
EVELOPING
APPLICATIONS
ARMIN I THE PIC
ARCHIFIEFFII

Building a
m s etc Solution
by Stephen Waddington

After separately considering both the hardware and
software elements of the PIC family of microprocessors,
this month, we take a look at developing complete
applications. Here, Stephen Waddington matches
hardware and software with a collection of
design tools to create a very basic application

based around the PIC architecture.

In the beginning, there is always a big idea. What's yours? What do you want to
develop? All electronic design engineers

start with an idea. In fact, were short-cutting
the design process before we've even
started by deciding to work with the PIC
family of microprocessors. You'll have to
forgive me for this supposition, but I want
to use this article to demonstrate how to
create a PIC based solution from initial
concept, through to a working design.
My idea is straightforward. I want to create

a circuit which will flash two LEDs alternately
on and off. And here, you'll understand the
reason for my apology This is not the most
complex design — and could be solved using
a basic flip-flop — but its simplicity will allow
us to examine each element of the development
cycle in detail. Once we've got the basics right,
we can start to look at more complex problems.

Development Cycle
At the end ut last months feature, you may
remember that we examined the
development cycle for a microprocessor
application. This is repeated in detail in

Figure 1. We'll be concentrating on the left-
hand side of the process without the luxury
of an In Circuit Emulator (ICE) to test code.
While the ICE approach can simplify debugging,
it has a major downside in that the emulator
hardware is expensive. A basic ICE costs
approximately £500, placing it beyond the
realms of the amateur developer. Instead of
taking the ICE approach, we'll either download
code directly to EPROM for testing or test it
first using an event-driven software simulator.
As with the other parts of this series,

we're focusing on the PIC16C84 as the
target device. From a hardware point of
view, this is complete overkill. The flip-flop
application will require a fraction of the
1k-byte program memory available,
will not require any of the four available
interrupt lines, and will require only
two of the available 13 output lines.
But the PIC16C84 is an excellent device

to learn the basics of microprocessor and
PIC development. It uses the standard
PIC instruction set of 33 instructions, with
only two additions to the address registers,
which are unique to the device. This means

Concept

Hardware
design

Software
design

Simulate
MPSIM

Assemble
software
MPASM

Bug free?

Yes

I PIC in circuit
emulator

Program PIC

PIC start

Test in circuit

Figure 1. Development cycle for
microprocessor application.

Initialise variables I

Initialise registers

Set LED A

Clear LED B

Delay

Set LED B

Clear LED A

Delay

Hardware requirements

LED A = Port Bi bit 0

LED B = Port B, bit 1

Figure 2. Development cycle for
flip-flop application.

Develop code
using text editor

Assemble file
using assembler

Simulate code
using event driven
software simulator

Port code to
PIC device using
programmer

Figure 3. Assembling and porting
PIC machine code.

April 1997 ELECTRONICS AND BEYOND il Mal

PIUM 1:1_11 rbrAard 1019,1 74 1 te C-.° Itsated/Mmereeht lean.). i.e.

 1,1, iIJiII P N

 Tee. IltEltt

Error 111. : Yee it ¡Pli Air

Creel/ W ere«. File : Ile 4e4:reeeeueece:
List FT. Yes TtiPrt lPt)TiPSPP TPlUStVTTP ..

Ike Log Tepe :I ilii MP/ I LIP .11[1.!.1..g4 e.. Weeki ffle

Ileeerdele le Object FU. Ile

Type Ike ewe et yew . . file.

Photo 1. Microchip MPASM assembler environment.

that once you have got to grips with
programming the PIC16C84, you will be
able to work with any of the other devices
in the PIC family.
The PIC16C84 has other benefits in ternis

of the design process. Its 1k-byte of local
EEPROM means that the device can be
programmed and re-programmed electronically
within 20 seconds. The majority of the other
members of the PIC family are EPROM-based
and require exposure to ultra-violet light to
erase the contents of memory, before
being reprogrammed. This typically takes
up to 20 minutes. In later parts of this series,
we will look in greater detail at other members
of the PIC family and how to best match a
device against a particular design requirement.

