&A4A

B WUV N /esign solution
CYPRESS SEMICONDUCTOR ED ONLINE 18079
meh@cypress.com

NETWORKING PROCESSOR
PERIPHERALS WITH 1°C

HERE'S A WAY TO USE PHILIPS SIMPLE TWO-WIRE SERIAL BUS

TO MEET YOUR I70 NEEDS.

s microcontrollers drop in price and offer more

capabilities, designers have found it more cost-

effective to utilize multiple small controllers in

both single-board and multiboard systems. Such
am(iliary processors can relieve the main processor of time-
consuming tasks such as scanning keyboards, display control-
lers, and motor control. These controllers can also be config-
ured as a wide range of application-specific peripherals.

Recently, I was given the task of developing an interface

(software/hardware) that could casily be adapted to many
applications and be based on an industry standard commonly
found in embedded processors. After reviewing some of the
typical applications, I came up with a list of requirements to
help zero in on a hardware interface.

+ Common on both 32- and 8-bit processors

* Supported by many off-the-shelf peripherals
* Peripheral interface code less than 0.5 kbyte

* Low pin count

* Data bandwidth up to 10 kbytes/s

* Low RAM usage

* Support multiple peripherals on a single bus
* Easy APl to use

* No external interface drive hardware required

Because of the low pin-count requirement, a serial interface
was mandatory. Some of the more common serial interfaces
found in today’s processors include SPLI2C, USB, and RS-232.
After weighing the various pros and cons, I settled on the 12C
because of its simplicity, flexibility, and availability on most
low-cost controllers. Low pin count and flow control also give
[C a big advantage over SPLif higher speed isn't required.

HOW I2C WORKS

12C is a two-wirce bidirectional interface consisting of a clock
and data signals (SCL and SDA). A dozen devices or more
may be included into 4 single bus without additional signals.
The spec calls out three speeds of operation: 100 kbits/s, 400
kbits/s, and 3.4 Mbits/s. Most common controllers only sup-
port the 100- and 400-kbit/s modes. The spec
allows for both a single master with multiple
slaves or a multi-master configuration.

MARK HASTINGS, electrical engineer. holds
a BSEE from Washington State University,
Pullman.

1
i
H

SDA /
SCL /

Stable data while

1 dockis high \

Data change
1. During 12C hit transfers, data in either direction should be stable when
the SCL signal is high.

X

Start Stop

2. A stop condition occurs when the SCL is high and the SDA line changes
from low to high.

Onc very important attribute of 1°C is that it supports flow
control. If a slave can’t keep up between bytes, it may hale the
bus until it can catch up. This is very uscful for slaves that
contain minimal 12C hardware and must support part of the
protocol in firmware. The 12C bus specification supports both
a 7- and 10-bit address protocol. I've found that the 7-bit
addressing is more than sufficient for most applications.

Before starting to write code, we need a good understanding
of how the I2C bus works. The 12C bus will always have at least
onc master and at least one or more slaves. The master always
initiates a transfer from the master to the slave. The I°C inter-
face has only two signals, no matter how many peripherals are
attached to the bus.

Both signals are open-collector with pull-up resistors of
about 2.7k to V. The SDA signal is bidirectional and can be
driven by cither the master or slave. The SCL signal is driven
by the master, but the slave may hold it low at the end of a data
byte to hold off the bus until the slave can process the data.
The master releases the SCL line after the last bit of the byte,
then cheeks to see if the SCL signal goes high. If it doesn't, the
master knows that the slave is requesting the master to hold off
until the data is processed.

When data is being sent on the bus, data transitions occur
only when SCI. is low. When the SCL signal is high, the

02 14 08 ELECTRONIC DESIGN

céesign solution

~— Slave Addr —»

<+—— Datg[1] ——» <+—— Data{2] ——

~+—— Data[n] ——

\.
|S|AAAA\ZYAIA\WI t RtR R[R[R|R Rl cldc c‘c c IAV ﬂD Iojoip|plpipip ale
3121110 716151413201 l0iAl7]6]5]4 31211 71615/4/3]21110
@ <% >4\ > @
g -‘ O ') [}
= ‘-‘;x ~ AT

3. Shown is an 1C data transfer with a multibyte read or write,

Optional command protocal

Data format

Transfer protocol (12C standard)

Physical {I2C standard)

4. An 12C interface can generally he regarded as a
simple stack.

data in either direction should be stable
(Fig. 1).

