clicking on the MATLAB® short-cut icon on the
desktop under Windows development environment. The standard prompt of MATLAB®

when it starts and opens its user interface window, called the “Command Window”, is

>>

The user interacts with MATLAB® from the command window. In addition, the window
has menu items which will allow the user to perform typical file I/O, print, and setup
operations, and get help on any MATLAB® topic.

The MATLAB® development environment has seven basic windows. Each window
is dockable and can be disconnected from the MATLAB® window and treated as a separate
window. Each window can be opened/closed using the View menu check mark next to each
window. MATLAB®’s user interface is modified in each version a little bit. The current
version may have a slightly different user interface than described here.

The main windows are (Figure A.2):

1. Command Window: the window through which the user enters MATLAB® com-
mands interactively.

>> clc ; % Clears the screen of the Command Window.

2. Command History Window: used to store and reuse previously used interactive
MATLAB® commands. It is useful during program debugging.

3. Workspace Window: this window shows all of the variables defined in the MATLAB®

workspace and their values.

>> clear ; % Clears (deletes) all data variables defined from the
MATLAB® Workspace.

>> who ; % Displays the currently defined data variables
% (without their size info) in the MATLAB® Workspace.

>> whos ; % Displays the currently defined data variables
%(with their size info) in the MATLAB® Workspace.

4. Current Directory Window: directory navigation window. Using the icons on this
window, the user can quickly change the current directory. By default, MATLAB®
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FIGURE A.2: MATLAB® environment and main user interface windows.

saves/accesses the files from the Current Working Directory. If it cannot find a file in
the Current Working Directory, then it searches the deirectories defined in the “Path.”

5. Launch Pad Window: to start different components of MATLAB®, such as
Simulink®, StateFlow, and so on.

6. Profiler: The profile function is used to debug and optimize M-files by tracking their
execution time. For each function in the M-file, the Profiler records information about
execution time, number of calls, parent functions, child functions, code line hit count,
and code line execution time.

7. Help Window: a separate window that allows access to a complete online help on all
of the MATLAB® tools.

MATLAB® is used in one of two modes:

1. Interactive mode: the user types the commands in the “Command Window” and gets
results after executing that command.

2. Programming mode: the user writes programs in MATLAB® language (also called
MATLAB® script) and saves them in M-files. The name of the M-file is typed at the
command window to run the programs.

A.1.1 Data in MATLAB® Environment

In MATLAB®, a data variable is created by giving it a name and assigning a value to
that name by placing it on the left hand side of an assignment statement. For instance, the
following example shows how to create a variable named “x” and assign a value to it. By
default, it has data type of double.

>> x = 1.25 ;

Unlike in high level languages, such as C and Fortran, we do not need to declare the data
type of a variable before it is used.
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The main data structure in MATLAB® is a “matrix.” A scalar is considered a 1x1
matrix. A vector is considered a row matrix. MATLAB® does not require the data type of
a variable or matrix be declared. By default, all numerical data is treated as double.

The percent sign, %, is used to indicate the beginning of comments. The semi column
“ ; ” at the end of a line suppresses the echo of the data to the screen. Three dots are used
to indicate that the command line continues in the next line.

Variable names must start with a character, and are case sensitive, so x and X are
different variable names.

Help on any topic can be obtained by

>> help
>> help topic

The display accuracy of the numerical data can be controlled by

>> format short ;
>> format long ;
>> format short e ; % to display in scientific notation
>> format long e ;
>> format bank ; % Display two decimals only, i.e. 5.40
>> format rat ; % Display in fractional form, i.e. 10/3

Matrix data is defined as follows,

>> A = [ 1 2 3
4 5 6
7 8 9 ] ;

The same matrix, A, can also be defined with the following syntax,

>> A = [ 1 2 3 ; 4 5 6 ; 7 8 9 ] ;

Instead of spaces between matrix elements, comma “,” can be used,

>> A = [ 1,2,3 ; 4,5,6 ; 7,8,9] ;

A specific element of a matrix, (k,l) - row k, column l, is referenced as,

>> x = A(k,l) ;
>> A(k,l) = 5.0 ;
>>

A row, or a column or a sub-matrix of a matrix can be referenced (for reading and writing)

>> row_k = A(k, : ) ;
>> col_l = A(:, l ) ;
>> B = A(1:k, 10:20) ; % B is a sub-matrix of A.

Note that MATLAB® uses variable names “i” and “j” for representing
√
−1 imaginary

number for complex variable definitions. In order to make sure we do not change the
definition of built in variables “i” and “j”, we should not use “i” and “j” in our programs as
data variables, such as index number to vectors and matrices. When a “clear” statement is
executed, the original definitions of the variables are restored.

>> clear
>> i
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ans =
0 + 1.0000i

>> j

ans =
0 + 1.0000i

>> i=2.0

i =
2

>> v= 5 + 10∗i

v =

25

>> i

i =

2

>> clear
>> i

ans =
0 + 1.0000i

>>

A large vector can be assigned as follows using a starting value, increment value, and
final value,

>> x = 0 : 1 : 100 ; % x=[0 1 2 . . . . . 100];

By default, vectors are row vectors of (1xn). To change a vector into a column vector,
simply use the transpose operator,

>> x = x’ ; % Original x is a row vector.
% After this statement it is a column vector.

Defining matrices with rows and columns as follows is often needed, as shown below.
Notice how we transpose the row vectors into column vectors in the definition of the matrix

>> Angle_Degrees = [ 0 90 180 270 360]

Angle_Degrees =

0 90 180 270 360

>> Angle_Radians = (pi/180) ∗ Angle_Degrees

Angle_Radians =

0 1.5708 3.1416 4.7124 6.2832

>> Angle_Matrix = [Angle_Degrees’ , Angle_Radians’ ]
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Angle_Matrix =

0 0
90.0000 1.5708

180.0000 3.1416
270.0000 4.7124
360.0000 6.2832

>>

The default numerical data type in MATLAB® is double precision floating point data,
double in C-language. Data can be defined and converted to integer data type using data
conversion functions. MATLAB® supports 8-bit, 16-bit, 32-bit, and 64-bit signed and
unsigned integer data types. The data conversion function examples are shown below,

k1=int8(-10.3)
l1=int16(-1000.4)
m2=uint32(1000000.5)
n2=uint64(-100000000.6)

>>
k1 = -10
l1 = -1000
m2 = 1000001
n2 = 0

>>

Characters and strings (array of characters) are stored as vectors of ASCII code for each
character using a single quote to assign to a string variable. For instance

myTitle=’Plot of Torque versus Speed’ ;
size(myTitle)

>>
ans =

1 27

The character array variable (equivalently called the string variable) “myTitle” is a vector,
where each element of the vector stores the ASCII code of the characters. The “size()”
function counts the number of elements in this variable. The conversion between character
representation in ASCII code and numerical representations can be performed as follows,

char(97) % Prints the character corresponding to
ASCII code 97: a

double(’a’) % ...........ASCII code corresponding to
character ’a’

S = [’1 2’
’3 4’] ;

X = str2num(S)

S = num2str(X) ;
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>>
ans =

a

ans =

97
X =

1 2
3 4

S =

1 2
3 4

The basic arithmetic operators, +,-,∗,/ are defined for scalars as well as vectors and matrices.
In C++ terminology, the +, -, ∗, / operators have been overloaded to handle scalar, vector,
and matrix data objects. In MATLAB®, we can add two matrices like scalars,

>> A = [ 1 2 ; 3 4 ] ;
>> B = [ 1 2 ; 3 4 ] ;
>> C = A + B ;

Element-by-element algebraic operations are also defined using the following operators:

.+ .− .∗ ./

The following is a standard matrix multiplication operator,

>> C = A ∗ B ;

Whereas, the following multiplies the A and B matrices element by element and assigns it
to the C matrix

>> C = A .∗ B ; % C(i,j) = A(i,j) ∗ B(i,j)

MATLAB® automatically defines the following variables,

>> pi
>> eps
>> inf
>> NaN
>> i
>> j

where “pi” is 𝜋, “eps” is a very small number which is 2−52 ≈ 2.2204 E−16, and “inf”
represents the infinity. “NaN” is used to represent a condition that data is not a number. The
maximum and minimum numbers that MATLAB® can represent as integers and floating
points can be determined on a given computer as follows. Any mathematical operation that
results in a number beyond this range will result in overflow (larger than maximum repre-
sentable number) or underflow (smaller than the smallest representable number) errors.

>> intmax

ans =

2147483647

>> intmin
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ans =
-2147483648

>> realmax

ans =
1.7977e+308

>> realmin

ans =
2.2251e-308

>>

For complex numbers, the constant “i” and “j” are both defined as square root of −1,
√
−1,

when used in the context of complex variables.

>> z = 2+3∗i
>> z = x+i∗y

>> z = 2+3j
>> z = x+j∗y
>>
>> z=complex(2,3) ; % equivalent to z = 2 + 3∗i
>>
>> x = real(z) ; % Assign real parf of z to x
>> y = imag(z) ; % Assign imaginary parf of z to y
>>
>> w = conj(z) ; % if z = 2 + 3∗ i, then w = 2 - 3 ∗ i

Note that “i” and “j” are commonly used as loop counters in programming languages such
as C and Fortran. In MATLAB®, if in a program we use “i” or “j” for loop counters or for
any other purpose on the left hand side of an assignment statement, then we have effectively

redefined the meaning of it, and hence can no longer be used as a complex number
√
−1

within the scope of its definition. In other words, if “i” and “j” are redefined in an M-script
file with global visibility, it will effect the redefinition of the “i” and ‘j’ as complex number
globally. However, if ’i’ and ’j’ are redefined in a function as local variable, it will only
effect the definition locally within the scope of that function. M-script files, M-function
files, and variable scopes are discussed later in this chapter.

A.1.2 Program Flow Control Statements in MATLAB®

The following logic and flow control statements, coupled with operators (arithmetic, logical,
and relational operators), allows us to code logic into our MATLAB® programs in the form
of loops (iterative and conditional loops) and decision blocks,

% Loops: for and while constructs.

for k=1:10 % Iterative loop: execute the loop 10 times.
...
statements % for i= start_value: increment_value :

end_value
... % increment_value is 1 by default if omitted

end

% Conditional loop:
% Execute the loop while the (condition) is true or non-zero
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while (condition)
...
statements
. . .

end

The “continue” and “break” statements are defined for “for” and “while” loops. The
“continue ; ” statement skips the rest of the block and continues the next iteration of the
loop in the “for” or “while” loop. The “break ” statement breaks out of the current loop.

Decision Blocks: if and switch constructs.

if (expression1)
statements1

% execute the first block for which (expressionX) is true
% or non-zero

. . .
elseif (expression2)

statements2
. . .

elseif (expression3)
statements3
. . .

% (repeat elseif (exp) as many times as necessary)
else

statementsN
. . .

end

switch (switch_expr)
case (case_expr )

% Execute the block for which case_expr = switch_expr
statements
...

case {case_expr1,case_expr2,case_expr3,...}
statements
...

otherwise
statements
...

end

Example for “switch” construct,

method = ’Bilinear’;

switch lower(method)
case {’linear’,’bilinear’}

disp(’Method is linear’)
case ’cubic’

disp(’Method is cubic’)
case ’nearest’

disp(’Method is nearest’)
otherwise

disp(’Unknown method.’)
end
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The “otherwise” part is executed only if none of the preceding case expressions match the
switch expression. Only the statements between the matching “case” and the next “case,”
“otherwise,” or “end” are executed. Unlike C, the “switch” statement does not fall through,
so “break” statements are not necessary.

The various operators used in MATLAB® are summarized below.
Arithmetic operators,

A+B
A-B
A∗B A.∗B
A/B A./B
A\B A.\B
AˆB A.ˆB
A’ A.’

Relational operators,

A < B
A > B
A <= B
A >= B
A == B (equal ?)
A ˜= B (not equal ?)

Logical operators,

A & B ; AND element-by-element (bit-wise) evaluation
A | B ; OR element-by-element (bit-wise) evaluation

A && B ; AND logical
A || B ; OR logical

˜A ; NOT
xor(A,B) ; Exclusive OR,

logical 1 (TRUE) where either A or B, but not
both, is non-zero.

A.1.3 Functions in MATLAB®: M-script files and
M-function files

There are two different ways to call functions in MATLAB®:

1. run another M-file: script file,

2. call another MATLAB® function in an M-file: function file.

To run another M-file, called a script file, just include the name of that file in the program
M-file. It is equivalent to including the content of that M-file at that location. The data
in the M-file is global and accessible in the MATLAB® workspace as well as the current
workspace. One M-script file can include and execute another M-script file, and in turn that
file can include yet another M-script file. The nesting can continue as part of the program
logic.
Script M-file example: Matrix1.m

% Filename: Matrix1.m
% Example of an M-script file.
% Typing the file name in MATLAB® command window or another

MATLAB® M-file is
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% equivalent to running the code in this file as if they were
typed explicity at that location.

A = [ 1 2 ; 3 4 ] ;
B = [ 5 6 ; 7 8 ] ;
C = A + B ;
Matrix2 ;
F = [ 50 60 ; 70 80] ;
G = E + F ;

Script M-file example: Matrix2.m

% Filename: Matrix2.m
% Example of an M-script file.
% This file is executed by the "Matrix2" line in the Matrix1.m
% script file.

D = [ 10 20 ; 30 40 ] ;
E= C + D ;

>> Matrix1 ; % to run the Matrix1.m script file.
% Then Matrix1.m script file runs Matrix2.m

script file.

Calling a “user-written MATLAB® function” follows the function call rules similar
to the rules used in high level programming languages such as C and Fortran: it accepts input
arguments in the function call and returns data. The data defined locally in the function are
local to the function file. Unlike the script M-files, they are not globally accessible. Likewise,
the function can access only the data variables passed through the function call argument
list. It cannot access the variables in the workspace. The only way to override that is to
define “global” variables. Good programming practice suggests that we use M-function
files with controlled local data scope, and minimize the use of M-script files with global
data scope or “global” statement that can lead to unintended data over-writes. The syntax of
a user-written MATLAB® function M-file is as follows (filename is the function-name with
extension “.m”),

Filename: function_name.m

function [Y,Z] = function_name(input_1, input_2)
% Input variable to this function from the caller: input_1,
input_2, ...