Design Process
The first requirement of the design process
is to develop a flowchart for our flashing LED
flip-flop problem. I've done this in Figure 2.
The flowchart starts by initialising both the
hardware elements of the PIC16C84 and
software variables required by the application.
The remainder of the flowchart considers

the configuration of the required outputs. In
this sense, it is self-explanatory. Of two LEDs,
LED A is switched on, while LED B is switched
off. Following a delay, the situation is reversed
so that LED B is switched on and LED A switched
off. After a second delay, the program jumps back
to the start to continuously repeat this loop.
After defining the function of the flip-flop

application, it would be normal to match the
hardware requirements against a target device,
but we have already decided on the PIC16C84.
What we can do though, is define the required
outputs against available ports. For this
exercise, we'll use PORTB of the PIC16C84
and defined bit 0 as LED A and bit 1 as LED B.
Our next task is to convert the flowchart

into code. This is created in a text editor
or word-processor. You can use the Notepad
in Windows, Word or WordPerfect, since all
enable files to be saved in ASCII format.
Once complete, the draft program is
saved as an assembler file in ASCII or
raw text format with an .asm extension.
A PIC assembler is used to convert the
source code into hexadecimal format
which can then be ported directly to the
target microprocessor. This process is
shown in Figure 3.

Elk jo Ee 1.0/.mek: &ion: Cjielaete

1-r-1
el Net... ',Pp

t MI CR OC HI P

,

,I•er,ew

:\ I icrochip Prod ncts

PICI6,17 Nlicrocontrollers

.1 Mallon, Devires

J S 'Ny Device,

ASIC Products

\ (n1 ProducN

World's First S-.Pin
Mierocontrollers!

" New Mirrocontroller stith LCD
Driver'

Ness Serial EEPROM Memories!

4.4« Cheek out our nets ASIC
Product....

Photo 2. Microchip home page at http://www.mi crochi p.com.

The Assembler
There are numerous PIC assemblers
available on the market which could be
used to convert the source code into a hex
file. One of the most popular is a DOS
based package from Microchip, called
MPASM. This is a neat piece of software
which, unlike many other PIC assemblers,
has a reasonable user interface, as shown
in Pltoto 1. The majority of assemblers
don't even have this lwcury, relying instead
on the user inputting a complex DOS string.
The first-time user should avoid these at
all costs. The complexity which they add
to the design process is unnecessary.

Writing Code
The MPASM assembler accepts source code
in a standard ASCII format and allows the
user to select the required output format
on screen using a mixture of the <TAB>,
<ENTER> and Function keys. It also has a
reasonable level of error reporting for when
things inevitably don't go right first time.
Each line of the source file may contain

up to four types of information: labels,
mnemonics, operands and comments.
The order and position of these are

important. The MPASM assembler separates
a line into a series of columns each denoted
by a tab space. Labels must start in column
one directly against the left edge of the page.
Mnemonics may start in column two or beyond
and operands always follow the mnemonic.
Comments may be added after either an

operand, mnemonic or label, or can start in
any column if the first character is either an
asterisk or a semi-colon. The maximum column
width is 255 characters. One or more spaces
must separate the label and the mnemonic,
or the mnemonic and the operands.
Operands may be separated by a comma.

Labels
All labels, such as subroutine names,
must start in column 1. They may be
followed by a colon, space, tab or the end
of line. Comments may also start in column
1 if one of the valid comment denotations
is used. Labels must begin with an
alphabetical-character and may thereafter
contain alphanumeric characters. Labels
may be up to 32 characters long.

Mnemonics
Assembler instruction mnemonics,
assembler directives and macro calls
must begin in at least column 2. If there
is a label on the same line, they must he
separated from that label by a colon
or by one or more spaces or tabs.

Operands
Operands must be separated from mnemonics
by one or more spaces or tabs. Operand
lists must be separated by commas. If the
operand requires a fixed number of
operands, anything on the line after the
operands is ignored. Comments are allowed
at the end of the line. If the mnemonics
permits a variable number of operands,
the end of the operand list is determined
by the end of the line or the comment.

