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BOOLEAN 
ALGEBRA and 
LOGIC 
CIRCUITS 
BY LOUIS E. FRENZEL. JR. 

Don' t let logic gates bar your ability to experiment with circuits 

If you have followed this math series, 
you know that we've spent a lot of 

time covering the math related to 
basic electrical principles and elec- 
tronic fundamentals. In this month's in- 
stallment, we'll head out in another 
direction for a change of pace. We 
will discuss a type of math used with 
digital -logic circuits. That math is 

known as Boolean algebra. 

What's Boolean for? Boolean al- 
gebra is a collection of simple mathe- 
matical procedures used to represent 
and express the logical operations 
that go on in a digital circuit. Boolean 
algebra is very similar to standard al- 
gebra. The primary difference is that 
unlike standard algebra, in which vari- 
ables can be any value, in Boolean 
algebra only the values 0 and 1 are 
recognized. Besides that, most of the 
basic rules of working with algebraic 
expressions apply. 

The big benefit of Boolean algebra 
is that it provides a way to express digi- 
tal -logic operations mathematically. 
Boolean equations can be written to 
precisely describe how a logic circuit 
operates, which can help you to de- 
sign such circuits. Boolean algebra 
also provides a way to minimize the 
number of gates needed in a logic 
circuit to simplify circuit design. That 
lowers overall cost, and can help re- 
duce power consumption. 

Also, the equations can show at a 
glance what is going on in a logic 
circuit to aid you in troubleshooting. 

As I've said in previous articles, don't 
let terms like "Boolean," "equation," 
"mathematical expression," or "al- 

gebra" scare you. Once you learn the 
jargon and the few simple fundamen- 
tals presented here, even complex cir- 
cuits will be easy for you. So, get ready 
for a digital -logic refresher, then we will 
have some fun writing the Boolean 
equations of a circuit and creating a 
circuit from the equations. 

Review of Digital -Logic Circuits. At 
one time or another, you probably 
learned how basic logic circuits work. 
If not, the following brief summary will 
bring you up -to -date. The review is 

also for those of you who need a re- 
fresher. 

The three basic logic gates are the 
inverter, AND gate, and (DP gate. Two 
other widely used gates -the NAND 

and the NOR-are often derived from 
those basic gate circuits. All of the 
gate circuits process binary numbers 
made up of 0's and l's. Binary 0 and 
binary 1 are represented by voltage 
levels. For example, a binary 0 may be 
indicated with zero volts (ground), 
while a binary 1 may be indicated by 
+ 5 volts. 

The Inverter. An inverter is a logic 
element with a single input and a sin- 
gle output. As its name implies, it inver- 
ts an input signal. A binary-0 input 
produces a 1 output. A 1 input gener- 
ates a 0 output. The inverter always 
produces an output that is the comple- 
ment of the input. Complement here 
means opposite or reverse. You will 
also hear the inverter referred to as a 
NOT gate. 

The logic symbol for an inverter is 

shown in Fig. 1. The triangle represents 
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Fi,>,'. I. The simple inverter. A. is shown 
here with its little f ur- entre truth table. 

a buffer -a circuit that directly passes 
a binary digit onto the next circuit with- 
out changing the value. The circle at 
the output indicates inversion. So the 
digit passes through the buffer and is 

inverted at the gate's output. Note that 
the input and output are labelled with 
letters. All logic signals are given a 
name or designation. Here A is the in- 

put and B is the output. 
Also shown in Fig. 1 is a table that 

shows all possible combinations of in- 
puts and outputs. The input, A, can be 
either a 0 or 1. The table shows the state 
of the output, B, for each input state. 
Such a table is called a truth table. 
Truth tables are used to show what's 
going on inside a logic circuit. 

AND Gate. An AND gate is a logic cir- 
cuit with two or more inputs and a sin- 
gle output. The output is a binary 1 if all 
inputs are binary 1. Otherwise, the out- 
put is binary O. The AND gate is often 
called a coincidence circuit because 
the output will be binary 1 only when all 
inputs are simultaneously all binary 1. 