% Output variable from this function to the caller: Y, Z
%
% Local data
%
% Logic
%
% I/O

Y= 5.0 ∗ input_1 ;
Z= 10.0 ∗ input_2 ;

% Return (output) variables Y and Z must appear on the left
hand side of

% assignment operator.
%
% This is the end of the function.
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MATLAB® Example for M-Function File

% Filename: Example1.m
%
%

x=[0.0:0.1:2∗pi];

y = My_Function1(x) ;

plot(x,y) ; % This will plot the sine function on Figure 1.
grid on;

% End of file

function z1 = My_Function1(u1)
% Input variable to this function from the caller: input_1,

input_2, ...
% Output variable from this function to the caller: Y, Z
%
% Local data
%
% Logic
%
% I/O

z1 = My_Function2(u1) ; % Let’s illustrate that function
calls can be nested.

% Return (output) z1 must appear on the left hand side of
% assignment operator.
%
% This is the end of the function.

function y1 = My_Function2(x1)
% Input variable to this function from the caller: input_1,

input_2, ...
% Output variable from this function to the caller: Y, Z
%
% Local data
%
% Logic
%
% I/O

y1 = sin(x1) ;

% Return (output) y1 must appear on the left hand side of
% assignment operator.
%
% This is the end of the function.

The result is shown in Figure A.3.
Global variables can be defined in MATLAB® for data variables to be shared across

functions without having to pass it in the input–output arguments. However, a global
data definition violates the “encapsulation” principle in programming. Therefore, it is not
recommended for good programming practice. However, if it must be used, the global
variables are declared both in M-script file (i.e., the M-script file which holds your
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FIGURE A.3: Output plot of the MATLAB® M-function file example.

main program or in the Command Window of MATLAB®) and in the function that
uses it.

% Main script file name: filename.m
%

global gravity

gravity = 9.81 ;

....

————————————————————————————————————–
% File name: myFunction1.m

function z = myFunction1(time)
global gravity

...

return

Built-in Functions in MATLAB® Environment MATLAB® provides a rich
library of built-in functions to provide convenience to the programmer for data manipula-
tion. It is the simplicity of data handling with this rich set of built-in functions and the sim-
plicity of I/O handling that makes MATLAB® an attractive computational engineering tool.

The following built-in functions are useful in data generation

>> A = zeros(5,5) ;
% all elements of A matrix, 5x5, are zero
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>> B = ones(6,4) ;
% all elements of B matrix, 6x4, are ones.

>> Y = eye(n) ;
% Returns (creates) an identity matrix: nxn

>> Y = eye(m,n) ;
% ............... mxn

Matrices can be concatenated to build larger size matrices or elements can be deleted
to build smaller matrices,

>> B = [ A, A+2 ; A+2, A ] ;
>>
>> A(:,2)=[] ; % Delete second column of matrix A
>>
>> C = B(2:4, 3:6) ; % Assign sub-set of B to C: rows 2,3,4

and colums 3, 4, 5, 6 of
>> % B are assigned to C
>>
>> v=linspace(0,10,6) % Create an array v: start at 0,

end at 10, 6 numbers evenly spaced

v =

0 2 4 6 8 10

>> v=logspace(0,3,4) ; % First two arguments are powers of 10,
% third argument is the number of
elements

% in the range, in Logarithmic scale.

v =
1 10 100 1000

Various matrix properties are calculated using MATLAB® library functions, such as
determinant, eigenvalues of a matrix, rank of a matrix, inverse of a matrix

>> Value = det(A) ; % Determinant of matrix A,
>> Lambda = eig(A) ; % Eigenvalues of matrix A.
>> n = rank(A) ; % Rank of matrix A
>> Ainv = inv(A) ; % inverse of A: Aˆ-1

Some commonly used built-in mathematical funtions in MATLAB® are as follows:

>> y = sqrt(x) ; % Square root of x assigned to y
>> y = exp(x) ; % Exponential function
>> y = abs(x) ; % Absolute value of x assigned to y
>> y = log(x) ; % y = ln(x). Log(x) is logarithmic function

with base ’e’.
>> y = log10(x) ; % y = log(x). Log10(x) is logarithmic

function with base ’10’.
>>
>> x = 5.4 ;
>> y = round(x) ; % Round to nearest integer: y = 5
>> y = fix(x) ; % Round to integer towards zero: y = 5
>> y = ceil(x) ; % Round to integer towards infinity :

y = 6
>> y = floor(x) ; % Round to integer towards negative infinity:

y = 5
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>> y = rem(x,z) ; % Reminder function: y = x - fix(x/z)
>> y = sign(x) ; % returns 1 if x>0, 0 if x=0, -1 if x< 0.

>> % Trigonometric functions
>> y = sin(x) ; % Sin function
>> y = cos(x) ; % Cosine function
>> y = tan(x) ; % Tangent function
>> y = cot(x) ; % Cotangent function

>> y = asin(x) ; % Arcsin (inverse Sin) function
>> y = sinh(x) ; % Hyperbolic sin function
>> y = asinh(x) ; % Inverse hyperbolic Sin function

% Similar functions for cos, tan, cot.

Polynomials, their roots, and multiplication of polynomials are handled by the coef-
ficients data vector. Let us consider a polynomial as follows:

a0sn + a1sn−1 + a2sn−2 +⋯⋅ +an = 0 (A.1)

The roots of the polynomial can be found as follows

>> c = [ a_0 a_1 a_2 ... a_n] ; % Defines the coefficients of
the polynomial

>> r = roots(c); % r is the vector that has the roots of the
polynomial.

>> c = poly(r) ; % poly() does the opposite of roots() --
given the roots,

% it calculates the coefficients of the
corresponding polynomial.

>> c3 = conv(c1, c2) ; % multiplies two polynomials, and
% returns the coefficients of the

resulting polynomial.
% (Length of c3) = (length of c1 + length

of c2 - 1)

>> y1 = interp1(x,y,x1); % given (x,y) vector pair,
% find interpolated value(s) of y1 at x1
% using linear (default) interpolation.
% If x1 is scalar, y1 is scalar. If x1

is vector, so is y1.

A.1.4 Input and Output in MATLAB®

MATLAB® has most of the features of a high level programming language, such as C,
plus the additional convenience of easily handling graphical plotting of data and automatic
declaration of data type. Unlike in C, the data type of a variable does not need to be declared
in advance of its usage. MATLAB® automatically handles that. In any programming
environment, we need to be able to input–output the data to-and-from the program and
apply logic to it.

Data can be input to a MATLAB® environment in one of the following ways:

1. From the keyboard, using “input” function.

2. From a previously saved “∗.mat” file, using “load.”
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3. From an M-file where data is defined following the MATLAB® syntax (this is the most
common form of inputing data in MATLAB® environment), using the ”filename” in
the program or in command window.

4. From any file in a format supported by MATLAB® such as “filename.txt” or “file-
name.dat,” including Excel spreadsheet data file, “filename.xls.”

>> n = input (’Enter value for n : ’) ; % Inputs numeric data
to variable ’n’.

To enter a vector or matrix, use the same notation that we use in m-script file or
Command Window, i.e.

>> v = input (’Enter value for v: ’) ; % Inputs numeric data
for vector v

[ 1 2 3] ;

>> matrix1 = input (’Enter value for Matrix1: ’) ; % Inputs
% numeric data for vector v

[ 1 2 3 ;
4 5 6 ;
7 8 9 ] ;

The entered data are assigned to the variable on the left side of the assignment
statement.

Formatted input and output can be accomplished using fscanf() and fprintf() func-
tions, respectively, which are similar to the same named functions in C language. Before a
file can be accessed for read/write operations, it must be opened with the fopen() function.
When the read/write operations are completed for the current application, the file should
be closed using the fclose() function. As a result, there are typically four functions used for
formatted file I/O operations,

>> name = input (’Enter string data for name ’, ’s’) ;
% enters the string data (specified by ’s’) into
variable ’name’

>> filename ;
% executes the filename.m
% all the data defined in the m-file becomes part
% of the MATLAB® workspace and
% therefore accessible to the program.

>> load filename
% loads the variables saved in the filename.mat file
% which was saved before.

>> load(’filename.dat’, v)
% Loads ASCII data from the file to variable v

>> save
% saves all workspace variables to matlab.mat file in

binary format.

>> save filename
% save all of the workspace variables in the filename.mat

in binary format.
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>> save filename var1 var2 -ascii -double -tab
% saves the selected variables in ascii format in the

filename specified.
% if no variable name is provided, all of the variables
% in workspace is saved.

Data can be displayed in text format on the screen, plotted in graphical form, or saved
to a file,

x
% Not terminating a line in m-file (or in command

window) ";" displays
% the numerical result of the current line on the

screen including the name of the variables

disp(x)
% Displays the value of x without printing the name of
the variable

disp(’Message’);
% display the text string ’Message’

Formatted printing to screen or file can be done using the fprintf() function, which
is almost identical to the fprintf() function used in C language.

A = [ 1 2 3 ;
4 5 6 ] ;

[row,col]=size(A) ;

fprintf(’The matrix has %4.0f rows and \t %4.0f columns \r\n’,
row, col) ;

% the ’%5d’ means the data for 5 digit integer format,
% the ’%4.0f’ means the data is in decimal notation,
% 4 characters long, 0 digits after the decimal

point.

myTitle = ’Result: Force versus Time’ ;

fprintf(’%s \n’, myTitle) ;

The result is

>>
The matrix has 2 rows and 3 columns

Result: Force versus Time
>>

The

\n

format specifier adds a carriage-return after printing “myTitle” on the screen. In the above
example, “fprintf()” statements print on the screen.
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The fprintf() output can also be directed to a file, as follows,

x = 0:.1:1;
y = [x ; exp(x)];
fHandle = fopen(’exponential.txt’,’wt’);
fprintf(fHandle,’%6.2f %12.8f\n’,y);
fclose(fHandle);

Data can be input from different file formats that MATLAB®’s built-in functions
support. Below is a list of typical file formats supported by MATLAB® built-in functions.

File Format Filename extensions MATLAB® Built-in Functions

———————————————————————————————————————————————————————————————————-

Text File ∗.dat, ∗.txt, ∗.mat y= load(’ .. ’)

save(’....’, y)

fopen()

fclose()

fscanf()

fprintf()

Excel File ∗.xls y=xlsread(’..’)
xlswrite(’..’,y)

Image File ∗.bmp, ∗.jpg, ∗,jpeg WL=imread(’wheel_loader.jpg’) ; % to read

image(WL); % to display

imwrite(WL,’MWL.jpg’) % to write

Audio File ∗.wav, ∗.au [Adata,Af]=wavread(’myAudio1.wav’) ; % to input

sound(Adata,Af) ; % to play it

wavwrite(Adata,Af, Ares,’myAudio2.wav’) % to

% write it

Video File ∗.avi getframe()

movie()

where Af is sampling frequency in Hz and Ares is the number of bits per sample (resolution
of sound data). In sound file of type “∗.wav,” the magnitude of the data should be between
−1.0 and 1.0 which represents the amplitude or the volume of the sound.

A useful MATLAB® built-in function for user interface using monitor and keyboard
is the menu() function. The menu() function is used to display a window on the screen and
provides a number of choices, whichever one is selected by the user, the result is returned
to the variable on the assignment statement as an integer, indicating the choice. The general
format of the “menu()” function is as follows,

choice = menu(’menu_header_message’, ’item1 text’, ’item2
text’, ... )

and an example of usage is given below.

choice = menu(’Simulation choices:’, ’Case 1’, ’Case 2’,
’Case 3’)

switch choice
case 1

disp(’Case 1 is selected’);
case 2

disp(’Case 2 is selected’);
case 3
disp(’Case 3 is selected’);

end
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Example: Working with Excel Files Data from an Excel file can be entered to
a MATLAB® variable by specifying the (Figures A.4 and A.5)

1. Excel filename,

2. Worksheet name in the file,

3. optionally a specified range of rows and columns in the spreadsheet and assign it to
a MATLAB® variable.

Let us assume that we have an Excel file with three colums of data, first column
represents the “time,” the second column represents the “force,” and the third column
represent the “position”. At the very top of the file, in row 1, we have the text information
on top of colums 1, 2, 3 as “time,” “force,” “position,” respectively. Our objective is to
read the numeric data interactively, plot the results, and modify the data, and then write the
modified data by appending it to colums next to the existing data on the same worksheet.
Plot the data in “position versus time” and “force versus time,” then multiply the “force”
data by 2 and position data by 3, save the new data into the same file into columns 5, 6, 7
as “time,” “force,” “position.” Before running this program, make sure Excel program does
not have the data file “myExcelDataFile1.xls” open. The host PC should have the Excel
program installed in order to run the program properly.

% Filename; myExcelFile1.m

disp(’Reading Excel Data File...’) ;
myData = xlsread(’c:\temp\myExcelDataFile1.xls’,-1);
disp(’Completed reading...’);

subplot(221)
plot(myData(:,1), myData(:,2))
ylabel(’Position’);
xlabel(’Time’);
subplot(222)
plot(myData(:,1), myData(:,3))
ylabel(’Force’);
xlabel(’Time’);

myData2(:,2) = 2.0 .∗ myData(:,2) ;
myData2(:,3) = 3.0 .∗ myData(:,3) ;
subplot(223)
plot(myData(:,1), myData2(:,2))
ylabel(’Position’);
xlabel(’Time’);
subplot(224)
plot(myData(:,1), myData2(:,3))
ylabel(’Force’);
xlabel(’Time’);

disp(’Writing Excel Data File...’);
xlswrite(’c:\temp\myExcelDataFile1.xls’, myData2, ’Sheet1’, ’E2’) ;
xlswrite(’c:\temp\myExcelDataFile1.xls’, myData2, ’Sheet2’, ’A2’) ;
disp(’Competed writing...’);

The ease of plotting in MATLAB® is one of the most attractive features of it. In
plotting data, we need to open a figure window, divide the window into subplot areas if
desired, define the title, labels of x and y axes, scales of x and y axes, and for each x-y pair of
data we can specify the line type and color. These are illustrated in the following example.

