
14 SERVO 09.2011

As the summer winds down (sigh), I always start to get
more interesting questions. One this month about robot
lawn mowers seems more in tune with the summer than
the fall, but (in some parts of the USA) I guess stuff grows
all year long (not in Colorado I might add, unless you are a
pine tree). It appears that some of you like to keep LOTS of
data on your robot from one question I got, which is kind
of cool — a sort of running diary for your robot, if you are
into that kind of thing! I’ll say more on these things later.

As hobbyists, we have been doing line followers, wall
bumpers, and mini Sumo and their ilk for quite a while
now. While they do entertain the myriad gawkers at our
shows and demos, they have ceased to entertain us any
more. How about folks doing robot “art,” like talking heads
that track motion, or voice-controlled helper bots carrying
your toolbox or ... In other words, are folks out there doing
useful things with their robots?

I’ve wanted to do a robot lawn mower for a while now
(one of my questions this month). I did recently get a
Roomba to vacuum my lab space for me (I hate to clean) —
thank you, Woot! I may not know the answer to every
question that I get, but I like to research those questions
and hopefully come up with answers, or even options to
investigate.

We should step up to the plate as robot hobbyists, and
do more than table-top conversation pieces if we want to
advance the hobby. So, I challenge folks out there to
knuckle their chins, scratch their heads, and generally get
creative to come up with more ubiquitous robots to let
loose into the wilds of our houses or yards, to actually do
something that we find useful or more widely entertaining
than say, a remote control mayhem monster or a table-top
line follower.

The principles that we learned with our line followers
and mini Sumo robots do have a use in this new world of
robots. It was not wasted time! The basic idea behind the
line follower can be used in our robot lawn mower to have
it, for instance, follow a buried cable that it can track. My
Roomba vacuum has a wall sensor (maze solver), cliff

detectors (mini Sumo), and a bumper sensor. With these
and the IR dome on the top, it does a pretty good job of
cleaning a room.

What have you learned that you can build into a larger
and more useful robot? Let’s see, shall we?

Q. I am making an RC project that involves turning a
push mower into a mini-zero turn type mower. I
would like to know what type of motor to use. I

need to know how much torque is needed to push a
certain amount of weight. Should I try a high torque, low
speed type motor for my project?

— Mark G.
Powell, OH

A. I have a suggestion for your platform. I’ve seen the
“zero radius” turn mowers that the professionals use;
they appear to have differential drive wheels in the

back and a pair of large castors on the front of the mowing
deck. That seems to be how you should build your mower.

There are some rules of thumb that you can use, or
you can use math. Let’s start with math. We need to know
how heavy your mower platform is to start with, so we
know what kind of power we need for the drive motors.
I’m going to give you the gist of Chapter 2 of Building
Robot Drive Trains that I wrote with Michael Owings a few
years ago. This is a thumbnail discussion of how you can
estimate what you’ll need for motors. If you are interested
in going into more depth, check this book out of your local
library, or, buy a copy of your very own (for which Michael
and I will thank you).

Even though this discussion will get into some math, I
promise, it won’t hurt a bit! First off, we want to estimate
what power we’ll need in our motors to move the mower
the way you want it to move. To move our robot, we’ll be
working against two basic forces: friction and gravity.
Together, we get this:

Tap into the sum of all human knowledge and get your questions answered here!
From software algorithms to material selection, Mr. Roboto strives to meet you
where you are — and what more would you expect from a complex service droid?

by
Dennis Clark

Our resident expert on all things
robotic is merely an email away.

roboto@servomagazine.com

wfapp FFF +=

MrRoboto - Sep 11.qxd 7/28/2011 5:48 PM Page 14

mailto:roboto@servomagazine.com

The force we need to apply () must be greater than the
force of friction plus the force of weight (due to gravity) to
move. The force due to gravity is shown as this formula:

which means the product of our mass and acceleration due
to gravity times the sin of the angle from the perpendicular
to the ground is the force due to gravity that needs to be
overcome. As obvious as this formula may seem (that was a
joke, really), it may need some explanation.

