
SCL

B1 B2S BN P

SDA

38 July & August 2017 www.elektormagazine.com

Raspberry Pi, BeagleBone, Arduino, Genuino, ATmega, PIC,
practically any PC: pretty much anything you can find sitting
on a maker’s work bench that can compute will have one or
more I2C interfaces. Using the example of the LM75 tempera-
ture sensor we will look in this article at how the I2C interfaces
of the Raspberry Pi, ATmega and Arduino can be used as bus
masters, and, where possible, as bus slaves.

Raspberry Pi
The Raspberry Pi has two physical I2C buses, of which only
one can normally be used directly. The Raspberry Pi board
comes with pull-up resistors to the 3.3 V supply already fit-
ted and permanently enabled. SDA and SCL are available on
pin 3 (SDA) and pin 5 (SCL) of the expansion header, conve-
niently right next to the 3.3 V supply on pin 1, the 5 V supply
on pins 2 and 4, and ground on pin 6. These pins belong to I2C
bus number 1. It is therefore possible to make a very compact
plug-in expansion board offering temperature sensing, real-
time clock or position sensing functions.
Caution: the ports of the Raspberry Pi must only be oper-
ated at 3.3 V and connection to 5 V signals can damage the
device. It is important, therefore, to check your circuit carefully
before connecting it to the ports on the Raspberry Pi. In par-
ticular take care that no I2C slave contains pull-up resistors to
the 5 V rail. If present, any such resistors should be removed:
the slave will still work without them.

The Raspberry Pi provides a convenient environment for learn-
ing how to use new and unfamiliar I2C slave devices. Figure 1
shows how a breadboard can be used to connect an LM75 to
a Raspberry Pi.

Operation as bus master
Before the I2C bus on the Raspberry Pi can be used under
Raspbian, it is necessary to install two extra drivers. To do
this, launch raspi-config and select the I2C option under the
Advanced Options menu item. This will enable the interface
and load the necessary kernel module. Alternatively add the
following lines to the file /etc/modules using a text editor:

i2c-dev
i2c-bcm2708

After restarting the system the two drivers (as well as any other
extra drivers that are required) will be loaded and the device
nodes /dev/i2c-<n> will be created. This can be confirmed
using the following commands at the ‘$...’ prompt.

$ lsmod | i2c_
i2c_dev XXXX 0
i2c_bcm2708 YYYY 0
$ ls /dev/i2c-*
dev/i2c-1

The I2C Bus
Part 2: using the bus with a microcontroller

By Josef Möllers (Germany)

The familiar two-wire bus is ideal for experiments
and applications using a Raspberry Pi
or on an Arduino.

www.elektormagazine.com July & August 2017 39

ioctl(fd, I2C_SLAVE, 0x48);

And now we can write to and read from the device.

unsigned char buf[2];
float T;
buf[0] = 0;
write(fd, buf, 1); /* write register number 0 */
read(fd, buf, 2); /* read temperature register */
T = ((buf[0]<< 8) | buf[1]) / 256.0;

Finally we close the device node: Geräteknoten wieder:

close(fd);

Of course it is a good idea to check the return values from the
function calls properly in order to detect possible errors, such

In the above XXXX and YYYY stand for the size of the modules,
while the two zeros indicate that no programs are currently
using the modules. The commands will, incidentally, work even
without root privileges.
Next install the i2c-tools package, which includes among
other things code to detect I2C devices and buses:

sudo apt-get install i2c-tools

Raspbian already includes drivers from some I2C peripheral
devices, including for the RV-8523 real-time clock (RTC). Unless
configured otherwise, the Raspberry Pi drives the I2C bus in
standard mode at 100 kbps.

For a first test you can use the i2cdetect tool from a terminal
window to obtain an overview of the slave devices that the
system recognizes on I2C bus number 1. The results might
appear as shown in Figure 2, where the LM75 is responding
to address 0x48.

