
Comparative Study of
Computer Languages

Part X
Input Output Statements (1)

R. Ramaswamy

A computer uses two inputs, one is the program
and the other is the data. The computer manipu¬
lates the data using the program and outputs the
result. First of all we have to introduce the

program into the computer. Within the program we have to
give instructions to the computer to get or access the data.
One may ask. “Where are the data kept? How are the
instructions given to the machine to enable it to access or get
the data for the given program?" Data can be accessed m a
program in three ways. They are;

1. By entering the data as a part of the program.
2. By entering the data through the console typewriter.
3. By asking the computer to get the data by reading the

file in which data are already stored.
In this article, we shall consider the instructions to be

given to the computer to get the data for a program by the
fust two methods. The function of an input statement is to
get ihe data for the given program by any of the above three
methods The way in which the input instructions are given
may be dificrent m different languages.

Function of thr output statement
The computation statements give instructions to the com¬

puter to compute the result and store it in some variables. In
order to transfer the result stored inside the computer to the
printer and print the result on paper, we have to give instruc-

the machine. Such instructions are given by the
Ji%tit statements.

The Computer can be instructed to print the result on
it*

• ftleiMUuJs if

paper or on any machine-decipherable medium.

Input statement in FORTRAN (date access through console)
As already mentioned, an input statement is an instruction

to the computer to read the data for the variables involved in
the expressions used in the program. The general form of an
input instruction is:

READ (m,i») las
READ is simply a code word to the machine. For being
meaningful, the word READ it used. The |kt contains the
list of variables whose values are to bp read. Each of these
variables is separated by a comma. The letters *m’ and V
need some explanation.

The data are entered into the computer line by line. Each
Has can hold only 80 characters, U„ the line length is 80
characters. We have to mil the computer the mode of each
data, the columns in which they «e entered in the given ting
etc. Such information is given in another statement called
the FOR MAT statement. For referenoe purposes stttWtents
are numbered in FORTRAN. The letter V is aa integer
Dumber which represents die number of dm FORMAT
statement which gives taftmoation to die computer about
the data list given in the READ statement. Then we have to
t«H the computer whether the data forms part of tbs program
nr whether it should be stored outride This
information tegtonbyaniirteprtium
is the Mric ***** of device! * #

In thhfaim we with to enter thcdara throUeb the nreurtls
typewriter «8a#bd /to OwmeeMne. For sU» device, the
value !ie«irigiifd.ibimMi^ When

Electronics for you

the data is stored in the diskette, we may have to give
different numbers to ‘n^’ (which we shall see later). Suppose
we want to read the values of three variables, say, A, B and
C. We can write the READ statement as follows:

READ («,10) A, B, C

The number 10 gives the number of the FOR MAT statement
which gives information to the computer about the mode of
the values of the variables in the list (integer or real) and the
columns in which the values are given. A READ statement is
incomplete without the corresponding FORMAT state¬
ment. The READ and the FORMAT statements always
occur in pairs. The general form of a FORMAT statement is:

n FORMAT (si, s2, s3)

where ‘n’ is the number of the statement which has been
referenced in the READ statement. FORMAT is simply a
code word which means the form in which the data are given,
s 1, s2 and s3 are the specifications required for the computer
to locate each of the data items specified in the READ list.
We have given three variables in the READ list. So there
must be three specifications in the FORMAT statement.
There must be as many specifications as there are variables
in the READ list.

Before describing the different format specifications, the
general form of the output statement should be understood
since its structure is similar to the input statement. Both the
input and output statements occur in pairs with their corres¬
ponding FORMAT statements. That is, the READ state¬
ment occurs along with its corresponding FORMAT
statement and the WRITE statement occurs along with its
corresponding FORMAT statement. The FORMAT state¬
ments for READ and WRITE are very similar.