When the bus is idle, neither the master
nor the slaves pull down the SDA and SCL.
To initiate a transfer, the master drives the
SDA line from high to low while SCL
is high. Typically, the SDA line doesn’t
change state when SCL is high, except for
a start or stop condition. A stop condition
occurs when SCL is high and the SDA line
changes from low to high (Fig. 2).

The I2C bus transfers data in 8-bit
increments. Each time a byte is transferred,
it must be acknowledged by the device
receiving the data. All data is transferred
most significant bit (MSB) first.

At the beginning of cach transfer, a
START initiates the transfer, then a 7-bit
slave address, followed by an R/W flag.
The I°C standard also supports a 10-bit
address, but this application requires only
a 7-bit address. If a slave recognizes the
address, it will pull down the SDA line
during the ACK state, then release it.

The R/W bit will determine the direc-
tion of the data berween the master and
slave. If the R/W bit is low, data will be
transferred from the master to the slave. If
this bit is high, data will be read from the
slave by the host.

All data bytes in a single packet will be
in the same direction. After each byte is
transferred, it will be ACKed by either the
master or slave, depending on the direction
of the data flow. Figure 3 shows an example
of a multibyte read or write.

The I°C interface can be thought of as a
simple stack. The lowest level of the stack

is the physical layer, which consists of the
clectrical signaling. The next level up is the
Transfer Protocol. It defines how address-
ing and data transfers are handled by the
master and slave. The third layer from the
bottom, the “Data Format” layer, is usu-
ally defined by the peripheral. It dictates
how the data is stored and addressed in
the peripheral. The top level “Optional
Command Protocol” isn't part of the I2C
specification. This will be defined by the
user. Later in this article, we’ll discuss an
example of a possible implementation.

Since the Data Format layer is imposed
by the peripheral, each will determine what
format the data is stored. Most peripherals
have one or more bytes that can be read or
written. Some may have 128 or more bytes
that can be accessed by the master.

To optimize data transfers, we need to

impose an internal offset scheme so that if

the master wants to read or write the 100th
byte, it doesn’t have to read or write the
preceding 99 bytes before it. Therefore, the
first byte in a write sequence will always be
the offset in the array of data stored in the
peripheral. If more than one byte is writ-
ten, the second byte will be written in the
offset determined by the first byte.

Address

~—Slave Addr — ~+—Offset =

The offset is sticky, meaning if a read is
performed after a write sequence, the data
being read will start at the offset of the
previous write. If a single byte is sent in a
write sequence, only the offset pointer is
changed. Actual data will not be written to
the peripheral (Fig. 4).

The first sequence in Figure 4 shows
three bytes written to a peripheral starting
atoffset AA. For example,ifa peripheral has
10 byte locations where data can be written
and AA is equal to 4, data will be written
to the fifth, sixth, and seventh bytes in that
array, since an offset of zero would have
written to the first byte in the array. The
second sequence in Figure 4 only writes the
offset. The third sequence reads four bytes
starting at offset “BB.”If the third sequence
is executed again, it would read the same
four bytes. Until the pointer is changed, a
read will start at the same offset.

PERIPHERAL API

Now that the interface to the external pro-
cessor is defined, we need to define the
APT for the slave. Often a communica-
tion interface must be integrated tightly in
the peripheral application, but what if the
application doesn't even have to know that
the 1°C interface exists beyond a couple of
setup API commands? This way you could
easily add the T2C interface without mak-
ing significant changes to the application.
For example, you could create an interface
in which your peripheral CPU memory is
easily accessed by the 12C master, whereby

AA—= —<—Data[AA + 0] <=Datc[AA + 1]+ -=Data[AA + 2]->

615141312]110 7.615413]2 1\0

716/514i312/110[4

)>

el

5413 211 6\5\4;32

[]A\A‘AAA‘A'A|W| |R R\R\R}R<R R\R| |D‘D DIDIDID| D(D’ |Dt DID|DID D[Dl [I {D'DJD]D*D
7161 0

v

g

:.