The commands i2cget, i2cset, and i2cdump can be used to
communicate with the LM75 without having to get involved
in programming. In the example below 0x00 is the register
number, which must always be specified.

pi@raspberrypi ~ $ i2cget -y 1 0x48 0x00 w
0xa010

The two bytes of the reply must be swapped over, giving
0x10a0. Of this result only the upper nine bits are valid: they
are 0x021. The LM75 reports temperature in steps of 0.5 K,
and so the temperature reading in this example is 16.5 °C.
The hardware of the Raspberry Pi in principle also supports
operation as an I2C slave, but this is not supported by the
Linux driver.

Programming in C and Python
Five functions are required to program the I2C bus in C.

• open() to access the I2C device node;
• ioctl() to set the I2C slave parameters;
• read() and write() for the actual communication with

the slave; and
• close() to indicate when access to the I2C device node is

no longer required.

For the following code, in addition to the other include files,
the include file linux/i2c-dev.h is required for the definition
of I2C_SLAVE.

include <linux/i2c-dev.h>

The device node is accessed using the open() function.

fd = open("/dev/i2c-1", O_RDWR);

Next we set the slave address with an ioctl() call.

Figure 1. Connecting an LM75 to a Raspberry Pi using a breadboard.

Figure 2. The i2cdetect tool has found an LM75 at address 0x48.

pi@raspberrypi ~ $ i2cdetect -y 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

40 July & August 2017 www.elektormagazine.com

bus = smbus.SMBus(1)

address = 0x48

w = bus.read_word_data(address, 0)

print format(w, '04x')

The “0” in the call to the read_word_data method supplies
the register number, which here is the index of the tempera-
ture register. In the SMBus protocol, which sits on top of the
I2C protocol, a register number must always be set at the
start of a communication. This causes problems in the case
of the PCF8574 port expansion chip, for example, which has
no address register.
The returned value has the same problem as with the i2cget
command: the two bytes in the word w must be swapped over.

ATmega
The Atmel ATmega microcontroller series have an integrated
I2C controller which supports both standard mode (at 100 kHz)
and fast mode (at 400 kHz). It can be operated as a master,
as a slave or as a combination of the two. The ATmega324PB
and the ATmega328PB devices include two I2C buses. In the
following examples we will be using the ATmega88, which can
be plugged into a breadboard along with the sensor as shown
in Figure 3.
Here the best approach is to use the i2cmaster library by Peter
Fleury [1]. Note, however, that this library does not auto-
matically enable the internal pull-up resistors! It is therefore
necessary to take care of this ourselves: Figure 3 shows the
resistors towards the top of the breadboard, running to the 5 V
rail. The library configures the I2C bus controller in the ATmega
to run in standard mode (100 kHz). The LM75 sensor can be
accessed using code like that shown in Listing 1.
Using lcdlibrary, by the same author, we can construct a
digital thermometer with an external liquid crystal display.
This can be connected using an I2C interface board (which will
usually be based on a PCF8574), or alternatively an LCD with
built-in I2C interface can be used.
The I2C bus controller in the ATmega devices does not have to
be operated in master mode, controlling a slave. It can also be
run in slave mode, controlled by an external master. A com-
posite mode of operation is also available, where, for example,
the ATmega might at one moment be communicating with the
LM75 as a bus master, and then at the next moment be acting
as a slave to a Raspberry Pi master. One situation where an
ATmega might be used as a slave is where the ATmega is read-
ing data in real time over its port pins, doing some processing,
and then supplying the results upon request to a Raspberry Pi.
This kind of set-up is more complex, and entails tight coupling
with the rest of the code running on the ATmega. There do
exist, however, the rudiments of a library implementing oper-
ation in slave mode [2].
The description below follows that given in Atmel’s datasheets,
which contain tables of the various states of the I2C controller.
For example, in the datasheet for the ATmega48/88/168, the
relevant information can be found in section 22.7.

It is sensible to make the software implementing I2C slave
mode run under interrupts. The bus controller hardware can
trigger an interrupt under the following conditions.

as whether the user running the code has permission to open
the device node /dev/i2c-1, whether a slave exists at address
0x48, and whether the data transfers were successful.