The logic symbol for a two -input AND 



gate is shown in Fig. 2A. The inputs are 
A and B; the output is C. The shape of 
the symbol designates its function. An 
alternate symbol is given in Fig. 2B. The 
box designates the circuit while the 
ampersand ( &) indicates the gate's 
function. 

The truth table for a two -input AND 

gate is shown in Fig. 2C. There are al- 
ways 2N possible input combinations, 
where N is the number of inputs. With 
two inputs, there are: 

22 =4 

different combinations. They are listed 
in the truth table along with the result- 
ing outputs. Note that the only time the 
output (C) isl, is when both inputs arel. 

Keep in mind that an AND gate may 
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Fig. 2. This two -input AND gate, A, can 
be drawn as shown in B. The truth table 
for all its possible states is shown in C. 
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Fig. 3. For a change, this oR gate. A, is 
shown with three inputs instead of two. An 
alternative symbol is shown in B, while 
the elements truth table is shown in C. 

have more than two inputs. Integrated - 
circuit AND gates typically have 2, 3, 4, 

5, 8, or 13 inputs. 

OR Gate. An oR gate is also a logic 
circuit with two or more inputs and a 
single output. Its output is a binaryl if at 
least one of its inputs is binary 1. Other- 
wise, the output is binary O. 

The logic symbols and truth table for 
an oR gate are given in Fig. 3. Note that 
the "equal to or greater than 1" desig- 
nation means the OR function. The truth 
table shows the output Z with the inputs 
W, X, and Y. With three inputs, there 
are: 

2N =23 =8 

possible input combinations. As with 
AND gates, IC OR gates typically come 
with 2, 3, 4, 5, 8, or 13 inputs. 

A NAND Gate. A NAND gate is the Com- 
bination of an AND gate and an inver- 
ter. It is often referred to as a NOT -AND 

circuit, and thus its name N -AND. The 

output is binary 0 only when all inputs 
are binary 1. For other input conditions, 
the output is binary 1. 

A NAND can be drawn as an AND with 
an inverter (NOT) circuit, as Fig. 4A 
shows. However, the special symbol in 

Fig. 4B is normally used. The circle at 
the output indicates inversion. An alter- 
nate symbol is given in Fig. 4C. Here 
the triangle or half arrow on the output 
indicates inversion. The truth table indi- 
cates all possible inputs and the corre- 
sponding output states. Looking back 
at the truth table for the AND gate, you 
can see that a NAND output is its com- 
plement. NAND gates with 2, 3, 4, 5, 8, 

and 13 inputs are available in IC form. 

NOR Gate. The NOR gate or NOT -OR 

circuit is an OR gate followed by an 
inverter. The output is binary 0 if at least 
one of the inputs is binary 1. Otherwise, 
the output is binary 1. 

The NOT -OR circuit, shown in Fig. 5A, 
clearly illustrates the circuit's function, 
but usually one of the symbols in Fig. 5B 

or 5C is more offen used. The truth table 
shows the possible input and output 
states. IC NOR gates are available with 
2, 3, 4, 5, 8, and 13 inputs. 

Expressing Logic Mathematically. 
To begin using Boolean algebra, we 
need to find some way to express the 
basic logic operations using mathe- 
matical expressions. Let's take a look 
at ways of expressing inversion, AND, OR 

, NAND, and NOR operations. 

As you learn the basic rules, keep in 

mind that the binary signals to be pro- 
cessed by the logic circuits are known 
as variables. Variables are signals that 
can change value. Binary variables 
can have one of two values; those val- 
ues are 0 and 1. 

Variables are usually given names 
to distinguish them from one another. 
Letters of the alphabet are the most 
common, although numerous other al- 
pha or alphanumeric names are also 
used. Usually signals are given some 
variable name (mnemonic) that is sim- 
ply a shorthand way of referring to the 
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Fig. 4. A NAND gate is nothing more 
than an inverted AND (B). Its output is the 

compliment of an AND gate's (C). 
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Fig. 5. A NOR gate is nothing more 
than an inverted OR (B). Its output is the 
compliment of an OR gate's (C). 
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signal. An example is a binary signal 
called "clear," which might be repre- 
sented by the mnemonic CLR. Many 
times binary signals are grouped to- 
gether and related as in a binary 
number. For example, the bits in an 8- 
bit word might be given the names AO 
through A7. In any case, you will see 
many different variations. 

