
74

BOOLEAN
ALGEBRA and
LOGIC
CIRCUITS
BY LOUIS E. FRENZEL. JR.

Don' t let logic gates bar your ability to experiment with circuits

If you have followed this math series,
you know that we've spent a lot of

time covering the math related to
basic electrical principles and elec-
tronic fundamentals. In this month's in-
stallment, we'll head out in another
direction for a change of pace. We
will discuss a type of math used with
digital -logic circuits. That math is

known as Boolean algebra.

What's Boolean for? Boolean al-
gebra is a collection of simple mathe-
matical procedures used to represent
and express the logical operations
that go on in a digital circuit. Boolean
algebra is very similar to standard al-
gebra. The primary difference is that
unlike standard algebra, in which vari-
ables can be any value, in Boolean
algebra only the values 0 and 1 are
recognized. Besides that, most of the
basic rules of working with algebraic
expressions apply.

The big benefit of Boolean algebra
is that it provides a way to express digi-
tal -logic operations mathematically.
Boolean equations can be written to
precisely describe how a logic circuit
operates, which can help you to de-
sign such circuits. Boolean algebra
also provides a way to minimize the
number of gates needed in a logic
circuit to simplify circuit design. That
lowers overall cost, and can help re-
duce power consumption.

Also, the equations can show at a
glance what is going on in a logic
circuit to aid you in troubleshooting.

As I've said in previous articles, don't
let terms like "Boolean," "equation,"
"mathematical expression," or "al-

gebra" scare you. Once you learn the
jargon and the few simple fundamen-
tals presented here, even complex cir-
cuits will be easy for you. So, get ready
for a digital -logic refresher, then we will
have some fun writing the Boolean
equations of a circuit and creating a
circuit from the equations.

Review of Digital -Logic Circuits. At
one time or another, you probably
learned how basic logic circuits work.
If not, the following brief summary will
bring you up -to -date. The review is

also for those of you who need a re-
fresher.

The three basic logic gates are the
inverter, AND gate, and (DP gate. Two
other widely used gates -the NAND

and the NOR-are often derived from
those basic gate circuits. All of the
gate circuits process binary numbers
made up of 0's and l's. Binary 0 and
binary 1 are represented by voltage
levels. For example, a binary 0 may be
indicated with zero volts (ground),
while a binary 1 may be indicated by
+ 5 volts.

The Inverter. An inverter is a logic
element with a single input and a sin-
gle output. As its name implies, it inver-
ts an input signal. A binary-0 input
produces a 1 output. A 1 input gener-
ates a 0 output. The inverter always
produces an output that is the comple-
ment of the input. Complement here
means opposite or reverse. You will
also hear the inverter referred to as a
NOT gate.

The logic symbol for an inverter is

shown in Fig. 1. The triangle represents

A O

A

INPUT OUTPUT

A B

0 1

1 0

B

oB

Fi,>,'. I. The simple inverter. A. is shown
here with its little f ur- entre truth table.

a buffer -a circuit that directly passes
a binary digit onto the next circuit with-
out changing the value. The circle at
the output indicates inversion. So the
digit passes through the buffer and is

inverted at the gate's output. Note that
the input and output are labelled with
letters. All logic signals are given a
name or designation. Here A is the in-

put and B is the output.
Also shown in Fig. 1 is a table that

shows all possible combinations of in-
puts and outputs. The input, A, can be
either a 0 or 1. The table shows the state
of the output, B, for each input state.
Such a table is called a truth table.
Truth tables are used to show what's
going on inside a logic circuit.

AND Gate. An AND gate is a logic cir-
cuit with two or more inputs and a sin-
gle output. The output is a binary 1 if all
inputs are binary 1. Otherwise, the out-
put is binary O. The AND gate is often
called a coincidence circuit because
the output will be binary 1 only when all
inputs are simultaneously all binary 1.

The logic symbol for a two -input AND

gate is shown in Fig. 2A. The inputs are
A and B; the output is C. The shape of
the symbol designates its function. An
alternate symbol is given in Fig. 2B. The
box designates the circuit while the
ampersand (&) indicates the gate's
function.