Output statement In FORTRAN

The general form of the output statement is:

WRITE (mji) list
The word WRITE is simply a code word to the machine.
This code is used because it is meaningful to the humans. We
must tell the computer whether the result is to be printed on
paper or any other medium. This is given by the value we
assign to 'm\ If we want the output through the printer,
the logic unit number for the printer is 2. The word list stands
for the list of variables whose values are to be printed. We
have to tell the computer in which mode, in which lipeand in
which column the values of the variables in the list must be
printed. This information is given in the FORMAT
statement.

The letter ‘n’ stands for an integer number which referen¬
ces the FORMAT statement. Suppose we want to print the
values of three variables A, B and C on paper, we write the
output statement as:

WRITE (2.10) A. B, C

The number 10 refers to the number of the FORMAT
statement which gives specifications for the variables A, B
and C. Die general form of the FORMAT statement is:

n FORMAT (*1, s2, s3)

APRIL 1888

where V is the statement number of the FORMAT state¬
ment and this must be referenced in the corresponding
WRITE statement. The word FORMAT is simply a code,
meaning the form in which the output is required, s 1, s2 and
s3 give the specifications foreach of the variables A, Band C.

There must be as many specifications as there are varia¬
bles in the WRITE list. If the FORMAT specifications arc
less than the number of the variables in the list, an error
condition arises. If the FORMAT specifications are more
than the number of the variables in the list, the extra specifi¬
cations are ignored by the computer. The READ and

WRITE statements in FORTRAN have similar structures as
shown below:

READ (1.10) A, B, C WRITE (2,12) A. B, C
10 FORMAT (si, s2, *3) 12 FORMAT (si, s2, s3)

There are a number of FORMAT specifications in FOR¬
TRAN. The following are the different FORMAT specifi¬
cations used in FORTRAN for input and’output.

The 1-FORMAT

The I-FORMAT is used to represent integer quantities.
The general form is:

lw

where the letter T indicates that the entity is an integer and
the letter ‘w’ indicates the" width of the field in terms of the
number of digit spaces required for the number. The width
includes one space for the sign. The space for the sign is
optional at the input, but is compulsory at the output. That
is, if a sign is explicitly put at the input only then space must
be allotted, otherwise no space for the sign need be allotted.
For output, whether the sign is explicitly present or not, one
space for the sign must be given. Suppose you want the
computer to read a number 234 in the variable I. Then the
READ statement should be written as follows:

READ (1,10)1
10 FORMAT (13)

13 specifies that the number 234 is keyed in the first three
columns. Suppose you key the number as +234, then you
must give a specification 14. If you want the number 234 to
be output, write the WRITE statement as follows:

WRITE (2.12) 1
12 FORMAT (IX, 14)

One must give a specification 14, i.e., four spaces must be
given for outputting a three-digit number. The number is
printed from the second column onwards, leaving the first
column blank. If the value of 1 is -234, then the number is
printed with the sign in the first column. Suppose you give a
specification 119. In that case, the number is printed in the
columns 17,18 and 19. That is, the number is printed right-
justified .in the given field width. To read more than one
variable, the READ statement is written as:

READ(M0) 1, J, K, L
10 FORMAT (13, 14, IS, 17)

The four specifications in the FORMAT statement corres¬
pond to the four variables in the READ list. One must key
the data as follows: the value of I must be punched or keyed
in the first three columns, the value of J must be keyed in the

47

next tour columns, the value of K must be keyed in the next
five columns, and the value of l. must be keyed in the next

seven columns. The data must be keyed right-justified in the
respective fields.

If the value ofl is 23, J is -24, K.is456and Lis750and one
writes a WRITE statement as follows:

WRl'IF. (2.12), I. J, K, L
12 FORMAI (IX, 13, 14, 15, 17)

then the value wil he printed in one line as follows:
b2.1b-24bb456bbbb750

where the letter 'b' stands for blank. If we give the same field
width for all the items, say 7, the FORMAT statement is

written as follows:
12 FORMA I (IX, 17. 17. 17, 17)

The repetitive specifications can be simplified by using the
replication factor as:

12 FORMA t (IX, 417)

Since the specification 17 is repeated four times, we say the
replication factor is 4 and w rite the specification as 417. The
four numbers will then be printed in one line as follows:

bbbbb23bhbb-24bbhb456bbbb750

The following examples illustrate the printing for different
specifications.

