BEAL TO THE PARTY OF OR THE LAST FEW YEARS, there have been two major methods of circuit board construction dominating the hobbyist field: etched printed circuit boards, and solderless breadboards. Both have their respective advantages and disadvantages. The printed circuit offers compactness and ease of actual assembly of components onto the board. However, the initial startup cost for the hobbyist can be expensive, when the cost of materials necessary for the production of a printed circuit board is added up. Additionally, there is the time involved in the design of a printed circuit, where component shapes and sizes often dictate departures from simply transferring the flow of the sche- matic onto the board. However, the finished product is rugged and, if designed with care, usually compact in size. To Solder or Not. Solderless breadboards, on the other hand, offer the hobbyist the opportunity to literally transfer a schematic on paper to a physical working circuit by utilizing point-to-point construction. Springloaded terminals allow the insertion of component leads without trimming, thereby extending their value in that they remain completely reuseable in other circuits at a later time. However, the drawback with solderless breadboards is that they lack permanency in the sense that components can become dislodged from their terminals due to careless handling and through exposure to the elements, if not used in a controlled environmental setting (meaning that you'll require a heavy degree of weather-proofing if the circuit is to be used anywhere outside the home). The Best of Both. This brings us to the relative newcomer in the hobbyist construction field, the wire-wrapped breadboard. We use the term "relative newcomer," because in fact wirewrapping as a method of connecting A survey of this method and its special tools components together on a circuit board has been around for close to twenty years, but was mainly used only in industrial applications before printed circuitry came into widespread acceptance, bringing with it miniaturized components. Many of you will recall the advertisements of the Zenith Television Corporation in the early 1960's, extolling the virtues of their completely hand-wired television receivers. If you still have one about the house, a quick gander at the chassis will reveal the presence of wire-wrapped connections, running from point to point between tube sockets and tie points for such components as capacitors and larger resistors. And those sets really did last. Through the good offices of the OK Machine and Tool Company, and Vector Electronics, we've illustrated a fair cross section of the tools and accessories necessary and available to the hobbyist for wire-wrap construction. Made for You. Perhaps the primary reason for the emergence of wire wrapping on the hobbyist level has been the increase in complexity of the pro- An excellent example of a "basic" matrix board is this model 3662 PlugboardTM from Vector. In addition to the edge-pin terminals, this model has hole spacing which accommodates that of DIP ICs. A basic wrap tool, such as OK's WSU-30 allows the user to wrap and unwrap connections with ease. The built-in wire stripper is seen in the middle of the tool in both photographs above. ## **WIRE-WRAP** jects available for the hobbyist to build. One can literally build her or his own microcomputer from scratch these days, and the complexity of the circuitry involved dictates that the medium upon which the circuit is constructed be flexible enough to allow rearrangement of components and connections as modifications (and yes, sometimes mistakes) are made, yet it must be rigid enough to allow the circuit to be put to practical use. Let's face it—the days of the electronics project as a conversation piece are almost gone. Today's hobbyist builds for more pragmatic reasons, and If you're willing to spend a few more dollars for convenience, OK's "Just Wrap" tool has a built-in wire dispenser, allowing for one-handed operation. Circle number 40 on the reader service coupon for more info. it has become necessary to apply the latest technology to keep up with the demands of the hobbyist builder. Therein lie the advantages of wire-wrapping. What You'll Need. The basics you'll require for wire-wrapping are: the wrapping tool, wire (usually the wrapping tools can accommodate anything A good starter kit is OK's WK-4B, which contains all you'll need to begin to execute your projects in wire-wrapped formats. Make sure the terminals you buy are the correct diameter for your boards' holes. from #22 to #30 gauge insulated wire), a perforated matrix board, and the terminal posts upon which to wrap both component leads and interconnecting leads (meaning jumpers). A basic wrapping tool, such as OK's WSU-30, allows the user to strip insulation from the wire, wrap connections with one end, and unwrap