The truth table for a two -input AND

gate is shown in Fig. 2C. There are al-
ways 2N possible input combinations,
where N is the number of inputs. With
two inputs, there are:

22 =4

different combinations. They are listed
in the truth table along with the result-
ing outputs. Note that the only time the
output (C) isl, is when both inputs arel.

Keep in mind that an AND gate may

A o

8 o

A o

B o

oC

B

INPUTS OUTPUT

A B C

o o o

o 1 o

1 o o

1 1 1

C

Fig. 2. This two -input AND gate, A, can
be drawn as shown in B. The truth table
for all its possible states is shown in C.

Wo
X oZ
Yo

Wo X
Yo

A

B

OZ

INPUTS OUTPUT

W X Y Z

o o o o

o o 1 1

o 1 o 1

o 1 1 1

1 o o 1

i o 1 1

i 1 o 1

1 1 1 1

C

Fig. 3. For a change, this oR gate. A, is
shown with three inputs instead of two. An
alternative symbol is shown in B, while
the elements truth table is shown in C.

have more than two inputs. Integrated -
circuit AND gates typically have 2, 3, 4,

5, 8, or 13 inputs.

OR Gate. An oR gate is also a logic
circuit with two or more inputs and a
single output. Its output is a binaryl if at
least one of its inputs is binary 1. Other-
wise, the output is binary O.

The logic symbols and truth table for
an oR gate are given in Fig. 3. Note that
the "equal to or greater than 1" desig-
nation means the OR function. The truth
table shows the output Z with the inputs
W, X, and Y. With three inputs, there
are:

2N =23 =8

possible input combinations. As with
AND gates, IC OR gates typically come
with 2, 3, 4, 5, 8, or 13 inputs.

A NAND Gate. A NAND gate is the Com-
bination of an AND gate and an inver-
ter. It is often referred to as a NOT -AND

circuit, and thus its name N -AND. The

output is binary 0 only when all inputs
are binary 1. For other input conditions,
the output is binary 1.

A NAND can be drawn as an AND with
an inverter (NOT) circuit, as Fig. 4A
shows. However, the special symbol in

Fig. 4B is normally used. The circle at
the output indicates inversion. An alter-
nate symbol is given in Fig. 4C. Here
the triangle or half arrow on the output
indicates inversion. The truth table indi-
cates all possible inputs and the corre-
sponding output states. Looking back
at the truth table for the AND gate, you
can see that a NAND output is its com-
plement. NAND gates with 2, 3, 4, 5, 8,

and 13 inputs are available in IC form.

NOR Gate. The NOR gate or NOT -OR

circuit is an OR gate followed by an
inverter. The output is binary 0 if at least
one of the inputs is binary 1. Otherwise,
the output is binary 1.

The NOT -OR circuit, shown in Fig. 5A,
clearly illustrates the circuit's function,
but usually one of the symbols in Fig. 5B

or 5C is more offen used. The truth table
shows the possible input and output
states. IC NOR gates are available with
2, 3, 4, 5, 8, and 13 inputs.

Expressing Logic Mathematically.
To begin using Boolean algebra, we
need to find some way to express the
basic logic operations using mathe-
matical expressions. Let's take a look
at ways of expressing inversion, AND, OR

, NAND, and NOR operations.

As you learn the basic rules, keep in

mind that the binary signals to be pro-
cessed by the logic circuits are known
as variables. Variables are signals that
can change value. Binary variables
can have one of two values; those val-
ues are 0 and 1.

Variables are usually given names
to distinguish them from one another.
Letters of the alphabet are the most
common, although numerous other al-
pha or alphanumeric names are also
used. Usually signals are given some
variable name (mnemonic) that is sim-
ply a shorthand way of referring to the

AO

Bo

r\
A

ce, oC

A

ç:» oC

C

o

Ao
&

Bo
o

C

INPUTS OUTPUT

A B C

o o 1

o 1 1

1 o 1

1 1 o

D

Fig. 4. A NAND gate is nothing more
than an inverted AND (B). Its output is the

compliment of an AND gate's (C).