Comments
Comments ,\ Inch are on a line by
themselves must start with either of
the comment characters, namely an
asterisk or semi-colon. Comments at
the end of a source line must be separated
from the rest of the line by one or more
spaces or tabs. Anything encountered on
the line following the comment character
is ignored by the assembler.

Developing Code
Before we examine the code for the
LED flip-flop application in detail,
let's run through some basic rules of
microprocessor software development.
These rules apply as much to development
around the PIC architecture as any
other microprocessor family.

Structure Software
Creating a flowchart of an application
is a good way to start the development
process, since it imposes structure from
the outset. It enables you to remain
focused on what it is you want to achieve.

Layout
Use a logical format to the structure of your
software. Convention and logic dictates that
initialisation routines come first, followed by
the main program, and then any subroutines
which the main program calls upon.

41:10 ELECTRONICS AND BEYOND April 1997

Le eds
All subroutines should carry a logical name.
This simplifies coding, since it is easier to jump
to a logical name rather than specifying a hex
address when you need to switch to a subroutine.

Variables
The same applies to variables. Wherever passible,
use a logical naming convention for variables,
rather than specifying a number. This makes code
easier to debug and means that the function
of a program is understandable at first glance.

Comment
Always annotate your software with comments.
You will inevitably need to come back to
review your software. Concise annotation
makes that process far easier.

Header
Create a universal hearer for your programs.
This reduces workload, creates a consistent
format and limits the number of variables
you have to remember.

If you find all these rules daunting don't be too
concerned at this stage. The easiest way to learn
a new software language such as PIC machine
code is to examine plenty of examples. Consult
the books recommended in the reading list at
the end of this feature, or check out Microchip's
home page at http://www.microchip.com,
• as shown in Photo 2. It provides numerous
links to Web sites created by PIC development
engineers. Also, flick through your back copies
of Electronics and Beyond. Revisit PIC projects
designed by the team of Maplin project engineers
to check their code and target circuit designs.

Flip-Flop Application
The code for the flip-flop is shown in Figure 4.
There are essentially four components to
the programme, as denoted by comments
in the program and the descriptions below.

Set Variables
Here, variables used throughout the
programme, such as PORTS and COUNT,
are defined.

Initialisation Routine
This is used to set the memory location for
the programme, initialise PORTB for output
rather than input and clear PORTS to zero.

Main Programme
This is the heart of the programme. It
alternately switches bits 0 (LED A) and
1 (LED B) of PORTB on and off. A delay of
0-2ms is maintained between each state.

Delay Routine
The programme uses the PIC16C84's
internal real time clock (RTCC) to
create a delay. Bit 7 of the RTCC register —
which hits 1 after 128 clock pulses —
is used in a nested loop to create a delay.
LONG2 loops until bit 7 of the RTCC
register is set. This is equivalent to a
delay of 32.768ms — 128 clock pulses
multiplied by 256µs, assuming 4MHz
clock, which gives a clock pulse width
of 256ps. LONG2 is nested with JUMP
which counts from 8— the value of the
variable COUNT — to zero. This creates
an overall delay of 0.256s.

; Flipf lop Routine - Filename: flipflop.asm
; Stephen Waddington
; Building A Complete Solution
; Developing Applications Around the PIC Architecture - Part6

