
Application Report
SPRA836 - August 2002

1

Interfacing the TMS320C54x DSP to an I2C Bus
Francis Kua
Yip Chan Hoe

TI Singapore

ABSTRACT

This application report describes the way to interface the TMS320CX54x digital signal
processor (DSP) with an I2C device. The setup uses the multichannel buffered serial port
(McBSP) configured as general-purpose input/output port, and is coupled with a timer
interrupt to implement the I2C protocol. An attempt has been made to provide a glueless
interface to the DSP. However, due to the current driving capability of the DSP, a 74HC125
buffer is included.

A set of registers is provided to allow the user to control the I2C protocol. This particular setup
has been successfully implemented and tested with the TMS320C5410 EVM from Spectrum
Digital. The I2C devices used in the test are two electrically erasable programmable
read-only memories (EEPROMs) (PMS3324) from Philips Semiconductor.

This document describes the DSP configured as a single master in the I2C standard mode.
The hardware interface and software control of the I2C data transfer are presented. In
addition, the test methodology with I2C devices is discussed. Finally, limitations and
suggestions of this application are stated.

Contents

1 Introduction 3.
1.1 Objective 3.
1.2 Standard I2C Bus Protocol 3.

1.2.1 Open-Drain Output Characteristic 4.
1.2.2 I2C Features Supported 5.

2 I2C Interface: McBSP as GPIO 5.
2.1 McBSP Configuration for GPIO 6.

3 Timer Interrupt 7.

4 Usage and Description of the I2C Program 8.
4.1 I2C Functions 9.
4.2 Other Registers: Definitions and Initializations 9.
4.3 I2C Operation Mode 10.

5 Software Flow 12.
5.1 Main Control Loop 12.
5.2 SCL Goes High Sequence 12.
5.3 SCL-Goes-Low Sequence 12.

TMS320C54x is a trademark of Texas Instruments.

Trademarks are the property of their respective owners.

SPRA836

2 Interfacing the TMS320C54x DSP to an I2C Bus

5.4 Acknowledge-Bit Sequence 12.
5.5 Start-Condition Sequence 12.
5.6 Stop-Condition Sequence 13.
5.7 Master-Receiver Mode Sequence 13.
5.8 Master-Transmitter Mode Sequence 13.

6 I2C Data Transfer Test 15.
6.1 PCF8582 EEPROM With I2C-Bus Interface 15.
6.2 Hardware Setup 16.
6.3 Test Methodology 17.

7 Conclusion 17.

8 References 17.

Appendix A Memory Registers 18.
A.1 I2CSTATUS 18.
A.2 ERRORMSG 19.
A.3 ODBYTECTR/IDBYTECTR: Output/Input Byte Counter 19.
A.4 ODBITCTR/IDBITCTR: Output/Input Bit Counter 19.
A.5 ODPTR/IDPTR: Output/Input Data Pointer 19.

Appendix B Software Process Flow Chart of the Implemented I2C OperationFlow Chart 20. . . .

Appendix C Program Listings 21.

Appendix D Application Schematic 48.

List of Figures

Figure 1. Receiving One Byte From the I2C Slave 4.
Figure 2. Connection of I2C-Bus Devices to an I2C Bus 4.
Figure 3. Example of Two Open-Drain Outputs wire-AND Together 4.
Figure 4. Hardware Setup for I2C Bus Interface 5.
Figure 5. Four Situations Arise on the Need of Series Resistor, Rs 6.
Figure 6. Timing Characteristics of Clock (SCL) 7.
Figure 7. Timing Characteristics of SDA a nd SCL 7.
Figure 8. Master Sending Byte to Slave Device of Address 58H 13.
Figure 9. Example of Synchronization of SCL in the Master-Transmitter Mode 15.
Figure 10. Device Address and Operation Mode 16.
Figure 11. I2C Bus Interface With EEPROMs 16.
Figure B–1. Software Process Flow Chart of the Implemented I2C Operation 20.
Figure D–1. Application Schematics of I2C Interface Circuit and PCF8582 EEPROM Application 48. . .

List of Tables

Table 1. Configuration of Pins as a General-Purpose I/O 6.
Table 2. I2C Terms and Definitions 8.
Table 3. Driver Functions 9.
Table 4. Control Registers Used in I2C ISR 9.
Table 5. Timing of SCL Defined in the Program Include File (time.inc) 14.

SPRA836

3 Interfacing the TMS320C54x DSP to an I2C Bus

1 Introduction

There is no dedicated I2C hardware in TI’s TMS320C5000 platform of DSPs. This application
report is focused on interfacing the TMS320C54x DSP as a single master to the I2C bus in
standard I2C mode. With this application report, the user can extend interfaces of the
TMS320C54x DSP to I2C devices.

It would be nice to provide a glueless interface to the I2C bus. However, due to the currently
driving capability of the DSP, a relatively inexpensive buffer has been added between the DSP
and the I2C devices. In addition, a timer and a McBSP must be allocated to implement this
protocol.

1.1 Objective

The objective of this application is to build an I2C interface with a minimum hardware
requirement, and a user-friendly I2C application program. This program should operate in a way
similar to a device driver, and should operate in the background. This will allow actual
application running at the foreground, while the I2C protocol runs at the background. A simple
user-friendly protocol should be presented to the user.

1.2 Standard I2C Bus Protocol

An I2C bus [1] consists of two bidirectional lines: serial data line (SDA) and serial clock line
(SCL). The output of I2C devices is open-drain, or open-collector, in order to perform the
wired-AND operation. The arbitration procedure between multi-master relies on the wired-AND
connection to prevent data corruption. The master in control of the bus always generates the
clock signal in SCL, while the slower I2C slave may stretch the clock by holding down the clock
line. Thus, synchronization is achieved among devices with different clock speeds.

Every element of data transmitted or received is 8 bits long, with the most significant bit (MSB)
transmitted first. The I2C protocol requires the data on the SDA to be stable during the HIGH
period of SCL. Transition on the SDA line can only take place while the clock is low. Otherwise,
this would be recognized as a start or stop condition. The number of bytes per transfer is
unrestricted, but each byte must be followed by an acknowledgement bit from the slave. Hence,
whenever the master sends a byte, it will check for a acknowledgement bit (low at SDA) from the
slave. In the event where an acknowledgement is absent, an error condition occurs.

As the I2C protocol allows multiple slave devices to be connected to a single master, a form of
addressing must be present. This address information is stored at the very first byte of the data
sent. Only 7 bits are used to address the slave device, while the last bit signifies whether a read
or write in initiated by the master. Figure 1 shows a timing diagram of the master receiving one
byte from the slave. To put a logic high onto the I2C bus, the I2C device releases the line where
it is connected to the pullup resistors. On the other hand, to put a logic low onto the bus, the
device pulls the line low.

TMS320C5000 is a trademark of Texas Instruments.

SPRA836

4 Interfacing the TMS320C54x DSP to an I2C Bus

MSB

R/W=1

ACK MSB ACK
First data byteSlave address byte

Start condition Stop condition

SDA

SCL 1 2 7 8 9 1 2 9

Figure 1. Receiving One Byte From the I2C Slave

Figure 2 shows the internal connection of I2C slave devices. Notice that the transistors used are
open-drain. This open-drain characteristic allows bidirectional Iinput/output (/O) over the two
signal lines.

SCLKN1
out

SCLK
in

DATAN1

DATA
in

out
DATAN2SCLKN2

SCLK
in

out

DATA
in

out

SDA (serial data line)

SCL (serial clock line)

RP RP

+VDD

Device 1 Device 2

Figure 2. Connection of I2C-Bus Devices to an I2C Bus

1.2.1 Open-Drain Output Characteristic

All I2C devices have open-drain output terminals. I2C data transfer is based on this
characteristic for proper operation, particularly the synchronization and arbitration procedure.
See Figure 3.

Output 1

Output 2

Result

Figure 3. Example of Two Open-Drain Outputs wire-AND Together

SPRA836

5 Interfacing the TMS320C54x DSP to an I2C Bus

The TMS320C54x general-purpose input/output (GPIO) is not bidirectional. Hence, we have to
use 2 GPIOs each to connect to SDA and SCL. One of the GPIOs is configured as input, while
the other is configured as output.

1.2.2 I2C Features Supported

This application report focuses on the simple data transfer between the TM320C54x (master)
and slave devices. The main features of I2C supported are:

• Single master, multi slaves

• Up to 100 Kbit/s

• Clock synchronization with slower slave

• 7-bit addressing

2 I2C Interface: McBSP as GPIO
The choices for the input/output (I/O) ports on the DSP include the host port interface (HPI) and
the multichannel buffered serial port (McBSP). The latter is preferred, as there is normally more
than one McBSP, and only one HPI port available.

In this setup, the McBSP port is configured as a general-purpose I/O port (GPIO), in which four
lines are used (see Table 1). FSX and DX are used as input and output pins for the SDA line,
while DR and FSR are used as input and output pins for the SCL line. Four pins are used to
interface to SDA and SCL because the GPIOs are not bidirectional, as mentioned earlier. The
circuit of the I2C interface is shown in Figure 4.

A non-inverting line buffer, 74HC125, is used to provide the current driving capability and
isolation to the TM320C54x. Pullup resistors [1], RP, with 10Kilo ohms are used for the slave
devices, while series resistor, RS, is used to accommodate voltage drop if there is logic
difference.

DX

FSX

FSR

DR

TMS320C54x
RS=1 KΩ

RS=1 KΩ

RP RP=10 KΩ

VCC

I2C
slave

A
slave

B

I2C

SDA

SCL

74HC125

Figure 4. Hardware Setup for I2C Bus Interface

The difference in voltage level occurs when output of the buffer is high, but the I2C slave device
may pull the line low (see Figure 5 for more examples). This will create a short-circuit path
between the buffer and the I2C devices. To circumvent this, a series resistor of a suitable value
is used to limit the current. The calculation of the resistance values are discussed in section 6.2.

SPRA836

6 Interfacing the TMS320C54x DSP to an I2C Bus

VCC

RS

RP

Voltage
across

RS is 5 V

5 V

Slave
pulls
line to
ground

(a) (b)

RP

RS is 0 V
across
Voltage

RS

VCC

Slave

ground
line to
pulls

(c) (d)

RP

5 V

RS is 0 V
across
Voltage

RS

VCC

Slave

line
releases

RS is 5 V

Voltage
across

RS

RP

Slave
releases
line

VCC

Figure 5. Four Situations Arise on the Need of Series Resistor, Rs

2.1 McBSP Configuration for GPIO

The serial port control register 1 and 2 (SPCR 1 and 2) and pin control register (PCR) are
configured so that the McBSP is to be used as a general-purpose I/O, rather than a serial port.
The bit configuration is shown in Table 1.