% open a new figure window
% 2x3 grid of sub-plot areas in the figure,
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% current target is number 1 spot

Figure(1);
Subplot(2,3,1);

% add plot title, x and y axis labels, axis scales, grid

Title(’My X-Y Plot’);
Xlabel(’time(sec)’);
Ylabel(’Position (meters)’);
Axis([xmin xmax ymin ymax]) ;
Grid (on);

% plot type: linear in both axes, data vector pairs
% (x1, y1), (x2, y2), and plot line specs

Plot(x1,y1,’-0r’, x2,y2,’–+b’);

% line specs defined with the ’ ...’ following data pair definition:
% - line type: solid line ’-’, dashed ’–’, dotted ’:’,

dash-dot ’-.’ ...
% - line symbol: circle ’o’ , plus ’+’ , x-mark x,

square ’s’, diamond ’d’ ...
% - line color: red ’r’, black ’k’, blue ’b’, green ’g’,
% yellow ’y’, cyan ’c’, magneta ’m’...

Plotting data in logarithmic scale, such as only x-axis in log scale, only y-axis in log
scale or both in log scale is accomplished by the following statements instead of the “plot”

semilogx(x1, y1); % x-axis is in Log scale
semilogy(x1, y1); % y-axis is in Log scale
loglog(x1,y1); % Both x and y axes are in Log scale

Sometimes it is necessary to generate a frequency data vector that is spaced logarithmically
instead of linearly as shown below

wlinear = 0.0: 1.0 : 100.0 ;
wlog = logspace(-3,3,100);

% generate frequencies
% in the range of 10ˆ-3 to 10ˆ+3, 100

data points
% logaritmically spaced.

Likewise, three-dimensional plots are obtained either as 3D line plots or 3D surface plots.
3D line plots are done by

plot3(x,y,z) ;

where x, y, and z all have the same number of elements and z value plotted for each x,y pair
(Figure A.6).

>>
>> x = [1 2 3 4 ];
>> y = [1 2 3 4] ;
>> z = [0 2 10 50] ;
>> plot3(x,y, z) ;
>> grid on
>>
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FIGURE A.6: 3D line plot example.

3D surface plots are done by

mesh(x1,y1,z1) ; % 3-d plots with lines
surf(x1,y1,z1) ; % 3-d plots with surface
contour(x1,y1,z1) ; % Generates a contour plot
surfc(x1,y1,z1) ; % 3-d plots with surface and contour

combined

where x1 and y1 form a 2D matrix defining the x-y grid’s coordinates. These data are
typically created from row vectors x and y using the

[x1, y1] = meshgrid(x,y)

function. The x1 vector is rows of the x vector, and the y1 vector is the columns of the
y vector. For example, to evaluate the function x ⋅ e(−x2−y2) over the range −1 < x < 1,
−1 < y < 1,

clc ;
clf ;
[X,Y] = meshgrid(-1:.5:1, -1:.5:1)
Z = X .∗ exp(-X.ˆ2 - Y.ˆ2)
surf(X,Y,Z)

>>

X =

-1.0000 -0.5000 0 0.5000 1.0000
-1.0000 -0.5000 0 0.5000 1.0000
-1.0000 -0.5000 0 0.5000 1.0000
-1.0000 -0.5000 0 0.5000 1.0000
-1.0000 -0.5000 0 0.5000 1.0000
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Y =

-1.0000 -1.0000 -1.0000 -1.0000 -1.0000
-0.5000 -0.5000 -0.5000 -0.5000 -0.5000

0 0 0 0 0
0.5000 0.5000 0.5000 0.5000 0.5000
1.0000 1.0000 1.0000 1.0000 1.0000

Z =

-0.1353 -0.1433 0 0.1433 0.1353
-0.2865 -0.3033 0 0.3033 0.2865
-0.3679 -0.3894 0 0.3894 0.3679
-0.2865 -0.3033 0 0.3033 0.2865
-0.1353 -0.1433 0 0.1433 0.1353

The following is an example of four different three-dimensional surface plots (Figure A.7).

x = [-2.0: 0.1 : 2.0];
y = [-2.0: 0.1 : 2.0];
[x1,y1] = meshgrid(x,y) ;

−2
0

2

−2

0

2
−0.5

0

0.5

−2
0

2

−2

0

2
−0.5

0

0.5

−2 −1 0 1 2
−2

−1

0

1

2

−2
0

2

−2

0

2
−0.5

0

0.5

FIGURE A.7: 3D surface plot examples: using “mesh,” “surf,” “contour,” and “surfc”

functions.
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z1= x1 .∗ exp(-x1.ˆ2 - y1.ˆ2) ;

figure(1)
subplot(2,2,1)
mesh(x1,y1,z1)
subplot(2,2,2)
surf(x1,y1,z1)
subplot(2,2,3)
contour(x1,y1,z1)
subplot(2,2,4)
surfc(x1,y1,z1)

The viewing angle of each 3D plot can be changed using the interactive tool on the plot
window using the mouse or can be programmed using the “view()” function,

az_angle = 45 ;
el_angle = 45 ;
view(azimuth_angle, elevation_angle) ;

Plots can be printed from the File − > Print menu of the plot window. In addition, in
the Windows environment, the screen can also be captured using the “PrtScr” key on the
keyboard, which copies the content of the screen to memory. Then the content can be copied
to a file using “Microsoft Paint” or a similar program. The file can be saved in bit mapped
format.

Animation can be done by storing images into an array of frames, and displaying
these frames in a sequence using “getframe” and “movie” functions.

for j=1:60
plot(.....);
F(j) = getframe;

end

movie(F,10) ; % play the frames stored in F for 10 times.
% Once the movie frames are save to a matrix,
i.e. F,

% the animation can be replayed anytime.

Here is an example of animation by first calculating and saving each frame, then playing
them as an animation (Figure A.8).

% Animation example

clear
clc
clf

x= 0 : pi/50 : 2∗pi ;
y = x ;
[X,Y] = meshgrid(x,y);

z = 20∗sin(X)+cos(Y);
h = surf(z) ;

axis tight ; % sets the axis limits to the range of the data.
set(gca, ’nextplot’,’replacechildren’); % ’gca’ is the current

axis handle
% next plot replaces the

previous plot, without
rescaling the axis.
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FIGURE A.8: 3D movie animation using getframe() and movie() functions.

shading interp ; % color shading uses ’interpolation’ method based
on the value of the plotted data

colormap(jet) ; % Color map (number range versus color spectrum):
jet = blue – green – yellow- red range.

m=1 ;
for k = 0 : pi/50: 2∗pi

z = (sin(X)+cos(Y)).∗8∗sin(k) ;
set(h,’Zdata’,z);
M(m)=getframe; % create and save each frame
m=m+1 ;

end

movie(M,3) ; % play the movie 3 times.

Other related MATLAB® functions are:

axis, bar, grid, hold on, legend, line, LineSpec,
loglog, plotyy, plot3, semilogx, semilogy, xlabel,
xlim, ylabel, ylim, zlabel, zlim, stem, set.

A.1.5 MATLAB® Toolboxes

The power of MATLAB® comes from its extensibility through libraries called “Toolboxes,”
grouped into different functional categories. For instance all of the control system design
functions are grouped into a “Control Systems Toolbox.” Similarly, all of the signal pro-
cessing related functions are grouped into a “Signal Processing Toolbox.” There are many
such toolboxes and new toolboxes are being added continuously for different application
fields. A typical control engineer needs the “Signal Processing Toolbox” and “Control
Systems Toolbox.” There are also toolboxes that provide functions specifically for system
identification, neural networks, fuzzy logic, power electronics, statistics, and so on.
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A.1.6 Controller Design Functions: Transform Domain
and State-Space Methods

A transfer function is defined with numerator and denominator coefficients. A transfer
function description can be converted between three different ways of expressing it: (i)
numerator and denominator polynomials form, (ii) poles-zeros and gain form, (iii) partial
fraction expansion form (poles, residues, and DC gain).

num(s)
H(s) = ———————

den(s)

(s-z1)(s-z2)...(s-zn)
H(s) = K ——————————————————————

(s-p1)(s-p2)...(s-pn)

num(s) R(1) R(2) R(n)
-——— = ———————— + ———————- + ... + ———————– + K(s)
den(s) s - P(1) s - P(2) s - P(n)

These functions are applied in s-domain as well as z-domain transfer functions.

numG = [ 1 ] ; % Numerator coeficients
% of the transfer function.

denG = [ 1 2 4] ; % Denominator ......
% ...........................

Gs = tf(numG,denG) ; % Gs defines the transfer funtion.

[z,p,k] = tf2zp(numG, denG); % convert to zero-pole-gain form
% from the polynomial num(s)/den(s)
form

[numG, denG] = zp2tf(z,p,k); % do the reverse

[r,p,k] = residue(numG, denG) ; % convert from num(s)/den(s) form
% to Partial Fraction Expansion form

[num, den] = residue(r,p,k) ; % convert from partial fraction
expansion form

% to numerator and denominator
polynomial form

p = pole(Gs) ; % Given G(s), get poles,
[z, k] = zero(Gs) ; % .......... get zeros and gain
[num,den]=zp2tf(z,p,k) ; % obtain the num(s)/den(s) form

If we define complex variables “s” and “z” as follows for Laplace and Z-transforms, then
we can express the transfer functions in symbolic form,

s = TF(’s’) ; % specifies the transfer function H(s) = s
(Laplace variable).

z = TF(’z’,TS) ; % specifies H(z) = z with sample time TS.

You can then specify transfer functions directly as rational expressions in s or z, for example,

s = tf(’s’);
G = (s+1)/(sˆ2+3∗s+1) ;
z = tf(’z’);
H = (z+1)/(zˆ2+4∗z +2) ;
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Similar functions are available to convert between different forms of transfer function and
state-space representations as follows.

[numG, denG] = ss2tf(A, B, C, D);
[A,B,C,D] = tf2ss(numG, denG);

[z, p, k] = ss2zp(A, B, C, D);
[A, B, C, D] = zp2ss (z,p,k) ;

sys = ss(A,B,C,D) ; % creates a SS object SYS representing
% the continuous-time state-space model

p = eig(A) ; % Eigenvalues of A.

z = tzeros(sys) ; % Transmission zeros of the corresponding
% transfer function between input and output.

dx/dt = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

You can set D=0 to mean the zero matrix of appropriate dimensions.

sys = ss(A,B,C,D,Ts) ; % creates a discrete-time state-space
model with

% sample time Ts (set Ts=-1
% if the sample time is undetermined).

Finding the discrete equivalents of continuous system transfer functions using various
approximation methods can be done as follows in transform and state-space form

sysD= c2d(sys, 0.01, ’tustin’) ; % given ’sys’ for continuous
system,

% sampling period = 0.01, use
’Tustin’ method

% to obtain ’sysD’ for
discrete system equivalent.

Gs = tf(num,den); % Define a G(s)
Gz = c2d(Gs, T,’zoh’) ; % Obtain ZOH equivalent of it in

z-domain G(z) for
% sampling period T.

zgrid ; % draws the constant damping ratio and constant
natural frequency

% contours on z-plane

zgrid([],[]) ; % draws the |z|=1 unit circle.

Root locus related functions are illustrated with an example below.

num = [1] ;
den = [ 1 5 2 6] ;
sys = tf(num, den);
K = 0.0 : 0.1 : 100 ;
rlocus(sys,K) ; % plot root locus for standard closed

loop case,
% for the given range of K values.

rltool(sys) ; % interactively plots root locus and
calculates gain and pole
% locations seleted at the points where

mouse is clicked.
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Frequency response related functions are illustrated in the example below.

num = [1] ;
den = [ 1 5 2 6] ;
sys = tf(num, den);

[mag, phase, w] = bode(sys) ; % Get Bode plot data
loglog(w, mag); % plot magnitude plot
semilogx(w, phase); % plot phase plot

nyquist(sys) ; % Plot Nyquist (polar) plot

[GM, PM, wgm, wpm] = margin(G) ; % Obtain Gain Margin, Phase
margin

% and the freqencies at those
locations.

Given the A, B, C matrices of state-space representation, controllability and observability
matrices can be obtained as follows,

Wc = ctrb(A,B); % Calcualate controllability matrix
Wo = obsv(A,C); % ........... observability........

nc = rank(Wc) ; % Get the rank of controllability matrix
value1 = det(Wc) ; % ....... determinant of ..............

no = rank(Wo) ; % Same for observability matrices.
value2 = det(Wo) ;

Given the A, B, C, D matrices of state-space representation, and desired pole locations for
closed loop system pc, the state feedback gain can be calculated by

K = acker(A, B, p_c) ;
K = place(A, B, p_c) ;

For the observer design, given the observer poles, pe,

L = (acker(A’, C’, p_e))’ ;
L = (place(A’, C’, p_e))’ ;

MATLAB® Functions to Simulate Linear Dynamic Systems MATLAB®

has three convenient functions to simulate linear dynamic systems. They are

1. impulse(sys,t) function for impulse response of the system for a given time duration,

2. step(sys,t) function for unit magnitude step function response,

3. lsim(sys,u,t) function to simulate the response to an arbitrary input function defined
in vector “u.”

The example MATLAB® script file below illustrates their use. Note that these func-
tions are usable only for dynamic systems defined by linear, constant coefficient differential
equations. Figure A.9 shows the results of the simulation.

% Simulating Linear Systems response using MATLAB® Functions
% impulse() and step() and lsim()

% Linear system definition:
wn=2∗pi∗1.0;
psi=0.5;
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FIGURE A.9: Simulation results of a second-order system for impulse, step, and a

user-defined input functions using the MATLAB® functions impulse, step, and lsim.

num=[wnˆ2];
den=[1 2∗psi∗wn wnˆ2];
sys1=tf(num,den);

% Impulse response

t=[0:0.01:4.0];
figure(1);
impulse(sys1,t);

% Step response

t=[0:0.01:4.0];
figure(2);
step(sys1,t)

% Response to a general input

t=[0:0.01:4.0];
u= 1.0 ∗ sin(2∗pi∗t);
figure(3);
lsim(sys1,u,t) ;

MATLAB® provides the following functions for the numerical solution of nonlinear
differential equations.
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MATLAB® Function ode45() for ODE Solution MATLAB® provides numer-
ical integration functions to solve differential equations, some of which are as follows:

[t, x]= ode45(’ODE_FunctionName’, t_vector, x_initial)
[t, x]= ode23(’ODE_FunctionName’, t_vector, x_initial)

where “ODE_FunctionName” is the name of the M-function file that has the differential
equations that describes the dynamics of the system, tvector can be either [to, tf] beginning
and ending time interval of the simulation and the algorithm decides on the number of
intermediate solution points or it can be a vector of time points at which the solution is to
be obtained and returned at the [t, x] output vector, xinitial is the initial conditions for states
at the beginning time t0. The difference between different numerical integration methods
(above functions, ode45(), ode23()) are about their efficiency and suitability in dealing with
different types of dynamic systems, such as “stiff” numerical problems. A “stiff” numerical
problem is one that has low and very high frequency (sudden changes in the dynamics, i.e.,
impact problems) content in the solution.

