eProjects

By Andreas Mokrof3,
Dominik Riepl,
Christian Winkler and
Professor Thomas
Fuhrmann (Germany)

Figure 1.
The board showing the
welcome screen.

Multi I/0 for FPGA

Development Board (2)
Programming in VHDL

COLIOR

-n.‘vlcﬂ

C5 =

(C> Elektor
138148-1 U2.3

¥
-
" P4
e
y.
“GND

) . 1 c e 73 P31 937 P2 8 “mm
(51 o I 2 T U T

Lepa &= 1 M~y & .
CENTER PIN IS GNC BPS RESE

o oo

ogu.TPZ

In the December 2013 edition we described the FPGA development board hard-
ware. With this board it's a simple job to interface the FPGA to real world devices
and events. The extensive range of peripherals include sensors and an LC display.
The next step is to program the FPGA and get them talking to one another.

The Elektor FPGA board was originally featured in
December 2012, It has the part number 120099-
91 and can be ordered directly from the Elektor
Store. This FPGA board alone does not contain
any peripheral chips. To make it more useful
as an educational aid an expansion board was
developed by the students at the Ostbayerischen
Technischen Hochschule in Regensburg, Germany.
The expansion board has a number of peripheral
sensors and an LCD which interface to the FPGA

40 | January & February 2014 | www.elektor-magazine.com

board. They can be easily configured and con-
trolled using VHDL and put to use in all sorts of
applications. The complete development environ-
ment with both boards is shown in Figure 1. In
part 1 [1] of this project the development board
hardware was described, in this second part we
describe how these peripherals can be controlled
using VHDL. This will give you a good grounding
in the technology so that you can go on to use it
for your own applications.

The complete project has been developed using
the XILINX ISE 14.5 Design Suite which is freely
available to download from the Internet [2].

A hierarchical approach

For large projects in VHDL it is sensible to
approach the design in the way you would a soft-
ware project by breaking down the program into
small manageable parts. Unlike software VHDL
doesn’t use functions or classes, instead we use
descriptions of hardware, the so-called Module.
Each module is described by its own file and has
its own defined interface to the outside world.
A module functions as a self-contained unit and
can be simulated with the help of a Test-Bench.
It can be seen as a functional black box which
integrates into the complete project. The use of
modules greatly simplifies the process of sys-
tem debugging.

Based on the sensors, display, control elements
and their control, the VHDL project is divided into
the following areas (see Figure 2):

e menu_control: The central module; this is
where all the data comes together and the
menu functions are taken care of.

e taster: Interfaces to the pushbuttons with
debounce logic.

e lcd: Drives the LCD and loads the display
data.

e gps_control: Controls the GPS module and
receives Global position information and time
of day.

e ADC_control: Controls the A/D converter.

At the top level the individual modules are com-
bined and no logic process is described. The con-
nections are made in the sub-modules defined in
the top_level description using the component
key word. The compiler is thus informed which
components are used and what inputs and out-
puts are available. Connections to the module
are defined in the port map, where the input
and output of the sub modules are linked to the
signals defined in the top level.

While VHDL is a Hardware Description Lan-
guage, they get translated directly into gates
and because the modules work in parallel it is not
necessary to consider the order of the modules.
All modules have a connection to the 8 MHz clock
so that every process is synchronous with the

N)
Pushbutton | —| A |, AD
—!'P Pushbutton < Control 4T> Converter
! |
! L |
I Menu I
i Main Control i
! y F Y !
i |
LCD GPS GPS
LCD <
Control + — Control + Data
b J
130390-11
clock. Apart from this the module’s data output Figure 2.

has an enable signal which goes to a logic ‘1’
state for one clock period when all the process-
ing in the module is completed. It indicates that
output data is stable and can be used elsewhere,

Package: self_defined_types

This Package contains the global definitions for
the complete project and frequently used data
types and conversions to make them more
readable.