Table 1. Configuration of Pins as a General-Purpose I/O

Pin
GPIO Enabled
by Setting Both:

Selected as
Output:

Output Value
Driven From: Selected as Input:

Input Value
Readable on:

DX XRST* = 0
XIOEN = 1

Always DX_STAT

FSX XRST* = 0
XIOEN = 1

FSXM = 0 FSXP

DR RRST* = 0
RIOEN = 1

Always DR_STAT

FSR RRST* = 0
RIOEN = 1

FSRM = 1 FSRP

The initialization routine is written as a subroutine, _init_gpio, in the source file, i2c.asm. This
routine can be called from C or the assembly program.

SPRA836

7 Interfacing the TMS320C54x DSP to an I2C Bus

3 Timer Interrupt

The I2C application monitors SCL and SDA lines periodically by the use of a timer interrupt. It is
critical to get an optimum sample period, while not missing a valid signal transition.

From the timing specifications of the I2C, the transfer rate is 100 Kbit/s, or 10 �s (SCL clock
period). This can be derived from adding tHIGH, tLOW, tr and tf. See Figure 6.

• CLK high pulse width, tHIGH = 4 µs

• CLK low pulse width, tLOW = 4.7 µs

• CLK rise time, tr = 1 µs

• CLK fall time, tf =0.3 µs

SCL

tHIGH

tLOW

tr tf

Figure 6. Timing Characteristics of Clock (SCL)

The time for the periodic sample should be less than 4 �s. This application report uses a 1-�s
timer interrupt to poll for the status of the SCL line.

Again, from the timing specification of I2C:

• Hold time for start condition, tHD;STA = 4 �s

• Setup time for start condition, tSU;STA = 4.7 �s

• Data hold time, tHD;DAT = 0

• Data setup time, tSU;DAT = 250 ns

• Setup time for stop condition tSU;STO = 4 �s

SDA

SCL

tHD:STA

tSU:STA

tSU:DAT

tHD:DAT

tSU:STO

Figure 7. Timing Characteristics of SDA a nd SCL

To satisfy all the timing requirements and program simplicity, a common 5-�s timing is chosen
for the timer interrupt for the five cases (separate timing can be adjusted in the definition section
of the source file. See Table 3). In addition, a 1-�s interrupt is also used to check for signal
transition.

SPRA836

8 Interfacing the TMS320C54x DSP to an I2C Bus

4 Usage and Description of the I2C Program

The software design methodology involves the following considerations:

1. An I2C timer interrupt service routine (ISR) to be operated in the background

2. The user only needs to specify in the main program which is the mode of data transfer,
where the data is stored, and how long he data is.

3. The I2C ISR will be transparent to the user, and when transmission is over, it will signal
the user by setting the SUCC flag in the I2CSTATUS register.

From this section onward, the I2C terms and definitions used are described in Table 2.

Table 2. I2C Terms and Definitions

Term Description

Transmitter The device which sends data to the bus.

Receiver The device which receives data from the bus.

Master The device which initiates a transfer, generates clock signal, and terminates a transfer.
TM320C54x is a single master in this setup.

Slave The device addressed by the master. The number of devices that can be connected is limited by
the bus capacitance of 400 pF. Above this value, there will be excessive time delay and hence,
lower transfer rate.

Synchronization Procedure to determine one clock signal among devices with different clock speeds. The low
period of SCL is determined by the device with the longest low clock period. The high period of
SCL is determined by the device with the shortest high clock period.

Start condition A high-to low-transition on the SDA line while SCL is high. The master will control the bus after
this.

Stop condition A low-to-high transition on the SDA line while SCL is high. The bus will be free after this.

Acknowledge bit A receiver sends an ACK bit or ACK* bit after a byte has been received.

• In master-transmitter mode, the slave acknowledges by pulling down SDA so that it remains
stable-low during the high period of the 9th clock pulse.

• In master-receiver mode, the operation is the same as above except during the first byte and
the last byte. In the first byte, it is the sending slave address, and it operates like a
master-transmitter. In the last byte, the master signals the end of data to the slave
transmitter by not generating an ACK (or generating an ACK*) before the stop condition.

SPRA836

9 Interfacing the TMS320C54x DSP to an I2C Bus

4.1 I2C Functions

A total of five functions, listed in Table 3, are provided to implement the I2C operation.

Table 3. Driver Functions

Function Name Description

_init_gpio Initializes McBSP as GPIO.

_init_i2c Initializes I2C control registers, the timer interrupt mask register (IMR), and the period to
interrupt is set. All byte/bit counters are initialized, and the slave address is loaded. It is
necessary to call this subroutine prior to any transmit or receive function.

_i2c_write Initializes master-tansmitter mode, and data transmission to slave devices starts.

_i2c_read Initializes master-receiver mode, and data reception from slave devices starts.

_USER_FUNCTION This function is called when data transfer is over. Here, it serves as a good control
sequence for the user for the next transfer.

NOTE: All functions are C-callable.

4.2 Other Registers: Definitions and Initializations

The memory registers allocated in the I2C ISR are used to control the flow of program and set
up the correct bit for transfer or storage and error report. They are listed in Table 4, and the
complete description can be found in Appendix A.

Table 4. Control Registers Used in I2C ISR

Register Name Description

_I2CSTATUS† I2C status register. Controls the mode and flow of operation.

_ODPTR† The address of the first byte in the output data (total 256 bytes) memory location.

_ODBYTECTR† Output data byte counter. The first 8 bits contain the pointer to the current outgoing byte,
and the next 8 bits are used to store the total number of bytes to send. Only 255 bytes can
be sent at a time.

ODBITCTR Output data bit counter. Contains the counter to the current outgoing bit.

IDPTR The address of the first byte in the input data (total 256 bytes) memory location.

_IDBYTECTR† Input data byte counter. The first 8 bits contain the pointer to the current incoming byte, and
next 8 bits are used to store total number of bytes to receive. Only 255 bytes can be
received at a time.

IDBITCTR Input data bit counter. Contains the counter to the current incoming bit.

ERRORCODE Contains the type of error occurred during I2C ISR.

_SLAVE_ADDR† Contains the 7-bit slave address (receiver or transmitter). Defined by the constant,
K_SALVEADDR, in i2c.inc include file.

† These are C-addressable memory registers.

SPRA836

10 Interfacing the TMS320C54x DSP to an I2C Bus

The initialization of I2C data transfer protocol is written in a call subroutine, init_i2c in i2c.asm, in
which the timer interrupt mask register (IMR) and period to interrupt is set, all byte/bit counters
are initialized, and the slave address is loaded. These registers can be modified to the
programmer’s preference after this subroutine is called. It is necessary to call this subroutine
prior to any transmit or receive function (see example below).

.ref _init_gpio,_init_i2c ;Reference from i2c.asm.
;

‘’ ‘’ ;
CALL _init_gpio ;Go to _init_gpio subroutine.
CALL _init_i2c ;Go to _init_i2c subroutine.

;Start operation INTM are enabled.

To disable I2C transfer protocol after the start of timer interrupt (see the two examples below):

ANDM #K_DISABLE_TINT, IMR ;Clear TINT maskable register.

LD #_I2CSTATUS, DP ;Set up DP.
ST #K_DISA_0, _I2CSTATUS ;Clear i2c disable flag in

;_I2CSTATUS(K_DISA_0 & I2C_DP,
;defined in i2c.inc include
;file).

4.3 I2C Operation Mode

This section describes the necessary steps for configuring the mode of a I2C operation, i.e.,
master-transmitter or master-receiver.

Master-Transmitter (MT)

Two registers, _ODPTR and _ODBYTECTR, must be defined before calling the subroutine,
i2c_write, for sending data to the slave. Although TMS320C54x is a 16-bit device, only 8 bits of
a memory word are used.

Address _ODPTR _ODPTR+1 _ODPTR+2 ~ ~ _ODPTR+254 _ODPTR+255

Content Slave address 1st data byte 2nd data byte ~ ~ 254th data byte 255th data byte

15 8 7 0

_ODBYTECTR 0 Number of bytes to send

The actual address for data starts at _ODPTR+1, and the number of bytes to send must be
defined in the _ODBYTECTR register. After this, a call to _i2c_write subroutine will initialize the
_I2CSTATUS, and shift the slave address 1 bit to the left, to append transfer direction (R/W*),
i.e., 0 for write, to the least significant bit (LSB) of the first byte (slave address byte).

SPRA836

11 Interfacing the TMS320C54x DSP to an I2C Bus

To send 11H, 33H, and 55H to the slave (default address), see the example below:

STM #_ODPTR+1,AR1 ;AR1 points to first data byte loc.
ST #11H, *AR1+ ;11H store to ODPTR+1
ST #33H, *AR1+ ;33H store to ODPTR+2
ST #55H, *AR1+ ;55H store to ODPTR+3
ST #3, _ODBYTECTR ;3 bytes to send
CALL _i2c_write ;Initialize write operation

;i2c transfer starts from here

To send 100 bytes addressed by AR2 to the slave (address A0H), see the example below:

STM #_ODPTR+1,AR1 ;AR1 points to first data byte loc.
RPT #99 ;Repeat next instruction for 100 times
MVDD *AR2+, *AR1+ ;Move data to ODPTR memory
ST #100,_ODBYTECTR ;100 bytes to send
ST #A0H,_SLAVE_ADDR ;Overwrite default slave address
CALL _i2c_write ;Initialize write operation

;i2c transfer starts from here

Master-Receiver (MR)

Only one register, _IDBYTECTR, must be defined before calling the subroutine, i2c_read, for
receiving data from the slave (lower 8-bit, while the higher 8-bit is clear). This register will define
how many bytes the master should receive. The definition of the input data register is illustrated
below.

Address _IDPTR _IDPTR+1 _IDPTR+2 ~ ~ _IDPTR+254 _IDPTR+255

Content Slave address 1st data byte 2nd data byte ~ ~ 254th data byte 255th data byte

15 8 7 0

_IDBYTECTR 0 Number of bytes to receive

The actual address for data starts at _IDPTR+1, and the number of bytes to receive, must be
defined in the _IDBYTECTR register. After this, a call to the _i2c_read subroutine will initialize
the _I2CSTATUS, and shift the slave address 1 bit to the left, to append transfer direction
(R/W*), i.e., 1 for read, to the LSB of the first byte (slave address byte).

To receive 20 bytes from slave (address: 44H), see the example below:

ST #20, _IDBYTECTR ;20 bytes to receive
ST #44H, _SLAVE_ADDR ;Overwrite default slave address
CALL _i2c_read ;Initialize read operation

;i2c transfer starts from here

SPRA836

12 Interfacing the TMS320C54x DSP to an I2C Bus

5 Software Flow
This section explains the software process flow of the I2C operation implemented. The flow
chart of the application are illustrated in Appendix B.

5.1 Main Control Loop

The flow chart shown in Figure D–11 shows the main function of the I2C Timer interrupt service
routine. The flow of the functions is sorted in order of priority, and one process is executed per
timer interrupt. The _I2CSTATUS register is updated in the current cycle, and the subsequent
timer interrupt will be based on it.

