RADIO-ELECTRONICS

-
L

1 ‘T>

-

For those of us interested in experiment-
ing with robotics, the Armatron from
Radio Shack was both agony and ecstasy.
Still available, Armatron is a low-cost, fully
functioning robot arm with six degrees of
freedom (meaning there are six different
portions of the arm whose movement can
be controlled). For robotics experimenta-
tion, its serious shortcomings include the
inability to lift anything of significant weight
and its totally mechanical controls. While
many different articles have described
modifications that allow computer control
of the Armatron, all required a substantial
amount of mechanical skill.

Many of those shortcor ings have been
eliminated in a new version of that device
called the Mobil Armatron; that new version
easily lends itself to computer control. In
this article, we'll describe a simple com-
puter interface for the robot arm, as well as
a comprehensive controller program for the
Commodore 64.

The interface

The Mobile Armatron’s movement is con-
trolled using a series of switches. Those
switches are used to direct the motion of
the unit’s base (forward, back, left, and
right), and to control the positioning and
motion of the arm (arm up, arm down, wrist
up, wrist down, wrist tum, and fingers
cpen/clamp). Four D cells are used to provide =3 volts for the
unit’s motors. By changing the polarity of the applied voltage, the
motars can be reversed, therefore obtaining complimentary func-
tions such as arm up and arm down. One motor each is used to
control the left wheel, the right wheel, the movement of the arm, the
movement of the wrist, and the wrist-turn/finger-position. Seven
control wires run from the switches, which are located in a control
module, to the motors; one wire each for positive or negative
voltage, plus a return (ground) wire from each motor.

Because of its design, it is a relatively simple matter to control the
Mobile Armatron using a personal computer. All that is required is
to replace the control module switches with a simple interface. An
appropriate circuit, designed for use with a Commodore 64, is
shown in Fig. 1.

In that circuit, the switches are replaced by low-current relays.
Those relays are activated by seven transistors, which are in turn
controlled by seven of the eight available Commodore 64 user-port
lines. Use of low-current relays ensures that the 100-mA maximum
allowable current draw from the user port is not exceeded.

Construction

While the circuit is simple, we still recommend using a PC board.
A suitable pattern for a double-sided board is shown in PC Service
The corresponding parts-placement diagram is shown in Fig. 2
Once the board is etched, inspect it carefully for shorted or open
traces, etc.)

The main reason for using a double-sided board is mechanical
rigidity Once assembled, the PC-board is mounted on a card-edge
socket and soldered in place. With a double-sided board, solder
connections can be made on both sides; with a single-sided
board, connections can be made only on one side.

If you find the thought of etching a double-sided board intim-
idating, the component-side pattern can be eliminated. Then, you
will need to add a jumper between pad A and edge-connector
pad 2. Remember that you will lose the rigidity offered by the
double-sided design, so extra care must be taken when handling
the unit.

COMPUTER-
CONTROLLED
ROBOT

An easy-lo-build interface that lets you use your
Commodore 64 computer to control a popular robot arm.

JIM BARBARELLO

Mount the components on the PC board as shown ir: Fig. 2. If
using a double-sided board, install a feedthrough at pad A, if using
a single-sided board, install a jumper as previously discussed.
Follow proper construction technigues.

Once the board is complete, insert it into SO1, a 12-position
card-edge socket with 0.156-inch spacing. If you are only able to
obtain a longer connectar, for instance 29-position, it can be cut

TABLE 1—6502 OP CODES

)

p—
NUMBER OF BYTES

Incompatible compatibles

The proliferation of 6502 "clones” (cloning really began in 1975
when IMSAI “cloned” their version of the Altair 8800) can lead to
confusion and incompatibility. For example, a program written
using Rockwell’s enhanced branching instructions is guaranteed not
to work on an Apple lic, which uses the NCR IC.

So programmers and systems developers are faced with a
cheice: Stick to the original 6502 instruction set and maintain
compatibility at the expense of performance, or use the enhanced
instructions, knowing that programs may not run on all machines.

