
•Projects

38 | January & February 2015 | www.elektor-magazine.com

This programming course will introduce you to
the world of ARM Cortex-M0+ microcontrollers,
and, as always at Elektor, our emphasis is on

practice rather than theory. Many free devel-
opment environments and low-cost devel-

opment boards are available: for our course we
have chosen the ‘SAM D20 Xplained Pro’, which
is based around the SAM D20 low power micro-
controller. Thanks to support from the manufac-
turer Atmel, we are able to make a thousand of

By
Viacheslav Gromov
(Germany)

From 8 to 32 bits:
ARM Microcontrollers
for Beginners (1)
The board, the software and our first program

Atmel’s family of microcontrollers based on the ARM Cortex-M0+
core is powerful, economical, versatile, and, at least according to the

manufacturer, easy to use. So why not take the plunge now and explore the
world of 32-bit microcontrollers? Our course, designed for those with a little expe-
rience of 8-bit devices, will help you on the way.

Thanks to support from Atmel, the manufacturer of the microcontroller, we
have 1,024 SAM D20 Xplained Pro boards available at the special price of
$27.00 / £ 17.95 / € 19.95 each (incl. sales tax; plus shipping).
First come, first served!
More details: www.elektor.com/samd20-board

1 Kboards

at an

Elektorized

price!

ARM Microcontroller Course

www.elektor-magazine.com | January & February 2015 | 39

these boards available to interested readers at a
reduced price: see the text box for more details.
The course will start with a brief overview of the
board and the microcontroller device, followed
by the installation of Atmel Studio 6.2. Then, for
a little bit of instant gratification, we will build
our first project. We will compare the device with
eight-bit microcontrollers, to which it is similar
in many ways. Then, in the next installment we
will describe the main peripheral elements and
how they can be used in simple projects.

The board
The block diagram of the board (Figure 1) might
not look too exciting at first glance. As you can
see, most of the 64 pins of the microcontroller
are brought out to headers, and tables are pro-
vided giving the pinouts of these headers and
the other connectors.

Power can be supplied to the board at 5 V using
either the USB socket or the PWR header. If USB
power is selected then the PWR header can sup-
ply power to an external circuit at either 5 V or
3.3 V; if, on the other hand, power is applied at
PWR, the EDBG on-board debugger (see text box)
is automatically switched off to reduce current
consumption. It is nevertheless recommended
to use a power supply capable of delivering at
least 500 mA, whichever power input is used.
Headers EXT1 to EXT3 also carry power at 3.3 V
to supply expansion boards. On each extension
header pin 1 (called ‘ID’) is reserved for the con-
nection of an ID chip on the expansion board.
The ID is used by the EDBG to determine what
type of expansion board has been plugged in,
and this information can be displayed on the
screen of the PC running the development envi-
ronment software.

The board also includes a 32 kHz quartz crystal
(which forms one of the clock sources for the main
microcontroller), the DEBUG USB connection for
an external debugger, buttons labeled RESET and
SW0, and LED0, a yellow LED. SW0 and LED0
are connected to PA15 and PA14 respectively
and may be used freely by the developer. The
jumper next to SW0 connects the output of the
on-board voltage regulator to the microcontrol-
ler: the current consumption of the device can
be measured by removing the jumper and con-
necting an ammeter between the pins.
The power and status LEDs (not shown) next to

the USB socket are both connected to the EDBG
circuit. The power LED lights when the board is
supplied with power, and the status LED flashes
when the main SAM D20 microcontroller is being
debugged over the EDBG or is in some other spe-
cial state. Both LEDs flash simultaneously when
the debugger’s firmware is updated. The user
manual for the board can be found at [1].