The main loop will first check if I2C data transfer is a disabled, successful, or erroneous transfer.
If any of the above three cases is true, the timer interrupt will be disabled. It also consists of the
following sequences: release SCL, PULL SCL acknowledgement bit, start condition, stop
condition, master-receiver, and master-transmitter. At the end, it will enable the timer interrupt
again, and the whole cycle continues.

5.2 SCL Goes High Sequence

This sequence has the highest precedence in the loop because of the need to generate the
clock signal for data transfer. This is done if the SCLH flag of _I2CSTATUS is set.

There are basically three tasks in this sequence, i.e., synchronization, receive data in MR mode,
and clock out data in MT mode. In the synchronization task, SCL is released and is monitored. If
it does not maintain at its high level, that means some other device is holding down the SCL line.
The whole process is repeated in the subsequent interrupt. This allows the master to
synchronize with the slower slave. For the other two tasks, it is mainly generating the clock to
receive or send data.

The period of the next timer interrupt (defined in K_SCL_HIGH pulse width) and SCL goes low
flag, CLKL, are set so that one clock pulse is generated.

5.3 SCL-Goes-Low Sequence

No synchronization is needed in this sequence, due to the nature of the open-drain output of the
I2C device. SCL will always pull low, no matter what logic level is in other devices.

5.4 Acknowledge-Bit Sequence

In MR mode, the first byte (slave address) to be sent is handled by MT mode. For the rest of the
data, the master pulls SDA as an acknowledgement to the slave during this bit. It is important to
release this line at the end of the acknowledge bit. Following I2C specification, the master will
not pull SDA (ACK*) for the last byte before the stop condition.

In MT mode, the SDA line is released for the slave to acknowledge through this line. SCL will go
high in the next interrupt, and th eACK bit will be checked by the master within the
SCL-goes-high sequence.

5.5 Start-Condition Sequence

The start condition begins when both SDA and SCL are high. SDA is then pulled low, and the
next interrupt is set for the period of tHD;STA. When the interrupt is generated, SCL is pulled low,
thus completing the start condition.

SPRA836

13 Interfacing the TMS320C54x DSP to an I2C Bus

5.6 Stop-Condition Sequence

Before beginning the stop condition, SCL is released, and SDA is pulled low. After an timer
interruption of tSU:STO long, SDA is released. This marks the end of the stop condition.

5.7 Master-Receiver Mode Sequence

Two main functions involved in this sequence are: sending the slave address byte and receiving
data from when SCL is high. Prior to receive data, the master must specify which slave is to be
addressed. Hence, for the first byte, it is sending the slave address through the MT mode
sequence. After that, it will read th eSDA line with every clock.

5.8 Master-Transmitter Mode Sequence

The master sends out data onto the SDA line prior to generating the clock on SCL line. This
cycle continues for 8 times (byte) until it frees the SDA line for acknowledgement from the slave.

Figure 8 shows the timing diagram of a master sending a byte to a slave device of address 58H.
The vertical lines signify the timer interrupts, which are defined in Table 3.

1

2

3

4

5

ACK Stop

Start

SDA

SCL

Figure 8. Master Sending Byte to Slave Device of Address 58H

As shown in Figure 8, the single-master I2C device, i.e., the C54x DSP, starts off only when the
I2C-bus is high. When a data transmission is initiated, the master will execute a start condition
by pulling SDA while SCL is high. As shown in Figure 7, the time to observe during the start
condition is tHD;STA (hold time for the start condition). Hence, the time to interrupt will set at
K_START_HOLD_TIME. After this interrupt, the program will pull SCL low, thus completing the
start-condition sequence.

SPRA836

14 Interfacing the TMS320C54x DSP to an I2C Bus

In Figure 6, the SCL low pulse width, tLOW, is 4.7 �s. Hence, the time to the next interrupt will set
at K_SCL_LOW2. This will meet the minimum low pulse width of the I2C clock. When the
interrupt comes, this is the time to output data onto SDA line. This instant is shown at the third
vertical fine line in Figure 8, in which the data is zero. In Figure 7, there is a data setup time,
tSU;DAT, to satisfy. Hence, the time to interrupt will set to K_SCL_LOW1. Note that tSU;DAT is
250 ns from the specification, while the default time is set at 5 �s in the program. After this
interrupt, the master will release the SCL line. This is the point where the synchronization
process starts. The master will check if SCL went high. If it did not go high, the interrupt will be
set at 1 �s, and will continuously poll for SCL at this interval until the slave releases SCL high.
This scenario is depicted in Figure 9.

If the slave releases SCL, the clock high pulse width has to be defined. In Figure 6, the SCL high
pulse width, tHIGH is 4 �s. Hence, the time to the next interrupt will be set at K_SCL_HIGH. SCL
will remain high for the K_SCL_HIGH microsecond, and the master will pull SCL low when the
next interrupt comes. Since I2C has a wired-AND open-drain output characteristic, SCL will go
low, regardless of the logic level of the slave devices. The same cycle continues when SCL goes
low again for the K_SCL_LOW2 microsecond. After which, th emaster will output data to the
SDA. This instant is shown at the sixth vertical fine line in Figure 8.

For master-receiver mode, the operation is similar to master-transmitter mode, as described
earlier. The master will generate clock pulses onto SCL line and perform any clock
synchronization as necessary, if the slave devices slow down the transmission by stretching the
low pulse width of SCL. The master will read from the SDA line during the high pulse of the SCL.

The timing diagram of the data transfer (without slave devices) is measured with an
oscilloscope, as shown in Appendix C. All the parameters in Table 3 satisfy the I2C specification.

Table 5. Timing of SCL Defined in the Program Include File (time.inc)

No.
I2C Timing

Spec. Terms Definitions in Source Code

Default
Duration

(�s)

1 tHD;STA K_START_HOLD_TIME 5

2 – K_SCL_LOW1 5

3 – K_SCL_LOW2 5

4 – K_SCL_HIGH 5

5 tSU;STO K_STOP_SETUP_TIME 5

SPRA836

15 Interfacing the TMS320C54x DSP to an I2C Bus

SDA

SCL

Data pulse is
stretched

1 2 3 4 5

1 µs
5 µs

Figure 9. Example of Synchronization of SCL in the Master-Transmitter Mode

In Figure 9, the scenario of using a slower I2C slave device is illustrated. Normal clocking and
data writing ends at the third instant in Figure 9 when the master releases SCL but the SCL line
does not go high. This happens frequently in slower I2C devices where more time is needed to
process the previous data bit or byte. An example is a memory device (EEPROM), where there
is an inherent write/erase cycle between received data, thus prolonging the data transmission.
This is also the reason why an EEPROM is used to test this application in section 6.

Since SCL does not go high, a shorter time to poll for the change is needed. In this application, a
default time of 1 �s is used. This is illustrated between the third instant and the fourth instant.
There are multiples polling at the 1-�s interval for the slave to release SCL until the fourth instant
where SCL finally goes high. Then, normal operation resumes where the K_SCL_HIGH
microsecond is initialized for the next interrupt. This results in the interrupt in the fifth instant
shown in Figure 9.

The quick polling time is suggested at 1 �s. Although the user can reduce this time for better and
faster monitoring of any logic change in SCL, it is necessary to consider the instruction cycles of
the user’s main application and this I2C application. In addition, it is necessary to bear in mind
that I2C is not meant for fast data communication, but for its flexibility in addressing and
controlling I2C slave devices.

6 I2C Data Transfer Test
The I2C data transfer is verified with a PCF8582 I2C EEPROM [2] from Philips Semiconductor.
The objective of this test is to prove the validity of I2C functions and the integrity of data transfer.
The test involved writing some data into the EEPROM, and checking the content by reading
them back.

6.1 PCF8582 EEPROM With I2C-Bus Interface

PCF8582 is a floating-gate EEPROM with 256 × 8 bits. The device type identifier is fixed at
1010B, and these are the 4 MSBs of the 7-bit device address. Chip select is done by three
address inputs (A2, A1, A0), and up to eight similar devices can be connected to the I2C bus.
These three address inputs make up the rest of the LSB of the device address. The memory
address to the 256 locations is called “word address”, starting from 0 through 255. See
Figure 10.

SPRA836

16 Interfacing the TMS320C54x DSP to an I2C Bus

MSB LSB

1 0 1 0 A2 A1 A0 R/W*

Figure 10. Device Address and Operation Mode

6.2 Hardware Setup

The I2C interface circuit is setup as shown in Appendix D. The power supply, VCC, is 5 V. The
output high current, IOH, of the buffer [3] is in the range of 6 mA and the typical output high
voltage, VOH, is 4.3 V. When there is a logic difference across series resistor, RS, the resistance
is calculated to be around 700 Ω. Therefore, RS is chosen to be 1 KΩ.

The total maximum input high current of the two I2C devices are 20�A. The pullup resistors, RP,
are chosen to be 10kΩ from figures 25 and 28 of the I2C specification sheet [1]. Note that RS,
mentioned above, is not the series protection resistor explained in the I2C specification sheet.

The chip select pins (A2, A1, A0) of EEPROMs are set to 000 and 001. Therefore, Slave 1 and
Slave 2 addresses are 50H and 51H, respectively.

DX

FSX

FSR

DR

TMS320C54x
RS

RS=1 KΩ

RP RP=10 KΩ

VCC

I2C
slave

A
slave

B

I2C

SDA

SCL

74HC125

1

0

1

0

Figure 11. I2C Bus Interface With EEPROMs

SPRA836

17 Interfacing the TMS320C54x DSP to an I2C Bus

6.3 Test Methodology

The following steps are carried to test the I2C data transfer on Slave A.

• Send slave address and write operation bit: 1010 0000 (A0H).

• Send word address: 0 (write data from memory address 0 and onward).

• Send some bytes of data to EEPROM (check acknowledge from EEPROM).

• Wait for EEPROM erase/write (E/W) cycle [2].

• Send slave address and write operation bit: 1010 0000 (A0H).

• Send word address: 0 (EEPROM points back to memory address 0).

• Send slave address and read operation bit: 1010 0001 (A1H).

• Read the same number of bytes of data from EEPROM.

I2C data transfer is successful if data is written to EEPROM with acknowledgement and the
same data is read back.

7 Conclusion

An I2C data transfer driver is developed on the TMS320C54x DSP using a timer and McBSP.
The application has been tested on EEPROM from Philips Semiconductor with the DSP
configured as a master. An easy and user-friendly interface has been defined to allow the user
to make use of these functions with minimum effort. In addition, this I2C application runs in the
background, and will call a user function once the I2C operation is complete. This allows the
user to run their main application, while accessing the I2C devices at the same time.