A

xo D° Y o

X o

Y o

B

I >1

C

INPUTS OUTPUT

X Y Z

O o 1

o 1 o

1 o o

1 1 o

D

oz

oz

02

Fig. 5. A NOR gate is nothing more
than an inverted OR (B). Its output is the
compliment of an OR gate's (C).

76

signal. An example is a binary signal
called "clear," which might be repre-
sented by the mnemonic CLR. Many
times binary signals are grouped to-
gether and related as in a binary
number. For example, the bits in an 8-
bit word might be given the names AO
through A7. In any case, you will see
many different variations.

Inversion. Inversion is expressed
mathematically by placing a bar over
the variable. In Fig. 6, the input of the
inverter is A while the output is B. Note
that B is expressed in terms of A. That

AO oB-A

Fig. 6. The complement of a variable can
be represented kv placing a bar over that
variable as shown here.

expression is read B is equal to NOT A.
The NOT bar indicates that signal A has
been inverted. Remember that A can
be either a binary 0 or a binary 1. NOT A,
of course, is the opposite, or comple-
ment.

Since it is difficult to type a bar over a
letter as shown in Fig. 6, other simpler
methods have been devised for repre-
senting inversion. Sometimes the inver-
ted variable is indicated by an asterisk
or a prime (similar to an accent). Using
the variables in Fig. 6:

B= A *orB =A'

AND Function. The logical AND
operation is indicated by placing a
dot between the two variables to be
ANDed. That is illustrated in Fig. 7. The
two inputs to the AND gate are A and B

Ao
Bo- D oC-A B

Fig. 7. ANning of variables is indicated
kv using a dot between them.

while the output is designated C. Look
at this expression for the output:

C =AB

In regular algebra AB would mean
multiply A and B together. That's why
the output of an AND gate is often
called the product of the inputs. As in
regular algebra, it is not necessary to
show any symbol between the two
variables (although sometimes a dot is

used). Instead, they are simply just writ-
ten adjacent to one another.

Figure 8 shows a four -input AND gate
with different input variables. Many
times you will see the output expression
written with some variables separated
by parentheses. Each input term ap-
pears within a set of parentheses to
keep them visually separated to avoid
confusion. But since each expression is

written directly adjacent to the next, it

D7

EB

CLK

RST

TX =(D711EBICLKIIRST)

Fig. 8. The variables in Boolean algebra
need not he one letter in length, but for
clarity, separating them with parentheses
becomes necessary.

means that the variables are ANDed
together. In Fig. 8, we say that the out-
put product is:

TX = (D7)(EB)(CLK)(RST)

at Function. The logical oR is indicat-
ed by placing a plus sign between the
variables. That is illustrated with the
three -input OR gate shown in Fig. 9.

T1

G

ROY

ONZ=T1+G+ROY

Fig. 9. oRing of variables is indicated
with plus signs. Note the three inputs.

Offen you will hear the output of an OR

gate referred to as the sum of the input
variables.

NAND Function. The NAND Or NOT -AND

function is simply the inverted product
of the input variables. An example is

shown in Fig. 10. The output expression
is written just as it would be for an AND

gate, but with a NOT indication given to
the entire expression. That can be
done by puffing a bar over the entire
expression as shown in Fig. 10. Alter-
nately, the ANDed input terms can be
put into parentheses and an asterisk or

AO
Bo OD ABC
CO IIJJJ
Fig. 10. In a NAND expression, the result of
all ANDing is simply inverted.

apostrophe used to indicate the NOT of
the function. Note that the B term has a
NOT bar over it.

The NOR Function. To produce the
NOR function, we simply invert a basic

OR output. Figure 11 shows a four -input
NOR gate. The output expression is

formed by simply writing the input vari-
ables separated by plus signs. Then, a
bar is placed over the entire expres-
sion to invert it. Again note that one
term, DZ, is inverted at the input.

