
APPLICATION
NOTE

AP-476

April 1993

How to Implement
I2C Serial Communication
Using Intel MCS-51
Microcontrollers

SABRINA D� QUARLES

APPLICATIONS ENGINEER

Order Number� 272319-001



Information in this document is provided in connection with Intel products� Intel assumes no liability whatsoev-
er� including infringement of any patent or copyright� for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products�

Intel retains the right to make changes to these specifications at any time� without notice� Microcomputer
Products may have minor variations to this specification known as errata�

�Other brands and names are the property of their respective owners�

�Since publication of documents referenced in this document� registration of the Pentium� OverDrive and
iCOMP trademarks has been issued to Intel Corporation�

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order�

Copies of documents which have an ordering number and are referenced in this document� or other Intel
literature� may be obtained from�

Intel Corporation
P�O� Box 7641
Mt� Prospect� IL 60056-7641

or call 1-800-879-4683

COPYRIGHT � INTEL CORPORATION� 1996



How to Implement I2C Serial Communication
Using Intel MCS-51 Microcontrollers

CONTENTS PAGE

INTRODUCTION ��������������������������� 1

I2C-Bus System ���������������������������� 1

I2C Hardware Characteristics ��������������� 1

I2C Protocol Characteristics ���������������� 2

MCS-51 Hardware Requirements ����������� 4

MCS-51 I2C Software Emulation
Modules ��������������������������������� 5

CONTENTS PAGE

MCS-51 and I2C-Bus Compatible IC’s
System Implementation ������������������ 6

I2C Software Emulation Performance ������� 7

CONCLUSION ����������������������������� 7

REFERENCES ����������������������������� 7





AP-476

INTRODUCTION

Did you know that you could implement I2C function-
ality using the Intel MCS-51 family of microcontrol-
lers� The I2C-bus allows the designer to implement in-
telligent application-oriented control circuits without
encountering numerous interfacing problems� This bus
simplicity is maintained by being structured for eco-
nomical� efficient and versatile serial communication�
Proven I2C applications are currently being implement-
ed in digital control�signal processing circuits for audio
and video systems� DTMF generators for telephones
with tone dialing and ACCESS�bus� a lower-cost alter-
native for the RS-232C interface used for connecting
peripherals to a host computer�

This application note describes a software emulation
implementation of the I2C-bus Master-Slave configura-
tion using Intel MCS-51 microcontrollers� It is recom-
mended that the reader become familiar with the Phil-
lips Semiconductors I2C-bus Specification and the Intel
MCS-51 Architecture� However� it is possible to gain a
basic understanding of the I2C-bus and the I2C emula-
tion software from this application note�

I2C-Bus System

The Inter-Integrated Circuit Bus commonly known as
the I2C-bus is a bi-directional two-wire serial communi-
cation standard� It is designed primarily for simple but
efficient integrated circuit (IC) control� The system is
comprised of two bus lines� SCL (Serial Clock) and
SDA (Serial Data) that carry information between the
ICs connected to them� Various communication config-
urations may be designed using this bus� however� this
application note discusses only the Master-Slave system
implementation�

Devices connected to the I2C-bus system can operate as
Masters and Slaves� The Master device controls bus
communications by initiating�terminating transfers�
sending information and generating the I2C system
clock� On the other hand� the Slave device waits to be
addressed by the controlling Master� Upon being ad-
dressed� the Slave performs the specific function re-
quested� An example of this configuration is a Master
Controller sending display data to a LED Slave Receiv-
er that would then output the requested display�

The configuration described above is the most com-
mon� however� at times the Slave can become a Trans-
mitter and the Master a Receiver� For example� the
Master may request information from an addressed
Slave� This requires the Master to receive data from the
Slave� It is important to understand that even during
Master Receive�Slave Transmission� the generation of
clock signals on the I2C bus is always the responsibility
of the Master� As a result� all events on the bus must be
synchronized with the Master’s SCL clock line�

I2C Hardware Characteristics

Both SCL (Serial Clock) and SDA (Serial Data) are bi-
directional lines that are connected to a positive supply
voltage via pull-up resistors� Figure 1 displays a typical
I2C-bus configuration� Devices connected to the bus re-
quire open-drain or open-collector output stage inter-
faces� As a result of these interfaces� the resistors pull
both lines HIGH when the bus is free� The free state is
defined as SDA and SCL HIGH when the bus is not in
use�

SCL e Serial Clock 272319–18
SDA e Serial Data

Figure 1� I2C Master�Slave Bus System

1



AP-476

One important bus characteristic enabled as a result of
this hardware configuration is the wired-AND func-
tion� Similar to the logic AND truth table� when driven
by connected ICs� I2C-bus lines will not indicate the
HIGH state until all devices verify that they too have
achieved the same HIGH state� An I2C-bus system re-
lies on wired-AND functionality to maintain appropri-
ate clock synchronization and to communicate effec-
tively with extremely high and low speed devices� As a
result� a relatively slow I2C device can extend the sys-
tem clock until it is ready to accept more data�

I2C Protocol Characteristics

This section will explain a complete I2C data transfer
emphasizing data validity� information types� byte for-
mats� and acknowledgment� Figure 2-1 displays the
typical I2C protocol data transfer frame� The important
frame components are the START�STOP conditions�
Slave Address� and Data with Acknowledgment� This
frame structure remains constant except for the number
of data bytes transferred and the transmission direc-
tion� It can be seen that all functionality except Ac-
knowledgment is generated by the Master and current

transmitter� Figure 2-2 displays a more detailed repre-
sentation focusing on specific timing sequences of con-
trol signals and data transfers�

272319–19

Figure 2-1� I2C Protocol Data Transfer Frame

DATA VALIDITY

Figure 3 shows the bit transfer protocol that must be
maintained on the I2C-bus� The data on the SDA line
must be stable during the HIGH period of the SCL
clock� The HIGH or LOW state of SDA can only
change when the clock signal on the SCL is LOW� In
addition� these bus lines must meet required setup� hold
and rise�fall times prescribed in the timing section of
the I2C protocol specifications�

272319–20

Figure 2-2� A Complete I2C Data Transfer

272319–21

Figure 3� Bit Transfer on the I2C-Bus

2



AP-476

Control Signals

START and STOP conditions are used to signal the
beginning and end of data communications� A Master
generates a START condition (S) to obtain control of a
free I2C-bus by forcing a HIGH to LOW transition on
the SDA line while maintaining SCL in its HIGH state�
This condition is generated during software emulation
in the MASTER�CONTROLLER subroutine de-
scribed in another section� Again� START conditions
may be generated by a Master only when the I2C-bus is
free� This free bus state exists only when no other Mas-
ter devices have control of the bus (i�e� both SCL and
SDA lines are pulled to their normal HIGH state)�

Upon gaining control of the bus� the Master must
transfer data across the system� After a complete data
transfer� the Master must release the bus by generating
a STOP (P) condition� The SEND�STOP subroutine
described in a later section ends data communications
by sending an I2C STOP�

Data Transfers

The Slave address and data being transferred across the
bus must conform to specific byte formats� The only
byte transmission requirement is that data must be
transferred with its Most Significant Bit (MSB) first�
However� the number of bytes that can be transmitted
per transfer is unrestricted� For both Master Transmit�
Receive� the MASTER�CONTROLLER subroutine
described in a later section performs these functions�

From Figure 4� it can be seen that the Slave address is
one byte made up of a unique 7-bit address followed by
a Read or Write data direction indicator bit� The Least
Significant Bit (LSB) data direction indicator� always
determines the direction of the message and type of
transfer being requested by the Master�either Slave

Receive or Slave Transmit� If the Master requests the
Slave Receive functionality� the LSB of the addressed
Slave would be set to ‘‘0’’ for Write� Therefore� the
Master would Transmit or Write information to the
selected Slave� On the other hand� if the Master was
requesting the Slave Transmit functionality� the LSB
would be set to ‘‘1’’ for Read� As a result� the Master
would Receive or Read information from the Slave�
SEND�DATA and RECV�DATA subroutines de-
scribed later send and receive data bytes across the bus�

MSB LSB

R�W

Slave Address DDB

(7 bits Long)
Data

Direction Bit

Slave Transmitter� LSB e 1 for Read Function
Slave Receiver� LSB e 0 for Write Function

Figure 4� Slave Address Byte Format

Address Recognition

When an address is sent from the controlling Master�
each device in a system compares the first 7 bits after
the START condition with its predefined unique Slave
address� If they match� the device considers itself ad-
dressed by the Master as either a Slave-Receiver or
Slave-Transmitter� depending upon the data direction
indicator� Due to the bus’s serial configuration� only
one device at a time may be addressed and communi-
cated with at any given moment�

ACKNOWLEDGMENT

To ensure valid and reliable I2C-bus communication�
an obligatory data transfer acknowledgment procedure
was devised� Figure 5 displays how acknowledgment