It defines the following data types:

e BYTE: An 8-bit wide array of type std_logic

e BYTE_ARRAY: An arbitrary width array of type
BYTE

In addition the function HEXtoASCII is defined
which converts a 4-bit wide std_logic_vector
with a hexadecimal value into a displayable ASCII
character.

The packages are linked into this and any other
library using the command:

library work;

use work.self_defined_types.all;

The ADC Module

The first module described here is used to con-
trol the A/D converter and read the output data.
The module uses a 3-bit long std_logic-input
vector in_channel to select the analog channel
and an 8-bit long std_logic-output vector out_
adval to output the data. The other inputs and

The project’s block diagram.

www.elektor-magazine.com | January & February 2014 | 41

Projects

Figure 3.
State diagram of the ADC
read processes.

in_sar=1
(transmission starts)
<—
_
read_bit_count /=8
(all bits read)

send_state

130390-12

outputs are necessary to communicate with the
IC (in_sar, in_do, out_clk, out_di, out_not_cs,
out_not_se).

The Clock Process

According to the data sheet of the A/D converter
[3] it should be provided with a clock signal in
the range from 10 kHz to 400 kHz. For this appli-
cation we use 100 kHz. The clock is generated a
dedicated process, see Listing 1.

The counter cnt_clock is incremented on
each rising edge of the 8 MHz input clock in_
clk and the internal clock adc_clk at (const_
divider - 1) / 2 and (const_divider - 1)

Listing 1
constant const_divider: integer := 80;
signal cnt_clock: integer range 0 to const_divider - 1 := 0;

signal rising_clk: std_logic;

signal falling_clk: std_logic;

signal adc_clk: std_logic := '0';

process(in_clk)

begin

if rising_edge(in_clk) then

if cnt_clock = const_divider - 1 then

adc_clk <= '1';

rising_clk <= '1';

cnt_clock <= 0}
elsif cnt_clock = (const_divider - 1)/2 then
adc_clk <= '0e';
falling_clk <= '1';
cnt_clock <= cnt_clock + 1;
else
rising_clk <= '0';
falling_clk <= '0';
cnt_clock <= cnt_clock + 1;
end if;
end if;

end process;

42 | January & February 2014 | www.elektor-magazine.com

which is inverted, so that the time that the timer
runs from O to reset corresponds exactly to a
clock period of the generated clock.

The constant const_divider is the ratio of the
clock frequency of the external oscillator and the
required converter clock frequency:

oscillator clock frequency

const _divider =
converter clock frequency

Apart from this the Enable signal rising_clk and
falling_clk are generated for state machine
communication with the converter.

The reading process:

implementing a State Machine

For the sake of clarity control of the FPGA func-
tions are implemented in modules using state
machines. The following implementation will be
for the A/D converter. The state transition dia-
gram of the machine is given in Figure 3. Each
state is represented by a circle and transition to
another state is indicated by an arrow labeled
with the transition condition.

Two states are required to read data from the
ADC: In wait_state the state machine waits
until data is available indicated by the SARS out-
put from the ADC going to a logic ‘1’. The state
machine then jumps to the send_state which
reads the 8-bits from the converter.

To describe the state diagram in Figure 3 using
VHDL a separate data type state_type_read
is defined with all the possible states and then
a signal that is this type. The compiler con-
verts this construct into a timer. For a devel-
oper the approach used here is more easily
understandable.

It is written as a process using a case statement,
in which all the possible states of the machine
are described, see Listing 2.

The two separate states of the machine can now

be described:

e wait_state: When the A/D converter out-
puts a new word the SAR status output is set
to a logic ‘1’. This makes the machine state
change to read_state.

e read_state: This is where the ADC serial

output value is read bit by bit and starting
with the MSB, written into a shift register.
When 8-bits have been read the Value-En-
able-Bit int_val_en is set to logic ‘1’ and
returns to the wait_state. After the change
this will be reset to logic ‘0" again.

The ADC outputs a new bit on every falling clock
edge of the 100 kHz clock. Each bit is read on
the rising edge of the clock with help from the
Enable signal from the clock process.