D E F
s LSD 0 1 2 4 5 8 7 X a_‘_] A B (o] .
2 BRK | ORA 17s8 | ora | AsL | RMBO| PHP | ORA | ASL TSB ggg :SLS Bg:\o
0 | Implied |(IND, X) zZP ZpP ¥ ZP | Implied | IMM | Accum ABS 295 1 s e Ll
1728 25l23|25}2s5]13 22|12 3.8
BPL | ORA | ORA TRe | ora | asL | RMB1 | cLC | ORA | INC TRB A(;:Ax A;gl-x '83:1
1 | Relative | (IND), Y | (ND) ZP ZP, X ZP. X | 2ZP Implied | ABS, Y | Accum ABS ‘4- . -7 e
2 2|2 5 Eois 25|2a4|26f25]12]|34]12 363 e
JSR | AND BIT | AND | ROL | AMB2 | PLP | AND | ROL BIT AND | ROL ng‘n’ :
2 | ABS |[(IND,X) zP zP zP zP | implied | IMM | Accum ABS | ABS | ABS s
36|26 23 |23|25)25114 |22 12 34| 34 36861]}]3¢¥
BMI | anD | AND gT | AnD | ROL | RMB3 | SEC | AND | DEC BIT ;ND A:ng agss
3 | Relative| (IND), ¥ | (IND) zp, x| zp.x | zp.x | ZP | Implied | ABS, Y | Accum ABS._X ABS, X il
22|25 |25 24| 24| 2625112 |34]fr2 3 4)]|3 4
RTI | EOR EOR | LSR fRmMB4 | PHA | EOR | LSR JMP | EOR | LSR | BBR4
4 | Implied | (IND, X) | zZP zP ZP Implied | IMM | Accum ABS ABS ABS ZP.~
16|28 l23|2s5f2s]13]|2z2]|12 33| 34 |36861}3 5
BVC | EOR | EOR | EOR | LSR | AMBS | CLI EOR | PHY EOR | LSR | BBRS
5 | Relative | (IND), Y | (IND) sz,x 2p.x | zP | implied |ABS, Y | Implied ABS, x ABS.7 X 32!;”
2 2|25 |2s 24| 26}2s5]12 |34]13 3 4 | 3
RTS ADC s1z | ADc | ROR | AMB6 | PLA | ADC | ROR JwP | ADC | ROR | BBRS
6 | Implied | (IND, X) zP zP zP ZP | implied | MM | Accum (ABS) | ABS | ABS zP
16 | 2 6t 23| 23|25}fF25]14 |22t]|1 2 3 8|3 4|36 }]3°5
BBA?
BvS | ADC | ADC stz | ADC | ROR | AMB7 | SEI ADC | PLY JMP | ADC | ROR
7 |Relative | (IND), Y | (IND) ZP. x| zp. x | zr.x | ZP |Impled | ABS, Y | Implied KABS, X) ABS._X ABS. X ZP."
2 2|2 5t |2 5¢ 2 4|24 | 2625112 |3 a4t} 14 3613 4t 37|35
 BRA STA STY STA STX | SMB0O | DEY BIT TXA STY STA STX | BBSO
8 |Relative| (IND, X) zZP zP zP ZP | implied | MM |Implied ABS | ABS | ABS ZP"-
231268 23 |23|2afp2as]1zfzz]2 34| 34| 341}f335
BCC | STA STA STY | STA | STX | SMB1 | TyA | STA | TXS 8Tz STA STZ | B8S1
9 |Relative | (IND), Y | (IND) ZP. X | ZP,X | zP,¥ | zP |Implied |ABS, Y |Implied ABS | ABS. x |ABS. X | 2ZP
2 2% 26 |25 24 | 24| 24f25112 |35 |12 3 4] 35])35]}3 5"
LOY | LDA | LOX Loy | tbAa | Lox | smB2| TAay | woa | TAX LDY LDA | LDx | BBS2
A | IMM [(IND, X) | IMM zZP zP ZP ZP | Implied | IMM | Implied ABS | ABS | ABS | ZP
22|26 |22 23 23 |23)e2s|12 |22 | 12 34| 34| 347(]as
BCS | LDA LDA | LDY | LDA | LDX | SMB3| CLV | LDA | TsX LDY LDA LDX | BBS3
B |Relativa| (IND), Y | (IND) 2P, X P X | ZP. Y ZP Implied | ABS, Y |Implied ABS, X| ABS, X | ABS, Y ZP
220|265 |25 24 | 24| 2al2s5]12 34|12 34 |3 4 |3 4|3 8
CPY | CMP CPY | CMP | DEC | SMB4| INY | CMP | DEX CPY | CMP | DEC { BBS4
C | IMM [(IND, X) zP P zZP 2P | imphed | IMM |Implied ABS | ABS | ABS | 2P
22|28 2 3 23}25 25112 |22 /|12 34|34 |36]}3 5"
BNE | cMP | CMP cmp | oec [smes| co | omp | PHx cMP | DEC | BBSs
D | Relative| (IND), Y | (IND} ZP.X | ZP.X | 2P |implied | ABS. Y | implied ABS, X |ABS, X| zP
2 2¢|2 5 (25 24| 26}25]|121|34]13 34 | 3713 5
CPX | SBC CPX | SBC | INC | sMB& | INX SBC | NOP CPX | SBC | INC | BBSE
E IMM | (IND, X) ZP ZP zZP ZP Imphed IMM | Implied ABS ABS ABS i
2 2 | 2 st 23 |23 |2s5}f25])12 |[22t]|1 2 3 4|3 4|36 {3 5"
BEQ | sBC | SBC sec | inc | smer | seo | sec | pux sec | INC | BBS?
F | Relative| (IND), Y | (IND) ZP. X | ZP.x | 2P | imphed | ABS, Y | impiied ABS, X | aBS, x| 2ZP
2 2|2 st f2 5t 24| 262512 |3at]14 3 4t| 37 35"
0 1 2 4 5 6 7 8 9 A B C o) E F
BRK R MNEMONIC NCR ROCKWELL tAdd 1 to N if in decimal mode.
iplod E AND ONLY *Add 1 o N if page boundary is crossed.
B T~ é‘EBgESC%EEEQODE FORIVELL **Add 1 to N if branch occurs to same page;

