
EDN DESIGN IDEAS

Binary numbers rarely appear in applications of
C or C++ programs, so any reference to con-
verting from an integer to a binary number is
usually relegated to a few simple examples in
the appendix. However, when you re working
with codes for communication systems, terms
such as parity, checksum, distance, weight,
and block codes are much easier to verify with
a check solution when they are in binary form.
C and C++ statements do use integers for
manipulations that have binary implications.
However, when the analysis gets down to the
binary-number level, the conversion from inte-
gers is hard to find in the libraries supplied with
the compiler. The cintbin and classicC func-
tions in Listings 1 and 2 convert an integer in
the main function to a binary number that
remains available in the main function.
The ones and zeros in the elements of the

array correspond to the location of bits in the
customary binary number. You can compile the
C++ cintbin version as listed. Readers who
have an ANSI C compiler can use the program
preceded by // in Listing 2. For long integers,
refer to the revised edition of Microsoft C Pro-
gramming for the PC by Robert Lafore. The first
part of the listing is only a driver that has a call
to the function and a printout for the binary
number. You can use the bits in the binary num-
ber in any additional statements.
The first argument in the call should be 31 or

less to provide some leading zeros but large
enough to make sure the most significant bit is
included. The temporary variable z and the
return value provide some assurance that the
result is valid. The statements in both functions
are self-explanatory, so the only thing left to do
is to compile one of the programs and enter 31
4,294,967,295 with a space after 31 to verify
the 32-bit binary number 1111 1111 1111 1111
1111 1111 1111 1111. You can download the list-
ings and the executable cintbin file from EDN s
W eb site, www.ednmag.com. At the registered-
user area, go into the Software Center to down-
load the files from DI-SIG, #2156. (DI #2156)

To Vote For This Design, Circle No. 349

Program provides integer-to-binary conversion
BERT ERICKSON, FAYETTEVILLE, NY

LISTING 1—C++ INTEGER-TO-BINARY CONVERSION ROUTINE

LISTING 2—CLASSICC INTEGER-TO-BINARY-
CONVERSION ROUTINE