8 References
1. The I2C-bus and how to use it, Phillips Semiconductor, April 1995.

2. PCF8582 256 × 8 bit CMOS EEPROM with I2C-bus interface, Phillips Semiconductor, Feb 1997.

3. SN54HC125, SN74HC125 Quadruple Bus Buffer Gates With 3-State Outputs, (SCLS104B).

SPRA836

18 Interfacing the TMS320C54x DSP

Appendix A Memory Registers

A.1 I2CSTATUS

15 14 13 12 11 10 9 8

DISA – SUCC ERR ACK STOP CLKL CLKH

7 6 5 4 3 2 1 0

START MODE ADDR PRESCL PRESDA CURSCL CURSDA

Bit Name Function

15 DISA Disables the I2C data transfer operation.

14 – Not used. (For user’s application.)

13 SUCC Success in sending or receiving data.

12 ERR Error in sending or receiving data. Type of error reported in ERRORMSG.

11 ACK Indicates current bit is acknowledge from master or slave

10 STOP Indicate current byte is the last data to send or receive

9 CLKL SCL goes LOW flag

8 CLKH SCL goes HIGH flag

7 START Initiates start condition

6, 5 MODE 10: Master–receiver mode
01: Master–transmitter mode

4 ADDR Indicates current byte is slave address

3 PRE SCL Previous SCL logic level

2 PRE SDA Previous SDA logic level

1 CUR SCL Current SCL logic level

0 CUR SDA Current SDA logic level

SPRA836

19 Interfacing the TMS320C54x DSP

A.2 ERRORMSG

15 3 2 0

x ERRCODE

Bit Name Function

15 – 3 – Not used

2, 1, 0 ERRCODE Error code. Only one error is defined, and the rest are for user’s application.

Bit
2, 1, 0 Error type

000 No error

001 No acknowledge from slave

010 Lines busy or unknown condition

A.3 ODBYTECTR/IDBYTECTR: Output/Input Byte Counter

15 8 7 0

Current Byte Pointer Number of Bytes

Bits Name Function

15 – 8 Current byte pointer Points to the current byte. 0 is first byte, 1 is second byte, and so on.

7 – 0 Number of bytes Number of bytes to send/receive. Since 8-bit, only 256 bytes allow to send/receive
at one time

A.4 ODBITCTR/IDBITCTR: Output/Input Bit Counter

15 3 2 0

x Current Bit Pointer

Bits Name Function

15 – 8 – Not used

7 – 0 Current bit pointer Points to the current bit poisition of the current byte

A.5 ODPTR/IDPTR: Output/Input Data Pointer

Function: Address of the first memory location of the 256 long data bytes

SPRA836

20 Interfacing the TMS320C54x DSP

Appendix B Software Process Flow Chart

I2C
disable
success

?

Yes

No

Begin

Update previous and
current SDA/SCL

No

Set
SCL high

?

Yes

No

SCL low
Set

?

Yes

SCL HIGH
routine

routine
SCL LOW

Acknowledge
routine?

No

bit
Ack Yes

Start condition
routinecondition

No

?

Start Yes

Stop condition
routine

No

condition
Stop

?

Yes

Master receiver
routine

No

Read
from slave

?

Yes

to slave routine?

Master transmitterWrite Yes

No

Enable timer
interruptinterrupt

Disable timer

End

Figure B–1. Software Process Flow Chart of the Implemented I2C Operation

SPRA836

21 Interfacing the TMS320C54x DSP

Appendix C Program Listings

*The following files are needed to implement the I2C protocol:
*

* 1) i2c.asm: timer interrupt service routine
* 2) vectors.asm: interrupt vector table
* 3) init_pll.asm: initialize CPU clock routine
* 4) i2c.cmd: code and data sections allocation
* 5) i2c.inc: constants
* 6) i2creg.inc: memory registers
* 7) bsp.inc: McBSP addresses
* 8) time.inc: timing constants

* Filename: bsp.inc *

SPSA .set 0048H ; MCBSP1 sub–address register

SPCR1 .set 0049H ; MCBSP1 control register 1

SPCR2 .set 0049H ; MCBSP1 control register 2

XCR1 .set 0049H ; MCBSP1 transmit control register 1

XCR2 .set 0049H ; MCBSP1 transmit control register 2

SRGR1 .set 0049H ; MCBSP1 sample rate genarator register 1

SRGR2 .set 0049H ; MCBSP1 sample rate genarator register 2

SPCR1_SUB .set 0000H ; Serial port control register 1 (subaddress)

SPCR2_SUB .set 0001H ; Serial port control register 2 (subaddress)

RCR1_SUB .set 0002H ; Serial port transmit control register 1 (subaddress)

RCR2_SUB .set 0003H ; Serial port transmit control register 1 (subaddress)

XCR1_SUB .set 0004H ; Serial port transmit control register 1 (subaddress)

XCR2_SUB .set 0005H ; Serial port transmit control register 1 (subaddress)

SRGR1_SUB .set 0006H ; Serial port sample rate genarator register 1 (subaddress)

SRGR2_SUB .set 0007H ; Serial port sample rate genarator register 2 (subaddress)

PCR_SUB .set 000EH ; Serial port pin control register (subaddress)

K_XIOEN .set 0010000000000000b ; Set XIOEN enable.

K_RIOEN .set 0001000000000000b ; Set RIOEN enable.

K_FSXM .set 0000000000000000b ; Set FSX as input.

K_FSRM .set 0000010000000000b ; Set FSR as output.

K_DX_STAT_1 .set 0000000000100000b ; Mask DX_STAT bit ON.

K_DX_STAT_0 .set 1111111111011111b ; Mask DX_STAT bit OFF.

K_DR_STAT_1 .set 0000000000010000b ; Mask DR_STAT bit ON.

K_DR_STAT_0 .set 1111111111101111b ; Mask DR_STAT bit OFF.

K_FSXP_1 .set 0000000000001000b ; Mask FSXP bit.

K_FSXP_0 .set 1111111111110111b ; Mask FSXP bit.

K_FSRP_1 .set 0000000000000100b ; Mask FSRP bit.

K_FSRP_0 .set 1111111111111011b ; Mask FSRP bit.

SPRA836

22 Interfacing the TMS320C54x DSP

* Filename: i2c.inc *

* This file defines all constants and flags used in the program. *

*I2CSTATUS Register

*Status of I2C transmission

*+––+

*| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 5 | 4 | 3 | 2 | 1 | 0 |

*+––+

*|DISA|CTRL|SUCC|ERR |ACK |STOP|CLKL|CLKH|Start| Mode |Addr| Pre | Pre | Cur | Cur|

*| | | | | | | | | | | | SCL | SDA | SCL | SDA|

*+––+

K_CSDA_1 .set 0000000000000001b ;Current SDA is high.

K_CSDA_0 .set 1111111111111110b ;Current SDA is low.

K_CSCL_1 .set 0000000000000010b ;Current SCL is high.

K_CSCL_0 .set 1111111111111101b ;Current SCL is low.

K_PSDA_1 .set 0000000000000100b ;Previous SDA is high.

K_PSDA_0 .set 1111111111111011b ;Previous SDA is low.

K_PSCL_1 .set 0000000000001000b ;Previous SCL is high.

K_PSCL_0 .set 1111111111110111b ;Previous SCL is low.

K_ADDR_1 .set 0000000000010000b ;Slave address flag on

K_ADDR_0 .set 1111111111101111b ;Slave address flag off

K_READ_FROM_SLAVE .set 0000000001000000b ;DSP read from slave

K_WRITE_TO_SLAVE .set 0000000000100000b ;DSP write to slave

K_READ_FROM_MASTER .set 0000000000000000b ;DSP read from master

K_WRITE_TO_MASTER .set 0000000001100000b ;DSP write to master

K_START_1 .set 0000000010000000b ;Start condition

K_START_0 .set 1111111101111111b ;Not start condition

K_CLKH_1 .set 0000000100000000b ;Next interrupt set SCL=high

K_CLKH_0 .set 1111111011111111b ;Disable this feature.

K_CLKL_1 .set 0000001000000000b ;Next interrupt set SCL=low

K_CLKL_0 .set 1111110111111111b ;Disable this feature.

K_STOP_1 .set 0000010000000000b ;Stop condition

K_STOP_0 .set 1111101111111111b ;Disable this feature.

K_ACK_1 .set 0000100000000000b ;Next interrupt is ACK

K_ACK_0 .set 1111011111111111b ;Disable this feature.

SPRA836

23 Interfacing the TMS320C54x DSP

K_ERR_1 .set 0001000000000000b ;Error

K_ERR_0 .set 1110111111111111b ;No Error

K_SUCC_1 .set 0010000000000000b ;I2C data transfer successful

K_SUCC_0 .set 1101111111111111b ;I2C data transfer fails.

K_DISA_1 .set 1000000000000000b ;I2C protocol disable

K_DISA_0 .set 0111111111111111b ;I2C protocol enable

K_RESET_I2C .set 0 ;Reset I2C register.

K_I2C_READ .set 1 ;Mode of operation: Attach a R/W bit at

K_I2C_WRITE .set 0 ;the end of slave address.

*ERRORMSG Register*Error message of I2C

* +––––––––––––––––––––––+

* | 15 3 | 2 1 0|

* +––––––––––––––––––––––+

* | xxxx | ERRCODE |

* +––––––––––––––––––––––+

K_ERR_NO_ERROR .set 000b

K_ERR_NOACK .set 001b

K_ERR_UNKNOWN .set 010b

;**************************

;**USER PERFERENCE SETUP **

;**************************

;*** SETUP SLAVE ADDRESS

K_SLAVEADDR .set 1010000B ;Set slave address (7bits).

;**

;***SELECT SITUATIONS TO STOP DATA TRANSFER**

;K_DISABLE_I2C .set K_SUCC_1 ;Stop after transfer is over.

K_DISABLE_I2C .set K_SUCC_1|K_ERR_1|K_DISA_1 ;Stop when error or disable occurs.