Add 2 to N if branch occurs to different page.

The bottom line is that the only way to guarantee compatibility is
to stick to the manufacturer's specified hardware. Anything else is a
gamble

In this article we have examined the 6502 family of micro-
processors. The original 6502 was used in numerous machines from
Apple, Commodore, Atari, end many others. In spite of many
predictions of its early demise, it and its descendants are still being
used in many personal computers and dedicated controllers. We
hope this article has helped you understand the major differences
between the various members of the 6502 familypD4

/861 AYN

14

w

Rl
10K

R5
10K

RE
10K

R1
10K

a1
2N2222

as
IN2222

Q6
2N2222

Q7
2N2222

S01

=

e peldepeld

&L_

=L Jr

s

O

i

=
S

o]

Le]

RY4

d

o

m
=<
o

Lo}

-

=)
=<
-~

{|
i

&

7]
o

{
i

4
.
.

-
PINK

e

YELLOW

GHEEN

i
 BLUE-

T0

> MOBILE

ARMATRON

FIG. 1—YOU CAN ADD COMPUTER CONTROL to a Radio-Shack
Mobile Armatron with this simple interface. It replaces the robot
arm’s control module.

-‘_

TO MOBILE ARMATRON

A
s
=
x K 2 8 B w
3 g g g z g 2
@ @ = a > b @
RY1 RY2 RY3 RY4 RY5 RYS RY?
a1 a2 a3 04 as5 06 o7
FIII R2

%,

*SEE TEXT

FIG.2—ONCE ALL PARTS ARE MOUNTED, this double-sided PC
board is inserted into a 12-position card-edge connector and the
circuit is connected to the Armatron.