connections (just as quickly) with the other end. As you can see from the photos, connections between terminals are made by A further improvement upon the basic terminal is the "Klipwrap"TM type, which can accommodate up to three component leads on top of the board, the wrapped wire connection underneath the board. These are used on the larger, unetched perforated matrix boards. stopping the wrap on one terminal, stretching the unbroken wire to another terminal, and then wrapping again. As your proficiency increases, you'll find that this process can take less than a second, and that you'll be producing the kind of tight mechanical connection that can stand by itself or take solder just as easily. (Everyone who has ever read about or been instructed on proper solder techniques has heard about the necessity for a "good mechanical connection" underlying the solder joint. There is no better example of that connection than a wire-wrapped junction.) The base for your wire-wrapped circuitry can be as simple as a regular, perforated phenolic board, or something as esoteric as an epoxy/glass copper-clad board. The simpler perforated boards require that you merely insert wire-wrap terminals at the points where component leads meet on the board, and then simply wire up the junctions. Some of the more expensive boards available (and there are none in the hobbyist category that would be considered prohibitively expensive even for the most budget-minded builder) Vector offers push-in flea clips which are extremely suitable for pre-wrap circuit testing. They can be crimped and soldered for permanent use as well. Circle number 79 on the reader service coupon for more info. have staggered hole spacing which can accommodate the DIP (dual in-line package) pin spacing required for integrated circuits (or IC sockets) at certain areas on the boards. Some Nice Touches. Additionally, there are many specialized board designs available for computer-type circuitry, with special end terminal accessories for mating with standard ribbon connectors and/or PC card 44-pin edge connectors. For breadboarding peripheral circuitry for home computers, wirewrap construction offers the unique advantage of having all junctions exposed and accessible for signal tracing and logic testing with probes. Any of you who have ever attempted to force a probe tip into a standard solderless breadboard hole in order to trace a pulse will no doubt appreciate this. The more complex copper-clad boards which we referred to earlier also allow the builder to create "hybrid" circuit boards, utilizing the copper traces for standard printed circuit assembly of some components, while still being able to insert terminals through The high-voltage circuit board of this mid-1960's TV shows the use of wire-wrapped terminals combined with printed circuits. This type of hybrid can be built using the type of matrix boards seen on this page. the same holes or busses for the flexibility of rapid changeover of certain other components. This allows for much experimentation with differing component values without having to rip up an entire board, (something of a nuisance if the circuit is a functional, in-use item already installed in a cabinet or another piece equipment) while still maintaining the physical integrity of the circuit's other connections. Where to Get Them. If the possibilities we've presented here appeal to you, then by all means do some further investigating on your own, either at your local electronics supplier, or by contacting the manufacturers directly. OK Machine and Tool Company, one of the largest hobby supplier of wire-wrapping tools and accessories, has a free catalog available, which can be had by writing them at: 3455 Conner St., Brooklyn, NY 10475, or by circling number 40 on the reader service coupon. A listing of one of the widest assortments of matrix boards available to the hobbyist can be obtained by writing to: Vector Electronics Company, 12460 Gladstone Avenue, Sylmar, CA 91342, or by circling number 79 on the reader service card. If you decide to go into wire-wrapping in a big way, a battery-operated wrapping tool can be a real time and work-saver. Interchangeable bits accommodate all wire sizes commonly used for wire-wrap construction. This PlugboardTM (model 3682-4) has etched copper bus strips for soldering as well as holes for wire-wrap terminals. This allows you to build rugged, yet flexible circuitry for virtually any electronic application. Buying your wire in a dispenser will keep it handy and always ready for use. Some dispensers have built-in cut/strip mechanisms, which make them all the more useful. Most types of dispensers are refillable. For safe and sure removal of delicate CMOS (as well as other types) ICs, an insertion tool is recommended. OK's MOS-40 has a lug for grounding the tool, this prevents damage caused by static electrical charges.