The microcontroller
The SAM D20J18 is an interesting member of
the ARM Cortex-M0+ family. It offers 64 pins,
256 kB of flash memory, 32 kB of SRAM, and
a wide range of peripherals, and can run at a
maximum clock frequency of 48 MHz. It is pow-

1

1

19

1

19

EXT2

EX
T3

EXT1
1
3
5
7
9
11
13
15
17
19

PB00
PB06
PB02
PB04
PA08
PB09
PA05
PA04
GND

ID
AIN[8]
GPIO
TC6/WO[0]
EXTINT[4]
(S2) I2C SDA
(S4) UART RX
(S0) SPI SS
(S0) SPI MISO
GND

2
4
6
8
10
12
14
16
18
20

GND
PB01
PB07
PB03
PB05
PA09
PB08
PA06
PA07
VCC

GND
AIN[9]
GPIO
TC6/WO[1]
GPIO
(S2) I2C SCL
(S4) UART TX
(S0) SPI MOSI
(S0) SPI SCK
VCC_3V3

EX
TE

NS
IO

N
1 H

EA
DE

R

RESET
DEBUG

USB

PWR

32kHz
CRYSTAL

EX
TE

RN
AL

 TA
RG

ET
SW

D
PR

OG
/D

EB
UG SW0

LED0

SAMD20J18

119

1
3
5
7
9
11
13
15
17
19

PA10
PA20
PA22
PB14
PA08
PB13
PA17
PA16
GND

ID
AIN[18]
GPIO
TC4/WO[0]
EXTINT[14]
(S2) I2C SDA
(S4) UART RX
(S1) SPI SS
(S1) SPI MISO
GND

2
4
6
8
10
12
14
16
18
20

GND
PA11
PA21
PA23
PB15
PA09
PB12
PA18
PA19
VCC

GND
AIN[19]
GPIO
TC4/WO[1]
GPIO
(S2) I2C SCL
(S4) UART TX
(S1) SPI MOSI
(S1)SPI SCK
VCC_3V3

EX
TE

NS
IO

N
2 H

EA
DE

R

20 18 16 14 12 10 8 6 4 2

VC
C

PB
23

PB
22

PB
10

PB
09

PA
27

PB
13

PA
15

PA
03

GN
D

VC
C_

3V
3

(S
5)

SP
I S

CK
(S

5)
SP

I M
OS

I
(S

4)
UA

RT
 TX

(S
2)

I2 C
SC

L
GP

IO
TC

2/W
O[

1]
GP

IO
AI

N[
1]

GN
D

19 17 15 13 11 9 7 5 3 1

GN
D

PB
16

PB
17

PB
11

PA
08

PA
28

PA
12

PB
30

PA
02

GN
D

(S
5)

SP
I M

IS
O

(S
5)

SP
I S

S
(S

4)
UA

RT
 R

X
(S

2)
I2 C

SD
A

EX
TIN

T[8
]

TC
2/W

O[
0]

GP
IO

AI
N[

0]
ID

EXTENSION 3 HEADER

(S3) UART TX (S3) UART RXPA24 PA25

LED0 PA14 SW0 PA15

VIN_5V0 GNDGND
VOUT_5V0 VCC_3V3VCC

1 2
3 4

Figure 1.
Block diagram of the board. The tables
show the pinout of the expansion board
connectors, the microcontroller pin
names (yellow background) and their
functions on the board (gray).

•Projects

40 | January & February 2015 | www.elektor-magazine.com

later in this course, and we will show how it can
be used in practice. The event system, as in the
ATxmega microcontroller series, can be config-
ured for example to wake the CPU from sleep
when a peripheral unit such as the ADC trig-
gers an event; however, not all peripherals are
supported in this way. The microcontroller has
two sleep modes: in idle mode only the CPU is
powered down, while in standby mode the clock
source and all peripheral units (except those oth-
erwise configured in software) are put to sleep.