1 rem ek ke e e e e e o ok e e vk ok e e ek ko e ok e
2 rem ** mobile armatron software **
3 rem ** name: robot i
4 rem ** - (c) 1986, 3jib ot
5 rem ** manalapan, nj 07726 i
6 rem ** v B6(928 iy
7 rem hhkhkAhhkkhhhkhhkhhrxhkk Ak ek hAhhhkdhhki
18 dim a(l2),b(25¢,1) :gosub 3000:50sub 5004:poke

56579,255:poke 56577,@
a(l)=38:a(2)=70:a(3)=36:a(4)=34:a(5)=33:a(6)=65
a(7)=40:a(8)=72:a(9)=4B:a(10)=80:a(11)=66:a(12)=68
555="1234567890+-":rcS=chrs (5) +chrs (18)
gosub 3000:ro=6:co=10:gosub 5850
printrc§;" main menu"
print:printtab(12);"< f1 >:
learn":print:printtab(12);"< £3 >: do"
print:printtab(12);"< f5 >: save":print:printtab(12);
"< £7 >: retrieve! S :
print:printtab(1@);"<ctrl> q: quit (end)
ro=19:co=10:gosub 5¢50:print"which... "

get sr$:if srS="" then 100

sr=asc (sr$)-132:if sr=-115 then sr=5

if sr<l or sr>5 then 90

on sr gosub 200,300,400,600,8060

goto 50

gosub 100@:j=b (0,0) :x=0:rem*** learn mode ***

get aS:if as$="" then 218

if asc(a$)=133 then return ;

gosub 2009:if i=0 then poke 56577 B.goto 21e

poke 56577,a(i) .

get aS:if aS="" then x-x+l :goto 250

poke 56577,8

j:j+1:b(j,ﬂ)wi:b{j,1)=x:x=B:b{0,@)=j
ro=i+10:co=5:gosub 5050:print mid$ (ssS,i,1); :goto 210
rem** do procedure

printchrS (147) :printblS:
_print" do procedure":printbl$:print

if b{#,0)=¢ then print"no procedure in memory.":

goto 375

print"press any key to begin procedure."

get aS:if ag="" then 340

print"procedure execution in progress"

for i=1 to b(#,0):noke 56577,a(b(i,q))

for j=1 to b(i,l)

get aS:if as="" then x=x+linext j

poke 56577,8:for j=1 to 500:next j:

next i:print"procedure done."

ro=18:co=0:gosubs5858:

print"press any key to return to the menu.”

get aS:if a$="" then 380

return
‘rem** save procedure

printchr$ (147) :printbls:

print" save procedure":printblS:print

if b(#,0)=0 then print"ne procedure in memory.":

goto 480

input"enter file name to save":fs

open 1,8,15:0pen 2,8,2,"@@:"+£5+",s,r":
input#l,e,eds,tn,bl:close l:close 2

if e=62 then 560
print"file exists.
if as="y" then 500
print"abort, press any key..."

get aS:if aS="" then 49@

return

open 2,8,2,"@0:"+f5+",5,w"print;

print"saving procedure. wait."

for i=0 to b(@,0):print#2,b(i,?):print#2,b(i,1):
next i:close 2:close 15
print:print"procedure saved.

70

8@
90
100
118
120
130
140
200
21¢
220
230
.240
2508
260
270
280
308
310

320

330
340
350
355
360
365
37¢

375

380
390
400
418

420

430
440

450
460
470
480
490
495
500

continue (y/n)...",'qosub 1508

510

520 press any key.":goto 490

down to the proper length. That’s what was done in the author’s
prototype. (See Fig. 3.) Solder each edge-connector pad to the
corresponding terminal on the socket. For double-sided boards,
remember to solder on both sides

Connecting the interface

Place the Mobile Armatron’s controller module face down and
remove the six screws that hold the unit together When you remove
the rear half of the case you will see @ PC board that is held in place
with just a single screw. Remove that screw and the board.