Value stored Specifications Printed output
234 14 b234
234 13 error message

-234 14 -234
234 16 bbb234

-234 18 bbbb-234
In order to output a number with three digits, we have to

give four spaces, otherwise an error message appears. In
' general, one has to give k+1 spaces to output an integer with

k digits, if the field width is more than the size of the number,
then blanks are given on the left side, printing the number
right-justified in the given field.

The IX specification

In the FORMAT statement associated with the WRITE
statement, the specification IX was introduced. This is
called the carriage control specification. The FORMAT
statement in a WRITE-FORMAT pair tells the computer
the mode of the data, the length of the data and where they
should appear in the output stream. In addition to this, the
computer also requires information about the movement of
it"' printer head. This information is given by the carriage
control character. This character tells the computer whether
the results aie to be printed giving single spacing or double
spacing or whether they must be started on a new page or
written in t he same line. One character position is reserved in
the first column to give this information. Invariably, no data
must be specified in the first column. If by chance, data is
specified in the first column, there is every possibility of the
first character of the data being chopped off.

One must be careful in allotting the first character of the
output FORMAT for indicating the carriage control. For
example, a specification 1X for the first character will be

|yo mean that the results must be printed giving single

line spacing. A specification 1H+ means that the printer
carriage must not advance after printing that line. A specifi¬
cation IH1 means that the results must be printed on a fresh

page.
The specification given in the first column does not affect

the actual print length of the result. If the printer has 132
columns width, specification for printing all the 132 columns
can be given and the carriage control character, though read
in the first column position, is not counted for printing
purposes. This means that specifications for 133 columns
can be given, the first column space specification being
exclusively for the carriage control information which is not
used for printing.

Carriage control specifications

The table below gives the coding of the different carriage
control specifications and their meanings.

First specifica¬
tion in the
FORMAT state¬
ment for printing
a line

Coded as Printing-paper
movement before
printing

b (blank) 1X or ‘ ’ Advance one line
(norma) single line
spacing)

0 1 HO or ‘0’ Advance two lines
(double line spacing)

1 IHI orT Advance to the top of
the next page

♦ 1H+ or V No paper movement.
Print the next line
over the same line

The carriage control character is not used during the READ
statement and so no such specification is given to the FOR¬

MAT statement associated with the READ statement.

Die F-FORMAT

The F-FORMAT is used for specifying numbers in the
floating point form. The general form of the F-FORMAT is:

Fw.d

where ‘w’ is the width of the field including the digits, the sign
and the decimal point, and ‘d’ is the number of digits to the
right of the decimal point. If we have three variables A, B
and C and read the values 432.2, -234.6 and 2345678.9
respectively in them, we can write the READ statement as
follows:

READ (1,10) A, B, C
10 FORMAT (2F6.1. FIO.I)

When the computer encounters the READ statement, the
operator has to key the first value in the first six columns, the
second value in the next six columns and the third value in
the next ten columns. For outputting these values, the
WRITE statement is written as follows:

WRITC (2.12) A, B, C
12 FORMAT (IX, 2F6.1, FIO.I)

The result is then printed from the first column onwards

ELECTRONICS FQR YO^J

as shown below:
b432.2-234.6b2345678.9

Remember that in all cases, if the allotted width is less than
the size of the number, an error message is given, and if the
allotted width is greater than the size of the number, the
number is printed right-justified leaving blanks on the left.