Figure 2 shows a block diagram of the microcon-
troller family. On the left is the ‘ARM single-cy-
cle I/O bus’, which allows the processor to have
fast access to the GPIOs. Below that is the serial
debug interface, which has direct access to the
processor core. Below the ‘high speed bus matrix’,
which connects the core to the memories on the
right via slave ports, you can see several data
buses and the peripheral access controller: this
is in contrast to the arrangement in conventional
eight-bit microcontrollers. The peripheral access
controller can prevent peripheral registers from
being written to if necessary. The most import-
ant peripherals are connected to the APB-C bus:
among these the most interesting are the six
SERCOM blocks which provide for serial com-
munications using a range of different protocols
including USART, I2C and SPI. The pins used by
these blocks are configurable. With the exception
of the PTC, the remaining peripheral blocks will
be familiar from eight-bit microcontroller designs,
although the versions here are typically more
powerful and present in greater numbers. Each
of the eight timer/counters can be used in 2 x
8 bit configuration, 1 x 16 bit, or alternatively
two counters can be chained together to form a
32-bit counter. The left-hand side of the block
diagram is less exciting, being mainly concerned
with power management and clock generation.

er-efficient and fast, and is therefore suitable for
many different applications. Its current draw is
only 70 μA/MHz and can run from a supply volt-
age of between 1.62 V and 3.63 V. Of particular
interest are its peripheral touch controller (PTC)
and its event system. We will describe the PTC

6 x SERCOM

8 x Timer Counter

REAL TIME
COUNTER

AHB-APB
BRIDGE C

M

SHIGH SPEED
BUS MATRIX

P
O

R
T

P
O

R
T

WATCHDOG
TIMER

SERIAL
WIRESWDIO

NVM
CONTROLLER

256/128/64/32/16KB
FLASH

S

ARM CORTEX-M0+
PROCESSOR
Fmax 48MHz

SWCLK

DEVICE
SERVICE

UNIT

AHB-APB
BRIDGE A

ADC

AIN[19:0]

VREFA

AIN[3:0]

S

32/16/8/4/2KB
RAM

M

RESET
CONTROLLER

SLEEP
CONTROLLER

CLOCK
CONTROLLER

POWER MANAGER

RESET

8 x TIMER COUNTER

E
V

E
N

T
S

Y
S

TE
M

S

6 x SERCOM

2 ANALOG
COMPARATORS

SYSTEM CONTROLLER

XOUT
XIN

XOUT32
XIN32

OSCULP32K

OSC32K

OSC8M

DFLL48M

BOD33

XOSC32K

XOSC

VREF

GENERIC CLOCK

X[15:0]

Y[15:0]

PERIPHERAL
TOUCH

CONTROLLER

PERIPHERAL
ACCESS CONTROLLER

AHB-APB
BRIDGE B

VREFA

VOUT

DAC

EXTERNAL INTERRUPT
CONTROLLER

PERIPHERAL
ACCESS CONTROLLER

PERIPHERAL
ACCESS CONTROLLER

EXTINT[15:0]
NMI

GCLK_IO[7:0]

S

PIN[3:0]

WO[1:0]

VREFB

(See Note1)

CMP1:0]

ARM SINGLE CYCLE IOBUS

CONTROLLER

Figure 2.
Block diagram of the SAM D20 microcontroller (courtesy
Atmel).

Figure 3.
The simplest expansion board available from Atmel is a
prototyping board with a grid of uncommitted solder pads.

ARM Microcontroller Course

www.elektor-magazine.com | January & February 2015 | 41

We will look in more detail at the possibilities
offered by the various peripheral blocks in the
next installment in this series, and show step by
step how they are configured and used in prac-
tice. The data sheet for the device, which runs
to some 700 pages, can be found at [3].

The expansion boards
Atmel has developed several expansion boards
for the Xplained Pro board. They are designed to
help developers new to the device rapidly get to
the point of having a working prototype, and to
help them learn about the microcontroller. The
expansion boards conveniently plug directly into
the headers on the main circuit board. Each expan-
sion board includes an ATSHA204 ‘CryptoAuthen-
tication’ chip, which provides information to the
EDBG chip on the Xplained Pro board, for example
regarding the allowable supply voltage range and
maximum current consumption. This information
is then passed on to Atmel Studio, which allows
the development environment to offer links to data
sheets, libraries and example programs.

