Transfer data frames over asynchronous RS-232C lines

SK SHENOY, NAVAL PHYSICAL AND OCEANOGRAPHIC LAB, KOCHI, INDIA

The asynchronous RS-232C interface is a simple, low-cost
option for interconnecting processor-based systems. In
many applications, you need to transfer variable-size mes-
sages. However, the character-oriented RS-232C protocol
offers no direct mechanism for transferring messages as self-
contained packets. The method described here uses an
obscure feature found in most UART devices to indicate
packet boundaries. The feature is the capability to transmit
and recognize the “Break” character. This character is noth-
ing but a “space,” or low, in the transmit line of a duration
equal to or greater than an entire asynchronous character-
transmission time, including the start and stop bits (Figure
1). In this framing method, the message data bytes sand-
wich between two Break characters to form a data frame
(Figure 2).

A Turbo C program demonstrates the transfer of variable-
size messages between two PCs with 8250-compatible UARTs
(Listing 1). You can download the program from EDN’s Web
site, www.ednmag.com. At the registered-user area, go into
the Software Center to download the files from DI-SIG,
#2140.

A null-modem cable interconnects the PCs’ COM ports.
The same routine works with most other UARTs. The
method allows data-packet reception in interrupt mode and
wastes no CPU overhead looking at each character to detect
packet boundaries. Instead, the UART does the detecting.
Because the Break is not a legitimate data character, it is data-

96 = EDN JANUARY 15 1998

| Fioure 1 |
B

| START

BREAK

MARK

—-——-SPACE

N N
| « DATA (NULL) « |
STOP

Most UARTs can transmit and recognize the Break character,
a state of logic 0 between the start and stop bits.

L X

BREAK DATA 1

S S

DATAn BREAK

DATA 2

The Turbo C routine in Listing 1 sandwiches data bytes
between two Break characters to form a data frame.

BT | Desicn Ipeas

transparent, and you can use it for binary-data exchange.
You can use this “in-band” scheme with repeaters and
modems, as long as they permit transmission of the Break
condition. The packet-boundary detection is relatively
immune to a missed Break character and to data errors. You
can render the detection more robust by introducing data-
length and check-sum fields in the frame to allow detection
of errors and flow control using an RTS/CTS (request-to-
send/clear-to-send) handshake.

To transmit a Break, set bit 6 (Set Break) of the line-con-
trol register to 1. The UART then sets its Tx line low, until bit
6 encounters a 0. Transmission of a Null character (00 hex)
makes the duration of the Break equal to one character-
transmission delay. Bit 6 of the line-status register (Tx
Machine Status) indicates when this delay is over; then, the
Break bit resets. To enable detection of the Break, bit 2 of the
interrupt-enable register (interrupt-on-Rx-error condition)

sets during UART initialization. Bit O, set to 1, enables
receive-data interrupts. In the interrupt-service routine (ISR),
bits 1 and 2 of the interrupt-identification register indicate
the interrupt type.

A global variable, Receive_Count, initialized to zero, han-
dles frame reception. Upon detection of a Break, the UART
raises an interrupt. If Receive_Count is zero, the interrupt is
a start-of-frame break and the UART ignores it. (You can use
the interrupt to set a Packet_Receive_On flag.) On each sub-
sequent receive interrupt, the ISR stores the data in the
Receive buffer with Receive_Count as the index. If
Receive_Count is nonzero when the Break interrupt is raised,
the interrupt is an end-of-frame break. Then the routine calls
the frame-processing function and resets Receive_Count to
zero. (DI #2140) EDN

To Vote For This Design, Circle No. 357

LISTING T—DATA-FRAME-TRANSFER PROGRAM

#include <stdio.h>
#include <conio.h>
#include <dos.h>

/* COM PORT DEFINITIONS AND GLOBAL VARIABLES */

#define com_reg 0x3£f8 /* Default is coml; 2£8 for com2 */

#define DATA PORT com reg + 0

#define LINE_CNTRL com_reg + 3

#define MODEM_CNTRL com reg + 4

#define INT_ENABL com reg + 1

#define INT _IDENT com_reg + 2

#define LINE_STS com reg + 5

#define MODEM STS com reg + 6

#define BAUD LOW com reg + 0

#define BAUD HIGH com reg + 1

#define DLAB SET 0x80

#define BAUDMSB 0

#define BAUDLSB 0Oxc /* 9600 BPS */

#define CNTRL_CMD 7 /* 8 BIT, 2 STOP BIT, NO PARITY */

#define WAIT TX_RDY() while (((inportb(LINE STS))&0x60) !=0x60)
/* Check for Tx buf empty & Tx shift reg empty */

unsigned char sdatabuf[256],rdatabuf[256]; /* Send & Recv buffers */
int Receive Count = 0; /* Counter for data stored in rdatabuf([] */
void interrupt (¥0ldComHandler) (void);