Before programming the I2C bus in Python, it is necessary to
install (or to have already installed) the python-smbus Rasp-
bian package.

sudo apt-get install python-smbus

Then the temperature can be read from the LM75 as follows.

#! /usr/bin/python

import smbus

import time

Figure 3. The ATmega88 and the sensor on a breadboard.

Listing 1. Main loop for reading from the LM75.

include <i2cmaster.h>

define LM75 (0x48 << 1)
 // see datasheet
int
main(void)
{
unsigned char val[2];

i2c_init();
 // initialisation I2C

i2c_start(LM75 | I2C_WRITE);
 // addressing to write
i2c_write(0x00);
 // temperature register
i2c_rep_start(LM75 | I2C_READ);
 // addressing to read
val[0] = i2c_read();
 // degrees Celsius
val[1] = i2c_read();
 // tenth part bit
i2c_stop();
 // ready
for(;;);
}

www.elektormagazine.com July & August 2017 41

Working with the Arduino is just as straightforward as working
with the Raspberry Pi (see Figure 4). Depending on the exact
model of Arduino (or clone), you may find that the processor

• after transmitting a ‘start condition’ or ‘repeated start
condition’;

• after transmitting the address and read/write bit;
• after transmitting a data byte;
• when the ATmega has lost an

address arbitration (when a colli-
sion occurs while transmitting the
‘start condition’, the address byte
or the read/write bit);

• when the ATmega has detected
a ‘start condition’ and has been
addressed as a slave;

• when the ATmega has received a
data byte;

• when the ATmega has detected
a ‘stop condition’, or a ‘repeated
start condition’ where it has
(again) been addressed as a
slave; or

• when an invalid bus transaction
has been detected.

The first four of these situations are
only relevant to master mode, and so
we are only interested in the last four.
The I2C peripheral unit must be initial-
ized with the desired slave address. It
can then be enabled and it will start
to run.

TWAR = (I2C_Slave_Addr << 1);
TWCR = _BM(TWEA) | _BM(TWEN) |
_BM(TWIE);

There is no need to set the bit rate
for slave mode, as the communication
speed is determined by the master.
When an interrupt occurs, the first
step is to determine its cause. To do
this it is necessary to read the TWSR
status register and examine its top
five bits.
Listing 2 shows a fragment of the
interrupt service routine (ISR) for
receiving and transmitting data as
a slave, and for detecting a ‘stop
condition’.
The descriptions and tables in the
ATmega datasheets are very com-
prehensive, including explanations of
the status codes, actions required in
software, and the resulting behavior
of the hardware.

Arduino
Many Arduinos are based on Atmel
ATmega-series microcontrollers, and
so the above discussion applies equally
to them. However, a popular and very
convenient library called Wire.h is also
available for the Arduino.

Listing 2. Interrupt service routine to deal with address matching and
detection of ‘stop condition’. The complete and extensively commented
code is available on the project web page [5].

ISR(TWI_vect)
{
 /*
 * These variables need to be preserved across interrupts
 */
 static unsigned char i2c_idx, /* Index into twi_msg[] */
 i2c_tosend; /* Number of bytes to send */

 switch (TWSR & 0xf8)
 {
 ...
 /*
 * RECEIVE Code
 * See Table 19-4. Status Codes for Slave Receiver Mode
 * [Page 229]
 */
 case 0x60:
 /*
 * Own SLA+W has been received; ACK has been returned
 * TWDR: No TWDR action
 * STA=X STO=0 TWINT=1 TWEA=1
 * Data byte will be received and ACK will be returned
 */
 TWCR = (TWCR & ~_BM(TWSTO)) | (_BM(TWINT) | _BM(TWEA));
 i2c_idx = 0;
 break;
 …
 case 0xA0:
 /*
 * A STOP condition or repeated START condition has been
 * received while still addressed as slave
 * TWDR: No action
 * TWA=0 STO=0 TWINT=1 TWEA=1
 * Switched to the not addressed Slave mode;
 * own SLA will be recognized;
 * GCA will be recognized if TWGCE = "1"
 */
 TWCR = (TWCR & ~(_BM(TWSTA) | _BM(TWSTO))) | (_BM(TWINT) | _BM(TWEA));
 break;
 …
 case 0xA8:
 /* Own SLA+R has been received; ACK has been returned
 * TWDR: Load data byte
 */
 /*
 * The address (register number) has been received,
 * Start sending payload
 */
 TWDR = 0x42;
 break;
 }
}

42 July & August 2017 www.elektormagazine.com

runs on 3.3 V and that its ports cannot tolerate 5 V signals.
So check and measure before connecting your circuit and if
necessary remove any pull-up resistors on the slave.