3



AP-476

272319–22

Figure 5� Acknowledgement of the I2C-Bus

always affects the Master� Transmitter and Receiver�
Mter every byte transfer� the Master must generate an
acknowledge related clock pulse� In Figure 1� this clock
pulse is indicated as the 9th bit and labeled ‘‘ACK’’�
Following the 8th data bit transmission� the active
Transmitter must immediately release the SDA line en-
abling it to float HIGH� To receive another data byte�
the Receiver must verify successful receipt of the previ-
ous byte by generating an acknowledgment� An ac-
knowledge condition is delivered when the Receiver
drives SDA LOW so that it remains stable LOW dur-
ing the HIGH period of the SCL ACK pulse� Con-
versely� a not acknowledge condition is delivered when
the Receiver leaves SDA HIGH� Set-up and hold times
must always be taken into account and maintained
for valid communications� SEND�BYTE and
RECV�BYTE subroutines described later evaluate
and�or generate acknowledgment conditions�

MCS-51 Hardware Requirements

The I2C protocol requires open-drain device outputs to
drive the bus� To satisfy this specification� Port 0 on the
Intel MCS-51 device was chosen� By using open-drain
Port 0� no additional hardware is required to success-
fully interface to the I2C-bus� However� since Port 0 is
designated as the I2C interface� it can no longer be used
to interface with External Program Memory� In order
for a MCS-51 device to communication in this environ-
ment� ASM51 software emulation modules were devel-
oped� This software can only execute out of Internal
Memory� Port 0 is now configured for Input�Output
functionality�

Figure 6 diagrams the necessary hardware connections
of the development circuit� Internal Memory execution
is accomplished by connecting the External Access
(EA) DIP pin �31 to VCC� The capacitor attached to
RESET DIP pin �9 implements POWER ON RESET�
While the capacitors and crystal attached to XTAL1�2
enable the on-chip oscillator� additional decoupling ca-
pacitors can be added to clean up any system noise�
Additional MCS-51 information can be found in the
1992 Intel Embedded Microcontrollers and Processors
Handbook Volume 1�

272319–23

C1 e C2 e 30 pF
C3 e 10 pF

Figure 6� MCS-51 Hardware Requirements

4



AP-476

The ASM51 software emulation modules described in
this application note will occupy approximately
540 bytes of internal memory� The device’s remaining
memory may be programmed with user software� The
following MCS-51 devices were tested for use in con-
junction with the I2C emulation modules�

MCS-51
Crystal ROM�

Register

Devices
Speeds EPROM

RAM
(MHz) Size

8751BH 12 4K 128 bytes

87C51 12� 16� 20 4K 128 bytes

87C51-FX Core 12� 16� 20� 24 4K 128 bytes

87C51FA 12� 16� 20� 24 8K 256 bytes

87C51FB 12� 16� 20� 24 16K 256 bytes

87C51FC 12� 16� 20� 24 32K 256 bytes

NOTE�
The Internal memory setup described above eliminates the
option of using Port 0 to interface to External Memory�
However� this requirement should pose no problem for the
system designer due to the diverse MCS-51 product line
with various memory sizes offered by Intel�

MCS-51 I2C Software Emulation
Modules

When devices like the MCS-51 do not incorporate an
on-chip I2C port� I2C functionality can be achieved
through software emulation� The following software
modules are based upon three distinct tasks� bus moni-
toring� time delays and bus control� Each task conforms
to the I2C protocol as specified by Philips Semiconduc-
tors�

The software modules designed to implement I2C func-
tionality are comprised of macros and subroutines� each
independently developed� yet both networked to
achieve a desired system function� For example� the use
of macros was favored to implement certain timing de-
lay loops� Macros are extremely flexible and can be
changed to construct delays of varying lengths through-
out the software� On the other hand� subroutines are
verified routines that require no additional changes� To
operate the bus at different frequencies� only the specif-
ic macros must be changed� not the predefined subrou-
tines� The following ASM51 macros and subroutines
are for Master-Slave system control�

Macro Names Functions

DELAY�3�CYCLES Delay loop for X sec-
onds where X e time
per cycle � 3

DELAY�4�CYCLES Delay loop for X sec-
onds where X e time
per cycle � 4

� �
� �

DELAY�8�CYCLES Delay loop for X sec-
onds where X e time
per cycle � 8

RELEASE�SCL�HIGH Releases the SCL line
HIGH and waits for
any clock stretching re-
quests from peripheral
devices