A.2 SIMULINK®

Simulink® is a graphical modeling and simulation software tool which runs as part of
the MATLAB® package. In MATLAB®, a dynamic system is modeled using M-files
which holds the model description in text file format written in MATLAB® language.
In Simulink®, a system is modeled using graphical block diagrams and the connections
between the blocks. Therefore, the graphical representation of the model is easier to under-
stand and facilitates better communication between different users working on the same
model.
A model in Simulink® is:

1. a collection of blocks,

2. their inter-connections, and

3. the parameters of each block.

A typical model development using Simulink® involves the following steps:

1. Given a mathematical and logical description of a dynamic system and control algo-
rithm, build the model of the system using Simulink® blocks from the block library.
This involves selecting a number of blocks from the Simulink® block library, and
making the connections between them.

2. Setup the parameters of each block. Double-clicking on a block brings up the user
interface menu for the block which allows us to setup the parameters of the block,
i.e. the value of the gain for a “Gain” block. Numerical values can be constants
directly typed in the user interface dialog box or can be variables where the val-
ues of the variables are assigned in the MATLAB® Workspace by either directly
making assignment statements in the MATLAB® Command Window or placing the
assignment statements into a script-M file (the recommended method), i.e. filename
“Filename_Parameters.m.”

3. Setup the simulation conditions on the “Model Window’s Simulation” menu item,
(a) select the integration algorithm related parameters, simulation time interval,
(b) select the variables to be saved and plotted and connect them to the appropriate

Simulink® blocks (Scope, To Workpace, etc.).
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4. Run the simulation in Simulink® and analyze the results. Simulink® also has a built
in “Debugger” which is accessed from the Tools → Debugger menu item of the model
window.

Simulink® is a numerical modeling and time domain simulation software that allows
us to mix linear, nonlinear, analog, and digital systems in the model using interconnected
blocks. In Simulink®, the dynamic model and control algorithm are modeled using inter-
connected blocks. The user interface is a graphical one. In order to simulate the system
response for given input conditions, inputs are connected to various source blocks (i.e.,
function generator block, step input block). The response is recorded by connecting various
output signals to sink blocks (i.e., scope block). The simulation start time, stop time,
sampling time and integration method are selected in the Simulink® > Simulation setup
window. The Simulink® model simulates an analog PD controller for the mass-force
system. The controller is sampled at the same rate that the integration algorithm uses for
the solution of the mass-force model. In Simulink® models, the input–output relationships
are described by interconnected blocks. The individual blocks may represent linear or
nonlinear functions between its input and output, transfer functions in Laplace transform
form for analog systems and z-transforms form for digital systems. Input functions for the
simulated case are represented in time domain form. The responses of the system are also
time domain functions.

Simulink® is started by typing “simulink” in the MATLAB® prompt, or placing that
command in the “Startup.m” file, or it can be launched from the “Launch Pad Window” of
MATLAB®.

>> simulink

Once Simulink® starts, it brings up the “Simulink® Library Browser” window
(Figure A.10). A new model is developed by selecting File → New menu item and saved
by selecting File → Save As menu. The default name for a newly opened model file
is “Untitled.mdl.” A Simulink® model is saved in a file with “.mdl” extension. All the
hierarchical levels of the model are saved in one file.

To build a model, different blocks are selected from the Simulink® “Block Library”
and copied over to the “Model Window,” in one of two ways:

1. copy/paste menu items of the Edit menu item, or

2. a block can be selected from the “Block Library” and dragged over to the “Model
Window,” which is the preferred method.

Then the connections between the blocks are made to define the relationship between blocks
to form the complete model.

Preferences in Simulink® provides a window of many menu items to configure the
Simulink® environment. For most applications, the default settings work well. It is accessed
from the File > Preferences menu item.

The parameters of a block can be modified by double clicking on the block once it is
in the model window. A menu comes up associated with the block. The parameters can be
set to either to

1. a constant value, or

2. a variable to be defined in the MATLAB® workspace later on.
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FIGURE A.10: Simulink® window: Simulink® library browser. To start a new model file or

open an existing model file, use the ”File” menu. Then pick, drag, and drop component blocks

from this library window.

The Simulink® block library is grouped into functional categories such as Sources,
Sinks, Connections, Math, Signals, and so on. In addition to the standard blocks pro-
vided with Simulink®, application specific block libraries can be added as “Block Library
Toolboxes” similar to the toolboxes of MATLAB®.

Blocks: From the Simulink® Library Browser window, a new model is created by

File → New → Model
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menu selection. This creates a model window with name “Untitled.” Now we can pick
different blocks from the Simulink® Library Browser window, drag them into the “Untitled”
model window and build a model. Help can be obtained on any library block by right-
clicking on it, and selecting “Help” from the “context-sensitive menu.” Basic properties of
a block, such as orientation of the block and so on, can be accessed through the block’s
context-sensitive properties menu. Each block has a name which is by default placed under
the block. The names are strictly for the benefit of the user and are not used as a variable
reference in the Simulink® operations. The names of the blocks must be unique, in other
words, the same name cannot be used for more than one block. The parameters of a block
are accessed by double-clicking on it. The model is saved in the “Untitled” model window
menu:

File → Save As: enter filename (extension is “.mdl”).

Once a name is specified for the model and saved, the window title for the model window
changes from “Untitled” to the specified file name.

Connections: After selecting the blocks for the model, the next step is to draw the proper
connections between them (Figure A.11).

� In order to draw straight line connections from the output of one block to the input
of another block, simply click the mouse at the output point and drag the mouse to
the input point of the other block.

� In order to draw a perpendicular break point, simply click the mouse in the interme-
diate point, then continue the drawing.

� In order to draw diagonal lines, hold the “Shift” key while drawing.
� To define a branch point on a line, place the mouse at the point on the line to create

the branch point and hold the “Ctrl” key plus click the left mouse button.
� In order to insert a block over an existing line, just move and drop the block over

the line. If the block is not inserted into the line, delete the line, insert the block, and
make the line connections again.

Signal
generator

Integrator

Integrator 1

Soope

1
s

1
s+–

FIGURE A.11: Drawing connections in Simulink®: straight and perpendicular lines, diagonal

lines, creating break points on a line.
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1
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2

1
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Integrator 1IntegratorMass
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C

Damping

Spring

FIGURE A.12: Simulink® model of a mass-spring-damper system.

� In order to delete a line, select the line with the mouse, and hit “Delete” key or use
the Edit → Delete menu item.

� To remove a connection without deleting it, select it, pick the edge of the connection,
and move it.

� To make a straight line into a non-straight line, select the line, pick a point on the
line, and drag it while holding the “Shift” key.

Grouping of Blocks: Simulink® supports block hierarchy. A block can be made of smaller
sub-blocks. The hierarchy can be many layers deep. An existing group of blocks can be
grouped into a single “sub-system block.” In order to group a set of blocks into a “sub-
system block,” select them with the mouse in a rectangular select box (left click to define
the corner of the bounding rectangle, then drag the move to include the blocks desired in
the sub-system, and release the move), then right click to bring up the context-sensitive
menu, then select from menu

Edit → Create SubSystem

The set of blocks will now be replaced by a sub-system block. The new block will
show the input ports and output ports of the grouped set and hide the details. In order to
look into the details of the sub-system block (lower level hierarchy details), double click
on the sub-system block. It will open a new window with the details of the block (Figures
A.12 and A.13).

Grouping of blocks is a very useful tool in designing Simulink® models with clear
graphical and logical organization. Good programming practice dictates that the systems
should be divided into sub-systems, and then those sub-systems should be divided into

Force
1

Pos 1
Position

Speed

Force

Mass-spring-damper system

1

Vell
2

FIGURE A.13: The mass-spring-damper

system is grouped into a sub-system block

showing the input and output ports, hiding

the internal details of it.
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further sub-systems in a logical tree structure. The sub-system definitions should be a
representation of physical reality, as opposed to programming short cuts, in order to have
good re-usability and maintainability for the model.

Masking: A related topic to grouping is the “masking” of a block. Masking allows the
user to define a custom user interface to access the block parameters. It is like a custom
“wrapper” around the block (Figure A.14). Using “masking,” we can provide

1. the user more descriptive parameter information about the block parameters, and

2. hide the block details.

If a sub-system block is masked, double-clicking on the block brings up the user interface
that shows the parameters of the block that the user can change. It does not show the logical
details of the block. If a sub-system block is not masked but grouped, then double-clicking
on the block brings up a new window showing the logical details of that block. In order to
mask a block or sub-system block, select it first. Then, select the sub-system,

Edit → Mask Subsystem to “mask” a subsystem
Edit → Unmask Subsystem to “unmask” an already “masked” subsystem

Under this selection, we need to define the following tabs for masking

Icon
Parameters
Initialization
Documentation

Block masks can be activated and deactivated. Once a mask is defined, deactivating it does
not lose the mask information. The mask information is still saved and can be activated
by the user at any time. The masked block parameters can be assigned values as constants
in this interface or as variables where the variables would later be assigned values in the
MATLAB® workspace. “Icon” allows us to define a bit mapped image file to be displayed
on the masked block (file formats supported: bmp, jpg, tif),

image ( imread (’filename.jpg’))

The “Icon” feature can be very useful to visually describe the model by attaching an image
to the block to display, and it is highly recommended.

Another useful tool in Simulink® models it to have a button that you can double click
to execute a MATLAB® command, such as running an M-file. The Simulink® block used
for that function is in

“Model-Wide Utilities: Model Info Block”

Copy this block to the model window. Right-click the mouse to bring up the block properties
menu. You can enter any desired text to describe (document) information about the model.

Let us connect the PD controller (Figure A.13) and the mass-spring-damper model
(Figure A.14) and simulate the system response. The equations described by the Simulink®

graphics are

mẍ(t) = u(t) ; mass − force dynamics (A.2)

u(t) = kp(xd(t) − x(t)) − kvẋ(t) ; PD control (A.3)



842 MECHATRONICS

X_cmd
1

X_fbk
2

V_fbk
3

+
–

+
– DAC

1Kp

P-Gain

Kv

V-Gain

Blocks are “grouped” to form a sub-system block,
showing only the input and output ports.
Select all blocks, Edit → Create SubSystem

X_cmd
1

X_fbk
2

DAC
DAC 1

V_fbk

X_cmd

X_fbk

V_fbk

PD control

3

Mask the sub-system–when double clicked, instead of
showing the details of the block (the first figure), it will bring
up a user interface which can be used to define the menu to
assign sub-system parameters.
Edit → Mask or Edit Mask

FIGURE A.14: Grouping and masking of Simulink® blocks. This example shows the grouping

and masking for a PD control block diagram.
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FIGURE A.15: PD control and mass-spring-damper system model and simulation results

using Simulink®.

where xd(t) is the desired (commanded) position signal, x(t) is the actual position signal.
For the simulations, we use the following parameters:

m = 1.0 (A.4)

Kp = (2 ⋅ 𝜋)2 (A.5)

Kv = 0.7 ⋅ 2 ⋅ 𝜋 (A.6)

A simulation case result is shown in Figure A.15.

A.2.1 Simulink® Block Examples

Here we will examine some of the most commonly used Simulink® blocks.
The integrator block and unit time delay are shown below (Figure A.16). Integrator,

1
s

is used to integrate a signal, that is the output is the integral of the input. The integrator
block is used in analog control systems. In addition to its input, an initial condition must
be specified.
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1
s

Integrator

Saturation

OutputInput

State

Reset

Initial condition

(a) (b)

1
z

Unit delay

FIGURE A.16: (a) Integrator block, (b) unit time delay block.

Unit time delay, 1
z
, is used to delay the input signal by one sampling period. Unit

time delay is used in digital control systems. In addition to its input, initial condition and
sampling time period must be specified.

Inport and Outport are the “input” and “output” port connections for Simulink® sub-
systems so that they can connect to other sub-systems and external I/O. The figure below
(Figure A.17) shows a sub-system with two inports (In1, In2) and one outport (Out1). The
labels of the ports can be changed to anything desired.

Unused input/output ports should be terminated with the “Ground block” (outputs
zero to an input terminal otherwise would be left unconncted) and “Terminal block” (ter-
minates an output otherwise would be left unconnected) as a good programming practice
(Figure A.18).

Logical and relational operators provide TRUE (1) or FALSE (0) output based on the
inputs. The logical operator block property can be set to (Figure A.19),

AND, OR, XOR, NOT, NAND, NOR

In 1
1 +–

Out 1
1

In 2
2

1

Gain

FIGURE A.17: Inport and outport blocks for Simulink® sub-systems.

Terminal blockGround block

FIGURE A.18: Ground block used to terminate the

open input point. Terminal block is used to terminate

the open output point.
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AND

x

x

y
f

y3

y2

2-D T(u)

y1

Lookup
table (2-D)

Lookup
table (n-D)

Lookup
table (1-D)

<=

FIGURE A.19: Simulink® blocks for logical operators (i.e., AND), relational operators

(comparator i.e., <=), and look-up tables.