The Wire library can be found directly within the Arduino IDE.
As in the case of Peter Fleury’s i2cmaster library the library
and I2C interface must be initialized at the start of your code.

#include <Wire.h>
void setup() {
 Wire.begin();
}

The call to Wire.begin() enables the internal pull-up resis-
tors. The value of these resistors is relatively high, which can
cause problems: if so, add two external resistors with a value
of 10 kΩ to 20 kΩ in parallel. Alternatively, disable the internal
resistors altogether and just rely on external pull-ups (which
should then be in the region of 4.7 kΩ). This can be done with
the following two lines of code after the call to Wire.begin().

digitalWrite(SDA, 0);
digitalWrite(SCL, 0);

The I2C bus on a PC
Practically every PC has its own I2C interface, and most have
several such interfaces. There are I2C slaves in displays (DDC [3])
and DRAM DIMMs (SPD [4]). Internal temperature sensors are
also often connected over I2C. Unfortunately there is scant to
non-existent manufacturer information on the devices used and
on whether and how the buses can be accessed externally:
sometimes a bus will be used only within a particular module.
If the PC is running Linux, it is easy to run some experiments
by loading the i2c-dev module as follows.

$ sudo modprobe i2c-dev

You can then look at what device nodes are
present in /dev.

$ ls /dev/i2c*
/dev/i2c-0 /dev/i2c-1 /dev/i2c-2 /
dev/i2c-3 /dev/i2c-4 /dev/i2c-5

Up to this point you do not need root privi-
leges. Under Debian and its derivatives (which
includes Raspbian and Ubuntu) you can install
i2c-tools.

apt-get install i2c-tools

Sometimes there are slaves on only one of the buses, as in the
following example.

root@bounty:~# i2cdetect -y 5
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- 37 -- -- 3a -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: 50 -- -- -- -- -- -- -- 58 -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

It is not always clear what peripheral devices are present. In
the example below the monitor’s EDID PROM is at address
0x50.

If your PC has a VGA connector, you can try connecting an
I2C slave to pin 12 (SDA) and pin 15 (SCL). Pins 6 (SCL)
and 7 (SDA) of a DVI connector and pins 15 (SCL) and 16
(SDA) of an HDMI connector are also good candidates for
experimentation. Unfortunately in some cases these buses
are under the sole control of the graphics card and its
firmware.

Figure 4. Connecting to an Arduino is practically the same as connecting
to a Raspberry Pi.

root@bounty:~# i2cdump -y 5 0x50
No size specified (using byte-data access)
 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef
00: 00 ff ff ff ff ff ff 00 1a b3 d4 07 ec 22 02 00 ?????"?.
10: 0a 16 01 03 80 34 20 78 2a ef 95 a3 54 4c 9b 26 ?????4 x*???TL?&
20: 0f 50 54 a5 4b 00 81 80 81 00 81 0f 95 00 95 0f ?PT?K.???.???.??
30: a9 40 b3 00 01 01 28 3c 80 a0 70 b0 23 40 30 20 ?@?.??(<??p?#@0
40: 36 00 06 44 21 00 00 1a 00 00 00 fd 00 38 4c 1e 6.?D!..?...?.8L?
50: 52 10 00 0a 20 20 20 20 20 20 00 00 00 fc 00 42 R?.? ...?.B
60: 32 34 57 2d 35 20 45 43 4f 0a 20 20 00 00 00 ff 24W-5 ECO?
70: 00 59 56 32 45 31 34 30 30 31 32 0a 20 20 00 8e .YV2E140012? .?

www.elektormagazine.com July & August 2017 43

void receive(int n) {
 while (n--) {
 uint8_t c = Wire.read();
 // Verarbeite c
 }
}

If you wish to transfer data to the master then you should call
the method onRequest() instead of onReceive(). Again, the
name of the event handler function that will produce the data
to be sent is passed as a parameter. Since at the moment of
calling the handler function the number of bytes to be sent is
not known, no parameter is passed to it. The data bytes are
sent using a single call to Wire.write().