;**

**************** EOF ***

SPRA836

24 Interfacing the TMS320C54x DSP

**

* Filename: 12creg.inc *

* This file contains all memory registries in the program. *

**

**

 VARIABLES

**

 .align 128

_I2C_DP .usect “data”,0

_I2CSTATUS .usect “data”,1

*ODBYTECTR

*Output data btye counter

* +––––––––––––––––––––––––––––––––+

* |15 8 | 7 0 |

* +––––––––––––––––––––––––––––––––+

* | Current byte | Number of |

* | pointer | byte |

* +––––––––––––––––––––––––––––––––+

* byte pointer : 8bits . because reserved 255 words

*

*ODBITCTR

*Output data bit counter

* +––––––––––––––––––––––––––––––––+

* |15 4 | 3 0 |

* +––––––––––––––––––––––––––––––––+

* | XXXXX | Bit |

* | | pointer |

* +––––––––––––––––––––––––––––––––+

* bit pointer : 3bits . for byte

_ODBYTECTR .usect “data”, 1

ODBITCTR .usect “data”, 1

*IDCTR

*Input data btye/bit counter

* +––––––––––––––––––––––––––––––––+

* |15 8 | 7 0 |

* +––––––––––––––––––––––––––––––––+

* | Current byte | Number of |

* | pointer | byte |

* +––––––––––––––––––––––––––––––––+

* byte pointer : 8bits . because reserved 255 words

*

SPRA836

25 Interfacing the TMS320C54x DSP

*IDBITCTR

*Input data bIT counter

* +––––––––––––––––––––––––––––––––+

* |15 4 | 3 0 |

* +––––––––––––––––––––––––––––––––+

* | XXXXX | Bit |

* | | pointer |

* +––––––––––––––––––––––––––––––––+

* bit pointer : 3 bits for a byte

_IDBYTECTR .usect “data”,1

IDBITCTR .usect “data”,1

ERRORCODE .usect “data”,1

_SLAVE_ADDR .usect “data”,1

TEMP_REG .usect “data”,1

POINTER .usect “data”,1

TEMP1_REG .usect “data”,1

*ODPTR

*Output data address pointer register (16bits)

*reserved 255 words (uses only 8 bits)

* +––––––––––––––––––––––––––––––––+

* |15 0 |

* +––––––––––––––––––––––––––––––––+

* | Address of output data |

* +––––––––––––––––––––––––––––––––+

.align 128

_ODPTR .usect “data”, 0ffh

*IDPTR

*Input data address pointer register

*reserved 255 words (uses only 8 bits)

* +––––––––––––––––––––––––––––––––+

* |15 0 |

* +––––––––––––––––––––––––––––––––+

* | Address of input data |

* +––––––––––––––––––––––––––––––––+

.align 128

IDPTR .usect “data”, 0ffh

***************************END OF FILE***********************************

SPRA836

26 Interfacing the TMS320C54x DSP

* Filename: time.inc *

* This file contains the programmable period of timer interrupts. *

* *

;***USER PERFERENCE SETUP***************************************

F_CPU_MHz .set 80 ;If init_pll.asm is used, CPU

 ;Frequency is 80MHz.

PRD_VAL_us .set 1 ;Select to obtain 1us interrupt.

START_HOLD_TIME_u .set5 ;Select to obtain 5us interrupt.

SCL_HIGH_us .set5 ;Select to obtain 5us interrupt.

SCL_LOW1_us .set5 ;Select to obtain 5us interrupt.

SCL_LOW2_us .set5 ;Select to obtain 5us interrupt.

STOP_SETUP_TIME_us .set5 ;Select to obtain 5us interrupt

;**END OF USER PERFERENCE SETUP*********************************

K_PRD_VAL .set ((PRD_VAL_us*F_CPU_MHz)/16)–1

K_START_HOLD_TIME .set ((START_HOLD_TIME_us*F_CPU_MHz)/16)–1

K_SCL_HIGH .set ((SCL_HIGH_us*F_CPU_MHz)/16)–1

K_SCL_LOW1 .set ((SCL_LOW1_us*F_CPU_MHz)/16)–1

K_SCL_LOW2 .set ((SCL_LOW2_us*F_CPU_MHz)/16)–1

K_STOP_SETUP_TIME .set ((STOP_SETUP_TIME_us*F_CPU_MHz)/16)–1

STOP_TIMER .set 001FH

START_TIMER .set 002FH

***************************END OF FILE*******************************

SPRA836

27 Interfacing the TMS320C54x DSP

/**********************/

/* */

/* Filename : i2c.cmd */

/* –define memory map */

/* */

/**********************/

–e start /*define starting point of program*/

MEMORY

{

 PAGE 0:

 P_VECT (RWX) : org = 0080h, len = 0080h

 P_DARAM (RWX) : org = 2000h, len = 100h

 PAGE 1:

 D_SARAM2 (RWX) : org = 2100h, len = 700h

}

SECTIONS

{

 vectors : {} > P_VECT PAGE 0

 .text : {} > P_DARAM PAGE 0

 data : {} > D_SARAM PAGE 1

 constant : {} > D_SARAM2 PAGE 1

 program : {} > D_SARAM2 PAGE 1

 STK : {} > D_SARAM2 PAGE 1

}

/************************END OF FILE***********************************/

SPRA836

28 Interfacing the TMS320C54x DSP

/*************************/

/* */

/* Filename: init.gel */

/* –the GEL file for CCS */

/* */

/*************************/

/* set PMST to */

/* IPTR = 01H */

/* MP = OVLY = 1; DROM off, CLKOUT on */

#define PMST 0x1d

#define PMST_VAL 0x00e0

/* set wait–state control reg for: 2 w/s for i/o, ext/int data memory */

#define SWWSR 0x28

#define SWWSR_VAL 0x2492

/* set external–banks switch control for: no bank switching; BH set */

#define BSCR 0x29

#define BSCR_VAL 0x02

StartUp()

{

 init();

}

menuitem “C5400”;

hotmenu reset()

{

 GEL_Reset();

 init();

 GEL_MapOn();

 GEL_MapReset();

 GEL_XMDef(0,0x1e,1,0x8000,0x7f);

 GEL_XMOn();

 GEL_MapAdd(0,1,0x8000,1,1);

 GEL_MapAdd(0,0,0x20000,1,1);

 GEL_MapAdd(0,2,0xffff,1,1);

}

hotmenu init()

{

 *(int *)PMST = PMST_VAL;

 *(int *)SWWSR = SWWSR_VAL;

 *(int *)BSCR = BSCR_VAL;

 GEL_MemoryFill(0x4,2,1,0xff03);

}

SPRA836

29 Interfacing the TMS320C54x DSP

* *

* Filename: init_pll.asm *

* This file initializes the CPU clock (10-MHz crystal is used). *

* *

 .mmregs

 .def _INIT_PLL

 .text

_INIT_PLL:

;–– 1. Set clock mode to DIV mode. In order to change PLLNDIV, PLLCOUNT etc

 STM #0,CLKMD.

wait_div_mode:

 BITF *(CLKMD),#1 ;Test if PLLSTSATUS=0.

 BC wait_div_mode,TC ;If not, move on(PLL mode).

;–– 2. Set clock mode to PLL mode.

 STM #0111011111111111b,CLKMD

 ;0111~~~~~~~~~~~~ ;PLL multiplier, freq = PLLMUL + 1.

 ;~~~~0~~~~~~~~~~~ ;PLLDIV, pll divide mode

 ;~~~~~11111111~~~ ;PLLCOUNT, pll lock time, I/P clk X 16

 ;~~~~~~~~~~~~~1~~ ;PLLONOFF

 ;~~~~~~~~~~~~~~1~ ;PLLNDIV, pll divide mode

 ;~~~~~~~~~~~~~~~1 ;PLLSTATUS, pll mode(read only)

;–– 3. Wait for PLL lock,

wait_pll_mode:

 BITF *(CLKMD),#1

 BC wait_pll_mode,NTC

 NOP

 LDM PMST,A

 OR #4H,A ;Enable CLKOUT signal.

 STLM A,PMST

 NOP

 NOP

 RET

*****************************END OF FILE**********************************

SPRA836

30 Interfacing the TMS320C54x DSP

* Filename: main.asm *

* This is an example to test the I2C data transfer using EEPROM PCF8582. Its *

* address is defined in i2c.asm K_SLAVEADDR. *

* *

 .mmregs

 .def start

 .ref _INIT_PLL,_ODBYTECTR,_IDBYTECTR,_ODPTR

 .ref _init_gpio,_init_i2c,_write_i2c,_read_i2c

 .def _USER_FUNCTION

LEN .set 400 ;Length of stack segment

BOS .usect “STK”,LEN

;***

; MAIN ROUTINE

;***

 .text

start:

 STM #BOS+LEN,SP ;Setup stack pointer.

 CALL _INIT_PLL ;Init CPU clock.

 RSBX SXM ;Sign extension suppressed

 NOP

 CALL _init_gpio ;Init McBSP to GPIO.

 CALL _init_i2c ;Init I2C data transfer.

;***

;********SET UP SLAVE ADDR AND WRITE DATA (DATA MUST BE BYTE!!!)**********

 CALL _init_i2c ;Init I2C data transfer.

 STM #_ODPTR+1,AR2 ;_ODPTR+0 contains slave addr.

 ST #0,*AR2+ ;Initiate EEPROM internal addr pointer 00h.

 ST #011H,*AR2+ ;Store 11h to EEPROM addr 00h.

 ST #012H,*AR2+ ;Store 12h to EEPROM addr 01h.

 ST #013H,*AR2+ ;Store 13h to EEPROM addr 02h.

 ST #014H,*AR2+ ;Store 14h to EEPROM addr 03h.

 ST #015H,*AR2+ ;Store 15h to EEPROM addr 04h.

 ST #016H,*AR2+ ;Store 16h to EEPROM addr 05h.

 STM #_ODBYTECTR,AR1

 ST #7,*AR1 ;7 bytes to be sent, including slave addr.

 CALL _write_i2c ;wWite and enable global interrupt.

 CALL Delay ;Allows for E/W cycle of EEPROM.

SPRA836

31 Interfacing the TMS320C54x DSP

;*********SET UP EEPROM Internal Address Pointer**************************

 CALL _init_i2c ;Init I2C data transfer.

 STM #_ODPTR+1,AR1 ;_ODPTR+0 contains slave addr.

 ST #0,*AR1+ ;Reset EEPROM internal addr pointer back to 00h.

 NOP

 STM #_ODBYTECTR,AR1

 ST #1,*AR1 ;1 byte to be sent.

 CALL _write_i2c ;Write and enable global interrupt.

 CALL Delay ;Allows for E/W cycle of EEPROM

;*********READ BACK 6 BYTES FROM EEPROM***************************************

 CALL _init_i2c ;Init I2C data transfer.

 STM #_IDBYTECTR,AR1 ;1ST loc at odptr contains slave addr.

 ST #6,*AR1 ;Read in 6 bytes.

 CALL _read_i2c ;Read and enable global interrupt.

;*********End of program***

STOPSTOP:

 B STOPSTOP

;**

;***OTHER SUBROUTINES**

;**

Delay: ;A delay subroutine to allow for the E/W cycle NOP

 ;before any further write/read process to EEPROM

 PSHM AR5

 PSHM AR6

 NOP

 STM #2000,AR5

LOOP1: STM #2000,AR6

LOOP2: NOP

 NOP

 BANZ LOOP2,*AR6-

 BANZ LOOP1,*AR5-

 NOP

 POPM AR6

 POPM AR5

 NOP

 RET

;**

;**

_USER_FUNCTION: ;User function subroutine is called when data

 NOP ;transfer is successful.

