
96 September & October 2017 www.elektormagazine.com

There exist many components and modules with an I2C interface,
ranging from temperature, position and motion sensors to real-
time clocks and LED and graphical displays. You need only enter
‘I2C’ into the search box of your favorite on-line supplier of
electronic components to get an idea of the wide range of options
available. From the pages and pages of results [1] we have
selected a couple of devices to look at in more detail.
One advantage of I2C devices is that they do not require
complicated wiring to connect to their host. A four-way ribbon
cable is all that is need to carry both power and data. Our lead
photograph shows the three devices we have selected for this

article side-by-side on a breadboard. From left to right they
are: a type LM75 temperature sensor on a breakout board;
a PCF8574 port expander IC; and a real-time clock module
using an RV-8523 RTC chip, which you can see just below and
to the left of the coin cell.

LM75
The LM75 is the de facto standard temperature sensor with
an I2C connection. Of the seven bits of its address only the
upper four are fixed (at 1001); the other three bits can be set
using external circuitry. Up to eight LM75s can therefore be
connected to a single I2C bus, with addresses ranging from
0x48 to 0x4F. So if, for example, LM75s are to be used in
a temperature monitoring application in a desktop PC, it is

The I2C Bus
Part 3: components and troubleshooting

By Josef Möllers (Germany)

This last installment of our series picks out three I2C devices for closer examination: a temperature sensor, a
port expander and a real-time clock. We will see how to read from and write to the registers on these devices
and look at some handy software and hardware tools.

Figure 1. Innards of the type LM75 temperature sensor. (Source: Maxim) Figure 2. Internal circuit of the PCF8574 port expander. (Source: Texas
Instruments)

www.elektormagazine.com September & October 2017 97

manual and online guides the i2cset command expects a
register number after the device address. However, the port
expander interprets the number as a data value representing
the desired bit pattern on its outputs.
It is sometimes desirable to use a device like this to provide a
degree of isolation between a computer and a peripheral: if an
output pin should accidentally be shorted to 12 V, for example,
then it is only the PCF8574 that is likely to suffer any harm.
The PCF8574 is also used on simple LCD interface boards,
allowing an I2C bus to drive the common one- or two-line
LCD panels that employ the HD44780 controller IC. The LCD
is operated in four-bit mode, and three further pins on the

possible to measure the temperature at up to eight different
places within the case.
Internally the LM75 has four registers, which are addressed
using two bits (see Figure 1):

• 00H: a 16-bit temperature register, which can only be
read from;

• 01H: an 8-bit configuration register;
• 02H: a 16-bit hysteresis register;
• 03H: a 16-bit threshold register.

At power up the temperature register is selected by default, but
even if that is the only register you wish to access it is always
a good idea to write the register’s address before reading it.
When writing to a register the address must be given: the
first byte after the write command is always interpreted by
the LM75 as a register number.
After the register number come the data. In the case of a 16-bit
register the more significant byte is transferred first, followed
by the less significant byte.
In contrast to some other I2C devices the LM75 does not
automatically increment the register number after each access:
the register pointer remains fixed. If there is only one bus
master and only the temperature reading is of interest, it is
therefore unnecessary to reset the register pointer to zero before
each access. All you need to do in the read operation is simply
transfer the two data bytes representing the temperature.
The accuracy of the LM75 does leave a little to be desired.
According to the datasheet the reading can be in error by up
to 2 °C. However, there are alternative devices, such as the
TMP275, which are more accurate and in general protocol- and
register-compatible with the LM75.
The LM75 is also rather sensitive to interference on its power
supply lines. To avoid collecting garbage instead of temperature
readings, it is wise to stick to the ‘one 100 nF capacitor per
package’ rule of thumb.