Subroutine Names Functions

MASTER�CONTROLLER Sends an I2C START
condition and Slave Ad-
dress during both a
Master Transmit and
Receive

SEND�DATA Sends multiple data
bytes during a Master
Transmit

SEND�BYTE Sends one data byte line
during a Master Trans-
mit

SEND�MSG Sends a message across
the I2C bus using a pre-
defined format

RECV�DATA Receives multiple data
bytes from an addressed
Slave during a Master
Receive

RECV�BYTE Receives one data byte
during a Master Receive

RECV�MSG Receives a message
from the I2C bus using
a predefined format

TRANSFER Copies EPROM pro-
grammed data into Reg-
ister RAM

SEND�STOP Send an I2C STOP con-
dition during both a
Master Transmit�Re-
ceive

These ASM51 modules are listed at the end of the ap-
plication note in Appendix A�

5



AP-476

MCS-51 and I2C-Bus Compatible IC’s
System Implementation

This section of the application note explains the Mas-
ter�Slave system diagrammed in Figure 1� The Intel
MCS-51 is the Master Controller communicating with
two I2C Slave peripherals� the PCF8570 RAM chip
and SAAI064 LED driver� Information related to com-
municating with these specific Slave devices can be
found in the 1992 Philips I2C Peripherals for Micro-
controllers Handbook�

The MCS-51 I2C Software Emulation Modules located
in Appendix A are designed to demonstrate Master
Controller functionality�

As described above� the Intel 51 Master Controller
transmits data to the RAM device� receives it back and
re-transmits it to the LED Slave driver� By using the
SEND�MSG and RECV�MSG subroutines� both
Master Transmit and Master Receive functionalities
are demonstrated� Slave addresses used in these trans-
fers are predefined values assigned by their manufactur-
er� These values can be found in their respective data-
books�

An I2C Master Transmission consists of the following
steps�

1� Master polls the bus to see if free state exists

2� Master generates a START condition on the bus

3� Master broadcasts the Slave Address expecting an
Acknowledge from the addressed Slave

4� Master transmits data bytes expecting acknowl-
edgment status following each byte

5� Master generates a STOP condition and releases
the bus

An I2C Master�Receive transaction consists of the ex-
act same steps stated above EXCEPT�

4� Master receives data bytes sending an ACK to the
Slave Transmitter after receipt of each byte� The
Master signals receipt of the last data byte by re-
sponding with the NOT Acknowledge condition�

MASTER TRANSMIT�RECEIVE

Bus transmission and evaluation is achieved by a nested
loop structure� SEND�DATA represents the outer
loop which directs data transfers� The
MASTER�CONTROLLER subroutine polls the bus
to determine if any transactions are in progress� Error
checking is performed at this level by evaluating the
following status flags� BUS�FAULT and
I2C�BUSY� Based upon this information� the Master
will either abort the transmit procedure or attempt to
send information� If bus control is granted as indicated

by cleared flags� the Master sends a START condition
and the Slave address� On the other hand� if either flag
is set� the transmit procedure is aborted�

SEND�BYTE� the inner control loop� is responsible
for transmitting 8 bits of each byte as well as monitor-
ing Slave acknowledgment status� Each bit transfer
from I2C-bus lines checks for possible serial wait states�
Wait states occur when slower devices need to commu-
nicate on the bus with faster devices� Due to the wired-
AND bus function� a Receiver can hold the clock line
SCL LOW forcing the Transmitter into this state� Data
transfer may continue when the Receiver is ready for
another byte of data as indicated by releasing the clock
line SCL HIGH�

As stated in its section above� acknowledgment is re-
quired to continue sending data bytes across the bus�
However� situations may arise when a Receiver can not
receive another byte of data until it has performed some
other function like servicing internal interrupts� If the
Slave Receiver does not respond to a Master Transmit-
ter data byte� not acknowledge could indicate that it is
performing some real-time function that prevents it
from responding to I2C-bus communications� This situ-
ation shows the flexibility and versatility of the bus�

The Master Receive process also utilizes the MAS-
TER�CONTROLLER subroutine to gain control of
the bus� When accepting data from the addressed Slave�
in this case� RECV�DATA is the outer control loop�
RECV�BYTE� the inner control loop� is responsible
for receiving 8 bits of each byte as well as generating
the Master’s acknowledgment condition� Similar to
transmission� successful receipt of each byte is con-
firmed by driving SDA LOW so that it remains stable
LOW during the HIGH period of the SCL ACK pulse�
Therefore� the Master still drives both SCL and SDA
lines since control of the system clock is its responsibili-
ty�

In both types of communication� Transmit�Receive�
temporary RAM registers� BIT�CNT� BYTE�CNT�
SLV�ADDR� and storage buffers� XMT�DAT�
RCV�DAT� ALT�XMT� are integral parts of most
subroutines because they are used for implementing the
I2C protocol� Proper delays are implemented using the
DELAY�X�CYCLES (X e any integer) macros�
They give the designer flexibility to devise time delays
of any required length to satisfy system requirements�
For example� to achieve the maximum bus speeds de-
scribed in the next section� Delay�X�Cycle macros
were adjusted�

Lastly� the TRANSFER subroutine is provided to al-
low predefined communication data programmed in
the microcontrollers EPROM to be transferred into
Register RAM internal to the 51 device� It achieves this

6



AP-476

when used in conjunction with the SEND�MSG and
RECV�MSG subroutines� However� when utilizing
TRANSFER� the designer must conform their design
to existing device Register RAM availability and to the
following message format�

Slave Address� � of Bytes to be Transmitted�Received� Data
Bytes (For Transmit Only)

The ASM-51 program demonstrating a complete Mas-
ter Controller system is listed at the end of the applica-
tion note in Appendix B� It writes the numeric data
that represents the following display ‘‘�I2C’’ to an I2C
compatible IC (PCF8570 RAM)� reads the values back
into a buffer and transmits this buffer out to the Philips
I2C SAA1064 LED driver to display the sequence�

I2C Software Emulation Performance

As demonstrated above� the Intel MCS-51 product line
can successfully implement the I2C Master Controller
functionality while maintaining data integrity and reli-
able performance� The system outlined in Figure 1 was
evaluated for maximum bus performance and adher-
ence to all I2C-bus specifications� Performance charac-
terization was conducted at various crystal speeds on
all devices listed in the MCS-51 Hardware Require-
ments section of this application note�

When designing I2C software emulation systems� keep
in mind that the designer has the flexibility to imple-
ment large frequency ranges up to the I2C-bus maxi-
mum� However� by making software changes to adjust
bus frequencies� the newly modified program may no
longer meet required specifications and desired reliabil-
ity standards� Therefore� designers should first always
take into consideration the bus performance level they
want to reach� After deciding this� an appropriate crys-
tal can be chosen to achieve that implementation speed�
The table below gives a few examples of system per-
formance for two of the MCS-51 devices�

MCS-51 Crystal
I2C Bus

Devices Speed
Maximum

Performance

8751BH 12 MHz 66�7 kHz

87C51 (FX-Core) 24 MHz 80�0 kHz

CONCLUSION

As a result of this evaluation� Intel MCS-51 microcon-
trollers can be successfully interfaced to an I2C-bus sys-
tem as a Master controller� The interface communicates
by ASM51 software emulation modules that have been
tested on a wide array of I2C devices ranging from seri-
al RAMS� Displays and a DTMF generators� No com-
patibility problems have been seen to date� Therefore�
when considering the implementation of your next I2C-
bus Master Controller serial communication system�
you have the option of using the Intel MCS-51 Product
Line�

REFERENCES

I2CBITS�ASM� G� Goodhue� Philips Semiconductors�
August 1992�

The I2C-Bus and How to Use It (Including Specifica-
tion)� Philips Semiconductors� January 1992�

I2C Peripherals for Microcontrollers� Philips Semicon-
ductors� 1992 Data Handbook�

OM1016 I2C Evaluation Board� E� Rodgers and G�
Moss� Philips Components Applications Lab Auck-
land� New Zealand�

Programming the I2C Interface� Mitchell Kahn� Senior
Engineer� Intel Corporation�

7





AP-476

APPENDIX A

272319–1

A-1



AP-476

272319–2

A-2



AP-476

272319–3

A-3



AP-476

272319–4

A-4



AP-476

272319–5

A-5



AP-476

272319–6

A-6



AP-476

272319–7

A-7



AP-476

272319–24

A-8



AP-476

APPENDIX B

272319–8

B-1



AP-476

272319–9

B-2



AP-476

272319–10

B-3



AP-476

272319–11

B-4



AP-476

272319–12

B-5



AP-476

272319–13

B-6



AP-476

272319–14

B-7



AP-476

272319–15

B-8



AP-476

272319–16

B-9



AP-476

272319–17

B-10