Inversion. Inversion is expressed 
mathematically by placing a bar over 
the variable. In Fig. 6, the input of the 
inverter is A while the output is B. Note 
that B is expressed in terms of A. That 

AO oB-A 

Fig. 6. The complement of a variable can 
be represented kv placing a bar over that 
variable as shown here. 

expression is read B is equal to NOT A. 
The NOT bar indicates that signal A has 
been inverted. Remember that A can 
be either a binary 0 or a binary 1. NOT A, 
of course, is the opposite, or comple- 
ment. 

Since it is difficult to type a bar over a 
letter as shown in Fig. 6, other simpler 
methods have been devised for repre- 
senting inversion. Sometimes the inver- 
ted variable is indicated by an asterisk 
or a prime (similar to an accent). Using 
the variables in Fig. 6: 

B= A *orB =A' 

AND Function. The logical AND 
operation is indicated by placing a 
dot between the two variables to be 
ANDed. That is illustrated in Fig. 7. The 
two inputs to the AND gate are A and B 

Ao 
Bo- D oC-A B 

Fig. 7. ANning of variables is indicated 
kv using a dot between them. 

while the output is designated C. Look 
at this expression for the output: 

C =AB 

In regular algebra AB would mean 
multiply A and B together. That's why 
the output of an AND gate is often 
called the product of the inputs. As in 
regular algebra, it is not necessary to 
show any symbol between the two 
variables (although sometimes a dot is 

used). Instead, they are simply just writ- 
ten adjacent to one another. 

Figure 8 shows a four -input AND gate 
with different input variables. Many 
times you will see the output expression 
written with some variables separated 
by parentheses. Each input term ap- 
pears within a set of parentheses to 
keep them visually separated to avoid 
confusion. But since each expression is 

written directly adjacent to the next, it 

D7 
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RST 

TX =(D711EBICLKIIRST) 

Fig. 8. The variables in Boolean algebra 
need not he one letter in length, but for 
clarity, separating them with parentheses 
becomes necessary. 

means that the variables are ANDed 
together. In Fig. 8, we say that the out- 
put product is: 

TX = (D7)(EB)(CLK)(RST) 

at Function. The logical oR is indicat- 
ed by placing a plus sign between the 
variables. That is illustrated with the 
three -input OR gate shown in Fig. 9. 

T1 

G 

ROY 

ONZ=T1+G+ROY 

Fig. 9. oRing of variables is indicated 
with plus signs. Note the three inputs. 

Offen you will hear the output of an OR 

gate referred to as the sum of the input 
variables. 

NAND Function. The NAND Or NOT -AND 

function is simply the inverted product 
of the input variables. An example is 

shown in Fig. 10. The output expression 
is written just as it would be for an AND 

gate, but with a NOT indication given to 
the entire expression. That can be 
done by puffing a bar over the entire 
expression as shown in Fig. 10. Alter- 
nately, the ANDed input terms can be 
put into parentheses and an asterisk or 

AO 
Bo OD ABC 
CO IIJJJ 
Fig. 10. In a NAND expression, the result of 
all ANDing is simply inverted. 

apostrophe used to indicate the NOT of 
the function. Note that the B term has a 
NOT bar over it. 

The NOR Function. To produce the 
NOR function, we simply invert a basic 

OR output. Figure 11 shows a four -input 
NOR gate. The output expression is 

formed by simply writing the input vari- 
ables separated by plus signs. Then, a 
bar is placed over the entire expres- 
sion to invert it. Again note that one 
term, DZ, is inverted at the input. 

AJ 
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C5 

DZ 

EX=AJ+BK+C5+p1 

Fig. Il. Multiple -input NANns do not need 
to have their variables separated by 
parentheses for clarity. 

Now using those basic (Boolean) ex- 
pressions for each of the logic gates, 
more complex circuits can be easily 
represented. 