PCF8574
The PCF8574 is a ‘remote 8-bit I/O expander’, a parallel I/O chip
controlled over an I2C bus interface: see Figure 2. It comes
in two variants, which differ only in their I2C slave address. In
the case of the PCF8574 the upper four bits of the address are
0100, while in the case of the PCF8574A they are 0111. This
means that it is possible to connect up to sixteen PCF8574-
series devices to a single I2C bus.
Internally there is just one register, which is directly connected
to the port. When a bit pattern is written to the register, the
port pins change state; if a bit is set to ‘1’, then the pin can
also be used as an input. When the register is read the device
returns the logic levels on the external I/O pins. Figure 3 shows
how to connect a PCF8574 with an LED wired to port pin P0 to
a Raspberry Pi. If a ‘1’ is written to the PCF8574:

i2cset -y 1 0x40 0x01

the LED will light. If a ‘0’ is written:

i2cset -y 1 0x40 0x00

the LED will extinguish. Strictly speaking we are here setting
the register number to 0x01 or 0x00, since, according to the

Figure 3. The PCF8574 port expander connected to a Raspberry Pi.

Figure 4. This real-time clock IC has twenty addressable control, time and
alarm registers. (Source: Micro Crystal)

98 September & October 2017 www.elektormagazine.com

inclusive, are listed on the right in Figure 4. The RTC has an
internal supply voltage monitor and can switch itself automatically
over to battery power. As the lead photograph shows, the device
is available in module form complete with battery holder.
After the register number (from 0x00 to 0x13) has been sent,
the register can be accessed. In contrast to the LM75 this device
automatically increments the register pointer, wrapping round
from 0x13 to 0x00. It is therefore possible to read from or write
to all twenty registers in a single operation.
Suppose for example that we wish to read just the date and
time. We set the register pointer to 3 and read seven bytes.
Using the Arduino Wire library the code might look like the
following.

Wire.beginTransmission(0x68);
 Wire.write(byte(0x03)); // set register number to
3
 Wire.endTransmission();
 Wire.requestFrom(0x68, 7); // read time and date
 seconds = Wire.read();
 tenseconds = (seconds >> 4) & 0x07; seconds &= 0x0f;
 minutes = Wire.read();
 tenminutes = (minutes >> 4) & 0x07; minutes &= 0x0f;
 ...

The resulting values are BCD-encoded, and so conversion to
binary may be required.
Besides the clock itself, the RV-8523 also has an alarm function
that can produce an interrupt at a specified point in time. The
only wrinkle is that although the INT_1 output goes low at the
appointed hour, it does not automatically go high again: it is
necessary to reset the alarm interrupt explicitly with a write
to AF in control register 2.
Some operating systems, including Raspbian, already have a
driver for this device built in (rtc_pcf8523). In such cases there
is no need for any programming if you are only interested in
the current date and time, as the hwclock command will talk
to the RTC and read or set the clock. An rc script run at boot
time can be used to run this command to set the system clock
automatically, and at power down the updated system time
(which may have been adjusted either manually or over the

PCF8574 are connected to the LCD panel’s E, RS and R/W
signals. The one remaining port bit is sometimes used to
control the LCD backlight. Some of these boards include pull-up
resistors on the bus lines to 5 V. These should normally be
removed, or not fitted in the first place.

RV-8523
The RV-8523 is a real-time clock (RTC) with 20 registers each
eight bits wide. The registers, numbered from 00H to 13H

Figure 5. The Open Logic Sniffer looks on while an ATmega88 reads temperature data from an LM75.

Figure 6. The OLS Java client presents the bus data in tabular form.

www.elektormagazine.com September & October 2017 99

Table 1 illustrates I2C addressing and data transfer. As you can
see, the LM75 acknowledges its address in both read and write
transactions with an ACK. It also acknowledges the register
number (0x00), as it is possible (despite the fact that the
temperature register is read-only) that further bytes might
follow. The ATmega88 acknowledges the first of the two bytes
it reads from the temperature register with an ACK, as it is
expecting further data; it responds to the second byte with a

network) can be written back to the RTC. This arrangement
allows a Raspberry Pi, even without a network connection, to
maintain its clock across a power failure with minimal additional
hardware. However, if you wish to use the alarm feature of the
RTC, then you will need to get involved in some programming.
Once the RTC has been set using a Raspberry Pi, it can then
be connected to an ATmega or Arduino. The back-up battery
on the module ensures that the clock continues to keep time.
Then it is just a matter of a few lines of code to read the time
into the ATmega or Arduino.