The relational operator property can be set to

== , = , > , < , >= , <=

Look-up tables and data interpolation based on a table are commonly used in control appli-
cations. Simulink® provides one-dimensional (i.e., f (x)), two-dimensional (i.e. f (x, y)), and
multi-dimensional look-up tables that can be used for interpolation. A single dimensional
table is simply two data vectors: row-vector (independent variable values, x), and the cor-
responding function (f (x)) values with the same dimension. Two-dimensional tables have
two variables: row-vector (i.e., 1xm ) and column-vector (i.e., 1xn), then the table must
be a matrix of dimension mxn. The row-vector variable is connected to the x-port and the
column vector variable is connected to the y-port of the 2D look-up table interpolator. The



846 MECHATRONICS

Enabled block Triggered block

FIGURE A.20: Enable and trigger blocks to

make a sub-system enabled and triggered.

block displays the table data as follows: the row vector is treated as the x-axis, and the
column vector is a parameter, and there is a curve for each column-vector in the 2D plot.

Conditionally executed sub-systems can be implemented in one of three different
ways:

1. enabled,

2. triggered, and

3. enabled and triggered sub-systems.

In order to make a sub-system conditionally executed, just include one of, or both
of, the “enabled” and “triggered” blocks in the sub-system and setup the parameters (Fig-
ure A.20). A sub-system can be made enabled by placing an “enable” block in it, triggered
by placing a “trigger” block in it, or it can be both enabled and triggered by placing
both blocks. When the user adds “enable” and/or “trigger” blocks inside a sub-system,
Simulink® automatically adds an input port for the “enable” and “trigger” signals on the
top line of the block that represents the sub-system.

The enabled block makes the sub-system execute during the time the enable signal
is larger than zero. The triggered subsystem makes the sub-system execute once on every
true trigger signal condition. These two can be combined so that an “enabled and triggered”
sub-system would execute once on the trigger signal if it is also already enabled.

Simulink® initializes the states in the “enabled” and “triggered” states at the beginning
of the simulation based on the user choices (initial conditions are set to zero if they are
not explicitly defined by the user). We can call these the “start-up” condition of the states.
When the sub-system is disabled and re-enabled/re-triggered again, the states can either be
“held” from the previous run or “reset” to the start-up condition initial values.

In order to simplify the graphical visual display of the connections between blocks,
we can use “Goto” and “From” blocks (Figure A.21). In complicated models, the number
of connection lines and their routing can get very crowded for visual understanding. In
order to simplify that, a signal can be connected to a “Go to” block in one part of the model,
and that signal can be picked-up using a “From” block in another part of the model. That
way, long routing of the connection lines is eliminated.

In order to make the graphical display easier when a large number of I/O lines is
involved, Mux/Demux and Bus-Creater/Bus-Selector blocks can be used (Figure A.22).

Data can be input/output from/to signal sources (i.e., function generator), signal sinks
(i.e., scope), MATLAB® workspace and files (Figure A.23). The “Signal Builder” block is
a particularly useful signal source tool. It can be used to define custom signal groups rather
quickly and interactively for simulation input signals. Signal Builder provides a graphical

Block 1 Goto

A

From

A

Block 2Block 1 Block 2

FIGURE A.21: Goto and From blocks to simplify line connections in Simulink® graphical

model description.
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Pulse gen

Sine wave

Scope

<signal 1>

<signal 2>

<signal 3>

Signal
generator

Mux

Bus creator Bus selector

Demux

FIGURE A.22: Connection signal management blocks to simplify graphical display: Mux,

Demux, Bus Create, and Bus Selector blocks used in an example.

simin

From
workspace

In 1 Out 1

Subsystem

From file

untitled.mat

Signal
generator

simout

 To workspace

To file

untitled.mat

Signal
generator

FIGURE A.23: Input sources and output destinations for the data of a Simulink® model.

interface to define groups of signals (i.e., three different groups of signals), then within each
group define individual signals (i.e., input functions r1(t), r2(t), r3(t)). Each signal (such as
r1(t)) function can be defined using the main interface tools (such as constant, step, pulse,
rectangular, triangular signal type).

There are three main “function” blocks in the Simulink® block library (Figure A.24):

1. ‘MATLAB function block” (like sin(), exp(), but not an expression) which accepts
vector input and provides vector output. It allows selection of a single MATLAB®

function. It does not allow typing an expression.

MATLAB
Function

MATLAB Fcn Fcn

sin(u(1)*exp(2.3*(–u(2)))) u yMyfcn

Embedded
MATLAB function

FIGURE A.24: Function blocks in Simulink®: MATLAB® Function (a single MATLAB® function

such as “sin()” or ’cos()’). The Fnc() allows an expression (such as “2 ∗ sin(x) - 5 ∗ cos(y)”). The

Embedded MATLAB® Function is linked to an M-function script file and is the most general

purpose block among them where any desired logic can be implemented.
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2. “Fcn function and expression block” which operates on scalar or vector inputs but pro-
vides a scalar output. This block allows an expression made of MATLAB® functions
and operators and input data.

3. “Embedded MATLAB Function Block” which can accept vector input and provide
vector output and implement any function desired. Inputs can be signal inputs in
the Simulink® environment or variables from the MATLAB® workspace. Outputs
show up at the output port of the Embedded MATLAB® Function Block. Parameters
can be defined so that they are visible to the block from the MATLAB® Workspace
using Tools > Edit Data/Ports. Inputs and Outputs show up both on the Embed-
ded MATLAB® Function Block and also in the call arguments of the function in
MATLAB® script. This block is basically a link to a MATLAB® M-function file
such as the one shown below, and can be very effectively used for simulation of
complicated dynamic systems. When the dynamics of a system get complicated, it
is easier to describe it in MATLAB® script language (or in C-language using the
S-functions) than express it graphically in Simulink®. In such cases, the overall
structure of the model can be designed in Simulink®, and individual complicated
sub-systems defined in the “Embedded MATLAB® Function Block” in MATLAB®

script language.

function y = Myfcn(u)
% This block supports an embeddable subset of the MATLAB
language.

% See the help menu for details.

y = 2.0 ∗ ( u + 1.0 );

return

Simulink® provides sub-system blocks that implement the equivalent five (5) blocks
for

1. loops: for, while, do-while,

2. conditional blocks: if, switch-case.

In each case, the block is executed within a given simulation sampling period as long
as the condition is satisfied or the iteration count is not larger than the maximum value set.

1.
for (i=begin : increment : end) % See "for loop" blocks

...

...
end

The “for” block parameters are set in the menu of the block. The number of input and
output port signals and the logic inside the block can be decided by the user, that is one can
define three input signals (in1, in2, in3) and two output signals (out1, out2) and some logic
in between them. The block is executed for the number of times the “for block” specifies
within the current sampling period. This is equivalent to the for-loop in C language.

2.
while(condition) % See "while" block

...

...
end

The while loop has two signals to determine its execution: “Condition” and “IC” ports. As
long as “Condition” is TRUE and number of iterations is less than the maximum number
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of the iteration set, the block executes. After each execution, “Condition” is checked. The
“IC” port condition is checked only at the beginning. If the “IC” condition is FALSE, the
block is not executed.

Again, as many inports and outports can be added in the sub-system and the desired
logic can be defined. There is a parameter for this block named “maximum number of
iterations.” It is advisable to set this parameter to a finite value. Simulink® executes the
block endlessly as long as the “while (condition)” is TRUE. Unless it is certain that the
“while (condition)” will become FALSE at some point in the simulation, a maximum
number of iterations should be specified to avoid endless loops in this block.

3.
do % See "Do-while" block

...

...
while(condition)

The sub-system block is executed at least once. After that, the status of the “Condition”
input port is checked. If true, the sub-system block is executed again, until the “Condition”
is false. As many input ports and output ports can be defined, as well as any desired logic
defined inside the sub-system block. The number of iterations (execution) within a sampling
period follow the same rules for the “while block.”

4.
if (condition) % See "if" and "if-action" blocks

...
elseif

...
elseif

...
else

...
end

5.
switch case (variable) % See "Switch case" and "Action

blocks"
case 1:
....

case 2:
....

case 3:
....

default:
....

end

“If” and “Switch” statement blocks allow us to select a block from a set of blocks to execute.
Each “If” and “Switch” block is accompanied by “Action” blocks. There must be as many
action blocks as there number of sections to “if - elseif - elseif - else” and “Switch case”
statements.

Example Let us consider the pendulum problem and its nonlinear differential equation
which describes the relationship between the torque at the base and the angular position of
the pendulum (Figure A.26). We will simulate the response of the pendulum as a result of
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FIGURE A.26: Nonlinear dynamic model of a pendulum and simulation result in Simulink®.

zero input, non-zero initial velocity, and zero initial position. The equation to build a model
of in Simulink® is

�̈�(t) +
g

l
⋅ sin(𝜃(t)) = u(t) (A.7)

𝜃(t0) = 0.0 (A.8)

�̇�(t0) = 1.0 (A.9)

u(t) = 0.0; t ≥ t0 (A.10)

Let us simulate this for t0 = 0.0 s, and for a time period of t = 0.0 to 5.0 s. Figure A.26
shows the Simulink® model that represents this equation and the simulation result for this
condition. Since this is a second-order system (highest derivative of the dependent variable
in the differential equation is two), we use two integrators in the Simulink® representation.
Notice the use of initial conditions for position and velocity as constant inputs to the
integration blocks.

FIGURE A.27: Configuration of Parameters in Simulink® for a particular model simulation.

Before running a simulation, Simulation > Configuration Parameters > Solver (and other

options as needed) should be configured appropriately for the model.
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A.2.2 Simulink® S-Functions in C Language

S-functions are the most powerful method of extending the capabilities of Simulink®.
S-functions can be written in MATLAB® script, C, C++, Fortran and Ada languages.
Here, we briefly discuss the S-functions written in C language only. S-functions created
in C language are called “MEX-File S-Functions.” Third party companies add value to
Simulink® through the use of MEX-File S-functions, that is adding hardware device drivers
and custom algorithms. S-functions are also supported by the auto-code generation tools
such as the Real Time Workshop (RTW) or Simulink® Coder (SC). The user interface to
S-functions can be “masked” to customize its dialog box with the user.

S-functions are used to:

1. add new algorithmic functionalities to Simulink® that are not provided by standard
Simulink® blocks,

2. develop hardware device drivers for Simulink®,

3. include existing C-functions into Simulink® blocks.

There are two main steps to using S-functions in Simulink® (see Online Help for
further details):

1. Create an S-function MEX-file.

2. Add the “Simulink® Library Browser > User-Defined Functions > S-Function”
block to your Simulink® model, associate it with the desired S-function MEX-file
you created, and setup its parameters, if any.

These two steps are integrated into the “Simulink® Library Browser > User-Defined
Functions > S-Function Builder” block where the user interface dialog of this block
guides the user to create the S-function MEX-file as well as associate it with that block in
the Simulink® model.

Example Consider the liquid level in a tank and its control system shown in Figure 1.4.
Let us further consider a computer controlled version of the system: the mechanical levers
are replaced by a level sensor, a digital controller, and a valve that is actuated by a solenoid.
In-flow rate to the tank is controlled by the valve. The valve is controlled by a solenoid. The
input to the solenoid is the current signal from the controller and the output of the solenoid
is proportional force. The force generated by the solenoid is balanced by a centering spring.
Hence, the valve position or opening of the orifice is proportional to the current signal. The
flow rate through the valve is proportional to the valve opening. Assuming simplified linear
relationships, the input–output relationship for the valve can be expressed as

Fvalve(t) = K1 ⋅ i(t) (A.11)

= Kspring ⋅ xvalve(t) (A.12)

Qin(t) = Kflow ⋅ xvalve(t) (A.13)

= Kflow ⋅
1

Kspring
⋅ K1 ⋅ i(t) (A.14)

= Kvalve ⋅ i(t) (A.15)

where Kvalve = Kflow ⋅ K1∕Kspring, which is the valve gain between current input and flow
rate through the valve.

The liquid level in the tank is a function of the rate of in-flow, rate of out-flow, and
the cross-sectional area of the tank. The time rate of change in the volume of the liquid in
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the tank is equal to the difference between in-flow rate and out-flow rate,

d(Volume in Tank)
dt

= (In-flow rate) – (Out-flow rate) (A.16)

d(A ⋅ y(t))
dt

= Qin(t) − Qout(t) (A.17)

A
dy(t)

dt
= Qin(t) − Qout(t) (A.18)

The Qin is controlled by the valve to be between zero and maximum flow that can go through
the valve, [0, Qmax]. The Qout is a function of the liquid level and the orifice geometry at
the outlet. Let us approximate the relationship as a linear one, that is the higher the liquid
height is, the larger the out-flow rate,

Qout(t) =
1
R
⋅ y(t) (A.19)

where R represent the orifice restriction as the resistance to flow. Then, the tank dynamic
model can be expressed as

A
dy(t)

dt
+ 1

R
⋅ y(t) = Qin(t) (A.20)

Let us consider a practical ON/OFF type controller with hysteresis. The controller either
fully turns ON or turns OFF the valve depending on the error between the actual and
measured liquid level. In order to make sure the controller does not switch the valve
ON/OFF at high frequency due to small changes in the liquid level, a small amount
of hysteresis is added in the control function. This type of controller is called a relay
with hysteresis and is commonly used in many automatic control systems such as home
temperature control, liquid level control ([emax, emax] range). In Simulink®, the controller
function is implemented with a hysteresis block. In mathematical terms, the controller
function is

e(t) = yd(t) − y(t) (A.21)

i(t) = RelayHysteresis(e) (A.22)

The relay control function with hysteresis where the hysteresis band is [emax, emax] range.
Flow rate can vary linearly between zero and maximum flow rate as a function of current
signal. Since current signal is either zero or maximum value, the flow rate will be either
zero or maximum flow.

Qin(t) = Kvalve ⋅ i(t) (A.23)

= Qmax ; when i(t) = imax (A.24)

= 0 ; when i(t) = 0 (A.25)

Let us simulate the liquid level control system for the following conditions. The system
parameters are emax = 0.05, imax = 1.0 A, Qmax = 1200 l∕min = 20 l∕s = 0.02 m3∕s, A =
0.01 m2, R = 500 m∕m3∕s. Consider the case that the desired liquid height is yd(t) = 1.0 m
which is commanded as a step function, and the initial height of the liquid is zero (empty
tank). Figure A.28 shows the Simulink® model and simulation results.