If you want to build your own expansion board
and connect it to the Xplained Pro board, the
PROTO1 Xplained Pro [4] (Figure 3) provides the
answer. It includes a total of 200 solder pads for
prototyping and is connected to headers EXT1 and
PWR. On the right the same pins are brought out
in a different order to provide a connection for an
‘Xplained Top Module’. A groove allows the upper
part of the board, which includes the power supply
connections, to be broken off if it is not wanted.

The expansion board shown in Figure 4, the IO1
Xplained Pro [5], is designed to help developers
understand the most important peripheral blocks
of the microcontroller. It includes an LED, a light
sensor, a low-pass filter to allow testing of the
PWM and ADC blocks, a 12-bit temperature sensor
with 8 kB of EEPROM connected over an I2C bus,
and a microSD card socket, connected over an SPI
bus. A microSD card is included with the board.
A couple of spare pins are also brought out.
If you wish to output something to a display, you

Figure 6.
The two QTouch boards will be used in a later installment
of this series.

Figure 4.
Universal expansion board
for testing and training.

Figure 5.
OLED display expansion
board for more advanced
projects.

•Projects

42 | January & February 2015 | www.elektor-magazine.com

can use the OLED1 Xplained Pro [6] expansion
board: see Figure 5. The board is fitted with a
128-by-32 pixel OLED display with an SPI inter-
face. The board also provides three LEDs and
three buttons. This board is designed to be con-
nected to header EXT3.

A special feature of the SAM D20, like certain
other microcontrollers by the same manufacturer,
is the PTC. Atmel offers a kit (Figure 6) called the
QT1 Xplained Pro [7] comprising two expansion
boards. Externally the two boards appear identi-
cal, but they use different touch detection tech-
nologies: ‘QTouch self capacitance’ and ‘QTouch
mutual capacitance’. We will examine the exact
differences between these technologies and their
advantages and disadvantages in a later install-
ment of this series. Each board includes a touch

Debugging and the EDBG
The idea of using a debugger to seek out and eradicate
software bugs is not very widespread in the world of eight-
bit microcontrollers, and so we shall say a few words about
the process here.

Two components are essential to the debugging process:
a software tool, forming part of the development
environment, and the debugger itself, a hardware bridge
between the PC and the target microcontroller system.
The debugger can be used to examine and alter variables,
memory contents, and often even processor registers during
program execution. Breakpoints can be set to halt execution
at certain points in the code so that the status of the
hardware can be examined. These facilities make it easier
and quicker to find bugs, even when the microcontroller is
built in to a functioning prototype, as long as the debugger
remains connected to it [9].
The EDBG (Embedded Debugger) is a feature not only of
all boards in the Xplained Pro series, but is also frequently

found on AVR boards. It takes the form of debug hardware,
specially developed by Atmel for its development kits,
integrated onto the board. As well as offering facilities for
programming and debugging the connected microcontroller,
it has an extra feature that will come in very handy
later on: the Data Gateway Interface, which provides a
bridge between the PC and several of the interfaces and
GPIOs on the microcontroller. While the microcontroller is
running, the state of selected GPIOs can be viewed and
data can be received over selected interfaces: this can
make development much easier. On the SAM D20 Xplained
Pro board this interface is connected to the SPI pins of
SERCOM5, the I2C pins of SERCOM2 and GPIO pins PA27,
PA28, PA20 and PA21.

The debugger chip also controls the status LEDs and reads
ID codes from the expansion boards. And finally, the EDBG
can also emulate a COM port over USB, as it is connected to
the UART pins of SERCOM3 on the SAM D20 [2].

Figure 7.
Click on the upper icon if you wish to install Atmel Studio
on a computer that does not have a permanent Internet
connection (all screenshots courtesy Atmel).