The E-FORMAT

The E-FORMAT is used to represent real numbers in the
exponent form. The general form is:

Ew.d

where ‘w’ gives the total width of the field including one for
the sign, one for the decimal point, four for the exponent
notation, and the remaining spaces for the digits in the
mantessa to a maximum of eight. A number like
23456789000.00 can be represented as .23456789E+11 in the
exponent notation. The above notation requires 14 spaces
including one for the sign of the mantessa. To read this
number in the variable A, the READ statement can be given

as:
READ (1,10) A

10 FORMAT (EJ4.8)
and to output the number in the E notation, the WRITE
statement is given as:

WRITE (2.12) A
12 FORMAT (IX, E14.8)

The number is then printed from the first column as
b.23456789E+11

If the FORMAT specification is given as El6.8, then it is
printed as

bbb.23456789E+.l 1

While giving the formats for outputting the results, some¬
times the order of magnitude of the numbers may not be
known. If by chance an insufficient FORMAT specification
is given, the computer gives an error message. To avoid this
it is better to give a format which outputs the biggest as well
as the smallest number that is permitted in FORTRAN. The
format E14.8 can output the biggest as well as the smallest
number that can be output in FORTRAN. So it is always

safe to use this format.

The A-FORMAT

So far we have seen formats for reading and printing
numeric entities. If we want to read and write alphanumeric
characters, we use the A-FORMAT. The general form of the
A-FORMAT is:

Aw
where *A* is a code to tell the computer that the data is
alphanumeric and ‘w’ is the width of the field in terms of the
number of characters including blanks. In general, the
number of characters that can be read or printed under the
A-FORMAT is small, i.e., only up to a maximum of four
characters. To read the word ‘KRIS’ in the variable X, one

can write the READ statement as:

READ (1,10) x

To write*the^alue of X in the A-FORMAT, the statement

AimipM '

can be given as:
WRITE (2,12) X

12 FORMAT (IX, A4)
Then the computer prints the word from the first column as;

KRIS

If the name of a person is longer than four characters, it can
also be read by using subscripted variables. One can READ
or WRITE only up to a maximum of four alphanumeric
characters in the A-FORMAT.

FORTRAN does not allow the assignment of alphanu¬
meric values to a variable in an assignment statement. For
example, one cannot write:

X = ’KRIS’

This means that characters cannot be manipulated in stor¬
age. This is one of the reasons why this language is not quite
suited to business problems where there is a lot of character
manipulation.

The H-FORMAT

Though FORTRAN does not provide facilities to manipula¬
te characters in storage, it provides facilities to print long
character strings during output with the help of the IN¬
FORM AT or the Hollerith FORMAT. The general form of
the H-FORMAT is:

wHxxxxxxxx.

where ‘H’ is a code word to indicate that the characters
following it are in a string form and ‘w’ is the width of the
Hollerith string. That is, it is an integer specifying the
number of characters following the letter ‘H’ including the
blanks up to the next comma. The letter ‘x' stands for each
alphanumeric character.

Suppose the computer is asked to calculate the volume of
a box, given by the variable V. If the value of V is 500 cc, and
if we ask the computer to prim V, it simply prints 500.

Obviously this is meaningless. To make the computer print
the result as ‘VOLUME OF THE BOX IS 500 C.C.\ the
descriptive words before and after the result can be output •
by using the Hollerith FORMAT as follows:

WRITE (2,12) V
12 FORMAT (IX, 21HVOLUMEbOFbrHEbBOXblSb,

F5.0, SHbC.C.)
The computer then prints as follows:

VOLUME OF THE BOX IS 500. C.C.

The characters between the letter ‘H’ and the next comma
,are printed as they are. If the counting of characters and
blanks up to the next comma is not exact, the computer gives
an error message. It must be noted that the Hollerith field is

used only at the output. The H-FORMAT cannot be used in
the READ statement since H-field characters cannot be
manipulated in the memory.