Example Consider a room or furnace temperature control system (Figure 1.8). We
need to consider room temperature, outside temperature (cold) and a heater. The heater is
controlled by a relay type controller with hysteresis. The room temperature is initially at
the same temperature as the outside temperature. The controller is set to increase the room
temperature to a higher level. The heater is controlled to regulate the room temperature. As
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FIGURE A.28: Model and simulation of a liquid level control system.

the room temperature increases and becomes larger than the outside temperature, there is a
heat loss from the room to the outside. The net added heat rate to the room is the difference
between the heat generated by the heater and the heat loss to the outside since outside
temperature is colder. The temperature rise in the room is function of this difference and
the size of the room. The heat loss is a linear function of the inside and outside room
temperatures. Net heat added (or lost) to the room will result in the temperature change,

(Net Heat Added to Room) = (Heat in Rate) − (Heat out Rate) (A.26)

Qnet = Qin − Qout (A.27)

mc
dT
dt

= Qin −
1
R

(T − To) (A.28)

where mc is the heat capacitance of the room which is function of the room size, R is the
resistance of the heat transfer from walls due to the temperature difference. The effective
resistance to heat transfer between room and outside is function of the type of dominant
mode of heat transfer (conduction, convection, radiation) as well as the size and insulation
type of walls. T and To are inside and outside temperatures, respectively.

Let us simulate the room temperature control system for the following conditions;
desired temperature Td = 72 ◦F, initial temperature To = 42 ◦F,allowed error in room tem-
perature in the hysteresis function of the relay control system, emax = 0, maximum heat-in
rate Qmax = 100 , R = 100, mc = 1.0. Initially the room is assumed to be at the same tem-
perature as the outside temperature. After entering the room, that is one second later, the
temperature is commanded to be Td = 72 ◦F. Figure A.29 shows the Simulink® implemen-
tation of the model and simulation results.

Example Consider the web tension control system shown in Figure 1.7. The wind-off
roll is driven by another part of the machinery where the speed v1(t) is dictated by other
considerations. The wind-up roll is driven by an electric motor. This motor is required to
run in such a way that the tension in the web (F) is maintained constant and equal to a
desired value (Fd). So, if the wind-off roll speeds up, the wind-up roll is suppose to speed
up. Similarly, if the wind-off roll slows down, the wind-up roll is suppose to slow down
quickly. The wind-off roll speed is given as an external input and is not under our control.
The wind-up speed is our controlled variable. Our objective is to minimize the tension error,
e(t) = Fd(t) − F(t).
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FIGURE A.29: Model and simulation of furnace or room temperature control system.

The tension in the web will be determined by the difference between the integral of
v1(t) and v2(t),

y(t) = y(t0) + ∫
t

to

(v2(t) − v1(t))dt (A.29)

F(t) = Fo + k ⋅ y(t) (A.30)

If initially the web tension is adjusted so that when y = y0, the tension F = F0 = 0 by
proper calibration, then we can express the tension as function of change in y(t),

Δy(t) = y(t) − y(t0) (A.31)

= ∫
t

to

(v2(t) − v1(t))dt (A.32)

ΔY(s) = 1
s
⋅ (V2(s) − V1(s)) (A.33)

F(t) = k ⋅ Δy(t) (A.34)

F(s) = k
s
⋅ (V2(s) − V1(s)) (A.35)

The control system that controls the v2(t) is a closed loop control system and is implemented
using an analog controller. Let us consider the dynamics of the amplifier and motor as a
first-order filter, that is the transfer function between the commanded speed w2,cmd to actual
speed w2,

w2(s)

w2,cmd(s)
= 1
𝜏ms + 1

(A.36)

where 𝜏m is the first-order filter time constant for the amplifier and motor. The corresponding
linear speeds are

v2,cmd(t) = r2 ⋅ w2,cmd(t) (A.37)

v2(t) = r2 ⋅ w2(t) (A.38)

Let us consider a proportional controller,

w2,cmd(t) = Kp ⋅ (Fd(t) − F(t)) (A.39)
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FIGURE A.30: Model and simulation of web tension control system. The top figure is the

Simulink® model of the tension control system. The left plot shows the commanded tension on

the top and the actual tension at the bottom. The right plot shows the wind-off and wind-up

speeds.

Figure A.30 shows the model and simulation conditions in Simulink®. The parameters of
the system used in the simulation are,

k = 10 000 N∕m (A.40)

Kp = 10 m∕s∕m (A.41)

𝜏m = 0.01 s (A.42)

r2 = 0.5 m (A.43)

We will simulate a condition where v1(t) has a step change from its nominal value for a
period of time.

v1(t) = 10.0 + 2.5 f1(t) (A.44)

Fd(t) = 50 ⋅ step(t − 1.0) ; step function starts at 1.0 s (A.45)

where f1(t) represents a square pulse function with a period of T = 30 s. The interested
reader can easily experiment with different control algorithms as well as different process
parameters, that is different roll diameter values r2.

A.3 STATEFLOW

Stateflow (SF) is the graphical modeling software as part of MATLAB® that is used to
model event-driven systems. Control logic or process dynamic models, which have various
modes of operation and are event-driven and supervisory in nature, are best expressed in
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Stateflow rather than in Simulink®. In typical usage, a SF model is a block in a Simulink®

model. The SF model is called the chart. The chart is used to represent various modes of
operation.

The mathematical modeling paradigm in Stateflow is based on the concept of oper-
ating modes. The operating modes are called the states, in which various logics are imple-
mented and are called actions. The transitions between these states are based on some
events and/or conditions.
The programmer needs to express the problem at hand in these terms;

1. states,

2. actions,

3. transitions and junctions,

4. conditions,

5. events,

6. data.

Events and data are non-graphical objects of Stateflow, whereas the others are graphical
objects.

Stateflow is started from MATLAB® command window by typing (Figure A.31)

>> stateflow

This brings up the “sflib” (Stateflow library) window. The development tools for Stateflow
include the

1. Stateflow Editor

2. Model Explorer, and

3. Debugger.

FIGURE A.31: Stateflow windows in MATLAB®.
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FIGURE A.32: Stateflow Editor window and its tools. On the “Object palette” the graphical

components of the Stateflow chart are displayed: state, history junction, default transition,

connective junction, truth table, function call (may be used to implement “Actions”), embedded

MATLAB® functions (may be used to implement “Actions”), and box for graphical grouping.

The Stateflow Editor is used to graphically build the SF model, using objects of states,
transitions, junctions, conditions, and actions. Model Explorer is used to define the non-
graphical components of a SF chart; events and data. The Debugger is used to debug the
SF model during simulation, and also allows animation of states in order to visually assist
the developer evaluate the operation of the SF chart.

By double clicking on the “Chart” icon, we bring up the “StateFlow Editor” window,
where a SF chart is designed (Figure A.32). A pop-up menu can be displayed and content
changed for any SF chart component by pointing on the component and right-clicking the
mouse. Stateflow “Chart” and “Truth Table” blocks can also be accessed under Simulink®

toolboxes, named “Stateflow.” The Stateflow Editor window and its various menu options
are shown in Figures A.33 and A.34. In the File>Chart Properties, select Classic, Inher-
ited and enable C-bit operations. Checking this box instructs the Stateflow to interpret C
bitwise operators (∼ , & , |, ∧ ,>>, and so on) in action language statements and encode them
as C bitwise operations. If this box is not selected & and | are interpreted as logical operators.

A Stateflow chart may be triggered at each sampling period or by events. The source
and nature of each event can be defined in the SF chart. In control applications, the most
common source of trigger method for Stateflow charts are:

1. periodic timer, such as every 10 ms,

2. external events (interrupts); such as status change of an ON/OFF input signal, or the
value of an analog signal going beyond a certain range.

The whole logic, or the chart, is a collection of states plus the actions and conditions that
may be executed in each state. Each mode can be considered as a state. The actions and
conditions are also used to define the transitions between states.
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FIGURE A.33: Stateflow Editor Menu.

The SF state concept supports hierarchy: states can be grouped in a hierarchy. The
group of states can be exclusive (also called OR states, meaning only one of the states in
the group can be active at any given time, i.e., a switch state can be either ON or OFF, not
both at the same time) or parallel (also called AND states, meaning the states in the parallel
group can be active concurrently during the same sampling period). For instance, assume
we have ON and OFF states for a FAN motor and a HEATER. The FAN can be ON and
the HEATER can be ON at the same time. The states of FAN motor and HEATER motor
are parallel states. The states of FAN motor (ON state and OFF state) are exclusive (OR
states), clearly meaning that a FAN motor cannot be ON and OFF at the same time. The
same thing applies for the HEATER motor.

Grouping states is a graphical visual aid, it does not make any difference to the logic
of the chart. It simply hides the sub-states in the hierarchy, making the visual display less
crowded. To group a state and hide its sub-states graphically, right-click on the state, and
then select

Make Contents > Grouped

You must ungroup a superstate to select objects within the superstate (grouped state). To
ungroup a state, double-click it or its border and select

Make Contents > Ungrouped

Once the code is auto-code generated, both Simulink® and StateFlow graphical programs
are converted to C language and then compiled/linked into an executable code.
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FIGURE A.35: Typical steps involved in designing a Stateflow chart as part of a Simulink®

model.

The typical steps involved in developing a SF chart is shown in Figure A.35.
Step 1: Input and outputs between Stateflow (SF) and Simulink®. The first step

in designing a typical SF chart is to plan it as part of a Simulink® model, and then decide on
the input–output data and events between the SF block and the Simulink® model. The SF
chart interacts with Simulink® through its input and output signals. The input and output
signals can be data or events needed by SF and Simulink®.

In Simulink®, select Stateflow from the Simulink® Library Browser, then double-
click on it. This will bring up the Stateflow blocks: Chart, Truth Table. Select “Chart” and
drag-and-drop it in the Simulink® model. Now double-click on the “Chart” block in the
Simulink® model to edit its content using Stateflow Editor.

In order to define I/O between SF and Simulink®, use

Stateflow Editor > Add > Data/Event > Input from Simulink®

Stateflow Editor > Add > Data/Event > Output to Simulink®

The user then will need to fill in the data in the user interface provided, that is, provide the
name of the data variable, data type, scope, and so on. Then, Stateflow adds input and output
ports for each “Input from Simulink®” and “Output to Simulink®” data definitions. The
port numbers are assigned in the order they are created, but can be changed by explicitly
specifying the port number in the definition menu.

Step 2: States, their hierarchy and decomposition. How many states are needed,
their hierarchy in terms of super-states and sub-states (parent-child relationship), and
whether they are exclusive (OR-states) or parallel (AND-states, concurrent) should be
decided. Consider the operation of your control logic or process model, and decide on the
modes of operation. In general, each mode of operation is assigned a state (Figure A.36). In
a state hierarchy, among the collection of OR states, only one of them can be active at a given
time, whereas multiple AND states can be active concurrently (although they are executed
still sequentially). The order of the sequential execution of parallel states (AND states)
can be left to default or specified by the designer. In the SF editor, exclusive (OR) states
are displayed with solid line rectangles, whereas parallel (AND) states are displayed with
dotted line rectangles. In the order to define the states as parallel in a hierarchy, right-click
the mouse inside the super-state where the parallel states will be defined, then select

Decomposition > Parallel (AND)
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FIGURE A.36: Decomposition of states: exclusive (OR) or parallel (AND) states. At a

super-state, only one of the exclusive states can be active, whereas multiple parallel states

(AND states) can be concurrently active.

Step 3: Define State Actions and Data Variables. The hierarchy of states describes
the type structure of the logic. The actual logic, that is the actions, and the data acted on
in each state defines the details of the algorithm. Actions can be present either in the state
logic or in the transitions.

There are four different categories of actions in each state (Figure A.37):

entry:
action1(); % executed once when the state is activated

during: % executed every sampling period while the
state is active

action21();
action22();

exit: % executed once when transition from that
state to another state

action3(); % occurs and this state is ’exited’

on_"EventName1": % executed on every occurance of the named
event

action41();
action42();

on_"EventName2": % executed on every occurance of the named
event

action43();
action44();
action45();

When a state is “active”, some of the actions are executed depending on the condition of
the state. For instance, on the first entry to the state, the actions in the “entry:” block are
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FIGURE A.37: Graphical components of a Stateflow diagram: state (parallel and exclusive),

transitions (normal transitions, default transitions), actions, junctions (connective and history

types), conditions.

executed. After that, the actions in the “during:” block are executed during the following
sampling periods. When a transition occurs from the currently active state, then the actions
in the “exit:” block are executed before the program transitions to another state. Multiple
“on_EventName” blocks can be defined. This allows us to define a unique set of actions
for each event.

In addition to actions, we may need to define data variables (local or persistent) in
each state to keep track of data. It is also possible that we only need the input and output
data, and no local (or persistent) data may be needed.

Step 4: Define the Transitions Between States. So far we have defined a state
hierarchy and actions within those states. We also need to define the logic to make the
transitions between those states.
Transitions are the logical flow paths between different states. To simplify the logic, it is
advisable to exercise modular programming practice and plan transitions between states
at the same hierarchy level. Otherwise, the transition logic may look like a “spaghetti
code” which means it is difficult to understand and maintain. Each transition may have a
condition which must be TRUE for the transition to occur, and an action that is executed
during the transition before the control is passed to the next state. These transition conditions
and actions are expressed with a notation on the transition path in text format. At every
hierarchy of states, there should be a default transition defined. This transition would
be used in case of ambiguity over which state to activate. This often happens on start-up
conditions. For every level of exclusive OR-states, there should be a default transition
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defined as a good programming practice. Although this is strictly not required, it is a
good programming practice to clearly define which state will be activated under unclear
conditions, such as on power-up. A transition can support two different actions

� a condition action, and
� a transition action.

Transition labels are defined in the following syntax (Figure A.37),

event [condition]{condition_action}/transition_action

where event defines the event that triggers the transition, [condition] must be true in order
for the transition to take place. Then the two sets of actions are performed, if defined. You
can specify some, all, or none of the parts of the transition label. Use “...” to continue on
the next line in defining the transition labels.

Connection junctions are used to provide multiple branch paths for a transition
between more than two states. They are equivalent to if-elseif-else decision blocks (Fig-
ure A.37).