 RET

.end

SPRA836

32 Interfacing the TMS320C54x DSP

****************************END OF FILE**********************************

**

* *

* Filename: i2c.asm *

* This files the I2C timer interrupt service routine and other I2C *

* initialization routines. *

* *

**

 .mmregs

 .include “time.inc”

 .include “i2c.inc”

 .include “bsp.inc”

 .include “i2creg.inc”

 .def TIMER_INT

 .def _I2CSTATUS,_ODBYTECTR,_IDBYTECTR,_ODPTR,_SLAVE_ADDR

 .def _init_gpio,_init_i2c,_write_i2c,_read_i2c

 .ref _USER_FUNCTION

;***MASK array defines the bit position of a byte

 .sect “constant”

MASK .int 01h ;Bit 0

 .int 02h ;Bit 1

 .int 04h ;Bit 2

 .int 08h ;Bit 3

 .int 10h ;Bit 4

 .int 20h ;Bit 5

 .int 40h ;Bit 6

 .int 80h ;Bit 7 (MSB)

 .sect “program”

;***

; TIMER ISR

;***

TIMER_INT:

;***SAVE CPU REGISTERS TO STACK***

 PSHM ST0

 PSHM ST1

 PSHM AR1

 PSHM AR2

 PSHM AR3

 PSHM AR4

SPRA836

33 Interfacing the TMS320C54x DSP

 PSHM AR5

 PSHM AR6

 NOP

 NOP

 RSBX SXM ;Suppressed sign extension

 RSBX CPL ;Use DP as relative direct–addressing.

 RSBX HM ;Hold mode = 0.

 LD #_I2C_DP,DP ;Set DP.

 NOP

 NOP

 LD _ I2CSTATUS,A ;Load i2c status.

 LD A,B ;Duplicate i2c status.

 AND #K_DISABLE_I2C,B ;Check if i2c disable.

 BC tint_disable_tint,BNEQ ;If =1, go to end.

;***UPDATE PREVIOUS SDA AND SCL***

 AND #3H,A ;Mask all except current bits.

 LD A,2,B ;Shift current bits to previous bits.

 ANDM #0FFF0H,_I2CSTATUS ;Mask off lower 4 bits.

 LD _I2CSTATUS,A ;Load i2c status.

 ADD B,A ;Current –> previous

 STL A,_I2CSTATUS ;Store back to register (current=0).

;***UPDATE CURRENT SDA AND SCL***

 STM #SPSA,AR2 ;AR2 points to SPSA.

 ST #PCR_SUB,*AR2+ ;Check line status of SCL.

 LD #(K_DR_STAT_1|K_FSXP_1),B ;Mask DR_STAT & FSXP bit (bits 4 and 3).

 AND #0FFFFH,A ;Clear AH(i2c status).

 AND *AR2–,B ;Check DR_STAT and FSXP bit.

 OR B,–3,A ;Shift current SCL to bits 1 and 0.

 STL A,_I2CSTATUS ;store back to i2c status register.

;***CHECK START/STOP CONDITION OR MODE OF OPERATION***

 LD A,B ;Duplicate i2cstatus.

 AND #K_CLKH_1,B ;Need to set SCL=high.

 BC tint_clk_go_high,BNEQ ;If one, goto set_high

 LD A,B ;Duplicate i2c status.

 AND #K_CLKL_1,B ;Need to set SCL=low.

 BC tint_clk_go_low,BNEQ ;If one, goto set_low.

 LD A,B ;Duplicate i2c status.

 AND #K_ACK_1,B ;Check ACK in i2c status.

 BC tint_ack,BNEQ ;If ACK=1, goto tinit_ack.

 LD A,B ;Duplicate i2cstatus.

 AND #K_START_1,B ;Check start condition in i2c status.

 BC tint_start,BNEQ ;If start=1, goto tinit_start.

SPRA836

34 Interfacing the TMS320C54x DSP

 AND #K_STOP_1,A ;Check stop condition in i2c status.

 BC tint_stop,ANEQ ;If stop=1, go to tinit_stop.

 MVDK _I2CSTATUS,TEMP_REG ;Copy i2c status to temp register.

 ANDM #01100000B, TEMP_REG ;Mask on 6 and 5 bits (Mode of operation).

 CMPM TEMP_REG,#K_READ_FROM_SLAVE ;Compare only 6 and 5 bits.

 BC tint_read_slave, TC ;If 10, go to read_slave(TEMP_REG as an

 ;extra ACK flag, not equal to 0).

 CMPM TEMP_REG,#K_WRITE_TO_SLAVE ;Compare only 6 and 5 bits.

 BC tint_write_slave, TC ;If 01,goto write slave(TEMP_REG

 ;as a extra ACK flag, not equal to 0).

 ; ||

 B tint_busy ;For future upgrades,

 ;multi–master not supported now

 ;***END OF MAIN CONTROL LOOP***

;**

;**

;*****START CONDITION SEQUENCES*****

tint_start:

;***READ THE PREVIOUS AND CURRENT SDA/SCL LEVELS***

 MVDK _I2CSTATUS,TEMP_REG ;Copy i2c status to temp register.

 ANDM #0FH, TEMP_REG ;Mask on lower 4 bits.

 CMPM TEMP_REG,#1111B ;All lines high

 BC tint_start_start,TC ;Go to end of start condition.

 CMPM TEMP_REG,#1110B ;Start finished

 ;1~~~ ;Previous SCL=1.

 ;~1~~ ;Previous SDA=1.

 ;~~1~ ;Current SCL=1.

 ;~~~0 ;Current SDA=0.

 BC tint_start_finish,TC ;Go to end of start condition.

 B tint_start_invalid ;Go to invalid (only consider 2 cases).

;***BEGIN OF START CONDITION***

tint_start_start:

 CALL pullSDA ;SDA–>0 while SCL=1.

 ;***SETUP TIMER INTERRUPT FOR hold time=5us

 STM #STOP_TIMER,TCR ;Stop timer.

 STM #K_START_HOLD_TIME,PRD ;Load hold time of CLK (5us).

 STM #START_TIMER,TCR ;Start timer.

 B tint_end_isr

;***END OF START CONDITION***

tint_start_finish:

 CALL pullSCL ;SCL=0 after hold time.

SPRA836

35 Interfacing the TMS320C54x DSP

 ANDM #K_START_0,_I2CSTATUS ;Clear start flag.

 ST #1,TEMP_REG ;Set extra ACK flag for normal clocking.

 B tint_end_isr ;TINT still at 5us

;***UNKNOWN STATE***

tint_start_invalid:

 CALL releaseSDA ;Release both lines and do start again.

 CALL releaseSCL ;

 B tint_end_isr ;End timer ISR.

;**

;**

;******BEGIN ACKNOWLEDGEMENT BIT SEQUENCE*****

tint_ack:

 ;***CHECK IF MASTER–RECEIVER MODE (read slave)

 MVDK _I2CSTATUS,TEMP_REG ;Copy i2c status to temp register.

 ANDM #01100000B, TEMP_REG ;Mask on 6 and 5 bits (Mode of operation).

 CMPM TEMP_REG,#K_READ_FROM_SLAVE ;Compare only 6 and 5 bits.

 BC tint_ack_not_rs, NTC ;If not 10,go to not_rs.

 LD I2CSTATUS,A ;Check if sending of slave addr is over?

 AND #K_ADDR_1,A ;

 BC tint_ack_end_slave_addr,ANEQ ;If end of send addr, go to end_slave_addr.

 LD POINTER,B ;Extra flag

 BC tint_ack_rs_first,BEQ ;If first time, POINTER==0.

 CALL releaseSDA

 ANDM #K_ACK_0,_I2CSTATUS ;Remove ACK flag.

 B tint_end_isr

tint_ack_rs_first:

 ST #1,POINTER ;Set POINTER flag.

 LD _I2CSTATUS,A ;Load i2c status.

 AND #K_STOP_1,A ;Check stop condition in i2c status.

 BC tint_ack_stop,ANEQ ;If stop=1, go to tint_ack_stop.

 CALL pullSDA ;ACK is LOW when not last byte

B tint_ack_end ;TEMP_REG flag is not 0.

tint_ack_stop:

 CALL releaseSDA ;ACK is HIGH when last byte

 B tint_ack_end ;TEMP_REG flag is not 0.

tint_ack_end_slave_addr:

 ANDM #K_ADDR_0,_I2CSTATUS ;Remove slave address flag.
 ;Continue on, let slave ACK.

SPRA836

36 Interfacing the TMS320C54x DSP

;***IN MASTER–TRANSMIT MODE (write slave)***

tint_ack_not_rs:

 CALL releaseSDA ;SDA=high. Let slave ACK on this line.

 ST #0,TEMP_REG ;Clear temp reg, as an extra ACK flag.

tint_ack_end:

 ORM #K_CLKH_1,_I2CSTATUS ;Next TINT, enable SCL –> high.

 B tint_end_isr

;***TEST IF SLAVE ACKNOWLEDGE TO MASTER***

tint_ack_test: ;Call from where SCL=high(CLKH flag removed).

 ;***CHECK IF SLAVE ACK BY PULLING SDA DOWN***

 ST #PCR_SUB,*AR2+ ;Sub-bank address (SPSA)=PCR.

 LD #K_FSXP_1,A ;Check if SDA go low?

 AND *AR2-,A

 BC tint_ack_sda_low,AEQ ;If SDA=low, go to sda_low.

 ;***SLAVE DID NOT ACKNOWLEDGE***

 ORM #K_ERR_1,_I2CSTATUS ;Turn error flag on.

 ST #K_ERR_NOACK,ERRORCODE ;Give type of error.

tint_ack_sda_low:

 ;***SLAVE ACKNOWLEDGED*** ;SCL go_high flag has disabled.

 ORM #K_CLKL_1,_I2CSTATUS ;Enable SCL go_low flag.

 ANDM #(K_ACK_0&K_ADDR_0),_I2CSTATUS ;Remove ACK and ADDR flag.

 STM #STOP_TIMER,TCR ;Stop timer.

 STM #K_SCL_HIGH,PRD ;Load high period of SCL (at 5us).

 STM #START_TIMER,TCR ;Start timer.

 B tint_end_isr ;Interrupt at 5us.

;**

;**

;*****STOP CONDITION SEQUENCES*****

tint_stop: ;SCL=low after ACK.

 ;***CHECK IF FIRST TIME ENTER STOP SEQUENCE***

 LD TEMP1_REG,A ;To make sure transition of SDA does

 BC tint_stop_continue,ANEQ ;not occur in SCL=1

 CALL pullSDA ;If extra ACT flag=1, not first time

 ST #1,TEMP1_REG ;Set flag=1.

 STM #STOP_TIMER,TCR ;Stop timer.

 STM #K_STOP_SETUP_TIME,PRD ;Load stop setup time (5us).

 STM #START_TIMER,TCR ;Start timer.

 B tint_end_isr ;Check again.

SPRA836

37 Interfacing the TMS320C54x DSP

tint_stop_continue:

 MVDK _I2CSTATUS,TEMP_REG ;Copy i2c status to temp register.

 ANDM #03H,TEMP_REG ;Mask on lower 2 bits.

 ;***AFTER 2ND PASS, SCL=1 , SDA=0***

 CMPM TEMP_REG,#10B ;Stop finished

 ;1~ ;Current SCL=1.

 ;~0 ;Current SDA=0.