/* FUNCTION CALLED TO DISPLAY RECEIVED DATA PACKET */
void processdata(void)

int i;

cprintf ("\n\rRX > "); clreol(); /* Received data cursor */

for (i = 0; i< Receive_Count; i++) /* Display received data */
putch (rdatabuf [i]) ;

cprintf ("\n\rTX > "); clreol(); /* Transmitted data cursor */

/* INTERRUPT SERVICE ROUTINE TO TAKE CARE OF PACKET RECEPTION */
void interrupt service_ sio(void)

unsigned char iir ;

iir = (inportb(INT_IDENT) >> 1) & 3; /* Get interrupt type */
switch(iir)

{

case 0: /* Modem status int DSR,CTS,RI,RLSD */
inportb (MODEM_STS); /* Ignore; reading IIR resets int */
break;/* reading IIR resets int */

case 1: /% Tx int */

break;/* reading IIR resets int */
case 2: /* Rx int */
rdatabuf [Receive Count++] = inportb(DATA_PORT); /* Store packet
break;
case 3: /* Rx error (Break detect etc.) */
inportb (DATA_PORT) ; /* NULL char */
if (((inportb (LINE_STS))&0x10) == 0x10)
/* Break detected; Reading LSR Resets int */
if (Receive Count) processdata();/* EndOfFrame Break Process
/* Else Start of Frame Break. Do nothing */
/* Else Receive error; Drop packet */
Receive Count = 0; /* Re-initialise for next packet */

}
outportb (0x20,0x20); /* EOI */
return;

/* FUNCTION TO INITIALISE SERIAL PORT */
void init_serial_io(void)

outp (LINE_CNTRL,DLAB_SET) ; /* DLAB_SET */

outp (BAUD_LOW, BAUDLSB) ; outp (BAUD_HIGH,BAUDMSB); /* 9600 BAUD */
outp (LINE_CNTRL, CNTRL _CMD); /* 8 BIT,2 STOP BIT,NO PARITY */

outp (MODEM_CNTRL, 8) ; /* DTR,RTS & OUT2 SET */

OldComHandler = getvect(Oxc);/* 0xb for com2 */

disable();

setvect (0xc, (service_sio)); /* 0xb for com2 */

outportb (0x21, ((inportb (0x21))&(!0x10)));/* PIC mask word 0x8 for
outportb (INT_ENABL, 0x5); /* IER enable Rx Machine error & RX Data
enable () ;

}

/* FUNCTION TO TRANSMIT A BREAK OF ONE CHARACTER DURATION */
void SendBreak(void)

outportb (LINE_CNTRL, inportb (LINE_CNTRL) | 0x40); /* LCR; set break */
outportb (DATA_PORT,0); /* Send NULL data */

WAIT TX RDY(); /* Wait on TxShift Reg Empty; Null char is shifted out
outportb (LINE_CNTRL, inportb (LINE_CNTRL) & Oxbf); /* LCR; remove break

}

/* FUNCTION TO TRANSMIT A DATA PACKET */
void SendBuffer(unsigned char packet[], int DatLen)
int i;
SendBreak(); /* Send START OF PACKET break */
for (i=0; i<DatLen; i++) /* For each message byte*/
WAIT TX RDY(); /* Wait for Tx Ready */
outportb (DATA_ PORT,packet[i]); /* send one data char */

WAIT TX RDY(); /* Wait on TxShift Reg Empty; last char is shifted out
SendBreak(); /* Send END OF PACKET break char */

/* BARE-BONES APPLICATION; TAKES STRING INPUT (TERMINATED BY ENTER) FROM
KEYBOARD AND TRANSMITS AS A PACKET. ALSO DISPLAYS RECEIVED PACKETS */
void main(void)

int ¢, count = 0;
init _serial io(); /* Initialise serial port */

printf ("\n\rTX > "); /* Transmit Prompt */
while(l) /* Forever Loop */

if ((c=getche(}) == 27) break; /* Exit if Escape key pressed */
sdatabuf [count++] = c;
if(c == '\r’) /* If Enter Key pressed */

putch(’\n’); clreol(); /* Go to newline */

cprintf ("TX > ¥); /% Transmit Prompt */

SendBuffer (sdatabuf,count); /* Transmit Data Packet */
count = 0; /* Reset Tx data count */

setvect (0xc, (OldComHandler)); /* Restore int vector; 0xb for com2 */
outportb (0x21, ((inportb(0x21)) | (0x10)));/* PIC mask word 0x8 for com2