AJ

BK

C5

DZ

EX=AJ+BK+C5+p1

Fig. Il. Multiple -input NANns do not need
to have their variables separated by
parentheses for clarity.

Now using those basic (Boolean) ex-
pressions for each of the logic gates,
more complex circuits can be easily
represented.

Deriving Boolean Expressions.
Knowing the basic rules outlined in the
previous section, you can now derive
a complete Boolean expression for
any larger, more complex logic circuit.
The process is simply to work your way
through the various logic gates starting
with the inputs and building the equa-
tion a step at a time. A couple of ex-
amples will illustrate the process.

Refer to the circuit in Fig. 12. Note
that the input variables are labelled.
The output is designated G. Our job is

to write the expression for G in terms of
the input variables. It's really not as
complicated as it sounds.

G=AB+C+DEF

Fig. 12. You end up with a sum of products
expression for this circuit after analysis.

To begin, you start with the variables
at the inputs to each of the circuits on
the left. Write the expression for the out-
put of each circuit. For example, the
output of AND -gate 1 is simply AB. The
output of the inverter 2 is NOT C. The
output of AND -gate 3 is DEF.

The outputs of gates 1 and 3, and
inverter 2, form the inputs to oR -gate 4.

To complete the expression, simply OR

together each of the inputs to gate 4.

The output expression G then be-
comes:

AB +C +DEF

Take a look at the expression we just
derived. You often hear an expression
like that referred to as a sum of prod-
ucts. In this case, the products are the
ANDed variables AB and DEF. The sum,
of course, refers to the oong together
of each of the products.

A slightly more complex circuit is

shown in Fig.13. Still the evaluation pro-
cess is the same. Work your way
through the circuit from left to right writ-
ing the output expression for each
gate. The output of gate 1 is A1(K) as
shown. We use parentheses in this case
to show the separation between the

Al

K

M=B(A11K1+J)
o

A11K1+J

B

Fig. 13. The output c f one gate becomes the

input of the next in this circuit.

two variables, yet they are written ad-
jacent to one another to indicate a
product or AND function.

Next, the output of gatel is oRed with
the input of J. The resulting output from
gate 2 is:

A1(K) +J

That becomes one of the inputs to AND -

gate 3. That expression is ANDed with
input B to produce the final output ex-
pression:

M = B(A1(K) +J)

Again parentheses are used to keep
the variables separated and to ensure
the correct logical operation is ex-
pressed.

Take a look at the example in Fig. 14.

Again, the procedure is to develop the
output expressions of the input gates,

Z= (w+x+vllw x)

Fig. 14. You end up with a product c f sums
expression for this circuit after analysis.

then work your way from left to right to
create the output. The output from
gate 1 is:

(+X +Y)

The output of gate 2 is:

(W + X)

Those two outputs become the inputs
to AND -gate 3. We create the final out-
put expression, Z, by simply ANDing to-
gether the two expressions. The result is:

Z= (W +X +Y)(W +X)

You might hear that kind of expression
called a product of sums.

Generating a Circuit From Equa-
tions. Now let's consider the process
of drawing the logic circuit corre-
sponding to a given Boolean expres-
sion. Let's start with the simple
expression below:

W =XY +Z

The various logic functions implied
by the equation are pretty easy to
spot. The X and Y are written adjacent
to one another indicating that the two
signals are ANDed. Simply draw an AND

gate with X and Y as the input. The
output of that AND gate XV is then go-
ing to be oRed with another input
called Z. The plus sign tells us we need
an OR gate to do that. If only the varia-
ble Z is available, an inverter is

needed to produce Z. The resulting cir-
cuit is shown in Fig. 15.