The OTE FORMAT

FORTRAN provides another method for outputting
character strings since counting of characters and blanks in a
Hollerith string is a common source of error. The string data
is simply enclosed within single quotations. Whatever is

within the quotation marks, including blanks, is printed by
the computer as is in the H-FORMAT. One can write the
statement as below:

. WRITE (2,12) V
12 FORMAT (IX. ‘VOLUME OF THE BOX 1S\ F5.0,' C.C.‘)

The computer prints the output as follows:
VOLUME OF THE BOX IS 500. C.C.

The Slash (/) FORMAT

The Sl^sh-FORMAT is used to skip over to a new line
when the output is printed. A slash between two specifica¬
tions means that the value of the variable immediately after
the slash must be printed from the next line or next record.
(A line is also called a record.) No commas are necessary to
set off a slash specification, but they can be added for better
readability This specification can be repeated any number
of times. For skipping one line one slash is used. For leaving
n lines blank, n+1 slashes are used. Suppose one writes:

WRITE (2,10)
10 FORMAT (IX, “CHAPTER XII’, /. IX, “SUBROUTINES’)

then the words CHAPTER Xll and SUBROUTINES are
printed in two consecutive lines from the first column onw¬
ards as shown below:

CHAPTER XU
SUBROUTINES

If no slash specification is given in the FORMAT statement,
both the words are printed in the same line. The Slash-
FORMAT can also be used during input to skip lines.

The X-FORMAT

Just as the Slash-FORMAT is used to skip a line, the
X-FORMAT is used to skip some columns in the same line.
The general form is:

wX

where V refers to the number of blank spaces to be left
before the next word is read or printed and ‘X’ is the code to
indicate blank space. Suppose we want to print the words
CHAPTER XII and SUBROUTINES in two lines leaving
ten columns blank in the beginning of each line, we can write
the statements as follows:

WRITE (2,12)
12 FORMAT (IX. I OX. “CHAPTER XH\ /, IIX, “SUBROUTINES’)

The carriage control character specification IX can also be
included in the X specification. The compqter prints the two
word- m two lines starting from the 11th column as follows:

CHAPTER XU
SUBROUTINES

Matching list elements with format codes

When the (number of) list elements in the READ or
WRITE statements have one-to-one correspondence with
the (number of) format codes, there is no problem. When the
last element is read or written, the format codes also are
exhausted and the execution of the input/output statement
is complete. However, two conditions may arise which are
wocH noting:

I/flj^re are more format codes than there are elements in
Itlf corresponding list.

b

2. There are more elements in the list than there are format
codes.

The first situation is illustrated by the following example:
READ (1,10) A, B, C, D

10 FORMAT (7FI0.2)
As a rule, when there are more field specifications than there
are variables in the list, the execution of READ/ WRITE
statement is completed once the variables in the list are
exhausted by READ/ WRITE operations and the extra spe¬
cifications are ignored. The computer after reading A, B, C
and D as per FI0.2 FORMAT, ignores the three extra
specifications. The second situation is illustrated by the
following example:

READ (2,12) A, B, C, D
12 FORMAT IF 10.2)

The sequence of the field codes in a FORMAT statement
refers to a complete record or one line. When the first field is
read from the READ list, the format code is exhausted. For
reading the next field, it looks to the next line and uses the
same format code. The third field is read from the third line
and the fourth field from the fourth line. The computer
cannot read all the data from the same line. If all the data are
keyed in the same line, the computer gives an error message.

The general rule is that when the list of variables in the
READ statement is greater than the number of format
specifications in the FORMAT statement, a single READ
statement causes additional lines to be read until all the
required data are obtained. When a READ/ WRITE state¬
ment demands more format codes than the FORMAT state¬
ment appears to have, the format control always returns to
the last left parantheses in the FORMAT statement and thus
to a new line. Suppose we write:

WRITE (2,12) A, B, C, D
12 FORMAT (IX, F8.2)

In this example, four variables are given in the list in the
WRITE statement, whereas there is only one FORMAT
specification. In this case, the same format is re-used until all
the values of all the variables are printed. Each value is
printed in a separate line.