@

Set slave data point to BB

Address
~+—Slave Addr — ~— Offset = BB—>
|SlA‘A\AAA4AA, I I RIRIR| R RIR RIR[,p
615/413/2]1 /0w 76.5{4 32|10
) 2
g % Qg

o4
R g

AV

Read four bytes from 12C slave starting af offset BB

<—Slave Addr—

<—Data[BB + 0] > ~<—Data[BB + 1] ~—Data[BB + 2] > <—Data[BB + 3]

RRRRRTRREDDDDDDDIEDDDDDDDI IDDDDDDDDU_l
7654321076 54131210/77.6/541321 7654132100

>
o

|A,A{A AfA IAIA|R
61514132110
(._I.\
g

8

@
g
kel

A0V ON

4, In this peripheral read and write sequence, only the offset pointer is changed. Actual data won't be writ-

ten to the peripheral.

ELECTRONIC DESIGN GO TO WWW.ELECTRONICDESIGN.COM

oéesign solution

Peripheral RAM areq interface

struct I2C_Regs {
BYTE bStat;
BYTE bCmd;
int iVolts;
char c¢Str[6];

}MyI2C Regs;

// Make Read Only to I2C

I2C_SetRamBuffer (10, 4, BYTE * (MyI2C_Regs));

CPU RAM

Address
0x00
12C master register view
12C register Exposed I12C
address offset registers
0xQ0 . :
Read/write (401 ’
region
0x02 Regs.ivo
. 0x0D
0x03 =
004 | M2 RegseSiio)
0x05 Myl2C_Regs.cStr{1]
Readonly ge04 Myl2C_Regs.cSi]2)
region
0x07 Myl2C_Regs.cSir{3] 0x16
0x08 Myl 2C_ngs.<5h{4],
0x09 My12C_Regs.<Sir(5]
5. Here's an example of an interface RAM structure, showing how memory
can he mapped hetween the peripheral CPU and the 12C master, OxFF

the master only has access to the area in
RAM that’s allowed by the slave.

The first step is to have the [°C interface
run in the background as an Interrupt Ser-
vice Routine (ISR). This allows memory
reads and writes by the master to be trans-
parent to the peripheral application, mean-
ing no polling of registers, no redirecting or
copying the data, and no interlacing of 2C
interface code within the application.

Setup APIs are necessary to tell the 12C
ISR where to put the data, as well as what
boundaries or length of the data it could
read and write. However, you don’t want
the I?C master to have access to data that
it shouldn’t. For example, you don't want
the master to accidentally write over the
main application stack. The API should
tell the interface about the data’s location
and length. It also would be nice to have a
read/write area as well as a read-only area.

Figure 5 shows how memory may be
mapped between the peripheral CPU and
the 1°C master. The API command “12C_

SetRamBuffer (BufferSize, R/W_Length,
DataPointer)" sets the length (BufferSize),
read/write length (R/W_Length), and a
pointer to the data (DataPointer). The data
can be placed anywhere in the peripheral
CPU RAM space.

The I2C master, on the other hand, sees
only the memory that’s exposed by the
API call. Only the 10 bytes in the example
can be seen, and only the first four bytes
can be written. No matter where the buf-
fer is placed, the master sees an array of
data that starts at address 0x00 and goes to
address 0x09.

In this example, the 10 bytes of data are
defined with a structure. The application
may use these variables just as it would any
other local or global variables. If the struc~
ture is defined as global during compile
time, most compilers will flatten it out so
that it doesn’t have to calculate the off-
set each time an element is referenced. In
other words, there will be no code penalty
for using such a structure.

072 14 OR ELECTRONIC DECICN

oéesign solution

6. This is a basic program flow '"m'z:id :jj;pr:o
for Cypress’ EzI2C user module. unil aher Stop

condilion

Set R/W llog

Write Mode?

Reset pht_offset

Write bﬁe to location
RAM[ptr+SubAddr+pkt offset] Yes Load o Buffer with
1 RAM[pir+SubAddr+pkt_offsef]

Addr = 12C address

tr = address in RAM where slave structure is stored
SubAddr = offset in slave memory as seen by Master
pkt_offset = data packet during a single packet transfer

Return from
Interrupt

Peripheral RAM area inferface

struct I2C_Regs

~unsigned char bLEDs;

unsigned char bSwitch;

unsigned char bAaDC; // Make Read Only to I2C
}I2C_Regs;

I2C_SetRamBuffer (3, 2, BYTE * (I2C_Regs));

12C Master register view CPU RAM Address
0x00
12C register Exposed 12C
address offset registers
! 12C_Regs bLEDs
Read/write ~ 0x00 _Regs|
e 0.0 12C_Regs bSwilch
Read onl 0x12
region 7 002 {2C_Regs.bADC
]

7. This memory structure was created for the example applica-
tion presented in the article. OxFF

r<-3

IMPLEMENTATION

Now that the interface between the mas-
ter and slave is designed, it’s time to write
some code. Given the availability of I2C in
a wide range of capable microprocessors,
many vendors also supply 12?C-friendly
development tools and libraries. You’ll still
need to write some of your own code, but
these will accelerate your development. For
example, Cypress PSoC microcontrollers
contain low-level 12C hardware that can
be customized using PSoC Designer and
application-specific EzI2C user modules.