; Set variables

PORTB
RTCC
COUNT
TIME

EQU 06H
EQU 01H
EQU 00H
EQU 08H

; Initialisation routine

INIT ORG 00E
TRIS PORTS
CLRF PORTS

; Main programme

MAIN MOVLW 8'00000001'
MOVWF PORTE
CALL DELAY
MOVLW B'00000010'
MOVWF PORTB
CALL DELAY
GOTO MAIN

; Delay routine

DELAY CLRWDT
MOVLW TIME
MOVWF COUNT
CLRF RTCC

LONG BTFSC RTCC,7
GOTO JUMP
GOTO LONG

JUMP CLRF RTCC
DECFSZ COUNT,F

GOTO LONG
RETURN

RESET GOTO INIT

END

; PORTS is register 6
; PIC RTCC timer register
; Timer counter
; Timer period

Store programme at location
Set PORTS as outputs
Clear PORTB

Set LEDA on, LEDS off

; Hold LEDA on
; Set LEDS on,

; Hold LEDB on
; Loop back to

for 0.256ms
LEDA off

00H

for 0.256ms
the beginning of MAIN

; Clear Watchdog timer

Clear RTCC register
Test RTCC bit 7 (128 X 256gS = 32p768m5)
If RTCC bit 7 set goto JUMP
If RTCC bit 7 not set loop until set
If RTCC bit 7 is set clear RTCC
Decrement COUNT by 1 until reach zero
(32ms X 8 = 0.256s)
Loop LONG if COUNT not equal to zero
Return to call location
On RESET goto INIT

Listing 1. Flip-flop assembler code.

Having creating the source code in a text
editor, it must be save in an ASCII format
with an .asm extension, in this case,
fl pfl op. asm. It can then be loaded
into the MPASM assembler. After selecting
the appropriate target microprocessor — in
this case, the PIC16C84 — and Hex output —
in this rase, INHX8M — the file can be compiled.
The MPASM assembler is able to create four
different Hex output formats, depending on
the format required by the PIC programmer.
Make sure you select the correct format.
The assembler returns a series of statistics

relating to the length of the assembled code
as well as the number of warning and error
messages, as shown in Photo 3. If the code
contains any bugs, it will not run when
downloaded to the microprocessor. Errors
reported by the assembler can be examined
in either the List or Error files. The
assembler creates three other files in
addition to the List and Error Files. These
are detailed below and shown in Photo 4.

• <f 1 lename>.asm
Default source code file.

• <fil ename>.1st
Default output extension for listing
files generated from the assembler

• <filename>. err
Default output extension from
MPASM for error details.

• <filename>. hex
Default output code for porting
to target microprocessor.

• <filename>. cod
Default output extension for
the symbol and debug file.

Software Debugging
and Simulation
Lmng the Error and List hies, the source
code should be debugged and reassembled
until it is error free. This can be a very
tedious process and is why professional
development engineers use an In Circuit
Emulator (ICE). Microchip has developed
a compromise solution in terms of cost,
in the form of a discrete event software
simulator. The Microchip MPSIM enables
PIC code to be emulated by a PC and
various program variables, interrupts,
and ports to be monitored.
Like the Microchip assembler MPASM,

MPSIM is DOS-based and as such, is not
very user-friendly. It uses a set of proprietary
instructions to both initialise the simulator
environment and run an actual simulation.
It's almost as if you need to learn an
additional software language before you
can run a simulation. For this reason,
the majprity of hobbyists tend to test
software by downloading it directly to
the target microprocessor.
Photo 5 shows the flip-flop application

being simulated using MPSIM. The
assembled PIC software has been loaded
in hex format into the simulator and the
different variables used by the programme
set as flags to be monitored in the upper
half of the screen. When the code is run and
simulated by the PC, its effects on registers,
variables, interrupts and the I/O ports can
be monitored by observing the flags.

April 1997 ELECTRONICS AND BEYOND e r

11m LeetvJon,: ,e;,'

tytref2a2r if 4,5.1 ,Jed

al a
1.1enr,aal

11411 .1 • e rn IF 1 . 4 Mite ri t
C cccc i ,, FlIPFLIP.11144 fir ¡rebels —
Ileseedeleet -
111,1112.11011 21

Photo 3. MPASM returns a series of statistics relating
to assembled file.

à 111. 1 Ire ease 1.11113.111 W e >eft 11141tedi3Iarrec0ts f eee
ehectied flIPELOP.1311 1er sysée1ea—

rrI ellettil . SI

1

,

•• I to «clime.

Photo 4. Output files from MPASM.