We all get the “heavy things are hard to move” part,
but what is that sin theta thing all about? It’s easy, really.
Push something on level ground, grunt a bit, and off it
goes, right? Well, now push it up your driveway at a 20
degree angle. Suddenly it isn’t so easy to push, right? Now,
for the next bit, friction — the other half of our simple
equation above. This is the formula for the force to
overcome friction:

The first term, mu, is the coefficient of friction — static
friction (more on that later.) You have seen “mg” before; it
is weight — the cosine is of the angle off of the horizontal
plane. What this all comes down to is that friction is
highest on flat ground and zero when falling straight down;
that makes sense. There are two kinds of friction: static
friction, which is the friction to overcome to get moving;
and dynamic friction — that which needs to be overcome
while you are in motion. The latter is far less than the
former. Even a wheel has a surface area in contact with the
ground; it isn’t just a single point, it has width and length.
Until that wheel starts to turn, it is basically just skidding on
the ground.

Once the wheel starts turning though, everything
changes and the friction goes way down. Push anything
with wheels. Did you notice that you really had to heave to
get it going? Once it is moving, it is much easier to keep
moving. That is partially friction; the other part is
Newtonian physics — momentum; objects in motion tend to
want to stay in motion.

Back to the point. The coefficient of friction is rarely
given, but can be measured. If you are interested, it is the
ratio between the resistive friction over the normal friction.
Normal friction is basically the force holding things together,
mg, or weight. To get the resistive friction, get a fish scale
and attach it to the object and pull. That force will look like
weight since this is a scale; take that value. Simple.

Now, we have the final formula for measuring the force
needed to move your robot lawn mower:

I like to work in metric units, so g = 9.8m/s2, therefore,
I use mass in kilograms. Finally, we need power. This
formula is:

which means power is force times velocity. For that to be
useful, we need this formula for motors:

Rotational velocity is velocity divided by the radius of
the arm from the center of the motor. The second formula
just puts it into the form we want for the power formula
above.

Now for units. These are the units to work with when
using these formulas to get the power you need for your
motors:

Pick the angle to match the inclines that will most likely
be the worst case scenarios in your yard. Pick a coefficient
of friction to be something like a car tire, which I’ve found
to be about .9 to 1.0 for a rubber tire on concrete (to be
conservative). If you choose 1.0, obviously that term falls
out. Just plug in your numbers.

How do you know the power of your motors? Sadly,
no one ever gives you that. If you get a motor brand new
from a manufacturer, you might be able to get the
maximum torque and maximum rotational velocity, which
gives you the power by this formula:

The motor power is the torque times the rotational
velocity; this gives you the power at any chosen torque and
velocity, but not the maximum power. The maximum torque
in a DC motor is at zero rotational velocity, which is no
power. The maximum rotational velocity is where the motor
torque is at its minimum. To get a motor’s maximum
power, it needs to be where the torque is at 1/2 and the
velocity is at 1/2, which gives this formula:

Torque is force and (here) is shown as Nm; rotational
velocity in is radians/second. I don’t know the English units;
I’m more comfortable in metric. Torque is the angular force
that a motor can deliver at some distance from the shaft. If
your motor could lift 1 kg on a pulley with a one meter
radius, that would be one Newton meter. There are 2p
radians in a full circle.

This suggests a way to get the power of your motor
empirically; lift weights using a measured pulley, or pull on

Term Unit

Power Watts (W)

Force Newton Meters (Nm)

Mass Kilograms (kg)

Angle Radians

Rotational Velocity Radians/Sec

www.servomagazine.com/index.php?/magazine/article/september2011_MrRoboto

SERVO 09.2011 15

θsinmgFw =

θµ cosmgFf =

θµθ cossin mgmgFapp +=

vFP app=

rvrv ωω =⇒= /

ωTPm =

maxmaxmax 4
1 ωTP =

MrRoboto - Sep 11.qxd 7/28/2011 5:48 PM Page 15

http://www.servomagazine.com/index.php?/magazine/article/september2011_MrRoboto

16 SERVO 09.2011

your fish scale if you have a big motor.
That is the math you would use to choose your motors.

This will get you close to what you need for success.
Gordon McComb (of Robot Builders Bonanza fame) shared
his secret for success: the heft method. He would look at
his robot frame, pick up a motor, and hold it to gauge its
heft to determine its suitability. I myself do not have
Gordon’s calibrated arm, so I tend to do a little math.

Q. I want to store way-points and sensor data
during a robot’s run-time. This really adds up and is
way more than most EEPROMs I’ve seen can do.

I’ve been trying to get an SD card to work using an SPI
interface, but it just isn’t working. I can’t initialize the card.
How does this work?

