

Everyday Practical Electronics, February 2018 51

R
ow

1

R
ow

2

R
ow

3

R
ow

4

C
ol

1

C
ol

2

C
ol

3

C
ol

4

P
nM

2-Feb18
216m

m
 x 2 C

O
L

C1
100nF

R3
150Ω

R2
150Ω

R4
150Ω

R5
150Ω

R7
150Ω

R6
150Ω

VDD

RA5

RA4

MCLR

RC5

RC4

RC3

RC6

RC7

RB7

VDD

IC1
PIC16F1829

VSS

RA0

RA1

RA2

RC0

RC1

RC2

RB4

RB5

RB6

1

2

3

4

5

6

7

8

9

10

16 15 14 13 12 11 10 9

1 2 3 4 5 6 7 8

20

19

18

17

16

15

14

13

12

11

J1

VSS

PGD/RA0

PGC/RA1

MCLR

VDD

VDD

R1
150Ω

R8
150Ω

R9
150Ω

R10
150Ω

R12
1kΩ

R13
1kΩ

R14
1kΩ

R17
220Ω

R11
1kΩ

Jumper/shunt

R16
470Ω

R15
680Ω

J3

J2

a

g
b

c

d

e

f
a

g
b

c

d

DP DP DP DP

e

f
a

g
b

c

d

e

f
a

g
b

c

d

e

f

ICSPDAT on the programmer. This is a
digital data pin used for programming
the PIC. It is possible to use this one
pin to figure out what key has been
pressed on the keypad. By using seven
resistors, we present a unique voltage
to RA0 for each key. RA0 will use an
analogue-to-digital conversion (ADC)
to translate these unique voltages into
button presses.

By using a series of resistors that
will behave as multiplexed voltage
dividers, we can establish unique
voltages for each key, and that unique
voltage will be seen by the ADC
module. We can then map these
values to each key being pressed. The
resistor values need to be calculated
to ensure sufficient spacing between
each voltage value. A 10-bit ADC
typically yields an accuracy of about
2-3 bits. At 3.3V, this gives us around
10mV margin of error. Ideally, we
want to ensure the difference between
each value is much more than this.

Using an excel spreadsheet, I
quickly worked out one set of values
for these resistors, giving a decent
spacing between each value. This
could be optimised further. The
spreadsheet will be included with the
software download on EPE’s website
next month. Check it out and see if
you can improve the values to reduce
possible errors.

Fig.3 shows the schematic of our
modified design. We use a 1kΩ pull-
up resistor on RA0 to VCC. This ensures
when no button is pressed, our ADC
value should be 1023 bits or 3.3V.
When a button is pressed, what we are
really seeing is a multiplexed voltage
divider circuit. By pressing the number
2 on the keypad (Fig.1), we connect
row 3 and column 2, which adds R13,
R14 and R17 into the circuit.

A typical voltage divider circuit
in shown in Fig.4, and the voltage
divider equation is:

Vout = VCC × R2 /(R1 + R2)

Here, Vout is our ADC voltage. In the
above ‘2’ example, VCC = 3.3V, R1
refers to the R11 1kΩ pull-up resistor,
and R2 is the sum of R13, R14 and
R17 (1kΩ + 1kΩ + 220Ω = 2.2kΩ). This
should give us a value of 2.275V or
716 bits. When we capture this value,
we now know the number 2 has been
pressed. And we can add a debounce
or delay afterwards to ensure we only
recognise one press of the button (a
particularly nice example of why
debounce is important).

One small problem with
programming
I mentioned earlier that RA0 is also
a programming pin. The addition of
the resistor network in Fig.3 poses
problems when trying to program
or debug the microcontroller. The
1kΩ pull up on R11 will hinder
programming the board by making
it harder for the programmer (eg,

PICKit3 or ICD3) to output a logic low.
In theory, we could scale the resistor
values up so that they do not affect
the programming. This could be done
by multiplying each value by ten or a
hundred. We would still get the same
unique voltage for each key. The only
problem here is that the resistors will
start affecting the capture time of the
ADC. The capture and conversion for
the ADC needs to be quick to avoid
problems on the display. Increasing
resistor values will slow the voltage
rise on the ADC pin as a key is pressed.