History junctions provide the information on the most recent active sub-state in a
super-state or a chart. When a transition occurs to a super-state which has its sub-states and
history junction, the transition occurs to the sub-state that was active most recently, as a
result of the history junction component in the model. The history junction remembers the
last active sub-state. In other words, the history junction overrides the default transition if
they both exist in the same state hierarchy (Figure A.37). The history junction applies only
at the hierarchy in which it is placed.

Conditions are boolean logical expressions that must result in a true or false result.
For a transition to occur, the transition condition must be TRUE.

Events and data are non-graphical components of the SF chart. Events are defined
using the menu item in the SF editor,

Stateflow > Add > Event

Events can be defined to trigger a SF chart, trigger a transition to occur, trigger an action to
be executed. Data is a signal or local information needed and logic operations are applied
to. Data need to be defined in SF charts using menu item in SF editor,

Stateflow > Add > Data

These non-graphical elements of a state can be viewed and displayed by using the Model
Explorer. To do so, point to the state, right-click, and select Explorer from the pop-up
menu.

Step 5: Define Triggers to the Stateflow Chart. A Stateflow chart can be executed
at a specified rate or can be triggered by an external signal. Triggers are defined as a part
of events. In Stateflow Editor, use

Stateflow > Add > Event > Input from Simulink®

to define a trigger event from Simulink® to the SF chart. The signal source and the conditions
at which it causes a trigger (i.e., rising-edge, falling-edge, or both) can be defined.



MATLAB®, SIMULINK®, STATEFLOW, AND AUTO-CODE GENERATION 865

Step 6: Simulate. A SF chart is normally simulated as part of the Simulink® model.
However it can also be simulated with its own simplified input and output for debugging
purposes.

Stateflow > Simulation > Configuration Parameters

Step 7: Debug. Graphical animation tools can be enabled to display the active or
inactive states as debugging tools. Breakpoints can be set at various points in the SF, such
as at the wake-up of the chart, the entry of a state, event occurrences. To set breakpoints,
enable animation, and set the speed of animation, select

Stateflow Editor > Tools > Debug

This brings up a new window with options to set breakpoints, enable/disable animation
and the speed of the animation. Most common breakpoints are set at the “Chart Entry”
and “State Entry” by checking those option boxes. Then the program execution can be
controlled with “Start,” “Stop” “Step” “Break” buttons.

A.3.1 Accessing Data and Functions from
a Stateflow Chart

MATLAB®, Simulink®, and Stateflow work together to model and simulate controlled
dynamic systems. Therefore, these three components must be able to access data in each
others’ workspace in order to apply logic to it. MATLAB® maintains all its data variables in
its “Workspace.” Data sharing between Simulink® and Stateflow is generally accomplished
by the input and the output ports in the block diagram. This is the recommended method
of exchanging data between MATLAB®, Simulink®, and Stateflow. It shows clearly in
graphical form what data is passed between Simulink® and Stateflow. It is that graphical
display of information and logic that makes Simulink® and Stateflow attractive program-
ming tools. Below are also other methods of accessing data in MATLAB® workspace from
a Stateflow chart.

Accessing MATLAB® Data and Built-in Functions from the SF Chart
One way to access MATLAB® data and functions from Stateflow is to use the “ml”
namespace operator and “ml” function. Using the “ml” namespace operator we can access
data in the MATLAB® workspace. The “ml” acts like an object name, followed by a dot
operator and variable name in the MATLAB® workspace. For instance, let us assume there
is a variable

x

in the MATLAB® workspace and we want to assign it to variable in Stateflow,

a

a = ml.x ; % Stateflow variable ’a’ is assigned

% to the value of MATLAB® workspace variable ’x’.

Likewise, we can assign a Stateflow variable to a MATLAB® workspace variable. If
the MATLAB® workspace variable was not created before, it will be automatically created.
The following accomplishes that,

ml.x = a ; % MATLAB® workspace variable ’x’
% is assigned to the value of Stateflow variable ’a’.
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% If MATLAB® workspace variable does not exit,
% it is created automatically.

We can use the same operator to access MATLAB® built-in functions:

a = ml.sin(ml.x) ; % Stateflow variable ’a’ is assigned to
% the value of Sin of MATLAB® workspace
variable ’x’.

b = ml.sin(a) ; % ..................’b’ ...............
% ........... Sin of Stateflow variable ’a’.

Notice the difference between the above two examples: in the first one the data variable ‘x’
in the MATLAB® workspace is used for the sine function. In the second example, the data
variable ’a’ in the Stateflow is used in the sine function.

Function Calls from a Stateflow Chart: Embedded MATLAB® Func-
tions An “Embedded MATLAB® Function” can be added by selecting the “Embedded
MATLAB® Function” icon on the left pane of the Stateflow Editor, and dragging and
dropping it in the chart, then typing the name of the function. Then double-click on the box
just created to bring up the text editor and edit the content of the function. Input and output
arguments from the function can be any MATLAB® data type of the form scalar, vector,
or matrix. This is a very effective and convenient way to code “actions” that are more than
a single line.

Figure A.38 shows the windows on how to add an Embedded MATLAB® Function
in a Stateflow chart. The function is used to define an action.

1. We draw the transitions and actions which calls an embedded MATLAB® function
in the usual way.

2. Then use the “Embedded MATLAB® Function” icon on the left pane of the Stateflow
Chart, copy it into the chart.

3. Then type the name of the function in the created rectangle.

4. Double-clicking on the rectangle block for the function brings up the Embedded
MATLAB® Editor.

5. From the Embedded MATLAB® Editor, use Tool > Model Explorer, then edit the
input–output data type and size, as well as local variables as needed.

6. Then simply type the logic of the function into the editor.

Figure A.39 shows the window for the ‘Model Explorer” that allows us to edit the data for
the function.

If the embedded MATLAB® function calls yet other function(s), that function(s) can
be included in the same file below the embedded MATLAB® function code.

Function Calls from a Stateflow Chart: User Written C Functions
User-written C functions can be called from Stateflow chart’s transition actions and state
actions (Figure A.40). The C-function call is made just like in a C language program, that
is

function_name(argument1, ... ) ;

The string parameters are passed using quotes, such as “string1” or “Hello” in the
argument list. Function calls can be nested, that is one function call can include another
function call in its argument list (Figure A.40). Arguments can be passed by an address
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FIGURE A.40: Calling User-Written C-functions from Stateflow Charts: calls from transition

actions and state actions.

using pointer notation. However, data from “Input from Simulink®” should not be passed
by an address.

f(&x) ; % Call to function f(), pass data by address
(reference)

g(&(z[0])) ; % Passing array z[0], z[1], ...
g(&(z[1])) ; % Passing array z[1], z[2], ...

Example: Embedded MATLAB® Functions in Stateflow Chart The pur-
pose of this example is to illustrate how to include “Embedded MATLAB® Functions” in
a SF model. Figures A.41 and A.42 show the user interface windows for the development.

Figure A.41 shows the windows ‘1,’ ‘2,’ and ‘3’ for MATLAB®, Simulink®, and
Stateflow respectively. Then from Simulink® we start a model, shown in window ‘4.’ In this
model, we include a Stateflow chart. Double-clicking on the SF chart in the model, brings
up the Stateflow Editor window ‘5.’ In this case we define two states, X and Y for the SF
model, and two transitions between them. In each state, and for each transition, we define an
action, which calls an “Embedded MATLAB® Function.” Hence, we have four “Embedded
MATLAB® Functions” for this example. In order to make the function calls, simply click
on the state X, and type the name of the function to be called. In this case, the actions
are defined for the “during:” stage of the state’s status. Repeat the same for state Y and
transitions.

Then pick-and-drag four copies of the “Embedded MATLAB® Function” icon from
the left pane into the Stateflow Editor window. Then select each one-by-one, and type the
name of the function on the box. Then double-click on each one-by-one (Figure A.42). This
will bring up the “Embedded MATLAB® Function Editor.” Now, enter your code here.
The editor already has the function declaration line. The editor shows one file at a time.
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For convenience, we copied all the files for illustration purposes here in the figure. Note
that this is a “MATLAB® Function” of an embedded kind. Only the data visible to it are
passed in its argument list. The “ml” operator we used in the Stateflow graphical model
file is not available to access MATLAB® workspace data. If we need to access MATLAB®

workspace data which are not passed by the function call arguments, then we must use the
“global” declaration. For instance, in the function “StateX_Action(u),” we define the Kp
as a local variable. The Kp of the MATLAB® workspace can not be accessed via “ml.Kp.”
If it is desired to access the Kp of the MATLAB® workspace instead of using a local Kp,
then the “global” declaration must be used.

Example: Use of C-Functions in Stateflow Chart The purpose of this exam-
ple is to illustrate how to incorporate C-functions into Stateflow charts. Simply follow the
order of activities in the dialog windows as shown in Figures A.43 and A.44. There are four
C-functions which are called from the Stateflow chart;

StateX_Action(u) ;
TransitionY2X_Action() ;
StateY_Action(u);
TransitionX2Y_Action() ;

The source code for these four C-functions is in the file named

StateFlow_C_Function_Example.c

The declarations (include statements) code for each function is typed directly into the
dialog box.

Example: Liquid Level in a Tank Control Problem with Multiple Modes
of Controller Operation For the purpose of illustrating how a typical Stateflow
chart can be used as part of a Simulink® model, let us assume that the controller logic is now
different than the one implemented in the Simulink® example. The new controller we want
to implement here has three modes of operation. In each mode, a different control algorithm
is implemented with different parameters. A supervisory control logic is to monitor the
sensor signal for the measured liquid height and the desired height data, then decide on
an output value that selects one of three modes of operation. Using that information, the
Simulink® part of the code is to execute the selected control algorithm.

The supervisory control logic will be as follows, expressed in MATLAB® text lan-
guage, and will be implemented in Stateflow. For the purpose of illustration, we select a
simple supervisory controller that can equally be implemented in MATLAB® or Simulink®

with ease. However, as supervisory logic gets more complicated, the Stateflow program-
ming model provides advantages in ease of programming.

% Supervisory control logic to select controller mode of operation,

err_th1 = 10.0 ; % Percentage of liquid height error,
threshold value 1

err_th2 = 25.0 ; % Percentage of liquid height error,
threshold value 2

err = ((hd - h)/hd )* 100 ; % Current error, as percentage of
desired height.



FI
G

U
R

E
A

.4
3

:
E

x
a
m

p
le

to
il
lu

s
tr

a
te

h
o

w
to

in
c
lu

d
e

u
s
e
r-

w
ri

tt
e
n

C
-f

u
n

c
ti

o
n

s
fr

o
m

S
ta

te
fl

o
w

C
h

a
rt

s
fo

r
S

im
u

la
ti

o
n

T
a
rg

e
t:

Il
lu

s
tr

a
ti

v
e

fi
g

u
re

1
o

f
2
.

W
in

d
o

w
s

1
th

ro
u

g
h

6
s
h

o
w

th
e

d
e
v
e
lo

p
m

e
n

t
p

ro
c
e
s
s

in
v
o

lv
e
d

in
o

rd
e
r.

873



FI
G

U
R

E
A

.4
4

:
E

x
a
m

p
le

to
il
lu

s
tr

a
te

h
o

w
to

in
c
lu

d
e

u
s
e
r-

w
ri

tt
e
n

C
-f

u
n

c
ti

o
n

s
fr

o
m

S
ta

te
fl

o
w

C
h

a
rt

s
fo

r
S

im
u

la
ti

o
n

T
a
rg

e
t:

Il
lu

s
tr

a
ti

v
e

fi
g

u
re

2
o

f
2
.

W
in

d
o

w
s

7
th

ro
u

g
h

11
,

in
c
lu

d
in

g
th

e
lo

c
a
ti

o
n

o
f

th
e

C
-s

o
u

rc
e

fi
le

in
th

e
d

ir
e
c
to

ry
,

h
o

w
it

is
s
p

e
c
ifi

e
d

in
th

e
d

ia
lo

g
w

in
d

o
w

o
f

th
e

S
ta

te
fl

o
w

E
d

it
o

r,
a
n

d
th

e
C

-s
o

u
rc

e
fi

le
c
o

n
te

n
t.

874



MATLAB®, SIMULINK®, STATEFLOW, AND AUTO-CODE GENERATION 875

Desired liquid
level

ADC: Quantizer
10-bit

ValveAmplifierDAC: ZOHDAC: Quantizer
10-bitMultiport

switch logic

Valve gain:
Flow rate/current

Model info: This model simulates a liquid level control problem.
Simulink models a three different controllers,
A supervisory controllers modeled in stateflow selects
which mode (one of three) the controller should operate.

Sensor: Liquid level

1
s

+

–

K2

Ka Kv 1/A

1/R

Add
Area

Resistance gain

hd

h

mode

Supervisory controller

Mode 1: Relay with
hysteresis

Add 1

Mode 2: Gain

Mode 3: Gain 1

Integrator

1

K3

Scope 2
Scope 1

+

–

FIGURE A.45: Liquid level control example using a Stateflow chart for supervisory control

logic.

if (err < err_th1) % Supervisory control logic: select
controller mode.

control_mode = 1 ;
elseif (err >= err_th1 and err < err_th2 )

control_mode = 2 ;
elseif (err >= err_th2)

control_mode = 3 ;
end

Figures A.45 and A.46 show the new Simulink® block diagram of the liquid level
control system as well as the Stateflow chart for this very simple supervisory controller.
A simulation result is shown in Figure A.47. The simulation was run for the following

FIGURE A.46: Liquid level control example using a Stateflow chart for supervisory control

logic: Stateflow chart details. This Stateflow chart implements the supervisory logic shown in

the MATLAB® text programming language above.
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FIGURE A.47: Simulation results for the liquid level control example using a Stateflow chart

for supervisory control: Scope 1 top: Desired Liquid Level, Scope 1 bottom: Measured Liquid

Level, Scope 2 top: Supervisory Controller Output: Control Mode (1, 2, 3). Scope 2 bottom:

Control Signal to Valve Amplifier.

parameters (i.e., this data can be placed in a MATLAB® script M-file, and executed before
a simulation is run),

err_band = 1.0 ; % for the Relay function.
K2 = 1.0 ; % Controller mode 2 gain
K3 = 4.0 ; % Controller mode 3 gain
Ka = 1.0 ; % Amplifier current/voltage gain
Kv = 1.0 ; % Valve flowrate/currrent gain
Qin_max = 100.0 ; % Valve saturation values: maximum flow rate

out of valve
Qin_min = 0.0 ; % Minimum flow rate: valve closed, so zero.
A = 1.0 ; % Tank cross sectional area
R = 10.0 ; % Outflow rate resistance as function of

liquid
% height: Q_out = (1/R) * h

Notice the change in the controller output discontinuity as the supervisory controller
switches from one controller mode to another.