Deriving Boolean Expressions. 
Knowing the basic rules outlined in the 
previous section, you can now derive 
a complete Boolean expression for 
any larger, more complex logic circuit. 
The process is simply to work your way 
through the various logic gates starting 
with the inputs and building the equa- 
tion a step at a time. A couple of ex- 
amples will illustrate the process. 

Refer to the circuit in Fig. 12. Note 
that the input variables are labelled. 
The output is designated G. Our job is 

to write the expression for G in terms of 
the input variables. It's really not as 
complicated as it sounds. 

G=AB+C+DEF 

Fig. 12. You end up with a sum of products 
expression for this circuit after analysis. 

To begin, you start with the variables 
at the inputs to each of the circuits on 
the left. Write the expression for the out- 
put of each circuit. For example, the 
output of AND -gate 1 is simply AB. The 
output of the inverter 2 is NOT C. The 
output of AND -gate 3 is DEF. 

The outputs of gates 1 and 3, and 
inverter 2, form the inputs to oR -gate 4. 

To complete the expression, simply OR 

together each of the inputs to gate 4. 

The output expression G then be- 
comes: 



AB +C +DEF 

Take a look at the expression we just 
derived. You often hear an expression 
like that referred to as a sum of prod- 
ucts. In this case, the products are the 
ANDed variables AB and DEF. The sum, 
of course, refers to the oong together 
of each of the products. 

A slightly more complex circuit is 

shown in Fig.13. Still the evaluation pro- 
cess is the same. Work your way 
through the circuit from left to right writ- 
ing the output expression for each 
gate. The output of gate 1 is A1(K) as 
shown. We use parentheses in this case 
to show the separation between the 
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Fig. 13. The output c f one gate becomes the 

input of the next in this circuit. 

two variables, yet they are written ad- 
jacent to one another to indicate a 
product or AND function. 

Next, the output of gatel is oRed with 
the input of J. The resulting output from 
gate 2 is: 

A1(K) +J 

That becomes one of the inputs to AND - 

gate 3. That expression is ANDed with 
input B to produce the final output ex- 
pression: 

M = B(A1(K) +J) 

Again parentheses are used to keep 
the variables separated and to ensure 
the correct logical operation is ex- 
pressed. 

Take a look at the example in Fig. 14. 

Again, the procedure is to develop the 
output expressions of the input gates, 

Z= (w+x+vllw x) 

Fig. 14. You end up with a product c f sums 
expression for this circuit after analysis. 

then work your way from left to right to 
create the output. The output from 
gate 1 is: 

(+X +Y) 

The output of gate 2 is: 

(W + X) 

Those two outputs become the inputs 
to AND -gate 3. We create the final out- 
put expression, Z, by simply ANDing to- 
gether the two expressions. The result is: 

Z= (W +X +Y)(W +X) 

You might hear that kind of expression 
called a product of sums. 

Generating a Circuit From Equa- 
tions. Now let's consider the process 
of drawing the logic circuit corre- 
sponding to a given Boolean expres- 
sion. Let's start with the simple 
expression below: 

W =XY +Z 

The various logic functions implied 
by the equation are pretty easy to 
spot. The X and Y are written adjacent 
to one another indicating that the two 
signals are ANDed. Simply draw an AND 

gate with X and Y as the input. The 
output of that AND gate XV is then go- 
ing to be oRed with another input 
called Z. The plus sign tells us we need 
an OR gate to do that. If only the varia- 
ble Z is available, an inverter is 

needed to produce Z. The resulting cir- 
cuit is shown in Fig. 15. 

A slightly more complex example is 

given below: 

X= (A +B +C)(D +E)(F) 

The parentheses tell you that you 
have three different groups of varia- 
bles ANDed together to form the output, 
X. The variables in the groups are owed 

w= xv+Z 

Fig. 15. By drawing the logic symbols that 
correspond to the Boolean expressions 
you'll arrive at the correct circuit. 

together. You can start by creating the 
circuits for each group of variables. 
The plus signs inside the parentheses 
indicate an oR gate should be drawn. 
To start you can draw an OR gate with 
inputs A, B, and C. Another expression 
is derived by oong the input variables 
D and E. Simply draw an OR gate with 
the two variables as the inputs. The 
variable F inside parenthesis will be 

ANDed together with the other two ex- 
pressions. Finally, to complete the cir- 
cuit simply draw an AND gate with 
three inputs and connect them to the 
outputs of the two OR gates and a 
source of signal F. See Fig. 16. 

x=(A+B+CIID+EIIFI 

Fig. 16. The product c f sums expression 
shown was used to generate this circuit. 