PnM4-Feb18
35mm x 1 COL

VDD

Vout

R1

R2

Fig.4. Voltage
divider circuit

Fig.3. Modified four-digit
seven-segment calculator

The only way to make this work
is to disconnect the resistor circuit
during programming. Soldering and

Pic n Mix (MP 1st) – JAN 2018.indd 51 13/12/2017 15:38

52 Everyday Practical Electronics, February 2018

PnM5-Feb18
156mm x 2 COL

1
2
3
4
5
6
7
8
9

10
11
12
13

22
23
24
25
26
27

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

 A B C E F H KJ ON P Q R S T U V W X Y Z a b c d e fg h i j k m D G I L M

 A B C E F H KJ ON P Q R S T U V W X Y Z a b c d e fg h i j k m D G I L M

 A B C E F H KJ ON P Q R S T U V W X Y Z a b c d e fg

Note: the x-coordinates A to f match the layout from Part 1 (December 2017). The additional coordinates (g to m) indicate the new
area of the board. (‘l’ – lower case ‘L’ has been skipped to avoid confusion with upper case ‘I’.)

h i j k m D G I L M

C1

J2
J1

J3

PGC/RA1
PGD/RA0

VSS
VDD

MCLR

Cut track

Row4
Row3
Row2
Row1
Col1
Col2
Col3
Col4

R1

R2
R3
R4
R5
R6
R7

R8

R9

R10

R
15 R

11

R
16

R
17

R14
R13

R12

IC1

1 16

8 9

27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Not all of Mike’s technology
tinkering and discussions make

it to print.
You can follow the rest of it on

Twitter at
@MikePOKeeffe, on the EPE

Chat Zone or EEWeb’s forums as
‘mikepokeeffe’

and from his blog at
mikepokeeffe.blogspot.com

resoldering would be a nuisance, so
I recommend using a two-pin header
and a jumper or a shunt bar across the
header to reconnect it – see J2 in Fig.3.

Constructing the circuit
To build the circuit, you need the
following components:

Four-digit seven-segment display
circuit from last month (December 2017)

Resistors
4 1kΩ (R11, R12, R13 and R14)
1 220Ω (R17)
1 470Ω (R16)
1 680Ω (R15)

Miscellaneous
1 2-pin header (J2)
1 Jumper or shunt bar (J2)
1 8-pin right-angled header (J3)
1 4×4 keypad (eg, AC3561
 by APEM, as used here)

Fig.5 shows the veroboard layout for
the components on the top side and
the underside of the board. Don’t forget
to carefully make the jumper track cut
between the holes on C22 and D22.
Everything from Column B upwards
is from the original design (excluding
the connector J2). There are only nine
components and two wires to add. The
spacing for some of the resistors is a
bit tight, so it might be easier to stand
these up instead (see Fig.6).

Fig.6 shows the complete working
calculator. The keypad from APEM
comes with two silver inserts with the
digits printed on them. These inserts
originally came with other signs on
them, which have been covered over for
this project. Notice in Fig.6 that I have

made my own mathematical symbols
using a bit of black electrical tape. Feel
free to move these around, but don’t
forget to make the adjustments in the
software next month.

It is interesting to consider this
solution compared to the alternative
methods of adding functionality to an
existing design. It happens a lot more
than I like to admit, where a project
suffers from feature creep. Often this
means a complete redesign, but in this
case, a little bit of creative ingenuity
saved us the hassle of creating a
completely new design or some
awkward wiring and track cuts.

All in all, I believe this method is a
lot less complicated than the original
method of controlling the keypad. There
is a little more in the build, albeit only
seven resistors. In fact, the true beauty
of this design will reveal itself in the
software next month. If we did have the
necessary pins and we had to look at
several inputs to discover what key has
been pressed, this would add significant
delays to the code, which would affect
the behaviour of the LED display.

The software involves using an
ADC to capture the input voltage
and a function that maps that value

to the corresponding button pressed.
After that, it’s a matter of calculating
everything quickly enough without
affecting the display.

Next month
We’ve now built the guts of the simple
calculator; next month we’ll look at
how to program the microcontroller to
capture the keys pressed on the keypad,
display them on screen and perform
simple calculations. As we mentioned
last month, any delays in our code will
cause the segment LEDs to flicker. This
means our code will need to be quick
enough that we don’t notice what is
happening in the background.

Fig.5. Veroboard project layout

Pic n Mix (MP 1st) – JAN 2018.indd 52 13/12/2017 15:38