This implementation is used in the same way by
all the other state machines so only the individ-
ual states and transitions will be described and
not the principle itself.

The sending process

A/D conversion is initiated by sending a telegram
to the A/D converter. This is performed using
a separate process. According to the ADC data
sheet (data sheet [3], Figure 20) it reads con-
trol signals from the FPGA on rising clock edges.
The A/D converter outputs a new bit at rising
clock edges. To ensure that the data is stable
the implemented state machine reads the value
of these bits on the falling clock edge.

The state diagram showing the sending pro-
cess structure is given in Figure 4. The process
is implemented as a state machine with three
states:

e wait_state: Waits for the Channel_Enable
signal to start the conversion. When this
signal is logic ‘1’ the chip select signal is set
to logic ‘0" and the first bit of the telegram
is sent. The state machine changes to the
send_state state and decodes the remaining
bits in the telegram.

e send_state: In this state bits are sent one
after another on the data line to the A/D
converter. The number of sent bits are
counted until all the bits have been sent then
the state changes to wait_for_rec_ready.

e wait_for_rec_ready: In this state the wait
for the conversion process of the analog
voltage is finished. This is done with help of
the {int_val_en signal. When reading out is
finished communication with the A/D con-
verter is ended by switching the chip select
signal to logic ‘1’. The machine returns to
the output state wait_state and the next
request can be processed.

int_val_en =1
(finished reading
converted data)

int_ch_en=1
(data to channel
selection OK)

wait_for_rec_ready) —— send_state
send_bit_count=4
(sent all bits of telegram)
130390-13
Figure 4.

State diagram of the ADC
send processes.

Listing 2

type state_type_read is (wait_state, read_state);

signal read_state_machine : state_type_read := wait_state;
process(in_clk) begin
if rising_edge(in_clk) then
if rising_clk = '1' then
case read_state_machine is
when wait_state =>
read_bit_count <= 0;
int_val_en <= '0';
if in_sar = '1' then
read_state_machine <= read_state;
end if;

when read_state =>
if read_bit_count /= 8 then
int_adval (7 downto 1) <= int_adval (6 downto 0);
int_adval (@) <= in_do;
read_bit_count <= read_bit_count + 1;
else
read_state_machine <= wait_state;
int_val_en <= '1';
end if;
end case;
end if;
end if;

end process;

www.elektor-magazine.com | January & February 2014 | 43

Projects

Listing 3

The pushbutton input module

The process which reacts to pushbutton activity
is contained in a separate VHDL module. Its main
function is to perform contact debouncing (see
article on the board hardware [4]).

To achieve debounce a counter is started when the
signal level from the pushbutton input changes
state. The counter is used to produce a delay so
that the signal level is only valid once this counter
has finished counting. A long press would result
in the counter timing out several times and regis-
tering several presses. To avoid this situation the
active pushbutton is polled at every rising clock
edge to check if the press has already been reg-
istered. The pushbutton input signal state is com-
pared with its state stored when the counter last

generic (WAIT_40MS: integer := 320100;
WAIT_4_1MS: integer := 32900;
WAIT_1_52MS: integer := 12200;
WAIT_100US: integer := 900;
WAIT_38US: integer := 400;
WAIT_450NS: integer := 10);

Listing 4

when send_data =>
out_enable <=

if wait_counter

WAIT_450NS - 1 then

state <= wait_state;

wait_counter <= 03
else
wait_counter <= wait_counter + 1;

end if;

when wait_state =>
out_enable <= '0';
if wait_counter = wait_time - 1 then
if prev_state = '0' then
state <= 1init;
else
state <= write_data;
end if;
wait_counter <= 0;
else
wait_counter <= wait_counter + 1;

end if;

44 | January & February 2014 | www.elektor-magazine.com

elapsed. When the two states are the same (long
press detected) the counter is reset otherwise
it runs until the debounce delay time finishes.
Any contact bounce will be finished before the
counter reaches the end of its counting period.
The signal level is now stored to temporary mem-
ory and a short pulse is output.