Figure 8.
At this point you should either click on ‘Create an
account’ or enter your personal details.

ARM Microcontroller Course

www.elektor-magazine.com | January & February 2015 | 43

wheel, a slider and two buttons, as well as ten
yellow LEDs and one RGB LED.

The development environment
Atmel microcontrollers can be programmed and
debugged using a suitable programmer/debugger
and Atmel Studio. This integrated development
environment (IDE) is free, comes directly from
the manufacturer, and provides many useful func-
tions: it is therefore an ideal tool with which to
start. You may even already be familiar with it.

In order to install the most recent version (ver-
sion 6.2), go to [8] and click on the CD icon
labeled ‘Atmel Studio 6.2 sp1 (build 1502)
Installer’ (see Figure 7). A window will appear
as shown in Figure 8, in which you must either
create an account or provide details to continue
as a guest before downloading the software. It
is advisable to create an account, as registration
will be required again at various points later in
this course. If you already have an Atmel account
you can log in using the button at the top right.
A link will now appear which, when clicked, will
start the download. When the browser pops up
a message asking if you wish only to download
the program or if you wish to run it automati-
cally, it is best to select the latter option. After a
pause a Windows security message will appear:
click on ‘Always trust software from Atmel Nor-
way’ and then click on the ‘Install’ button. If
you do not have Microsoft’s .NET framework or
Visual Studio installed on your machine, Atmel
Studio will prompt you to install them: follow
the instructions provided. In both cases you will
need to accept the license terms, and in both
cases you should install the full versions of the
programs. You should use the suggested instal-
lation paths unless you have a reason to change
them. The InstallShield Wizard will then pres-
ent a window suggesting the installation of the
USB driver, which you should accept by clicking
‘Install’ (see Figure 9).

After accepting the license in the next window
(Figure 10) installation of the driver will begin,
which can take a couple of minutes. Then, with
any luck, a message will appear confirming
successful installation of the driver. Again, you
should confirm this.
Installation of Atmel Studio itself can now begin.
In the first window (Figure 11) click on ‘Next’; in
the second, accept the license and again click on

Figure 9.
Atmel Studio requires the
installation of the USB
driver.

Figure 10.
Read the license text
carefully before accepting it.

Figure 11.
The main part of the
installation process begins.

Figure 12.
You cannot proceed further
until you have accepted the
license.

•Projects

44 | January & February 2015 | www.elektor-magazine.com

‘Next’ (Figure 12). In the next step (Figure 13)
select the installation path for Atmel Studio. If
you wish to use a different path from the one sug-
gested, click on ‘Browse...’. Then click on ‘Next’.
The last step in the installation process is a sum-
mary of what will be installed and where. Con-
firm the details by clicking ‘Next’. It will now
take some time for installation to complete (Fig-
ure 14). Tick the check box (before clicking on
‘Finish’) if you do not have any other platforms
installed on your machine that use files with the
same conventional extensions as those listed.
The InstallShield Wizard will now disappear and
the icon shown in Figure 15 should appear on
your desktop. It is now a good idea to reboot
the machine to ensure that it is in a clean state.

Our first program
The development board is connected to the PC
using a USB-A to USB-B male-to-male cable. The
device manager should automatically recognize
the device and install the driver that was included
with Atmel Studio. If the device manager fails
to find the driver, you must tell it the necessary
path by hand.
Now we launch Atmel Studio for the first time
by double-clicking on its icon on the desktop.
After a brief delay the welcome window should
appear. You will see a message like the one shown
in Figure 16, which invites you to update some
of the tools.
Among these is the Atmel Software Framework
(ASF) which we will be making heavy use of in this
series. So click on ‘Update’, which will take you to
the ‘Extension Manager’ (Figure 17), where the
necessary updates can be carried out one by one.
At the outset we recommended that you register
on the Atmel website so that you can install the
updates. Since the installation process for updates
can vary, we will not describe it in detail here.
Depending on the individual update, you will need
to respond to security messages, accept licenses,
and link the downloaded update with Atmel Stu-
dio. The simplest and most stress-free approach
is always to accept default options recommended
by the installation program. Once all the updates
are done, close the Extension Manager and fol-
low its recommendation to restart Atmel Studio.
And now finally we can make a start on our first
project! The first thing to do is to become famil-
iar with the IDE. Having restarted Atmel Studio,
select the start page at the top of the screen
and click on ‘New Project...’, which will begin the