— Thomas Q.
Boise, ID

A. I have been fascinated with SD cards for a variety of
reasons, and this gives me a great reason to work
with them. I am currently having fun with Microchip

PIC24 devices and so used one of their demo boards with
an SD PICtail card for experimenting. The target hardware
isn’t all that important, so my code should work with
anyone’s microcontroller; just change how you deal with
the SPI hardware to get your required clock rates. An SD
card can take SPI clocks of 20 to 50 MHz, so there is no
issue about going too fast. As it happens, my 32 MHz
PIC24FJ64 part can only go 8 MHz, but that gave me pretty
good transfer rates (compared to serial ports, anyway) and I
was happy. The secret to success is to start out at a clock
rate of 400 kHz until the card is up and listening, then
move to the high speed clock. To fully understand the
interface — which is pretty simple — and the protocol —
which is slightly less simple, check out this site and get the
SD Association Simplified Specs: www.sdcard.org/dev.../
pls/simplified_specs.

This site took me a long way towards getting my SD cards
to work: http://elm-chan.org/docs/mmc/mmc_e.html.

There is a raft of information out on the net for
handling the reading and writing of data blocks to the SD
card, so that part was easy. The big thing to know is that
the SD card wants the block address in bytes, on 512 byte
boundaries; the SDHC card has a much higher capacity and
wants its block addressing done where each block is 512
bytes. My initialization code shown here takes this into
account by storing the attributes of the SD or SDHC card
being used so that the read/write routines know which
type of block addressing to use. Many thanks to the
pioneers of SD card usage that helped me with this work!

I have given my various routines here, but did not
bother with the actual block read and writes. I’ll leave that
as an exercise for the reader. If anyone is interested, you
can send me an email (see end of article) and I’ll do a more
detailed write-up.

There are a lot of constants in Listing 1. They refer to
various values for commands, which are pretty obvious
when you look at the specifications for SD commands. I

Listing 1: SD Card Initialization.
uint8_t SD_Write(uint8_t b)
/**
* Read and write a single 8-bit word to
* the SD/MMC card. Using standard, non-buffered
* mode in 8 bit words.
* **Always check SPI1RBF bit before reading
* the SPI2BUF register
* **SPI1BUF is read and/or written to
* receive/send data
*
* PRECONDITION: SPI bus configured, SD card
* selected and ready.
* INPUTS: b = byte to transmit (or dummy
* byte if only a read done)
* OUTPUTS: none
* RETURNS:
*/
{
SPI1BUF = b;

// write to buffer for TX
while(!SPI1STATbits.SPIRBF);

// wait for transfer to complete
SPI2STATbits.SPIROV = 0;

// clear any overflow.

return SPI1BUF;
// read the received value

}

// Not worth code defining these since
// they are all the same.
#define SD_Read() SD_Write(0xFF)
#define SD_Clock() SD_Write(0xFF)
#define SD_Disable() nMEM_CS = 1; SD_Clock()
#define SD_Enable() nMEM_CS = 0

uint8_t SD_SendCmd(uint8_t cmd, LBA addr)
/**
* Send an SPI mode command to the SD card.
*
* PRECONDITION: SD card powered up, CRC7
* table initialized.
* INPUTS: cmd = SPI mode command to send
* addr= 32bit address
* OUTPUTS: none
* RETURNS: status read back from SD card (0xFF
* is fault)
* *** NOTE nMEM_CS is still low when this
* function exits.
*
* expected return responses:
* FF - timeout
* 00 - command accepted
* 01 - command received, card in idle state
* after RESET
*
* R1 response codes:
* bit 0 = Idle state
* bit 1 = Erase Reset
* bit 2 = Illegal command
* bit 3 = Communication CRC error
* bit 4 = Erase sequence error
* bit 5 = Address error
* bit 6 = Parameter error
* bit 7 = Always 0
*/
{

uint16_t n;
uint8_t res;
uint8_t byte;
uint8_t CRC7 = 0x95;

// Generic CRC7 byte

SD_Enable();
// enable SD card

MrRoboto - Sep 11.qxd 7/28/2011 5:49 PM Page 16

http://www.sdcard.org/dev.../pls/simplified_specs
http://elm-chan.org/docs/mmc/mmc_e.html
http://www.sdcard.org/dev.../pls/simplified_specs