22

__J

:57 1

Tobefeed

II

Te•

eSF.,F 1.1 0.

Photo 5. Simulating flip•flop application using Microchip MPSIM.

Hardware
Whether or not you decide to simulate
your PIC code using MPSIM or a similar
software simulator, you'll eventually have
to download it directly to a PIC device.
There are a number of programming
devices available on the market. The most
versatile and consequentl); the most popular,
is Microchip's PICStart. PICStart enables any

_J 7L 1

r r4,n0"., Turrml, T1 ITh Il

OSOO2 8844 1101 3001 O M 218, 3882 8811 218, 1
08182 POO, O M 3083 8880 8181 1881 2818 2101 ad
1111O: 0101 111111 2108 8808 21118 IFFF 31FF 31fi
00112 3111 3F11 211F 31FF 311F 31FF 31FF 31rr

liff 3F11 trif 31FF 3F11 311F FFF, 101F
0021: 3FFF IFFF 31FF 11FF 3FFF 11FF 3FFF IFFF
.0020: 11111 3F1F 1111 2111 11FF IFFF 3144 3111
8831: 3111 31FF 314F 3111 3111 11FF 31F 301F
81141: 1111 111F 11FF ill 3FFF lffl 31IF 31IF
0044: 3111 3F1F 311F 111F 31I1 3FF1 311F 31FF
M e F M 3FFF 311F 3111 111 31FF 311F 31FF
81$12 3FFF 311F 31FF 311F 31FF 31FF 311F 31FF
8848: 3F11 311F 3FFF IFFF ern IFFF 111F 311F
0840: IFFF 3111 31FF 3FFF 11FF 3F11 31FF 111F
8818: tiff 3111 3FFF 31FF 311F 3111 31FF ifff

1/111: On
PuI: On
tP 1 Off

letj.' CPU "

, d tdtt

e

Photo 6. Porting code to PIC16C84 using PICStart.

cr) _2] ¡el . :11 2 11—'7 A
rieSterl hi, lhaiewe 4I4ne-- 1104,ce 4 On lq TTIF:n

11001: 1811 0184
0001: 2111 1014
0010: 01111 M O
10011: 31FF 3F11
01,71: IFFF 311F
0021: 3FFF 1111
10031: IFFF 31FF
0035: 3F1F 31ff
0041: 311f 3FFF
00442 IFFF 3FFF
8020: 3111 3F11
11121: 31FF 3FFF
0040: 3111 IFFF
1141: 3111 3111
00/1: 3111 31FF

1/113315333 1: = Ó'en.
I) T (j ade Prole, SA
1) S

11.1,)1 , : 1m at 14 Utr Utdok I Re

Photo 7. Making fuse selecting in PICStart
development environment.

Photo 8. Datasheets in Acrobat PDF format can be down-
loaded from the Microchip Web site.

device in the PIC microprocessor family
to be programmed. By comparison,
Maplin has developed a programmer
kit project specifically for programming
the PIC16C84. While this machine is
specific to the PIC16C84, at approximately
£20, it is relatively inexpensive
compared with PICStart. The
PIC16C84 was profiled in Issue 105
of Electronics and Beyond.

PICStart consists of two elements — a
software programme and a programming
board. The software programme, as shown
in Photo 6, is used to drive the programmer.
From here, the target programming board
(shown in Figure 4) connects directly to the
serial port of a PC. Power is provided by an
auxiliary 9V mains adapter. The target PIC
device is inserted on the programming
board in a zero insertion force (ZIF) socket.

410,:lk el C eT ort Ni e s AND BEYOND April 1997

P:7

PO-Start softwn
811É0111118Pi

"immirmiK
men! n Serial port

ZIF socket
for target PIC

Figure 4. PICStart
development environment.