Figure 13.
The suggested installation
path is normally
appropriate.

Figure 14.
The installation is complete!

Figure 15.
The Atmel Studio 6.2 icon.

Figure 16.
These updates should
definitely be installed.

ARM Microcontroller Course

www.elektor-magazine.com | January & February 2015 | 45

process of creating a new project (Figure 18).
Alternatively you can click on ‘Project...’ under
‘Folder/New’.

Atmel Studio’s ‘New Project’ window will now
appear, which asks you for the type, name and
path of the program you are about to write. As
shown in Figure 19, select the type ‘GCC C ASF
Board Project’, which, as the name indicates,
means that we will be using the C programming
language and the Atmel Software Framework. We
will look at the ASF in more detail next month. In
the next window (Figure 20) choose the correct
board type with the help of the search function.
There will now be a delay while the project is
initialized, and then you will be able to open the
file main.c in the project directory. There you will
see that the source code for a mini-application
has already been generated (Listing 1).

At the beginning of the program the header file for
the ASF is included; the ASF system is initialized
in the main routine. The program then drops into
an infinite loop in which an if-statement checks
whether button SW0 is pressed and turns LED0
on or off accordingly. This example file is thus
a complete project in itself, and its function is
easy to understand.

Figure 17.
The extension manager includes many additional
software tools that you may wish to install.

Figure 18.
The welcome screen of Atmel Studio 6.2.

About the author
At fifteen years of age, Viacheslav Gromov is one of the youngest ever Elektor authors,
but nevertheless has been working with analog and digital electronics for several years,
mostly from his well-equipped basement workshop. He has already had a few short articles
published in Elektor, and has written books, including about ARM Cortex microcontrollers.
He would like to take this opportunity to thank his family for their support of his hobby, as
well as Andreas Riedenauer of Ineltek Mitte GmbH for supplying information and boards.

•Projects

46 | January & February 2015 | www.elektor-magazine.com

Let’s quickly take a look at the other files. The file
asf.h simply provides a means to include other
header files, which avoids having to clutter up
the main program file with a large number of
include directives. The file samd20_xplained_
pro.h is located in the directory src\ASF\sam0\
boards\samd20_xplained_pro and defines names
for the most important pins on the board (see
Listing 2). This file is automatically generated by
Atmel Studio when a project is created based on
a particular board.

Other important files in this project are system.c
where the function system_init() is defined, and
port.h, where the GPIO functions are declared: it is
worth taking a look at the contents of these files.

We will be looking more closely at the individual
functions in the next installment of this series,
but for now we are just interested in compiling
the project and running it on the board. Click on
the green arrow ‘Start Without Debugging’ and
the project will be compiled and transferred to
the board, but the debugger will not be enabled.
If beforehand you select a debugger, as shown
at the top right of Figure 21, leaving the other
settings as they are, then after compilation a
message like the one in Figure 22 may appear,
inviting you to update the debugger’s firmware.
Click on ‘Upgrade’ and wait while the new debug-
ger firmware is loaded onto the board.

Then click again on the green arrow so that our
program is finally transferred to the board. You
should see the following success report in the
output window at the bottom of the screen (here
abbreviated):

Program Memory Usage : 1628 bytes 0,6 % Full
Data Memory Usage : 8256 bytes 25,2 % Full

Build succeeded.
========== Build: 1 succeeded or up-to-
date, 0 failed, 0 skipped ==========

Our first 32-bit ARM microcontroller program can
now be tested by pressing the reset button.