Other than basic hardware setup com-
mands, like 12C_Start() and 12C_Stop()
that enable and disable the interface, the
bulk of the code will be implemented in the
Interrupt Service Routine (ISR). The low-
level T2C hardware understands 12C bus
Start and Stop conditions and sets a status
flag when the slave address and R/W bit
are received. It doesn’t check for an address
match, but requires the firmware to per-
form that task.

The flow chart shows the basic firmware
flow (Fig. 6). Note that some hardware
details specific to the manufacturers hard-
ware aren't covered in the flowchart.

For many applications in which each
byte is independent of the other, this inter-
face works well. A good example can be
seen in the example application (7o see List-
ing 1, go to ED Online 18079 at www.elec-
tronicdesign.com). Each of the three bytes is
independent of each other.

This example consists of an 8-pin PSoC
CY8C27143-24PX1 microcontroller, two
LEDs, two current-limiting resistors for
the LEDs, a pushbutton, and a potenti-
ometer to simulate a variable voltage.
Internally, the following components are
instantiated: ADC, PGA, two LED driv-
ers, and the EzI2C’s User Module. The
code in the listing is the only firmware the
user must write for this application. The
I°C interface code is handled in the ISR as
discussed. The I2C master can monitor the
ADC value, check the switch status, and
set the state of the LED:s in this applica-
tion. This interface can be reused across
many projects without having to modify
the interface again.

Figure 7 shows the memory representa-
tion down to the actual memory locations.
The project used 1076 bytes of flash and
19 bytes of RAM. The I2C code comes to

0O2 14 OR ELECTRBONIC DESIGN

oéesign solution

about 275 bytes, well under the 512 bytes
allotted for this interface.

Some applications require handshak-
ing between the master and slave instead

of just anonymous data read and writes.

Extending this interface to perform hand-

shaking is a minor addition to the master
and slave/application code. There are many
ways to add this functionality.

For instance, if an ADC result is more
than 8 bits, it would be possible for the
host to read the MSB of one ADC con-

version and the LSB of the next conver-
sion. If the readings are very stable, you
might not get into trouble. But if the result
is between two values, for example 0x0200
and 0x01FF, you could accidentally get a
reading of 0x02FF.

To avoid this, we can add a command
byte or semaphore. Listing 2 (go to ED
Online 18079) shows a modified structure
from the previous example. An additional
element has been added to the structure
“bCMD,” and the ADC result variable was
changed from an 8-bit value “bADC”to a
16-bit value “?ADC.”

Now instead of the peripheral firmware
blindly updating the ADC result, it waits
for a command or semaphore from the
master. The command could be any non-
zero value of b(CMD, or bCMD could be
a wide range of commands that the slave/
peripheral can perform. To keep it simple,
the LEDs and the switches will continue
to update constantly. The IADC value, on
the other hand, will only update when the
bCMD value is set to a non-zero value.

The application now monitors bBCMD,
and when it is non-zero, it will put the
latest ADC result in iADC and then set
bCMD to zero. The master will then mon-
itor bCMD and only retrieve iADC when
bCMD returns to zero. In this way, the
master will never get an ADC result that’s
out of sync. The rule for the command/
semaphore is that the master may set it,
and the slave can only clear it. This is the
implementation of the top layer “Optional
Command Protocol” discussed previous-
ly. There’s no need to make it any more
complicated than that (Listing 3; go to ED
Online 18079).

The big hurdle in developing such an
interface is writing the I°C driver code in
first place. The driver in this case was writ-
ten in M8C assembly language. I'd rather
use C, but at the time and with the tools
available, it was the best way to guarantee
fast and efficient code. This interface works
for most I°C slave applications.

Once the driver was written, I found I
could create a new custom peripheral in
under an hour. This has been extremely
useful in quickly implementing runtime
debugging. Variables can be monitored
with an T2C master while the slave code is
running. D