 BC tint_stop_finish,TC ;Go to end of stop condition.

 ;***IMMEDIATELY AFTER ACK, SCL/SDA=0/0***

 CMPM TEMP_REG,#00B ;After ACK

 ;0~ ;Current SCL=0.

 ;~0 ;Current SDA=0.

 BC tint_stop_invalid,NTC ;Go to invalid (only consider 2 cases).

 ;***CHECK IF SLAVE HOLD ON TO SCL LINE***

 CALL releaseSCL ;SCL=1.

 NOP ;Wait for a while. (Does SCL go high

 NOP ;Wait for a while. immediately?)

 NOP ;Wait for a while.

 ;***SYNCHRONIZATION***

 ST #PCR_SUB,*AR2+ ;Sub-bank address (SPSA)=PCRLD #K_DR_STAT_1,A.

 ;Check if SCL go high?

 AND *AR2–,A

 BC tint_stop_scl_go_high_yes,ANEQ ;If SCL=high, goto high_yes.

 ;***SLAVE STILL HOLDING ON TO SCL LINE***

 ;***SETUP TIMER INTERRUPT FOR 1us***

 B tint_stop_invalid ;Check again.

tint_stop_scl_go_high_yes:

 ;***SETUP TIMER INTERRUPT FOR hold time=5us***

 STM #STOP_TIMER,TCR ;Stop timer.

 STM #K_STOP_SETUP_TIME,PRD ;Load stop setup time (5us).

 STM #START_TIMER,TCR ;Start timer.

 B tint_end_isr

 ;***SDA=0 –> 1***

tint_stop_finish:

 CALL releaseSDA ;SDA=1.

 ANDM #K_STOP_0,_I2CSTATUS ;Clear stop flag.

 ORM #K_SUCC_1,_I2CSTATUS ;SUCCESSFUL

 NOP

 CALL _USER_FUNCTION ;Go to user–function subroutine.

 NOP

 B tint_end_isr ;End timer ISR.

SPRA836

38 Interfacing the TMS320C54x DSP

tint_stop_invalid:

 CALL pullSDA ;Enable the situation of stop condition.

 CALL releaseSCL ;=> both lines are low.

 STM #STOP_TIMER,TCR ;Stop timer.

 STM #K_PRD_VAL,PRD ;Load PRD (1us).

 STM #START_TIMER,TCR ;Start timer.

 B tint_end_isr ;Check again.

;**

;**

;*****READ FROM SLAVE SEQUENCES*****

tint_read_slave:

 LD _I2CSTATUS,A ;Load i2c status.

 AND #K_ADDR_1,A ;Check if send slave addr now.

 BC tint_clk_go_high,AEQ ;If =0, go to rs_mode.

 B tint_write_slave ;Write slave addr in the first byte.

;***READ DATA FROM SLAVE DURING SCL=HIGH***

tint_rs_mode:

 ;***SETUP POINTERS TO CORRECT LOCATION***

 LD #IDPTR,B ;Load addr of out–data to B.

 LD _IDBYTECTR, –8,A ;Move current byte pointer.

 STL A,POINTER ;Store it to POINTER (1ST = BYTE 0).

 ADD A,B ;Update current btye pointer.

 STLM B,AR4 ;AR4 points to current byte.

 CMPM IDBITCTR,#7 ;If IDBITCTR == 7, then it is new byte,

 BC tint_rs_not_new_byte,NTC ;else not new byte.

 ST #0,*AR4 ;Clear the memory location.

tint_rs_not_new_byte:

 ST #PCR_SUB,*AR2+ ;Check current line status of SDA.

 LD #K_FSXP_1,B ;Mask FSXP bit (bit 3).

 AND *AR2–,B ;Check FSXP bit.

 LD B,–3,A ;Store to bit 0 of A.

 LD IDBITCTR,B ;Check if end of byte,i.e., bit ctr=0.

 BC tint_rs_bit_0,BEQ ;If bit ctr=0, go to new_byte,

 SUB #1,B ;else decrement bit ctr.

 STL B,TEMP1_REG ;Store to TEMP1 register.

SPRA836

39 Interfacing the TMS320C54x DSP

 RPT TEMP1_REG ;Shift A (bitctr–1) times.

 SFTL A,1 ;Result in A.

 ;***LSB NO NEED TO SHIFT***

tint_rs_bit_0: ;If bit 0, no need to shift.

 LD *AR4,B ;Load B with current read byte.

 OR A,B ;Combine and store to B.

 AND #0FFH,B ;Allows only byte

 STL B,*AR4 ;Store back to memory.

 LD IDBITCTR,A ;If BITCTR=0(LSB) ie., end of byte,

 BC tint_rs_next_byte,AEQ ;go to next byte.

 SUB #1,A,B ;Decrement A and store to B.

 STL B,IDBITCTR ;Store back to register.

 B tint_rs_next ;Next bit

 ;***TEST IF COME TO LAST BYTE***

tint_rs_next_byte:

 ORM #K_ACK_1,_I2CSTATUS ;Enable ACK flag.

 ST #7,IDBITCTR ;Start from MSB (initiate next byte).

 ADDM #1,POINTER ;Increment POINTER.

 ANDM #0FFH,_IDBYTECTR ;Prepare num of btye to receive.

 LD POINTER,B ;Load the incremental POINTER to B.

 LD _IDBYTECTR,A ;Load num of byte to A.

 SUB B,A ;A=(Num of byte) – (current byte POINTER).

 BC tint_rs_no_more_byte,AEQ ;If=0, no more to receive.

 LD POINTER,8,A ;Shift 8 places forward.

 LD _IDBYTECTR,B ;

 OR B,A ;Combine POINTER and num of btye to send.

 STL A,_IDBYTECTR ;Update IDBYTECTR.

 B tint_rs_next ;Go to next byte.

tint_rs_no_more_byte:

 ORM #K_STOP_1,_I2CSTATUS ;Enable STOP condition.

tint_rs_next:

 ST #0,POINTER ;Extra flag use in ack_rs.

 ORM #K_CLKL_1,_I2CSTATUS ;Next TINT, enable releaseSCL.

 STM #STOP_TIMER,TCR ;stop timer.

 STM #K_SCL_HIGH,PRD ;Load PRD (interrupt at 5us).

 STM #START_TIMER,TCR ;Start timer.

 B tint_end_isr ;

;**

;**

SPRA836

40 Interfacing the TMS320C54x DSP

;*****WRITE TO SLAVE SEQUENCES*****

tint_write_slave:

 ;***SET UP AR4 POINTS TO BYTE TO BE SENT***

 LD #_ODPTR,B ;Load addr of out–data to B.

 LD _ODBYTECTR, –8,A ;Move current byte pointer.

 STL A,POINTER ;Store it to POINTER (1ST= BYTE 0).

 ADD A,B ;Update current btye pointer.

 STLM B,AR4 ;AR4 points to current byte.

 ;***SET UP AR3 POINTS TO BIT TO BE SENT***

 STM #MASK,AR3 ;AR3 points to MASK.

 RPT ODBITCTR ;Look up table (LUT).

 LD *AR3+,A ;Store mask to A.

 AND *AR4, A ;Check if the bit is high or low.

 ;***WRITE BIT***

 CC releaseSDA,ANEQ ;Bit=1, SDA=high.

 CC pullSDA,AEQ ;Bit=0, SDA=low.

 ;***TEST IF COME TO LAST BIT***

 LD ODBITCTR,A ;If BITCTR=0(LSB) i.e., end of byte,

 BC tint_ws_next_byte,AEQ ;go to next byte.

 SUB #1,A,B ;Decrement A and store to B.

 STL B,ODBITCTR ;Store back to register.

 B tint_ws_next ;Next bit

 ;***TEST IF COME TO LAST BYTE***

tint_ws_next_byte:

 LD POINTER,B ;First byte is byte zero.

 ORM #K_ACK_1,_I2CSTATUS ;Enable ACK flag.

 ST #7,ODBITCTR ;Start from MSB (initiate next byte).

 ADD #1,B ;Increment POINTER.

 STL B,POINTER ;Store back.

 ANDM #0FFH,_ODBYTECTR ;Prepare num of btye to send.

 LD _ODBYTECTR,A ;Load num of byte to A.

 SUB B,A ;A=(Num of byte) – (current byte POINTER)

 BC tint_ws_end_write,AEQ ;If=0, no more to send. Enable stop condition.

 LD POINTER,8,A ;Shift 8 places forward.

 LD _ODBYTECTR,B ;

 OR B,A ;Combine POINTER and num of btye to send.

 STL A,_ODBYTECTR ;Update ODBYTECTR.

 B tint_ws_next ;Go to next byte.

 ;***NO MORE DATA***

tint_ws_end_write: ;Do not update POINTER for last byte.

 ORM #K_STOP_1,_I2CSTATUS ;Enable STOP condition.

SPRA836

41 Interfacing the TMS320C54x DSP

 ST #0,TEMP1_REG

 ;***PREPARE FOR NEXT BIT***

 tint_ws_next:

 ORM #K_CLKH_1,_I2CSTATUS ;Next TINT,e nable releaseSCL.

 STM #STOP_TIMER,TCR ;Stop timer.

 STM #K_SCL_LOW1,PRD ;Load SCL low period(interrupt at 5us).

 STM #START_TIMER,TCR ;Start timer.

 B tint_end_isr ;

 ;***BUSY LINES OR UNKNOWN CONDITION

tint_busy: ;Unknown condition or lines are busy.

 ;***REPORT ERROR TYPE***

 ORM #K_ERR_1,_I2CSTATUS ;Turn error flag on.

 ST #K_ERR_UNKNOWN,ERRORCODE ;Give type of error.

 B tint_end_isr

;**

;**

;*****MAKE CLK–>HIGH SEQUENCES*****

tint_clk_go_high:

 CALL releaseSCL ;SCL=high.

 NOP ;Wait for a while. (Does SCL go high

 NOP ;Wait for a while. immediately?)

 NOP ;Wait for a while.

 ;***SYNCHRONIZATION***

 ST #PCR_SUB,*AR2+ ;Sub-bank address (SPSA)=PCR.

 LD #K_DR_STAT_1,A ;Check if SCL go high?

 AND *AR2–,A

 BC tint_clk_go_high_yes,ANEQ ;If SCL=high, goto high_yes.

 ;***SLAVE HOLD SCL LOW***

 STM #STOP_TIMER,TCR ;Stop timer.

 STM #K_PRD_VAL,PRD ;Load PRD (interrupt at 1us).

 STM #START_TIMER,TCR ;Start timer.

 B tint_end_isr ;Do go_high procedure again.

;***CLK GONE HIGH (SLAVE NO MORE HOLDING ONTO SCL)***

tint_clk_go_high_yes:

 ANDM #K_CLKH_0,_I2CSTATUS ;Remove SCL go_high flag.

