Our resident expert on all things
robotic is merely an email away.

roboto@servomagazine.com

Tap into the sum of all human knowledge and get your guestions answered here!
From software algorithms to material selection, Mr. Roboto strives to meet you
where you are — and what more would you expect from a complex service droid?

by
Dennis Clark

Background

On Code Reliability:

Between last month and this
month, | have discovered many
interesting things. Most obvious is
that there is more than one kind of
Roomba controller! Some are faster or
more tolerant of the way you send it
SCI commands; others, not so much.

My old Roomba 410 is either
faster or more tolerant of lots of SCI
commands coming in. My much
newer Roomba 440 is not so tolerant.
Code that ran great on the Roomba
“Red” ran very badly with resets,
ignored commands, and “went into
the weeds.” on my Roomba 440. |
found that if | delayed for about 5 ms
after each command, that everything
was happy! Okay. So be it. That delay
isn't too bad if everything runs well
when we use it.

Remember from last month | said
that my Roomba Red would not run
straight? | took the wheel assemblies
apart and cleaned the wheel
encoders, and that straightened
everything right up (pun intended)!

On More Useful Code:

Last month’s code was little more
than a giant “if/then” statement that
did a little bit of robot-ish stuff. This
month, I'm going to talk about finite
state machines in embedded
processors like we use for many of our
robots. I'm not going to go into CS-

is month's column can be called either "No good deed goes

unpunished" or "Curiosity killed the cat." Last month, we looked at

controlling an iRobot Roomba platform with an Arduino UNO. Questions

came in about problems with my Roomba program, and | was asked if |

101 programming course language
about state machines, so suffice it to
say that a state machine allows a
program to move from one known
condition — or state — to another one
in a predictable manner.

“Huh!” you say. “So what?”
Indeed, that sounds like any program
you write, doesn't it? The beauty of a
state machine, however, is that your
code will hold that state while you tell
your microcontroller to go off and do
something else. (I'll bet that got your
attention.)

A long time ago (you know, like
back in the 1990s), the robotics
pioneer Rodney Brooks wrote about
something called robot subsumption
architectures to create what looked
like intelligent behavior in robots. Each
element in a subsumption architecture
is a behavior that may or may not use
sensors for input, and which does use
motors (or similar actuators) for
output. Higher-level behaviors take
control of (subsume) output
actuators, even if lower priority

could make the code more robust and useful. | never shy away from a
challenge, so here you go! This month, we'll look at ways of programming that
will allow multiple tasks to run (apparently) at the same time.

behaviors are active. Each behavior is
implemented in what Brooks called
modified finite state machines.

A modified state machine in
Brooksian terms is a finite state
machine (FSM) that uses timers as an
input, as well as sensors and states. In
short, using a subsumption
architecture can make your robot look
like it is “alive” and intelligently
responding to its surroundings.

In my opinion, what is really cool
about this type of behavioral
programming is that your robot will
start doing things that you did not tell
it to do because of the states left and
then returned to in your subsumption
architecture behaviors. This is called
emergent behavior and it is what
makes our machines look alive.

To learn more about how simple
behaviors can look like actual
intelligence, | really recommend that
you read Valentino Braitenberg's
Vehicles, Experiments in Synthetic
Psychology. This book is a very easy
read and will keep you busy for hours

SERVO 04.2013 11

implementing behaviors in your
robots. (This way, the next time you
hear someone say “Braitenberg Type
2" robot, you'll know exactly what
they are talking about!)

| am going to discuss basic
subsumption architecture in this
article. There are variants on this

theme. A behavioral module may have
inputs that are suppressed and
replaced with other inputs. Or, it may
have outputs which can be inhibited
to allow outputs from other modules
to be used. We will keep this
discussion focused on suppressors and
timers.

If you are interested in knowing

void DoWander (void)

{
if (priority < wander)

{

priority = wander;
GoForward() ;
}
}

// Define a wander algorithm,

Serial.println("Wander") ;

Listing 1: DoWanders behavior code.

or just go straight.

/*

*/
void loop (void)
{
UpdateSensors () ;
DoWall () ;
DoWander ()
DoAvoid() ;
()
)

7

i

DoEscape
DoPanic () ;

}

Listing 2: RoombaBehave1 main Arduino loop.

* The nice thing about state machines is that they allow your
* main loop to be really simple.

12 SERVO 04.9013

more, there are some books to
check out in the sidebar. Okay, I've
introduced you to new terms and
concepts perhaps. Now, you need
to know how to design and
implement them, so read on.

Designing a
Subsumption
Architecture

This is going to be a very simple
introduction to behavioral
programming, involving only a few
behaviors. The beauty of the
system, however, is that you can
layer on more behaviors as you get
them to work without modifying
existing ones. This means that your
behaviors are modular and can be
modified without worrying about

other behaviors that are currently
working fine. Your emergent
behaviors might change, however ...
Our new Roomba code will have
three defined behaviors to start with:

1. Wander
2. Escape
3. "l see a wall”

The first two behaviors control
the drive motors that move the
Roomba around. The third one just
lights up LEDs and turns on the
sweeper motor to tell us that it saw a
wall with the wall sensor.

Figure 1 shows what the
subsumption network looks like using
these three behaviors.

In Figure 1, each of the square
boxes are behaviors. The DoWall
behavior stands by itself and has a
sensor input and output actuators
that are LEDs and the sweeper brush.
That behavior isn't all that interesting,
but this is how it is represented.

The next two behaviors have
subsumption characteristics. The
DoWander behavior has no sensor
input, but it does run the motors. As
you can see in Listing 1, DoWander
just makes the robot go forward —
not interesting, but it does something.