A.4 AUTO CODE GENERATION

One of the most powerful, versatile, and widely used MATLAB® features is automatic
code generation from model for a target embedded controller for real-time implementation.
The auto-code generation approach to generate a real-time code to run on an embedded
electronic control module (ECM) has already largely replaced the manual coding in C and
assembly languages in industry.

For a real-time implementation on a target ECM, a typical Simulink®/StateFlow
algorithm should be modified to remove all non-real time components as follows.

1. Remove all input and output components (Function generator, Display, Scope, etc.)
which are included for the purpose of analysis, and debug (Figure A.48).

2. Connect Simulink® I/O driver blocks (such as ADC, DAC, DIO, CAN blocks) to the
input/output ports. The external I/O will be handled by these blocks.
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X_cmd

X_fbk

V_fbk

DAC

PD control
Real time version

Simulation version

DAC

DAC_TYPE1_M1_C1

ADC

ADC_TYPE1_M1_CON1

1
X_cmd

2
X_fbk

3
V_fbk

1
DAC

X_cmd

X_fbk

V_fbk

DAC

PD control

FIGURE A.48: An example model in Simulink®: Simulation version (non-real time) and

real-time version with appropriate I/O software drivers for the target ECM (electronic control

module) to be used by the auto-code generation tools.

3. Provide initial values in the MATLAB® workspace for the parameters and variables
so that these initialization values can be included in the generated auto-code.

There are three auto-code generation tools in MATLAB®:

1. Simulink® Coder,

2. Embedded Coder, and

3. MATLAB® Coder.

The main auto-code generation tool is the Simulink® Coder. The MATLAB® Coder
generates C/C++ code from MATLAB® language files. The Embedded Coder generates
optimized code specific to various microcontrollers and digital signal processors, making
use of the Simulink® Coder and MATLAB® Coder tools in the process. Once the auto-code
generation tools are configured for a target embedded micro controller, they can be saved
and re-used without having to deal with any configuration issues.

Let us consider the following target microcontroller for auto-code generation:
Microchip dsPIC33F. For development purposes, the following hardware and software
tools are needed:

1. Microchip dsPIC33F Starter Kit which has a development board with the target
microcontroller. The board also has a built-in debugger.

2. PC with USB interface to communicate with the development board.

The additional software tools needed for this auto-code generation for the target microcon-
troller are (Figure A.1):

1. Microchip dsPIC33F Blockset for Simulink® (which would be integrated into the
Simulink® environment in Figure A.1).
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2. Microchip C Compiler for dsPIC33F (see Figure A.1).

3. Microchip X IDE (Integrated Development Environment), that is for downloading
programs to the microcontroller development board.

The minimum required MATLAB® tools needed to support the auto-code generation for
the Microchip dsPIC33F target microprocessor are

1. MATLAB®,

2. Simulink®,

3. Simulink® Coder,

4. Embedded Coder.
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Absolute encoders, 346
AC induction motor(s), 659, 660
AC motors, 604
Acceleration sensors, 365
Accuracy, 331
Active linear region, 272
Actuator(s), 3, 603
A/D converter, 55, 698
ADC, 513
Address bus, 315
Admittance, 253
Aliasing, 52
Alnico, 627
Ampere’s law, 613
Amplifier, 257
Analog controller, 45, 125
Analog PID, 770
Arithmetic logic unit, 215
Assembler, 216
Automatic shift transmission, 176

Back driveability, 136
Back EMF, 619
Backward difference approximation, 125
Ball-screw, 139
Band pass filter, 304
Band reject filter, 304
Bandwidth, 504, 515
Basic instruction set, 216
Beat phenomenon, 53
Belt and pulley, 138
Bernoulli’s equation, 425
BIBO stable, 76, 77
Bilinear transformation, 127
Biot–Savart law, 613
Bipolar drive, 677
BJT, 271
Bode plots, 79
Brushless, 604
Brushless DC motors, 619, 640
Brush-type DC motor(s), 619, 640
Bulk modulus, 430, 519
Bus, 217
By-pass diode, 266

Cam synchronization, 734
Cams, 145
CAN, 695
Capacitance, 247, 430
Capacitance based pressure sensor, 380
Capacitive gap sensors, 353
Capacitor, 247, 750
Carbon types, 246
Cartridge valves, 494
Cavitation, 408, 446
Central processing unit, 46
Ceramic, 627
Charge pump, 446
Check valve, 431
Clock, 215
Closed circuit, 422
Closed loop, 518, 524
Closed loop control, 45, 63, 74, 129, 489
Closed loop control system, 2
Closed-center, 457, 496, 530
Comb function, 50
Commutation, 605
Commutation algorithm, 653
Compensator, 448
Complementary metal oxide silicon, 309
Component sizing, 507
Computer numeric control, 735
Conductance, 253
Conductive part, 253
Contactor, 701
Contouring coordination, 734
Control bus, 315
Coriolis flow meters, 391
Coulomb constant, 610
Counterbalance valve, 469
CPU, 214
Current, 245
Cut-off region, 272
Cylinder, 433, 457

D/A converter, 55, 698
DAC, 513
Data bus, 315
DC motor(s), 604, 794
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DC servo motors, 640
Dead head, 450
De-bouncing, 293
Decoders, 309
Deflection method, 337
Derivative control, 97, 101
Device, 2
DeviceNet, 695
Diamagnetic, 622
Dielectric constant, 247
Diesel engine components, 17
Differential, 198
Differential pressure flow rate sensors, 387
Digital controller, 45, 46, 60, 125, 126
Digital multi-meter (DMM), 751
Diode, 263
Direct drive valve, 496
Directional flow control, 475
Displacement based pressure sensors, 378
Displacement pistons, 448
Disturbances, 64
Doped silicon, 261
Drag flow meters, 386
Drive, 603
Drums, 708

EEPROM, 698
Effective gear ratio, 135
Efficiency, 432
EH, 530
Electric fields, 610
Electric flux, 612
Electric potential, 612
Electrohydraulic, 425
Electromagnetic field, 612
Electronic cam, 734
Electronic gearing, 731
Emission issues, 31
Encoder(s), 346, 644, 799
Energy efficient, 500
Engine modeling, 25
EPROM, 698

Feedback control, 45, 64, 66, 67, 97
Ferromagnetic, 622
Filter(s), 60, 70, 74, 126, 418
Filtering, 60
Finite difference approximations, 126
Fixed displacement, 419
Fixed displacement pump, 438
Fixed ratio gearing, 731
Flapper, 496
Flexible coupling, 154
Flip-flop circuits, 310

Float position, 469
Flow compensated, 451
Flow control valve, 461
Flow gain, 499
Flow rate sensors, 385
Flowchart language, 705
Flux linkage, 617
Force and torque sensors, 373
Forward difference approximation, 125
Four-quadrant, 606
Free-wheeling diodes, 266
Fuzzy logic, 699

G-code, 735
Gain margin, 67
Gear ratio, 134
Gearing with registration, 732
Generator, 606
Generator action, 646
Germanium, 260

H-bridge, 795
H-bridge amplifier, 650
Hall effect sensors, 351, 644
Hard ferromagnetic, 624
Hard magnetic materials, 623
Hard-wired relay logic panel, 695
Hidden oscillations, 53
High pass filter, 303, 758
Hole, 262
HOME, 725
Homogeneous transformation matrices, 162
Hot wire anemometer, 390
Humidity sensors, 393
Hydraulic motor, 457

IGBT, 275
Impedance, 252
IMV, 587
Incremental encoder, 346
Independently metered, 588
INDEX, 726
Inductance, 430
Inductive sensor, 361
Inductor, 248
Inertial accelerometers, 366
Instrumentation op-amp, 304
Integral control, 102
Internal combustion engine, 16
Interrupt latency time, 236
Interrupt service routine(s), 235, 707
I/O devices, 215
I/O interface units, 695
Iron core armature, 642
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JOG, 725

Kinetic energy, 427

Ladder logic diagram(s), 697, 705, 708
Latching current, 265
Latching relay, 704
Lead-screw, 139
Leakage, 457
LED, 775
Linear electric motors, 681
Linkages, 143
Load cells, 373
Load dynamics, 506
Load sensing, 451
Loading errors, 259, 333
Low pass filter, 301, 758
LVDT, 340, 493

Machine instructions, 216
Magnetic fields, 610, 612
Magnetostriction position sensors, 354
Manifold, 496
Manual transmission, 174
Mechanical flow rate sensors, 385
Mechanism, 133
Mechatronics, 1
Metering, 454, 494
Micro stepping drives, 675
MOSFET, 274
Motion control, 507
Motion control modules, 699
Motion control system, 603
Motion coordination, 729
Mounting plate, 497
Multi disc clutch and brake, 193
Multiplexer, 309

N-type semiconductor, 263
Neodymium, 627
Norton’s equivalent circuit, 250
Notch filter, 304
Nozzle, 496
Null method, 336
Null position, 524
Nyquist plots, 79

Open circuit, 422
Open loop, 409, 518
Open loop control, 45, 63, 67
Open-center, 419, 496, 530
Operational amplification, 282
Opto-couplers, 267
Opto-isolated I/O modules, 701

Orifice equation, 471
Oscilloscope, 760
Over-center, 442

Parallel, 456
Paramagnetic, 622
Pascal’s law, 425
Passive components, 245
Permeance, 614
Permittivity, 247, 611
PFC, 456
Photoelectric sensors, 357
PIC 18F452, 776
PIC 18F4431, 776
PID, 514
PID controller module, 699
Piezoelectric accelerometers, 370
Piezoelectric based pressure sensor, 380
Piezoelectric effect, 370
Pitot tube, 387
Planetary gears, 179
PLC, 695
Point-to-point position synchronization,

729
Poppet valve, 463
Position sensors, 339
Positive displacement, 437
Positive displacement flow meters, 385
Positive flow control, 456
Post-compensator, 472
Potential energy, 427
Potentiometer, 339
Power transistors, 273
Powertrain, 196
Pre-compensator, 472
Presence sensors, 360
Pressure compensated, 449
Pressure control valve, 461
Pressure drop, 431
Pressure feedback system, 505
Pressure gain, 499
Pressure intensifier, 458
Pressure sensors, 376
Printed-disk armature, 642
Priority, 423
ProfiBus, 695
Program counter register, 214
Programmable motion control systems, 717
Proportional control, 97, 100
Proportional-integral-derivative (PID), 45, 97,

107
PI control, 103

Proportional-integral-derivative (PID) control,
106
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Proportional valves, 461, 485, 489, 490
P-type semiconductors, 263
Pulse width modulated, 274
Pulse width modulation, 651
PWM, 513

Quality of response, 45, 67

Rack and pinion, 142
RAM, 215
Reduced instruction set computer, 216
Regenerative, 588
Registers, 215
Relay, 701
Relief valve(s), 414, 463, 528
Relocatable code, 211
Reluctance, 614
Repeatability, 331
Residual magnetization, 624
Resistance, 246
Resistivity, 246
Resistor, 246, 749
Resolution, 331
Resolver(s), 342, 469
Restrictor, 471
Ride control, 593
RISC, 216
Robotic manipulator, 9
Robustness, 45, 66, 67
ROM, 215, 698
Root locus, 89, 91, 92
Rotor, 603
RS-232, 699
RTD temperature sensors, 382

Samarium cobalt, 627
Sampling

sampling theorem, 52, 53, 60
Shannon’s sampling theorem, 50, 52

Sampling, 47
Sandwich style mounting plates, 497
Saturation region, 273
Scan mode, 705
Schmitt trigger, 292
Seal-in circuit, 708
Semiconductor, 260
Sensor, 329
Sensor calibration, 332
Sensors, 3, 45
Sequence valve, 468
Sequencer, 708
Sercos, 721
Series, 456
Servo valves, 485
Shell-armature DC motors, 642

Shift register, 708
Shuttle, 469
Shuttle valves, 475
Silicon, 260
Silicon controller rectifier, 265
Simultaneous sample and hold circuit, 321
Slip frequency, 663
Snubber circuit, 265
Soft ferromagnetic, 624
Soft magnetic materials, 623
Software cam, 734
Software gearing, 731
Soft-wired, 695
Solenoid, 409, 504, 633, 787
Solid-state devices, 260
Sonic distance sensors, 356
Squirrel-cage, 660
Stability, 45, 67, 76
Stage, 486
Starter, 701
Stationary charges, 611
Stator, 603
Steady state response, 67, 74
Step motor, 670
Stepper motor(s), 605, 790
STOP, 726
Strain gauge(s), 372, 782
Strain-gauge based pressure sensor, 379
Sub-plate, 497
Superconductors, 246
Susceptance, 253
Susceptive part, 253
Swash plate, 448
Switch debouncing, 767
Switching sequence, 673
Synchronous motors, 660
Syncro, 345
System, 2

Tachometers, 362
Temperature sensors, 381
Thermistor temperature sensors, 383
Thermocouple sensor, 699
Thermocouples, 383
Thevenin’s equivalent circuit, 249
Time delay, 58
Torque converter, 183
Torque motor, 409
Torque-speed performance, 667
Torque-speed plane, 606
Transduction, 329
Transient response, 67, 109
Transistor, 271, 754
Transistor–transistor logic, 308
Trapezoidal difference approximation, 125
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Triac, 265
Turbine flow meters, 386
Tustin’s method, 127

Unipolar drive, 677
Unloading valve, 468

Valve adaptor, 497
Valve control, 504
Variable displacement, 438
Velocity sensors, 362
Viscosity, 427

Vision systems, 394
Voltage surge protection, 266
Vortex flow meter, 387

Web handling, 738
Wheatstone bridge circuit, 335
Wire wound, 246
Working volume, 415
Wound-rotor, 660

Zener diode, 264
Zero-order-hold, 56
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