;*****ACKNOWLEDGE SEQUENCE***

 ;***CHECK IF IT IS IN THE ACK PHASE (write slave)***

 LD TEMP_REG,A ;Check if Slave release SDA line.

 BC tint_ack_test,AEQ ;Extra ACT flag=0: ACK in progress

 ;*****END OF ACKNOWLEDGE SEQUENCE***

 ;*****READ THE CURRENT SDA LEVEL (FOR READ SLAVE MODE)***

 ;***CHECK IF MASTER–RECEIVER MODE (read slave)***

SPRA836

42 Interfacing the TMS320C54x DSP

 LD _I2CSTATUS,B ;

 LD B,A ;Duplicate

 AND #K_ADDR_1,A ;Check ADDR in i2c status.

 BC tint_clk_go_high_not_rs,ANEQ ;If sending slave addr, go to not_rs.

 MVDK _I2CSTATUS,TEMP_REG ;Copy i2c status to temp register.

 ANDM #01100000B, TEMP_REG ;Mask on 6 and 5 bits (mode of operation).

 CMPM TEMP_REG,#K_READ_FROM_SLAVE ;Compare only 6 and 5 bits.

 BC tint_clk_go_high_not_rs,NTC ;If not 10, go to not_rs.

 ;***CHECK IF IN ACK PHASE***

 AND #K_ACK_1,B ;Check ACK in i2c status.

 BC tint_rs_mode,BEQ ;If ACK=0, goto rs_mode.

 ;***CHECK IF GOING TO STOP SEQUENCE***

 LD _I2CSTATUS,A ;Check if come to the last byte

 AND #K_STOP_1,A ;Need to set extra TEMP_REG flag=0

 BC tint_clk_go_high_not_rs,AEQ ;Bcos to avoid the unknown transition

 ;of SDA.

 ST #0,TEMP1_REG ;To prolong SDA=0 in stop sequences

;*****END OF READ THE CURRENT SDA LEVEL (FOR READ SLAVE MODE)***

tint_clk_go_high_not_rs:

 ;***END OF READ SLAVE MODE***

 ORM #K_CLKL_1,_I2CSTATUS ;Enable SCL go_low flag.

 STM #STOP_TIMER,TCR ;Stop timer.

 STM #K_SCL_HIGH,PRD ;Load PRD (interrupt at 5us).

 STM #START_TIMER,TCR ;Start timer.

 B tint_end_isr ;Interrupt at 5us.

;**

;**

;***MAKE CLK–>LOW SEQUENCES***

tint_clk_go_low:

 CALL pullSCL ;SCL=low.

 ANDM #K_CLKL_0,_I2CSTATUS ;Remove SCL go_low flag.

 STM #STOP_TIMER,TCR ;Stop timer.

 STM #K_SCL_LOW2,PRD ;Load SCL low period(interrupt at 5us).

 STM #START_TIMER,TCR ;Start timer.

 B tint_end_isr ;Interrupt at 5us.

;**

;**

;***DISABLE FURTHER TIMER INTERRUPT***

tint_disable_tint:

SPRA836

43 Interfacing the TMS320C54x DSP

 ANDM #0FFF7H,IMR ;Disable any further TINT.

 B tint_end_end

;******END OF ISR*****

tint_end_isr:

 ORM #0008H,IMR ;enable timer interrupt

 STM #0FFFFH,IFR ;Clear any pending interrupts.

;***START OF OTHER TINT ISR

tint_end_end:

 ;***RESTORE CPU REGISTERS

 NOP

 NOP

 POPM AR6

 POPM AR5

 POPM AR4

 POPM AR3

 POPM AR2

 POPM AR1

 POPM ST1

 POPM ST0

 NOP

 NOP

 ;END OF TIMER ISR.

 RETE ;Enable global INTM.

;**

;**

;***

;OTHER SUBROUTINES

;***

;**

; SDA = HIGH ISR

;**

releaseSDA:

 ST #PCR_SUB,*AR2+ ;Sub-bank address (SPSA0)=PCR0.

 ORM #K_DX_STAT_1, *AR2- ;Mask on DX_STAT BIT.

 NOP

 NOP

SPRA836

44 Interfacing the TMS320C54x DSP

 RET

;**

; SDA = LOW ISR

;**

pullSDA:

 ST #PCR_SUB,*AR2+ ;Sub-bank address (SPSA0)=PCR0.

 ANDM #K_DX_STAT_0,*AR2- ;Mask off DX_STAT BIT.

 NOP

 NOP

 RET

;**

; SCL = HIGH ISR

;**

releaseSCL:

 ST #PCR_SUB,*AR2+ ;Sub-bank address (SPSA0)=PCR0.

 ORM #K_FSRP_1,*AR2- ;Mask on FSR BIT.

 NOP

 NOP

 RET

;**

; SCL = LOW ISR

;**

pullSCL:

 ST #PCR_SUB,*AR2+ ;Sub-bank address (SPSA0)=PCR0.

 ANDM #K_FSRP_0,*AR2- ;Mask off FSR BIT.

 NOP

 NOP

 RET

;**
;**

;**

; SET MCBSP AS GPIO

;**

_init_gpio:

 NOP

 PSHM AR2

 NOP

 STM #SPSA,AR2 ;AR2 points to SPSA0.

 ST #SPCR2_SUB,*AR2+ ;Sub-bank address (SPSA0)=SPCR20.

 ST #0000000000000000b,*AR2- ;

SPRA836

45 Interfacing the TMS320C54x DSP

 ;~~~~~~~~~~~~~~~0 (XRST) ;GPIO : transmitter is reset

 ST #SPCR1_SUB,*AR2+ ;Sub-bank address (SPSA0)=SPCR20

 ST #0000000000000000b,*AR2- ;

 ;~~~~~~~~~~~~~~~0 (RRST) ;GPIO : receiver set

 ST #PCR_SUB,*AR2+ ;Sub–bank address (SPSA0)=PCR0

 ST #0011010100100101b,*AR2- ;

 ;~~1~~~~~~~~~~~~~ (XIOEN) ;GPIO transmitter is enabled.

 ;~~~1~~~~~~~~~~~~ (RIOEN) ;GPIO receiver is enabled.

 ;~~~~0~~~~~~~~~~~ (FSXM) ;FSX set as input

 ;~~~~~1~~~~~~~~~~ (FSRM) ;FSR set as output

 ;~~~~~~~1~~~~~~~~ (CLKRM) ;CLKR set as output

 ;~~~~~~~~~~1~~~~~ (DX_STAT) ;Release SDA line.

 ;~~~~~~~~~~~~~1~~ (FSRP) ;Release SCL line.

 ;~~~~~~~~~~~~~~~1 (CLKRP) ;CLKR = 1.

 NOP ;McBSP takes 2 clock cycle

 NOP ;to start.

 POPM AR2

 NOP

 RET

;***
;***

;***

; INITIATE I2C

;***

_init_i2c:

 NOP

 PSHM AR1

 NOP

 STM #_I2CSTATUS,AR1

 ST #(K_RESET_I2C|K_CSDA_1|K_CSCL_1),*AR1+ ;I2CSTATUS

 ST #0,*AR1+ ;ODBYTECTR

 ST #7,*AR1+ ;ODBITCTR

 ST #0,*AR1+ ;IDBYTECTR

 ST #7,*AR1+ ;IDBITCTR

 ST #0,*AR1+ ;ERRORCODE

 ST #K_SLAVEADDR,*AR1 ;SLAVE_ADDR

 NOP

SPRA836

46 Interfacing the TMS320C54x DSP

;**

; INIT TIMER

;**

 STM #STOP_TIMER,TCR ;Stop timer.

 STM #K_PRD_VAL,PRD ;Load PRD.

 STM #START_TIMER,TCR ;Start timer.

 ORM #0008H,*(IMR) ;Enable timer interrupt.

 STM #0FFFFH,IFR ;Clear any pending interrupts.

 NOP

 POPM AR1

 NOP

 RET

;***
;***

;***

; INIT MASTER-TRANSMITTER PROCESS

;***

_write_i2c:

 NOP

 PSHM AR1

 PSHM AR2

 NOP

 STM #_I2CSTATUS,AR1 ;Init i2cstatus register for write.

 ST #(K_START_1|K_WRITE_TO_SLAVE|K_ADDR_1|K_CSDA_1|K_CSCL_1),*AR1

 NOP

 STM #_SLAVE_ADDR,AR1 ;1ST loc of ODPTR is slave address.

 LD *AR1,1,A ;Shift slave address 1 place to the left.

 ADD #K_I2C_WRITE,A ;Write mode of operation to LSB.

 STM #_ODPTR,AR2

 STL A,*AR2 ;Store back to _ODPTR.

 STM #_ODBYTECTR,AR1

 ADDM #1,*AR1 ;Add one more byte for slave address.

 NOP

 POPM AR2

 POPM AR1

 NOP

 RETE

;**
;**

SPRA836

47 Interfacing the TMS320C54x DSP

;**

; INIT MASTER-RECEIVER PROCESS

;**

_read_i2c:

 NOP

 PSHM AR1

 NOP

 STM #_I2CSTATUS,AR1 ;Init i2cstatus register for read.

 ST #(K_START_1|K_READ_FROM_SLAVE|K_ADDR_1|K_CSDA_1|K_CSCL_1),*AR1

 NOP

 STM #_SLAVE_ADDR,AR1 ;1ST loc of ODPTR is slave address.

 LD *AR1,1,A ;Shift slave address 1 place to the left.

 ADD #K_I2C_READ,A ;Write mode of operation to LSB.

 STM #_ODPTR,AR1

 STL A,*AR1 ;Store back to _ODPTR.

 NOP

 STM #_ODBYTECTR,AR1 ;Only 1 byte(slave addr) to be sent.

 ST #2,*AR1 ;Must store 1+1 num of bytes to send

 NOP

 POPM AR1

 NOP

 RETE

;***

 .end

;***

;*******************END*OF*FILE***

;***

SPRA836

48 Interfacing the TMS320C54x DSP

Appendix D Application Schematic

1A

2A

3Y

4Y

1OE

2OE

3OE

4OE

1Y

2Y

3A

4A

VCC
GND

2

5

8

11

1

4

10

13

DX

FSR

FSX

DR

DX

FSR

FSX

DR

VCC
GND

J1
U1

74HC125

3

6

9

12

R1

R2

VCC VCC VCC

R3 R4
J2

R1, R2 = 1 KΩ
R3, R4 = 10 KΩ

VDD
PTC

SCL

SDA

A0

A1

A2

VSS

VCC VCC VCC

1 1 1

2 2 2

3 3 3

JP1 JP2 JP3

PCF8582

U2

1

2

3

4

VCC

8

7

6

5
2

1

J3

SCL

SDA

1

2

SDA

SCL

6

5

4

3

2

1

I2C interface circuit

PCF8582 EEPROM application

VCC

14

7

Figure D–1. Application Schematics of I2C Interface Circuit and PCF8582 EEPROM Application

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2002, Texas Instruments Incorporated