Thus we see that every READ statement must be accom¬
panied by its own FORMAT statement and every WRITE
statement must be accompanied by its own FORMAT state¬
ment. When the computer encounters the READ statement,
it stops and waits until the values for all the variables in the
list are keyed through the console as per the FORMAT
specification given. If the FORMAT specification is not
adhered to, the coihputer gives an error message. Whenever
the computer encounters the WRITE statement, it prints the
values of the variables in the list as per the FORMAT
specification given. If the WRITE-FORMAT specifications
are incorrectly given, the computer gives an error message.
Please remember that the computer is very particular about
grammar and not even a small slip is permitted.

Input statement for entering data

The DATA statement which is placed in the beginning of
the program enables the program to get the data within the

ELECTRONICS FOR YOU

program itself. The general form of the data statement is:
DATA list/ values/

The word DATA is simply a code word to indicate that data
values are given in this statement. The list contains the list of
variables whose values are to be given. Each of these varia¬
bles is separated by a comma. The values which are put
within two slashes, contain the values of the variables in the
list in the same order, separated by commas. Suppose the
variables, A, I and K are to be given values, it can be given by
the following DATA statement:

DATA A, I, K/234.5, 678, 87/

This statement means that A is assigned the initial value
234.5,1 is assigned the initial value 678 and K. is assigned the
initial value 87. There is no FORMAT statement for this
method of entering data to the variables. One can also give
character data to variables as shown below:

DATA A. B, C/KRIS'. •••.“/

To give another set of data for the same variables, you
cannot give another DA TA statement in the program to

rc-initialise the values of the same variables. But different
values can be given using assignment statements. F'orexam-
ple, to give a value 56.7 to A, 34 to I and 67 to K, write the
assignment statement as shown below:

A = 56.7
1 = 34
K = 67

In fact, the assignment statement method is one of the
ways of entering data to the program.

So far we have seen two methods for entering data in a

FORTRAN program. In the first method, instructions are
given to the computer to enable it to enter the data through
the console typewriter attached to it. This is done by the
READ-FORMAT pair of statements. In the second
method, data are entered as a part of the program itself by
means of the DATA statement.

When the volume of data is small these two methods may
suffice. But in practice, data is usually voluminous. In such
cases, more effective and efficient methods for entering data
into the program are available. This is done by storing data
in files and then asking the computer to read the files and get-
the data for the program. For outputting the result, the
computer can be asked to print the same either on paper or
on floppy diskettes. The former is called the paper file and
the latter is called the computer file. The paper file is meant
for the humans and the computer file is meant for the
machine.

A file is simply an information storage media. Humans

store information on paper. Since information on paper
medium cannot be deciphered by the machine, the compu¬
ters store the information in a different medium which is

machine decipherable, i.e. the floppy diskette. Information

stoied in floppy diskettes is said to be stored in computer
files. Just as we read a paper, the computer reads what is

written on the computer file. Just as we write on paper, the
computer writes on the computer file.

(To be continued)

YOUR DEPENDABLE SOURCE. . •

if, PARAMOUNT
1 INDUSTRIES

m |0P

Ah'Mirt

Oui Most iwipoiluni Componont - 5ERVICE

TEXONIC1
M S r FI U M r N 1 s II

SYMBOL OF QUALITY: J.J. TRANSFORMERS

Our Programme:

TRANSFORMERS FOR T.V.,
TAPE RECORDER, TWO-IN-ONE AND

STEREO DECK.
Power Transformer

Step-down Transformer
Step-up Transformer
Output Transformer

Isolation Transformer
Line-matching Transformer

Choke Transformer
Auto Transformer

Filament Transformer
Modulation Transformer
Input/drlver Transformer

Custom Built Transformer
For further information kindly contact.

J.J. ELECTRONICS
A-23, Mayapurl Industrial Area, Phase It.

New Delhi 110064. Phone: Fac. 591839, Res. 621258. 619526.

APRIL 1966