Exercise problems. Here are a cou- 
ple of problems for you to practice on. 
1. Write the output expression of the 
circuit shown in Fig. 17. 

2. Draw the logic diagram corre- 
sponding to the expression: 

M= (F +G +H)(J +K +L) 

Assume no inverted signals are avail- 
able. 

A 
B 

C 

G 

Fig. 17. Write the equation for the circuit. 

Truth Tables. You have already seen 
how truth tables are used to define all 
possible combinations of inputs and 
outputs for the various logic elements. 
Truth tables, however, can also be 
used to describe larger, more com- 
plex logic circuits. The nice thing about 
a truth table is that it gives you a com- 
plete picture of what's going on in the 
circuit for any set of input states. 

Developing a truth table for any log- 
ic circuit is relatively easy. All you have 
to do is write out all the possible input 
states, and for each one compute the 
output state for every gate in the circuit 
until the final output is derived. Let's 
take a couple of simple examples to 
show how you can evaluate the output 
state for a given set of inputs. 

Take a look at the circuit shown in 

Fig. 18A. Where N is the number of in- 
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Fig. 18. The possible outputs for circuit A can be displayed in a truth table like B. 

puts, the total number of different input 
states is 2N. The circuit shown has three 
inputs, so with three inputs, there are: 

8 =23 

Those eight possible combinations are 
the binary numbers 000 (decimal 0) 
through 111 (decimal 7). Therefore, we 
will make a truth table with eight possi- 
ble input states as shown in Fig. 18B. 

The remainder of the truth table will 
contain the outputs at each element in 

the circuit. For example, note that we 
have the output of AND gate 1, the out- 
put from inverter 2, and the output from 
OR gate 3. Knowing how each of the 
logic gates work, you can then deter- 
mine the output of each gate given 
the various combinations of inputs, 
and record those values in the table. 
For example, the input to gate 1 is D 

and E. Since it is an AND gate, the only 
time it will produce a binary-1 output is 

when both D and E are binary l's. Sim- 
ply locate those states in the inputs 
and record binary l's beside them. All 
of the other entries in the DE column will 
be binary O. The F column is created by 
simply inverting the F column. 

You now know both inputs to oR- 
gate 3. The DE and F columns can then 
be owed together to produce the final 
output, G. Again, remembering that 
an OR gate produces a binary-1 output 
if either or both of its inputs are binary 1, 

you can complete the G column. 
Be sure you go through the circuit 

and the truth table carefully so that you 
understand exactly what is going on in 

each column. 
Let's take one more example to be 

sure you know how to develop the truth 
table from a given logic circuit. Refer 
to Fig. 19A. That circuit has four dif- 
ferent inputs, therefore, it will have: 

24 =16 

possible input combinations. Those 
are the four -bit binary numbers 0000 
(decimal 0) through 1111 (decimal 15). 

They are illustrated in the truth table 
shown in Fig. 19B. 

The remaining columns in the truth 
table are the output of gate 1 (A + B); 

the output of gate 2 (C + D); and the 
final output, F. Again, using the input 

states, develop the output for gate 1 

and then gate 2. Those are OR gates, 
and so produce a binary -1 output 
when either or both inputs are binary 1. 

For gates 1 and 2 simply search 
through the table for those rows where 
binary l's occur at the inputs of the 
gates and record binary 1's in the cor- 
responding output column. Once you 
have done that for both gates, you will 
have the inputs to gate 3. Gate 3 is an 
AND gate, so its output is 1 when the 
output columns for gates 1 and 2 are 
both binary 1. Again look through all of 
the columns in the truth table to be sure 
you understand how they apply to the 
circuit. 