On the trail of the lonesome bug
Not everything works first time. A multimeter is a useful tool
to start trying to track down a fault, but if the problem lies at
the protocol level it is usually not good enough.
In the quiescent state SDA and SCL are high. So the first thing
to check, with a normal multimeter, is that on power up (and
ideally knowing that the bus is idle) the voltages on SCL and
SDA are high enough. As we have mentioned previously, the
standard specifies that a high level should be at least 0.7 VCC
(and so with VCC = 5 V a minimum of 3.5 V). However, many
5 V devices will work perfectly well with pull-up resistors to
3.3 V: the high level in 3.3 V logic is usually well over 3 V.
Sometimes the problem can simply be that one or both of the
pull-up resistors are missing.
If the voltages are correct, then a more sophisticated approach
is called for. Logic analyzers are available at prices to
suit a wide range of pockets. Options range from the tiny
ScanaQuad [2] to the more grown-up Red Pitaya [3]; my
tool of choice is the Open Logic Sniffer [4] from Dangerous
Prototypes, along with the OLS Java client from ols.lxtreme.
nl [5]. All of these tools let you get to the bottom of what is
going on on your I2C bus.
Figure 5 shows what happens when an ATmega88 reads the
temperature register of an LM75. At the beginning (time 0.0 s)
you can see the start condition, and at the end (500 μs) the
stop condition. At 200 μs there is a repeated start condition.
From the trigger point to around 200 μs the LM75 is being
addressed in write mode and the value 0x00 is being written to
its register pointer. After the repeated start condition the LM75
is being addressed again, this time in read mode. The two bytes
0x13 and 0x40 are read from the temperature register into the
ATmega88. Here the trigger is obtained from PB0, which is being
set to 1 at the start of the transaction and cleared back to 0 at
the end of the transaction. Alternatively it would be possible
to trigger on the falling edge of SDA and obtain similar traces.
The OLS Java client analyses the traces in order to parse the
I2C communication, and displays the bytes being transferred
in tabular form (see Figure 6). The repeated start condition
is erroneously displayed as a stop condition followed by a start
condition, despite the fact that it is clear from the traces that
there is no stop condition at 200.0 μs.
The Dangerous Prototypes Bus Pirate [6] shown in Figure 7
is a tool for analyzing data transfer using serial protocols such
as I2C, SPI and UART. Dangerous Prototypes sells the Bus Pirate
and Open Logic Sniffer themselves, but also make the hardware
design and software available so that you can build both devices
yourself. According to the manufacturer, version 4 of the Bus
Pirate is ‘designed for the future’, but does not work quite as
reliably as version 3.6, which is available from distributors
including Watterott Electronic [7].

Table 1. Addressing and data transfer using an LM75.

HiZ>m
1. HiZ
2. 1-WIRE
3. UART
4. I2C
5. SPI
6. 2WIRE
7. 3WIRE
8. LCD
9. DIO
x. exit(without change)

Display menu...

(1)>4
Set speed:
 1. ~5KHz
 2. ~50KHz
 3. ~100KHz
 4. ~400KHz

Choose I2C bus...

(1)>3
I2C READY

Set bus speed to
100 kHz...

I2C>(2)
Sniffer
Any key to exit
[0x90+0x00+][0x91+0x13+0x40-]

Start the bus sniffer

Bold type indicates user input;
‘[‘ indicates a start condition;
numbers give the data bytes being transferred;
‘+’ indicates an ACK;
‘–‘ indicates a NACK;
‘]’ indicates a stop condition.

Figure 7. The tiny Bus Pirate is a universal bus interface for a PC. This is
the new version 4. (Source: Dangerous Prototypes)

100 September & October 2017 www.elektormagazine.com

I2C>p
Pull-up resistors OFF

Once the bus is configured it is possible to use the Bus Pirate to
search for connected slaves in a similar way to the i2cdetect
command in Raspbian. Write and read addresses are displayed
separately, as follows.

I2C>(1)

Searching 7bit I2C address space.