A bright outlook
We hope you have enjoyed this first installment
of the series. For any comments or questions,
please get in touch via the Books | DVDs | Vid-
eos | Courses | Seminars | Webinars topic on

Figure 19.
At this point you must give your project a name.

Figure 20.
Use the ‘Select By Board’ search facility.

Figure 21.
Atmel Studio should recognize the debugger on the
board automatically.

ARM Microcontroller Course

www.elektor-magazine.com | January & February 2015 | 47

the Elektor forum [10]. In the next installment
we will look at how to control the GPIOs and the
U(S)ART interfaces. Until then, you can get to
know the board, the microcontroller and Atmel
Studio a little better and try out some of the
many example projects available: these can be
accessed under ‘File/New/Example Project...’ or
‘New Example Project...’ in the opening screen.
Have fun!

(140037)

Web Links

[1] www.atmel.com/Images/Atmel-42102-
SAMD20-Xplained-Pro_User-Guide.pdf

[2] www.atmel.com/Images/Atmel-42096-Micro-
controllers-Embedded-Debugger_User-Guide.
pdf

[3] www.atmel.com/images/Atmel-42129-
SAM-D20_Datasheet.pdf

[4] www.atmel.com/tools/atproto1-xpro.aspx

[5] www.atmel.com/tools/atio1-xpro.aspx

[6] www.atmel.com/tools/atoled1-xpro.aspx

[7] www.atmel.com/tools/ATQT1-XPRO.aspx

[8] www.atmel.com/tools/atmelstudio.aspx

[9] http://en.wikipedia.org/wiki/Debugger

[10] http://forum.elektor.com

Listing 2. Definitions required for
simple access to the LED and button.

#define LED0_PIN PIN_PA14
#define LED0_ACTIVE false
#define LED0_INACTIVE !LED0_ACTIVE

#define SW0_PIN PIN_PA15
#define SW0_ACTIVE false
#define SW0_INACTIVE !SW0_ACTIVE
#define SW0_EIC_PIN PIN_PA15A_EIC_EXTINT15
#define SW0_EIC_MUX MUX_PA15A_EIC_EXTINT15
#define SW0_EIC_PINMUX PINMUX_PA15A_EIC_EXTINT15
#define SW0_EIC_LINE 15

#define LED_0_NAME “LED0 (yellow)”
#define LED_0_PIN LED0_PIN
#define LED_0_ACTIVE LED0_ACTIVE
#define LED_0_INACTIVE LED0_INACTIVE
#define LED0_GPIO LED0_PIN

#define BUTTON_0_NAME “SW0”
#define BUTTON_0_PIN SW0_PIN
#define BUTTON_0_ACTIVE SW0_ACTIVE
#define BUTTON_0_INACTIVE SW0_INACTIVE
#define BUTTON_0_EIC_PIN SW0_EIC_PIN
#define BUTTON_0_EIC_MUX SW0_EIC_MUX
#define BUTTON_0_EIC_PINMUX SW0_EIC_PINMUX
#define BUTTON_0_EIC_LINE SW0_EIC_LINE

Listing 1. Our first program (excerpt).

#include <asf.h>

int main (void)
{
 system_init();

 // Insert application code here, after the board has been
 // initialized.

 // This skeleton code simply sets the LED to the state of
 // the button.
 while (1) {
 // Is button pressed?
 if (port_pin_get_input_level(BUTTON_0_PIN) == BUTTON_0_ACTIVE) {
 // Yes, so turn LED on.
 port_pin_set_output_level(LED_0_PIN, LED_0_ACTIVE);
 } else {
 // No, so turn LED off.
 port_pin_set_output_level(LED_0_PIN, !LED_0_ACTIVE);
 }
 }
}

Figure 22.
Both status LEDs on the board flash when the debugger
firmware is being upgraded.