2861 AVIN

ey
>
(4]

RADIO-ELECTRONICS

-
&

600 rem** retrieve procedure
610 printchr$ (147):printbl$:
.. print” : retrieve procedure":printbl$:print

620 if b(0,0)=3 then 650

630 prmt"procedure in memory. continue (y/n)?2";:gosub 1500

640 if aS="n" then print"abort. ";:goto 760

650 inputenter file name to retrleve" £S

660 open 1,8,15:0pen 2,8,2,"@0:"+£5+",s,r":
input#l,e,ed$,tn,bl:close 1l:close 2

670 if e=6 then 720 :

688 if e=62 then pzmt"flle doesn't exist. ";

690 print"press any key."

700 get aS:if a$="" then 700

718 return

720 print"retrieving procedure. wait.":
open 2,8,2,"@@:"+f5+",5,r"

730 inputk2,b(0,0) :inputd2,b(d,1) .

740 for i=1 to b(@,0):input#2,b(i,B):
input#2,b(i,l) ;next:close 2

750 print"retrieval complete. ";:goto 690

800 rem** end _

810 ro=5:co=18:gosub 5450:for g=1 to 16:
print tab(19);b$:next

820 ro=10:co=@:gosub 50@50:closel:close2

83¢ print"program erded to re—enter, type goto 50";

840 print:end .

1000 rem** learn mode screen

1905 printchr$ (147) :printbl$

1096 print" mobile armatron robot learn mode ":
printbl$sprint .

1007 print" press key to do function. press any other
key to stop.";

1008 print" pr'ess <f1> to return to menu.":print

1929 print" key tunction"*
pl:int"- A g n

101% printtab(5);"1 = forward":printtab(s); "2 backward"
1020 printtab(5);"3 = right forward turn":

: printtab(5);"4 = left forward turn"

1030 printtab(5);"5 = arm up":printtab(5);"6 = arm down"

1040 printtab(5);"7 = wrist up":
printtab(5);"8 = wrist down"
1850 printtab(5);"% = hand turn":
~ printtab(5); " = fingers move in/out"

1068 pzjinttabcsnur
1476 printtab(5);"-
1080 return .
150¢ get a$:if a$='"' then 1560
1510 aS=chrs (asc(a$) and 223)

1520 if a$<>"y" and a$<>"n" then 1580

. 1530 print a$:return
2000 rem** position in string
2010 for i=1 to 12:if a$-—mxd$(ss$,l 1) then 2030
2020 rext:i=@:return
2030 ro=i+l@:co=5:gosub 5850: prmt:rcs,as.teturn
' 3000 rem** format screen=
3017 poke 53288,6:poke 53281,6: prmtchrS(ld?) :

- bS=chr$(5)+chrs(18)

3028 bl$"‘b$+" ",
print bl$

3030 print bS;"

340 printbl$:

3@50 lﬁ-" "

3360 return

5000 rem** cursor control using plot

5010 data 162,0,168,9,24,32,248,255,96,999

5020 a=493¢d:sc=a

5030 read b:if b<>999 then poke a,b a—a+1 goto 5030

5040 return

5@50 poke sc+3,colipoke sc+l, row.ws sc

5868 return : ;

right reverse turn"
left reverse turn"”

T

mobile armatron robot controller i

kernel (S£f£0)

Examining the circuit you will see that seven wires are terminated
at one edge of the board. Orienting the board so that that edge is at
the top, from left to right those wires are colored black, brown, red,
pink, yellow, green, and blue. Unsolder the wires from the PC board
and connect them to the interface as shown in Fig. 2

Using the interface

Install four D cells in the Mobile Armatron. Plug SO1 and the
interface board into the 645 user port (rear left of the computer) so
that the interface board circuit faces upward. Power up the com-
puter and enter the program shown in the listing; save the program
under the name ROBOT.

PARTS LIST

R1-R7—10,000 ohms, 1/4 watt, 5%

Q1-Q7—2N2222 NPN transistor

RY1-RY7—reed relay, SPST, 5-volt, 250-ohm coil, Radio- -
Shack 272-232 or equivalent

S0O1—12-position card-edge socket, 0. 158 mch spacing

Miscellaneous:Mobile Armatron robot arm (Radio-Shack), PC

board, wire, salder, four D cells, etc.