Found devices at:

0x90(0x48 W) 0x91(0x48 R)

This is a convenient alternative way to find the I2C address of
an unknown slave if you do not have a Raspberry Pi to hand.
The Bus Pirate can also be used as a Master and the individual
phases of the I2C protocol can be stepped through manually.
Table 2 illustrates how to use this function to read temperature
data from an LM75.

Wrapping up
The I2C bus provides a very simple way to connect peripherals
to a processor, as long as the required data volumes are low and
interrupts are not needed. You only need two wires! Moreover,
it is a multi-drop bus, allowing multiple slaves to be connected
using the same two wires. Data transfer over distances of up
to a meter or so are feasible. Thanks to the availability of free
libraries such as that written by Peter Fleury, the associated
programming is not too arduous and many of the potential
pitfalls are easily avoided.
The instruments required for tracking down problems are either
readily available (such as a multimeter), or not too expensive.
There is a world of sensors out there waiting to be connected
to the microcontroller board on your bench!

(160373)

Web links

[1] For example: http://rn-wissen.de/wiki/index.php/
I2C_Chip-%C3%9Cbersicht

[2] www.elektor.com/scanaquad-sq100

[3] www.elektor.com/stemlab-125-10-starter-kit

[4] http://dangerousprototypes.com/docs/
Open_Bench_Logic_Sniffer

[5] https://lxtreme.nl/projects/ols/

[6] http://dangerousprototypes.com/docs/Bus_Pirate

[7] www.watterott.com/en/Bus-Pirate

NACK, as this is the last byte of the transfer. The ATmega88
then ends the bus transaction. The Bus Pirate is not able to
determine which device has sent a NACK or ACK.
The Bus Pirate can also supply (10 kΩ) pull up resistors. In
version 3 of the hardware pin 5 of the I/O header (VPU) must be
connected to the desired voltage. This voltage passes through
an analog switch that can be turned on to enable all the pull-up
resistors on the Bus Pirate. This is unnecessary, and, if a 5 V
supply is used, possibly even dangerous, when the device
is used in conjunction with a Raspberry Pi. In version 4 of
the Bus Pirate hardware the pull-up supply is configured in
software instead. Whether or not pull-ups are enabled, and
to what voltage they are connected, can be determined by
simply making a measurement on pin 7 (SCL) or pin 8 (SDA)
on the bus connector.
The pull-up resistors are turned on and off using the following
commands.
I2C>P
Pull-up resistors ON

Table 2. Reading an LM75 sensor using the Bus Pirate
as a bus master.

I2C>[0x90
I2C START BIT
WRITE: 0x90 ACK

Send start condition, address
0x48 and write bit (0): LM75
responds with ACK

I2C>0x00
WRITE: 0x00 ACK

Send byte 0x00: LM75 responds
with ACK

I2C>]
I2C STOP BIT

Send stop condition

I2C>[0x91 r:2
I2C START BIT
WRITE: 0x91 ACK
READ: 0x14 ACK 0x20

Send another start condition,
followed by address 0x48 and
read bit (1): LM75 acknowledges
these with ACK. Then read
two bytes: the Bus Pirate
acknowledges the first received
byte with ACK. On receiving the
second byte it waits until it has
determined that no further bytes
are to be read (that is, when it is
told to send the stop condition).

I2C>]
NACK
I2C STOP BIT

Send another stop condition.
Since the previously received
byte is now known to be the
last of the transaction, first
acknowledge it with a NACK.

The above sequence can be done in a single line as follows.

I2C>[0x90 0x00][0x91 r:2]
I2C START BIT
WRITE: 0x90 ACK
WRITE: 0x00 ACK
I2C STOP BIT
I2C START BIT
WRITE: 0x91 ACK
READ: 0x14 ACK 0xA0
NACK
I2C STOP BIT

Thank you!

I am grateful to my (former) hardware colleagues Franz
Otte and Michael Kleineberg for hints and help on hardware
matters, and to my (former) colleagues Reinhard Bernhardi-
Grisson, Norbert Bandzius and Thomas Schlüssler for proof-
reading the original German article and for their feedback.