A slightly more complex example is

given below:

X= (A +B +C)(D +E)(F)

The parentheses tell you that you
have three different groups of varia-
bles ANDed together to form the output,
X. The variables in the groups are owed

w= xv+Z

Fig. 15. By drawing the logic symbols that
correspond to the Boolean expressions
you'll arrive at the correct circuit.

together. You can start by creating the
circuits for each group of variables.
The plus signs inside the parentheses
indicate an oR gate should be drawn.
To start you can draw an OR gate with
inputs A, B, and C. Another expression
is derived by oong the input variables
D and E. Simply draw an OR gate with
the two variables as the inputs. The
variable F inside parenthesis will be

ANDed together with the other two ex-
pressions. Finally, to complete the cir-
cuit simply draw an AND gate with
three inputs and connect them to the
outputs of the two OR gates and a
source of signal F. See Fig. 16.

x=(A+B+CIID+EIIFI

Fig. 16. The product c f sums expression
shown was used to generate this circuit.

Exercise problems. Here are a cou-
ple of problems for you to practice on.
1. Write the output expression of the
circuit shown in Fig. 17.

2. Draw the logic diagram corre-
sponding to the expression:

M= (F +G +H)(J +K +L)

Assume no inverted signals are avail-
able.

A
B

C

G

Fig. 17. Write the equation for the circuit.

Truth Tables. You have already seen
how truth tables are used to define all
possible combinations of inputs and
outputs for the various logic elements.
Truth tables, however, can also be
used to describe larger, more com-
plex logic circuits. The nice thing about
a truth table is that it gives you a com-
plete picture of what's going on in the
circuit for any set of input states.

Developing a truth table for any log-
ic circuit is relatively easy. All you have
to do is write out all the possible input
states, and for each one compute the
output state for every gate in the circuit
until the final output is derived. Let's
take a couple of simple examples to
show how you can evaluate the output
state for a given set of inputs.

Take a look at the circuit shown in

Fig. 18A. Where N is the number of in-

77

78

A

INPUTS OUTPUTS

D E F

GATE 1

DE

INVERTER 2

F

GATE 3

G

o

o

o

o

1

1

I

1

o

o

1

1

o

o

1

1

o

1

o

1

o

1

o

1

0

o

o

o

o

o

1

1

1

o

1

o

1

o
1

o

1

o

1

o

1

o
1

i

B

Fig. 18. The possible outputs for circuit A can be displayed in a truth table like B.

puts, the total number of different input
states is 2N. The circuit shown has three
inputs, so with three inputs, there are:

8 =23

Those eight possible combinations are
the binary numbers 000 (decimal 0)
through 111 (decimal 7). Therefore, we
will make a truth table with eight possi-
ble input states as shown in Fig. 18B.

The remainder of the truth table will
contain the outputs at each element in

the circuit. For example, note that we
have the output of AND gate 1, the out-
put from inverter 2, and the output from
OR gate 3. Knowing how each of the
logic gates work, you can then deter-
mine the output of each gate given
the various combinations of inputs,
and record those values in the table.
For example, the input to gate 1 is D

and E. Since it is an AND gate, the only
time it will produce a binary-1 output is

when both D and E are binary l's. Sim-
ply locate those states in the inputs
and record binary l's beside them. All
of the other entries in the DE column will
be binary O. The F column is created by
simply inverting the F column.

You now know both inputs to oR-
gate 3. The DE and F columns can then
be owed together to produce the final
output, G. Again, remembering that
an OR gate produces a binary-1 output
if either or both of its inputs are binary 1,

you can complete the G column.
Be sure you go through the circuit

and the truth table carefully so that you
understand exactly what is going on in

each column.
Let's take one more example to be

sure you know how to develop the truth
table from a given logic circuit. Refer
to Fig. 19A. That circuit has four dif-
ferent inputs, therefore, it will have:

24 =16

possible input combinations. Those
are the four -bit binary numbers 0000
(decimal 0) through 1111 (decimal 15).

They are illustrated in the truth table
shown in Fig. 19B.

The remaining columns in the truth
table are the output of gate 1 (A + B);

the output of gate 2 (C + D); and the
final output, F. Again, using the input

states, develop the output for gate 1

and then gate 2. Those are OR gates,
and so produce a binary -1 output
when either or both inputs are binary 1.

For gates 1 and 2 simply search
through the table for those rows where
binary l's occur at the inputs of the
gates and record binary 1's in the cor-
responding output column. Once you
have done that for both gates, you will
have the inputs to gate 3. Gate 3 is an
AND gate, so its output is 1 when the
output columns for gates 1 and 2 are
both binary 1. Again look through all of
the columns in the truth table to be sure
you understand how they apply to the
circuit.