Unlike other elements of the
development process, programming
a PIC device is very straightforward.
Having loaded the PICStart application
and connected the programming board,
the target device is selected. Next, the
assembled code to be ported to the
PIC device is loaded. Like the MPSIM
Simulator, PICStart uses the INHX8M
version of hex code.
Before the device can be programmed,

the software programmable fuses such
as Watchdog Timer, Start on Power up
and clock format must be configured, as
shown in Photo 7. Once this is complete,
the target device is mounted on the
programming board and the code
downloaded. It takes approximately
20 to 30 seconds to programme a PIC
device. During this time, the PC transfers
the hex code and fuse selections to the
memory of PIC device, before verifying
the contents of all EEPROM memory.

Target Circuit
So, we've developed the flip-flop
design from an initial concept, created
a flowchart, written a routine in PIC
assembly code, simulated it and finally
downloaded it to a PIC16C84. What we
need to do now is build a target circuit
and test the device. Figure 5 shows a
basic target circuit for the PIC16C84.
There are four key elements to this
design as follows:

Voltage Regulator
The operating range for the PIC16C84
is 2 to 6V Consequently, a 78L05 voltage
regulator is used to stabilise the voltage
from a 9V battery at a constant 5V. This is
not necessary if you have access to a
stabilised 5V power supply.

Clock
Figure 5 shows a 4MHz crystal with two
22pF capacitors. This option has been
selected for its simplicity. A resistor
capacitor combination with an RC time

9V Aux
power supply

Programming board

9V 0

GND 0

Vcc
5V

ONO

I 470uF 7 Elect
78L05 - •

w6 lOnF 10nF

Figure 5. Target circuit for PIC16C84.

constant of 4MHz could be equally used.
Whichever clocking method you adopt,
ensure that you select the appropriate
fuse option when programming the target
device. A 4MHz crystal falls within the XT
region, as shown in Table 1 and discussed
in Part 3 (Issue 109) of this series.
For timing insensitive applications

an external RC clock offers cost savings.
Figure 6 shows how the RC combination
is implemented. For R,.„, values below
2k2S2, the oscillator operation may
become unstable, or Stop completely.
For very high IL values above say,
1MS-1, the oscillator becomes sensitive
to noise, humidity and leakage. Microchip
recommend that 12‘..., is kept between
3Ie and 1001e.
Although the oscillator will operate

with no external capacitor (C‘.. = 0pF),
a value above 20pF should be used for
noise and stability reasons. For these
reasons, it is recommended that the
novice developer use either a crystal or
ceramic clock, since this avoids added
complication. If you intend using a RC
combination, select the RC option when
programming the target device.
To achieve a clock speed of 4MHz

using RC components, try around values
of Rext = 20pF and Cext = 10k.(1.

10nF

,

5V

Voltage
regulator

0 GND

Output
The P1C16C84 has an output current capability
of 25mA. At 5V, this is sufficient to blow an
LED. Consequently, 11e resistors are used
on the leg of each output to reduce the
current to the LED to a moderate 5mA.

Figure G. Driving PIC16C84 using
a resistor-capacitor combination.

Option Clock Speed
LP 0 to 200kHz
xr 100kHz to 4MHz
HS 4MHz to 10MHz
RC Oto 10MHz

Table 1. Clocking rates and options

Reading List
The following books discuss many of the issues raised in this article in greater depth.
They also provide examples of the PIC development cycle including many specific projects.
Microchip has produced documentation for all of its development tools. It has also

produced datasheets for each of the PIC microprocessors. These can be downloaded
in Acrobat PDF format, as shown in Photo 8, from the Microchip Web site. An Acrobat
reader can be downloaded from the Acrobat Web site at http: 1 1www. adobe . com.