The LCD Module

The LCD has a parallel interface so all control and
data information is sent in the form of parallel
words. After each word it is necessary to intro-
duce a wait period to allow the LCD board con-
troller to process the information. It is therefore
necessary to generate some wait periods. This is
achieved with the generic command where con-
stants valid in the module are placed. These are
defined in the Entity declaration, as in Listing 3.
The wait period is defined by the integer value
which defines the maximum value of the counter
clocked at 8 MHz.

The LCD state machine

A state machine with six states is implemented
to control the LCD. Figure 5 shows a simplified
state diagram for the LCD. The state machine
starts with start_up. Firstly there is a 40 ms
delay introduced to allow for the LCD to power
up. Next is the init state to initialize the LCD.

After initialization it automatically jumps to the
wait_for_data state and stays here until in_
data_en (an external input) is logic ‘1’. This indi-
cates that display data is available to be written
to the display.

Next it jumps to the write_data state, where
all the data is written to the display. For every
character written the LCD interface requires a
‘1’ of at least 450 ns on its Enable input. This is
taken care of after each character is sent out in
the send_data state. In here the out_enable is
set followed by a 450 ns wait.

The display requires a processing time of 38 ps
after each character is sent to the display. This
is generated by using a wait_state before the
next character is sent.

After each wait_state elapses it returns to write_
data state until there are no more characters left
to send to the display.

Listing 4 shows the relevant section of VHDL
code which handles send_data and its wait_state.

GPS

The VHDL description of the GPS module is made
up of four individual modules. The top module for
GPS control is gps_control which contains three
sub-modules gps_serial_parallel, gps_check-
sum and gps_parser.

GPS control (gps_control)

In the top module gps_control the other sub-mod-
ules referenced above are declared as components
and linked to the corresponding ports. The pro-
cess to turn the GPS module off and on is in this
module. In addition a short process flashes an
LED each time a valid GGA-type sentence is read.

The Conversion Process (gps_serial_parallel)
In the gps_serial_parallel module the serial
UART protocol data from the GPS module is con-
verted into a one byte wide parallel signal. Using
a previously calculated divider constant the com-
munication speed with the GPS module (here we
use 4,800 bit/s) can be adapted as necessary.

It is important that the sampling points of the
received GPS data stream are synchronized to
the data rate. To achieve this, the falling edge
of the start bit at the beginning of every byte is
detected, the GPS data gps_data input signal
is shifted into the vector data_shift using the
internal 8 MHz clock and compared with the bit
sequence ‘1110,

Once the falling clock edge is detected the fol-
lowing GPS data will be sampled one half of a
bit width later i.e. mid-bit, and then shifted into
the int_data shift register until a complete byte
has been received.

The valid data is now stored in int_data and
written to the parallel data output out_data and
the Enable-signal set.

Checksum calculation (gps_checksum)

The gps_checksum module calculates the check-
sum on all the transmitted data bits and compares
it with the checksum value sent from the GPS
module. This ensures that there are no errors in
the received sentence. When an error is detected
the corrupted sentence is discarded.

A state machine with five states is used to read-in,
calculate, validate and them output the result:

e reset: All of the signals used for these cal-
culations are first reset to zero. When valid

done waiting
40 ms "
done waiting
prev_state =0
4 —
init done send_data
send
count <= 34
v

data array, data valid
_—
<—
done writing data array

wait_for_data

data from the serial/parallel converter (out_
data_enable = 1) is available the state of
zeichen_in changes, as soon as a ‘$’ symbol
is detected in the data. This symbol is the
GPS sentence start character.

e zeichen_in: This detects where the check-
sum begins in the received sentence and
changes to the checksum_in_1 state. An ‘if’
condition is used to detect an asterisk which
marks the end of the sentence data. The
two characters following the asterisk are the
two-byte sentence checksum.

e checksum_in_1: This reads in the first check-
sum character, This is XOR’ed with the sum
of the input characters. When it is not valid
the signal int_checksum_err will be assigned
logic ‘1",

e checksum_in_2: The second checksum char-
acter is read in here. Otherwise identical to
checksum_in_1.

e output: When the checksum is valid then the
signal int_checksum_ok is given the value
logic ‘1" otherwise it has the value ‘0’.