Exercise Problem. To see if you can
do this yourself, try the following prob-
lem.
3. Draw the circuit for the Boolean ex-
pression:

Z= Y(VW +X +VX)

Assume only the inputs V, W, X and Y

are available. Develop the truth table
showing the outputs for all inverters
and gates.

Writing from a Truth Table. In many
cases, you will start with a truth table
and develop the Boolean expression
from it. That is what usually happens
when you are designing a digital cir-
cuit. Typically, you will define a desired

A

INPUTS OUTPUTS

A B C D GATE 1(A + B) GATE 21C + D) GATE 3(E)
o o o o o o

o o 1 o 1 o

o 1 o o 1 o

o 1 1 o 1 o

1 0 o 1 o o

1 o 1 1 1 1

1 1 o 1 1 1

1 1 1 1 1 1

1 0 0 0 1 o o

1 0 0 1 1 1 1

1 0 1 0 1 1 1

1 o 1 1 1 1 1

1 1 o 0 1 o o

1 1 0 1 1 1 1

1 1 1 o 1 1 1

1 1 1 1 1 1 1

B

Fig. /9. You must use all possible input combinations for the circuit A for the table. B.

output condition that is generated
when specific input states occur. To

develop your design, you build a truth
table filling in the columns with the de-
sired output states for the given inputs.
Then, the truth table can be used to
help write the Boolean equation, and
the logic circuit itself, can be deduced
from the equation. Once the logic cir-
cuit is drawn, it can be implemented
with ICs or other components.

A simple example of that is a design
where we have twc inputs and want a
specific output to occur. For example,
perhaps you want the output F to be
binary 1 when input D is equal to 1 and
input E is equal to O. For all other input
states, we want the output to be binary
O. That set of conditions can be drawn
in a truth table as shown in Fig. 20A.
With two inputs, there are four possible
input combinations. We want the out-
put to be a binary 1 when D is equal to 1

INPUTS OUTPUT

D E F

0 0 0

0 1 0

1 0 1

1 1 o

Do-
Eo

A

E

B

Fig. 20. A truth table (A) must he

generated from a circuit (B) before
deriving the Boolean equation.

F - DE

and E is equal to O. All other input states
produce a binary 0 output. The truth
table shows that set of conditions.

Now to derive the Boolean expres-
sion from the truth table, we look at the
output column F and note where bin-
ary 1's occur. Next, we look at the input
states that produce that output. Then
we write an expression that is the prod-
uct of the input variables. For example,
in the truth table of Fig. 20A, the equa-
tion becomes:

F =DE

We write the D because a binary 1 ap-
pears in the D column. We write E

because a zero exists in the E column.
That simple equation, of course, can
be implemented with a single two in-

put AND gate. An inverter is be needed
to produce E if only the E input is avail-
able. The resulting circuit appears in

Fig. 20B.

Now let's take a more complex ex-
ample. Suppose that we want to de-
velop a simple circuit for comparing
two bits. We would like the output of
the circuit to be binary 1 when the two
bits are equal, and binary 0 when they
are different. That is described in the
truth table shown in Fig. 21A. The two
inputs are X and Y, therefore, the four
possible input combinations are listed.
We want the output Z to be binary 1

when the bits are alike. So we write a
binary 1 when both bits are 0 and when
both bits are 1. The remaining input
states produce a binary 0 output.

INPUTS OUTPUT

X Y Z

0 0 i

o 1 o

1 o o

1 1 1

A

XY

XY

B

Fig. 21. The truth table, A, generates a
sum of products equation for circuit B.

Now we can write the equation for
the circuit. We look at the output col-
umn and note the places where the
binary l's occur. Then we write an AND

ed expression using the inputs. The first
binary 1 output occurs if X = 0 and Y = O.