The program shown in Listing 1 and a series of demonstra-

tion procedures is available on a Commodore 64 disk for

$6.00 (U.S. funds only) postpaid from B&BTC, RD 1, Box

241H, Tennent Road, Manalapan, NJ 07726. New Jersey

residents, please add $0.36 for sales tax.

FIG. 3—THE AUTHOR’S PROTOTYPE. Note that it uses a single-
sided board (as indicated by the jumper) and that SO1 has been
cut down from a larger socket.

When you run the program, a menu with five options will appear
on the screen. Those options are LEARN, DO, SAVE, RETRIEVE and QuIT
(enp). To better understand what each of those options do and
how the program operates, let's discuss each option separately.

Learn allows you to “teach” the robot to perform a series of
functions in a specific manner. Together those functions form a
procedure. Once created, the procedure can be saved, retrieved,
added to, and executed at any time. Select Learn by pressing key 1.
The Learn screen defines the keys to select the twelve possible
movement functions. To perform one of the functions described,
press the associated key. To end movement, press any key. The
program remembers each function selected and the length of time
the function is performed. To end the teaching session, press the 1
key to return to the main menu.

DO executes a procedure resident in memory. Select oo by
pressing key f3. If a procedure is resident in memory, you will be
advised to press any key to begin execution. Otherwise you will be
informed that there is no procedure in memory and asked to press
any key to retum to the main menu.

save allows you to transfer a procedure in memory to a disk file
using a name that you specify. Select save by pressing key rs. If there
is no procedure in memeary, you are so informed and asked to press
any key to return to the main menu. If you specify the name of a file
that already exists, you are asked if you want to continue. Continuing
erases the old disk file and replaces it with the current contents of
memory.

RETRIEVE COpies the contents of a disk file into memory, erasing any

procedure that is stored in memory at the time. Select reTriEVE by
pressing key f7. If you specify the name of a file that doesn't exist,
you will be so informed and asked to press any key to retumn to the
main menu. If memory already contains a procedure you will be so
advised and asked if you want to continue. Continuing erases the
current contents of memory and replaces it with the procedure
saved on disk.

QuiT is selected by pressing both the cTrt and a keys. That ends
the program, ensures all files are closed, and prints a message “To
re-enter, type coro 50”. If you end prematurely without saving a
procedure in memory, executing a coto 50 allows you to re-enter
the program with memory intact. You can then save memory con-
tents to a disk file.

Tips for experimenters

Each movement you specify is called a step. After loading a
procedure from disk, you can add steps to it in the Learn mode.
That allows you to build a procedure one part at a time, add to i,
test it, and save the revised procedure if it proves acceptable. You

can also have standard procedures on file rather than having to
build them manually each time.

You should always start a procedure with the robot in the same
initial position. To do that, save the procedure in memory and enter
the LEarny mode. Perform the functions necessary to get the robot to
the initial position. Then retrieve the procedure you wish to per-
form.

Each procedure step is saved as a movement-function number
and a time count. The movement function is specified by a number
between one and twelve (corresponding to the twelve function-
definition listings on the LEARN screen). The time count is @ number
that indicates how long the function should be performed. As the
robot's batteries drain, the time count may produce slightly dif-
ferent results since the robot will move at a slower speed. There-
fore, for precise procedures it is recommended that you always use
a fresh set of batteries.

If your procedures will be longer than the currently allowable
250 steps, modify the bIMENSION statement in program line 10 to
increase the size of the B arraypCD4

L1861 AV

-
k-
~

g

311 :l1 :11 311 :l*(:11 .flT

o0 g© 00 00 00 00 OO

ir-: 3 INCHES —=J|
COMPONENT-SIDE DIRECT-ETCH FOIL PATTERN for the C64 Ar-
matron controller. Don't forget to install the jumper!

MATITTRITIRIT 4
al

[
= 3 INCHES >
i

I

SOLDER-SIDE DIRECT-ETCH FOIL PATTERN for the C64 Armatron
controller. The story begins on page 144.

4
-~ PP 8 Y D%

RN (T

/861 AYN

<
~