Reading GPS data (gps_parser)

The gps_parser module filters out the relevant
information from the received GPS data stream
and prepares it for further processing. The GPS
module sends all its data sentences sequentially

www.elektor-magazine.com | January & February 2014 | 45

done waiting
prev_state =1

write_data

130390-14

Figure 5.
State diagram of the LC
display.

eProjects

according to the NMEA protocol. It is necessary
to identify the sentence of interest (for our pur-
poses the GGA sentence containing positional fix
information) and recover it from the data stream.
A ‘$’ character identifies the start of every new
data sentence. A state machine checks when this
occurs. Following this character is the ‘GPGGA’
sequence which is the preamble to the GPS data
of interest to us. There is a state for each data
sentence of interest in which the data is read in.
Each data field in the sentence is separated by
a comma and this is used to change the state
Figure 6. of the machine. One after another all the data
The menu options. is read in and sent to the corresponding output.

46 | January & February 2014 | www.elektor-magazine.com

Menu control in VHDL

A menu has been implemented on the display
to allow user control of the GPS module and
A/D converter. Pushbuttons under the display
allow intuitive interaction with displayed menu
options. Figure 6 shows the menu layout. After
the start screen there is an option to select sub
menus ‘GPS’ or ‘ADC".

The GPS sub-menu firstly gives you the option
to turn it off or on. Other pages give you the
option to view additional information such as
your current longitude and latitude. The com-
mand ‘up’ returns you to the next level up in
the menu structure,

Selecting ‘ADC’ from the menu allows you to
select a channel of the A/D converter. The mea-
sured values are displayed on a page in the sub-
menu. Pressing ‘ref’ (refresh) causes the ADC
to make another measurement of the displayed
channel and update the display with the new
value.

The GPS menu

The menu control is also built with a state machine
and can be easily restructured (by changing the
state transition diagram) or expanded (add new
states). The menu structure and associated state
machines are described using the GPS menu as
an example.

Each page in the menu has a corresponding state
of the state machine for control of the menu. The
current state is stored in the signal state. The
machine starts in the state_init state and then
changes to the state_welcome state.

Now the welcome screen is shown. A press of the
pushbutton on the right changes to the state_gps
state. This state builds the highest level of the
GPS menu. In the lower line of the display are
arrows pointing to the left and right. Pressing
the button beneath the arrow changes the state
to state_adc and now the A/D converter menu
options are displayed.

Staying in the GPS menu you can press OK to
get to the first GPS sub-menu, here you have
the option to switch the GPS module on and off
(state_GPS_toggle). When powering down the
GPS module it is important to observe the cor-
rect power-down sequence to avoid any possible
internal memory data corruption. On one level
with the state to switch on and off there are dis-
play options for GPS data such as longitude and
latitude which can be selected using the left and
right pushbuttons.

As an example we can show how the longitude is displayed
on the LCD. In the state_longitude state it will (automat-
ically when valid data is available) assign to the vector ele-
ments of out_lcd_line the display data elements. In the
VHDL description, for example, the data element in_lon_pre
is assigned to the vector element out_lcd_linel(5). At the
fifth position on the first display line is the value of in_lon_
pre which in this case will be either the letter ‘E’ or ‘W’ i.e.
east or west of the central meridian. In accordance to this
principle each position of the display will be assigned the
character to be displayed. After this process refresh_lcd
refreshes the display and displays the characters.

The principles of state changing and display of data
described above also operate in the same way for the other
menu pages.

To sum up

As an example project we have demonstrated a menu driven
control of the FPGA expansion board. All the Modules consist
of systematically implemented state machines. This project
used up 40 % of the gates and look up tables in the FPGA.
There is still enough in reserve for additional applications.
It would be fairly easy, for example to add a function to
convert the A/D output values into a temperature reading
or a voltage level.