Therefore, the equation for that state is:

Z = XY

The other binary 1 output occurs when
X =1 and Y =1. Therefore, the input ex-
pression is:

Z = XY

To complete the Boolean expression,
we simply or? the two AND expressions
together. That is because the output
becomes binary 1 under either con-
dition. The resulting output expression:

Z =XY +XV

The resulting circuit is illustrated in Fig.
21B.

Let's take it one step further, and de-
velop a more complex circuit. Sup-
pose we have three inputs and the
desired outputs are indicated by the
binary 1's in the truth table of Fig. 22A.
To develop the output expression for

INPUTS OUTPUT

A B C D

0
o

0

o

0

1

0

o

0 1 0 1

0 1 1 o

1 0 0 1

1 o 1 o

1 1 0 1

1 1 1 0

A

ABC

ABC

ABC

B

Fig. 22. The conditions for a binary 1

output (A) must be oued together to
produce the Boolean equation (B).

the truth table, write an AND expression
using the input variable for each place
where a binary 1 appears in the output.
The first AND expression is ABC. The vari-
able with the NOT sign is used when a
binary 0 appears at the input, and the
variable itself is used when a binary-1
state occurs.

The other two conditions that pro-
duce a binary-1 output are ABC and
ABC. Finally the output expression is

built by owing together the three input
conditions that cause a binary 1 to ap-
pear:

D= ABC +ABC +ABC

The corresponding circuit is shown in

Fig. 22B.
That procedure works regardless of

the number of inputs used. As the
number of inputs increases, the
Boolean expressions become far more
complex. As it turns out, most of the
larger more complex networks can be
simplified by the use of Boolean rules.
In the next installment, we will intro-
duce the Boolean rules and show you
ways to turn complex circuits into sim-
pler ones.

But first, another exercise problem
can be found on page 94. Why not turn
there now to check your understand-
ing. The answers to all of problems in

this month's installment can be found
there.

(Continued on page 94)

94

E -Z MATH
(Continued from page 79)

Exercise Problem. Try this yourself to
be sure you understand the concepts
presented.
4. A logic circuit has four inputs A, B, C,
and D. Binary outputs occur when any
three inputs are simultaneously binary
1, but not when all inputs are 1. Write the
truth table, develop the Boolean out-
put equation F, and draw the resulting
circuit.

Answers to Exercise Problems
1. H = ABC + DE + FG
2. See Fig. 23.
3. See Fig. 24.
4. See Fig. 25.

Fig. 23. Your solution to problem 2 should
look like this. if not recheck your logic.

Vo

INPUTS OUTPUT

A B C D F

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1 f-
0 1 0 0 O

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1 f
0 1 1 0 0

1 1 0 1 1f-
1 1 1 0 1,

0 1 1 1 1

F =ABCD+ABCD+ ABED +ABCD

A

A A B B C C D

A o--H>o

Co

Do i r>0

ABCD

ABCD

ABED

ABCD

oF

B

Fig. 25. When solving problem 4. you should've started with a truth table, generated an
equation (A), and drawn the final circuit (B) as shown.

No

Xo
YO

VW

X

VX

(VW +X+VX)

A

o Z=Y(VW+X+VX

INPUTS OUTPUTS

V W X Y INVERTER 1

V

INVERTER 2

X

GATE 3

VW

GATE 4

VX

GATE 5

(VW +X +VX)
GATE 6

Z

O 0 0 1 1 0 1 0

0 0 1 1 1 0 1 1

0 1 0 1 0 1 1 0

0 1 1 1 0 1 1 1

1 0 0 1 1 0 1 0

1 0 1 1 1 0 1 1

1 1 0 1 0 1 1 0

1 1 1 1 0 1 1 1

1 0 0 0 0 1 0 1 0

1 0 0 1 0 1 0 1 1

1 0 1 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0

1 1 0 0 0 1 1 0 1 0

1 1 0 1 0 1 1 0 1 1

1 1 1 0 0 0 1 0 1 0

1 1 1 1 0 0 1 0 1 1

B

Fig. 24. Problem 3 .should've tested your ability to generate the circuit in A and the table in B from the equation.