Exercise Problem. To see if you can 
do this yourself, try the following prob- 
lem. 
3. Draw the circuit for the Boolean ex- 
pression: 

Z= Y(VW +X +VX) 

Assume only the inputs V, W, X and Y 

are available. Develop the truth table 
showing the outputs for all inverters 
and gates. 

Writing from a Truth Table. In many 
cases, you will start with a truth table 
and develop the Boolean expression 
from it. That is what usually happens 
when you are designing a digital cir- 
cuit. Typically, you will define a desired 
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Fig. /9. You must use all possible input combinations for the circuit A for the table. B. 



output condition that is generated 
when specific input states occur. To 

develop your design, you build a truth 
table filling in the columns with the de- 
sired output states for the given inputs. 
Then, the truth table can be used to 
help write the Boolean equation, and 
the logic circuit itself, can be deduced 
from the equation. Once the logic cir- 
cuit is drawn, it can be implemented 
with ICs or other components. 

A simple example of that is a design 
where we have twc inputs and want a 
specific output to occur. For example, 
perhaps you want the output F to be 
binary 1 when input D is equal to 1 and 
input E is equal to O. For all other input 
states, we want the output to be binary 
O. That set of conditions can be drawn 
in a truth table as shown in Fig. 20A. 
With two inputs, there are four possible 
input combinations. We want the out- 
put to be a binary 1 when D is equal to 1 

INPUTS OUTPUT 

D E F 

0 0 0 

0 1 0 

1 0 1 

1 1 o 

Do- 
Eo 

A 

E 

B 

Fig. 20. A truth table (A) must he 

generated from a circuit (B) before 
deriving the Boolean equation. 

F - DE 

and E is equal to O. All other input states 
produce a binary 0 output. The truth 
table shows that set of conditions. 

Now to derive the Boolean expres- 
sion from the truth table, we look at the 
output column F and note where bin- 
ary 1's occur. Next, we look at the input 
states that produce that output. Then 
we write an expression that is the prod- 
uct of the input variables. For example, 
in the truth table of Fig. 20A, the equa- 
tion becomes: 

F =DE 

We write the D because a binary 1 ap- 
pears in the D column. We write E 

because a zero exists in the E column. 
That simple equation, of course, can 
be implemented with a single two in- 

put AND gate. An inverter is be needed 
to produce E if only the E input is avail- 
able. The resulting circuit appears in 

Fig. 20B. 

Now let's take a more complex ex- 
ample. Suppose that we want to de- 
velop a simple circuit for comparing 
two bits. We would like the output of 
the circuit to be binary 1 when the two 
bits are equal, and binary 0 when they 
are different. That is described in the 
truth table shown in Fig. 21A. The two 
inputs are X and Y, therefore, the four 
possible input combinations are listed. 
We want the output Z to be binary 1 

when the bits are alike. So we write a 
binary 1 when both bits are 0 and when 
both bits are 1. The remaining input 
states produce a binary 0 output. 

INPUTS OUTPUT 

X Y Z 

0 0 i 

o 1 o 

1 o o 

1 1 1 

A 

XY 

XY 

B 

Fig. 21. The truth table, A, generates a 
sum of products equation for circuit B. 

Now we can write the equation for 
the circuit. We look at the output col- 
umn and note the places where the 
binary l's occur. Then we write an AND 

ed expression using the inputs. The first 
binary 1 output occurs if X = 0 and Y = O. 

Therefore, the equation for that state is: 

Z = XY 

The other binary 1 output occurs when 
X =1 and Y =1. Therefore, the input ex- 
pression is: 

Z = XY 

To complete the Boolean expression, 
we simply or? the two AND expressions 
together. That is because the output 
becomes binary 1 under either con- 
dition. The resulting output expression: 

Z =XY +XV 

The resulting circuit is illustrated in Fig. 
21B. 