Description
A Beginners Guide to the Microchip PIC
PIC Cookbook
Embedded Control Handbook
Microchip Databook
MPSIM for DOS User's Guide
MPASM User's Guide
PICStart-16131 User Guide
PIC16C84 Application Note

Reference/Order Code
AD31J
DT76H
AD28F
AD29G
http : //www .mi c rochi p2. com/devtool s/devtool s .htm
http://www.mi crochi p2. com/devtool s/devtool s.htm
http://www.mi crochi p2. com/devtool s/devtool s .htm
http://www.mi crochi p2.com/devtool s/devtool s htm

Cost
£19.95
£19.95
£9.50
£9.50

Aoril 1997 ELECTReMen awn urveuun

Reset
The reset pin — pin 4— is connected
high. This causes the PIC16C84 to
enter a power-up delay phase of
approximately 72ms in order to
enable the clock to stabilise at power on.
This eliminates the need for external
components usually required for
Power On Reset. To reset the device
at any stage during operation, pin 4
should be connected low for a
brief period.
Initially, you should experiment

using breadboard. It always takes a
couple of iterations of both software
and hardware to achieve the required
operation. That said, having built the
target PIC16C84 circuit, the programme
should fire-up immediately on power-up
and LEDs A and B flash alternately

Next Month
Next month, well examine more
advanced software techniques including
the use of interrupts, look-up tables,
reset vectors and the watchdog timer.
Well also look in greater details at how
to debug object code.

[L I T M US
and Mon

Download List
Shareware versions of the majority of the development tools discussed in this feature
can he downloaded from the Microchip Web site at http://www.m1croch1p2.com/
soft updt . htm Specific references are detailed below. All files have been
compressed using PKZIP. PKUNZIP — the decompress utility — can also be
downloaded for the Microchip Well site.

Description Software Tool
' MPASM 1.40.00
MPSIM 5.20.00
PICSTART-16B1 5.00

MPASM Assembler
MPSIM Simulator
PICStart (Software only)

Full Length
487k-bytes
286k-bytes
125k-bytes

Catalogue References
Many of the items discussed in this feature can be purchased directly from Maplin,
either by mail order or directly from one of the Maplin shops. Catalogue references
and costs are outlined below.

Pic Resources
Description
PIC16C84 Programmer Kit
PICStart-1651 Development System
ICEPIC16CXX Real Time Emulator System

Target PIC16C84 Circuit
Component Type No Description
Semiconductors

Capacitors

Resistors

Miscellaneous

1
1
2
3
1
2
1
2
1
1

Order Code
95128
DM79L
DT77J

78L05 5V voltage regulator
PIC16C84
22pF mica
10nF ceramic
470pF, 35V electrolytic
lie resistor
101d1 resistor
Red LEDs
9V PP3 battery
PP3 Battery clip

Order Code
WQ85G
AD5OE
WX05F
BX00A
AT62S
U1K
U1OK
WL27E
.1Y60Q
HF28F

Cost
£19.99
£154.90
£689.00

Cost

£0.49
£10.70
£0.55
£0.11
£0.36
£0.05
£0.05
£0.10
£1.90
£0.19

VISIT A MAPLIN STORE FOR
ELECTRONICS AND MORE
THERE'S A WHOLE WORLD OF

ELECTRONICS TO EXPLORE AT

YOUR MAPLIN CATALOGUE STORE

TELEPHONE CUSTOMER SERVICES ON ;01702) 554002

FOR DETAILS OF YOUR NEAREST MAPLIN STORE

•

M APLIN
CATALOGUE STORE

ihleistativ

NEW STORE
NOW OPEN IN
WOOD GREEN,
LONDON AND
WEST THURROCK
RETAIL PARK

BELFAST BIRMINGHAM BRADFORD BRIGHTON BRISTOL CARDIFF

CHATHAM CHEETHAM HILL COVENTRY DUDLEY EDGWARE

EDINBURGH FOREST HILL GLASGOW HAMMERSMITH ILFORD LEEDS

LEICESTER LUTON LIVERPOOL MAIDESTONE MANCHESTER

MIDDLESBROUGH MILTON KEYNES NEWCASTLE-UPON-TYNE

NORTHAMPTON NOTTINGHAM PORTSMOUTH PRESTON READING

SHEFFIELD SLOUGH SOUTHAMPTON SOUTHEND-ON-SEA STOCKPORT

STOKE-ON-TRENT WATFORD WOOD GREEN WEST THURROCK

e el\ FLECTRONICS AND BEYOND April 1997