The DoEscape behavior has a
higher priority than DoWander, and

uses the bumper sensors as inputs.
The output of DoEscape, however,
goes to the little circle labeled “S.”
The S stands for suppresses.
Therefore, DoEscape suppresses the
output of DoWander and takes over
the motors. When DoEscape is done
with its task, it will return control to
DoWander or whatever other behavior
has the highest currently active
priority.

In general, higher priority
behaviors are at the top of the
diagram. That doesn’t have to be
true, however. All you need to do is
look for the behavior that points to
the suppressor that has the final say
to see which one has the highest
priority. When you have all of your
behaviors coded, all you need to do in
your code’s main loop is call
everything, and each behavior will
handle itself. Listing 2 shows what
our Roomba behavioral program'’s
main Arduino loop looks like. Simple,
isnt it?

If you look at Listing 2 again,
you'll note that | have more behaviors
there than what this article is talking
about. The code (which you can find
at the article link as
RoombaBehave1.zip) has other
behaviors stubbed in that can be
added later. | am leaving these as an
exercise for the reader. (Maybe I'll
add some details in a later column,
we'll see ...)

| have placed these behaviors in
ascending order of priority with the
lowest priority called first. Each of
these behaviors are modified finite
state machines (MFSM). There is a

standard way to represent FSMs in
the programming world.

The DoWall behavior is a simple
call and has no real state machine; it
is always active on each pass through
the main loop. Likewise, the
UpdateSensors() is just a function call
that happens each pass through the
main loop so that all the behaviors
have access to the most recent sensor
data. Our first real state machine is
DoWander.

Figure 2 shows the state
machine for that behavior. It is very
simple. The first state is the “idle”
state where it looks to see if it can
even run. The second state goes
active on the next pass of the
function if the behavior is of a high
enough priority to run. As you can
see from Listing 1, however, this is
little more than an if/then statement.
Our first real FSM is the DoEscape
behavior, which tries to get our robot
out of a predicament when it runs
into something.

Figure 3 shows the FSM diagram
for DoEscape. Every state that uses
the word “"Done” is using a timer to
decide when the state is finished. This
timer is NOT the delay() function; that

SELECTED READING

"Cambrian Intelligence, The Early History
of the New Al" by Rodney A. Brooks,
MIT Press, 1999.

"Mobile Robots, Inspiration to
Implementation" by Jones and Flynn,
A K Peters LTD, 1993.

"Vehicles, Experiments in Synthetic
Psychology" by Valentino Braitenbers,
MIT Press 1986.

would block the function call until the
delay is finished. Instead — as you can
see in Listing 3 — we use the
Arduino background milliseconds
counter to determine if we are done.
If not done, the function exits, leaving
the state machine in the same state
until the next call of the behavior
function.

In the C language, a switch/case
construct is the simplest way to
implement an FSM. Note the timer
function millis(); | use this as my
background timer to know when
certain states are ready to change.

Subsumption, behaviors, finite
state machines, oh my! This all sounds
so technical, but as you can see, the

SERVO 04.2013 13

Discuss this article in the SERVO Magazine forums at http://forum.servomagazine.com

Figure 4

code isn't that complex.
This is not to say that it is
easy to write! You will
spend a great deal of time
tweaking and tuning your
timing, and choosing your
state steps before your
behaviors work properly.

The FSM is a basic
cornerstone of embedded
programming, so if you are
inclined to get a job in
automation or embedded
engineering, put some time
in on these concepts —
you'll need them!

Back to the
Hardware

While working with my
Roomba, | got tired of my
taped-on dead weights
falling off and my Roomba
stopping every time it
changed directions. So, |

Listing 3: DoEscape behavior.

void DoEscape (void)
// Define a bumper response escape behavior

{

static uint32_t ticker = 0;

static uint8_t state = 0;

static uint8_t dir = 0;

if ((mBumpers == 0) && (state ==0))

// Don't do anything if nothing to do
{
return;
}
if (priority <= escape)
{
priority = escape;
switch(state)
{
case 0: // record bumper, backup
dir = mBumpers;
ticker = millis() + 1000; // 1 second
GoBackward () ;
GoSong () ;
state = 1;
Serial .print ("Bumper dir: "“);
Serial.println (dir,HEX) ;
break;

case 1: // wait for backup
// done
1f (ticker < millis())
{
state = 2;
Serial.println("Do turn");
}

break;
case 2: // choose turn
// direction
if (dir == RIGHT)

{
Serial.println("spin left");
SpinLeft () ;
}
else 1f (dir == LEFT)
{
Serial.println("spin right");
SpinRight () ;
}
else
{
Serial.println("ahead") ;
SpinRight () ;
}
ticker = millis() + 1000;
state = 3;
break;

case 3: // wait for turn done
if (ticker < millis())
{
state = 0;
dir = 0;
priority = idle;
Serial.println("All done");
}

break;

14 SERVO 04.9013

www.servomagazine.com/index.php?/magazine/article/april2013_MrRoboto

added a “cargo bay” made
of a simple aluminum plate.
Figure 4 shows my new
robot with a handy rear
deck bolted on.

If you are like me and
really don’t know how to
use a CAD drawing package
(yet) to make these simple
mechanical plates, Figure 5
shows my handy-dandy
template made from cereal
box paperboard and a sharp
leather awl that | used to
poke screw-hole locations in
the paperboard.

It works great and
allows me to fiddle with
details by just bending the
paperboard and using
scissors to modify the
plates. It is easy to achieve
good results with these
simple tools.

Well, that's all for another month.

| love hearing from you, so remember,
if you have a robot question,
please drop me an email at

roboto@servomagazine.com and I'll
do my best to answer them. Until next
month, keep on building robots!