Let's take it one step further, and de- 
velop a more complex circuit. Sup- 
pose we have three inputs and the 
desired outputs are indicated by the 
binary 1's in the truth table of Fig. 22A. 
To develop the output expression for 

INPUTS OUTPUT 

A B C D 

0 
o 

0 

o 

0 

1 

0 

o 

0 1 0 1 

0 1 1 o 

1 0 0 1 

1 o 1 o 

1 1 0 1 

1 1 1 0 

A 

ABC 

ABC 

ABC 

B 

Fig. 22. The conditions for a binary 1 

output (A) must be oued together to 
produce the Boolean equation (B). 

the truth table, write an AND expression 
using the input variable for each place 
where a binary 1 appears in the output. 
The first AND expression is ABC. The vari- 
able with the NOT sign is used when a 
binary 0 appears at the input, and the 
variable itself is used when a binary-1 
state occurs. 

The other two conditions that pro- 
duce a binary-1 output are ABC and 
ABC. Finally the output expression is 

built by owing together the three input 
conditions that cause a binary 1 to ap- 
pear: 

D= ABC +ABC +ABC 

The corresponding circuit is shown in 

Fig. 22B. 
That procedure works regardless of 

the number of inputs used. As the 
number of inputs increases, the 
Boolean expressions become far more 
complex. As it turns out, most of the 
larger more complex networks can be 
simplified by the use of Boolean rules. 
In the next installment, we will intro- 
duce the Boolean rules and show you 
ways to turn complex circuits into sim- 
pler ones. 

But first, another exercise problem 
can be found on page 94. Why not turn 
there now to check your understand- 
ing. The answers to all of problems in 

this month's installment can be found 
there. 

(Continued on page 94) 
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E -Z MATH 
(Continued from page 79) 

Exercise Problem. Try this yourself to 
be sure you understand the concepts 
presented. 
4. A logic circuit has four inputs A, B, C, 
and D. Binary outputs occur when any 
three inputs are simultaneously binary 
1, but not when all inputs are 1. Write the 
truth table, develop the Boolean out- 
put equation F, and draw the resulting 
circuit. 

Answers to Exercise Problems 
1. H = ABC + DE + FG 
2. See Fig. 23. 
3. See Fig. 24. 
4. See Fig. 25. 

Fig. 23. Your solution to problem 2 should 
look like this. if not recheck your logic. 

Vo 

INPUTS OUTPUT 

A B C D F 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 0 

0 1 0 0 0 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 1 f- 
0 1 0 0 O 

1 0 0 1 0 

1 0 1 0 0 

1 0 1 1 1 f 
0 1 1 0 0 

1 1 0 1 1f- 
1 1 1 0 1, 

0 1 1 1 1 

F =ABCD+ABCD+ ABED +ABCD 

A 

A A B B C C D 

A o--H>o 

Co 

Do i r>0 

ABCD 

ABCD 

ABED 

ABCD 

oF 

B 

Fig. 25. When solving problem 4. you should've started with a truth table, generated an 
equation (A), and drawn the final circuit (B) as shown. 

No 

Xo 
YO 

VW 

X 

VX 

(VW +X+VX) 

A 

o Z=Y(VW+X+VX 

INPUTS OUTPUTS 

V W X Y INVERTER 1 

V 

INVERTER 2 

X 

GATE 3 

VW 

GATE 4 

VX 

GATE 5 

(VW +X +VX) 
GATE 6 

Z 

O 0 0 1 1 0 1 0 

0 0 1 1 1 0 1 1 

0 1 0 1 0 1 1 0 

0 1 1 1 0 1 1 1 

1 0 0 1 1 0 1 0 

1 0 1 1 1 0 1 1 

1 1 0 1 0 1 1 0 

1 1 1 1 0 1 1 1 

1 0 0 0 0 1 0 1 0 

1 0 0 1 0 1 0 1 1 

1 0 1 0 0 0 0 0 0 

1 0 1 1 0 0 0 0 0 

1 1 0 0 0 1 1 0 1 0 

1 1 0 1 0 1 1 0 1 1 

1 1 1 0 0 0 1 0 1 0 

1 1 1 1 0 0 1 0 1 1 

B 

Fig. 24. Problem 3 .should've tested your ability to generate the circuit in A and the table in B from the equation. 