#include <Wire.h>
void setup() {
 Wire.begin(0x48);
 Wire.onRequest(transmit);
}
void loop() {
 while (1) delay(1000);
}
void transmit() {
 uint8_t msg[N];
 // Erzeuge msg[] Inhalt
 Wire.write(msg, N);
}

The two event handler set-up methods can be called together
in the same sketch.

#include <Wire.h>
void setup() {
 Wire.begin(0x48);
 Wire.onReceive(receive);
 Wire.onRequest(transmit);
}

Such a configuration would allow you to emulate an LM75
accurately, using a 1-wire temperature sensor such as the
DS18B20 instead of the LM75, or to emulate a real-time clock
peripheral receiving time over DCF77 or GPS.

Coming up in part three
The next installment in this short series will look at some pop-
ular I2C peripheral devices: besides the LM75 temperature
sensor we will also examine the PCF8574 port expander and
the RV-8523 real-time clock. Finally we will close with some
thoughts on troubleshooting using tools within the means of
the average hobbyist.

(160418)

Web Links

[1] http://homepage.hispeed.ch/peterfleury/avr-software.html

[2] www.jtronics.de/avr-projekte/library-i2c-twi-slave.html (in
German, English machine translation available)

[3] https://en.wikipedia.org/wiki/Display_Data_Channel

[4] https://en.wikipedia.org/wiki/Serial_presence_detect

[5] www.elektormagazine.com/160148

Note that this is not an official solution and that things may
change in the future. In any case it is a good idea to measure
the effective pull-up resistance with a multimeter after initial-
ization is complete.

Caution: when the internal pull-up resistors are disabled in this
way there will be a brief period during which they are enabled.
This can cause problems if a 3.3 V slave with two external pull-
ups to 3.3 V is connected to a 5 V Arduino. In this case it is
essential to use a level-shifting circuit.
After initialization, data can be sent to the I2C slave in the
loop() function. The following example sets the address pointer
in the LM75 to point to the temperature register.

void loop() {
 Wire.beginTransmission(0x48);
 Wire.write(byte(0x00));
 Wire.endTransmission();

The following fragment reads from the LM75.

Wire.requestFrom(0x48, 2);
 c1 = Wire.read();
 c2 = Wire.read();
}

As you can see, the Wire library requires that you first specify
the number of bytes expected from the slave (in this case, 2).
The first call reads in the two bytes, and then the subsequent
calls allow you to access the received data.
The Arduino Wire library can also be configured for operation
in slave mode. Again, the library must first be initialized. In
this case the call to Wire.begin() must be given a parameter
which is the desired slave address: it is the presence of this
parameter that selects slave mode. It is also necessary to set
up an event handler which will be called whenever the Arduino
is addressed as a slave. In the example below the event han-
dler is called when the Arduino is to receive data.

#include <Wire.h>
void setup() {
 Wire.begin(0x48);
 Wire.onReceive(receive);
}

Although not normally necessary for a slave device, the call
to the Wire.begin() method again enables the built-in pull-up
resistors. They can be disabled if necessary as described above.

Caution: note again that although a 5 V Arduino can be con-
figured as a slave to a 3.3 V master, there will be a brief pulse
to 5 V on the signal lines which may damage the 3.3 V master.
So, for example, if you want to operate an Arduino as a slave
to a Raspberry Pi, you must make certain that the Arduino
is only electrically connected to the Raspberry Pi after it has
completed initialization.
When a data byte is received, the event handler (which was
configured to be receive in the above example code) will be
called. Again the data bytes have already been read in, and
the number of bytes received is passed as a parameter to the
handler.

