
98 Electronics projects Vol. 26

This stepper motor controller is
perhaps the cheapest, smallest
and simplest. A pair of H-bridg-

es with a software program written
in ‘C++’ is used to control the bipolar
stepper motor with a step resolution of
18 degree per pulse.

The controller is a combination
of driver and switching circuits.
The driver is the actual circuit that
drives the stepper motor and the
switching circuit decides how the mo-
tor should be driven. So, it is basically
the switching circuit that controls the
motor. The transistors (T1 through
T8) act as switches. The switching of
these transistors is controlled by the
software via data pins D0 through D7.

You can control three parameters of
the stepper motor: speed, direction and
number of steps. To vary the speed of
the motor, you have to vary the pulse
repetition frequency (PRF). To change
the direction of the motor, you have to
change the sequence of pulses applied
to its coils. By limiting the number of
applied pulses, you can restrict the
motor to complete the desired number
of steps.

 Ashutosh M. Bhatt

PC-Based Stepper
Motor Controller

Specifications of the
stepper motor

Stepper motors of various ratings/
specifications are available in the mar-
ket for different applications. Here, the
stepper motor is taken from an 8.9cm
(3.5-inch) floppy drive. It’s a bipolar
stepper motor rated at 5V
DC with step resolution of
18o per pulse. The motor
has two coils inside and
four terminals (colour-
coded, but not always) for
external connections. Step-
per motors rated at 5V and
up to 1 ampere of current
and different step size (e.g.,
1.8º per pulse) may also be used with
this circuit and control software.

Circuit description
H-Bridge driver. H-Bridge is a stan-
dard, well-known circuit widely used
as stepper motor driver. It is a bridge
connection of four transistors (see Fig.
1). Because there are two coils in the
bipolar stepper motor, two H-bridge
circuits, one for each coil, have been
used. One H-bridge is formed by tran-
sistors T1 through T4 and the other
bridge is formed by transistors T5

through T8.
Transistors T1 through T8 are

BD139 type and should be used with
heat-sinks. Pin details of BD139 and
regulator IC 7805 are shown in Fig. 2.
The bases of all the eight transistors are
connected to data pins (D0 through D7)
of the 25-pin, D-type male connector

through 1-kilo-ohm current
limiting resistors R1 through
R8.

The bases of transistors
T1 and T4 are connected to
parallel-port pins 2 (D0) and
3 (D1) through resistors R1
and R2, respectively, and the
bases of transistors T2 and T3
are connected to parallel-port

pins 4 (D2) and 5 (D3) through resis-
tors R3 and R4, respectively. The red
and orange terminals of the first coil
(COIL1) are connected to the first H-
bridge section as shown in Fig. 1.

The bases of transistors T5 and
T8 are connected to pins 6 (D4) and
7 (D5) through resistors R5 and R6,
respectively, and the bases of transis-
tors T6 and T7 are connected to pins
8 (D6) and 9 (D7) through resistors
R7 and R8, respectively. The yellow
and green terminals of the second
coil (COIL2) are connected to the

second H-bridge section
as shown in Fig. 1.

Power supply. The
power supply section is
shown in Fig. 3. It consists
of a 230V AC to 9V AC,
1A secondary transformer
(X1), filter, bridge recti-
fiers and 5V DC regulator
7805 (IC1). The regulated
5V DC is connected to
the H-bridge circuits. The
circuit ground is shorted
to pins 18 through 25 of
the D-type parallel-port
connector. When switch
S1 is closed, LED1 glows Fig. 1: Circuit of PC-based stepper motor controller

Fig. 2: Pin details of
BD139 transistor and
regulator IC 7805

99Electronics Projects vol. 26

Table II
Pulse Sequence to Rotate
the Motor Anti-clockwise

Data bit	 D7	 D6	 D5	 D4	 D3	 D2	 D1	 D0
Port pin	 9	 8	 7	 6	 5	 4	 3	 2

Phase 1	 1	 1	 0	 0	 1	 1	 0	 0
Phase 2	 1	 1	 0	 0	 0	 0	 1	 1
Phase 3	 0	 0	 1	 1	 0	 0	 1	 1
Phase 4	 0	 0	 1	 1	 1	 1	 0	 0
1= High, 0 = low

Table I
Pulse Sequence to Rotate

the Motor Clockwise
Data bit	 D7	 D6	 D5	 D4	 D3	 D2	 D1	 D0
Port pin	 9	 8	 7	 6	 5	 4	 3	 2

Phase 1	 1	 1	 0	 0	 1	 1	 0	 0
Phase 2	 0	 0	 1	 1	 1	 1	 0	 0
Phase 3	 0	 0	 1	 1	 0	 0	 1	 1
Phase 4	 1	 1	 0	 0	 0	 0	 1	 1
1= High, 0 = low

Fig. 3: Power supply for the circuit

to indicate the presence of power in
the circuit.

Operation
Specific sequence of pulses are given
to the red and orange terminals of
COIL1 and yellow and green terminals
of COIL2 to rotate the motor either in
clockwise or anticlockwise direction as
explained in the following paragraph.

Direction control. In Tables I and
II, ‘0’ indicates low logic and ‘1’ indi-
cates high logic. We know that the cur-
rent flows from high to low. Changing
the direction of rotation is nothing but
changing the direction of current that
flows through the coils.

Speed control. To vary the speed,
you have to vary the pulse repetition
frequency (PRF). The PRF of 20 Hz
means 20 pulses will be given to the
stepper motor in one second. Since
the step resolution of the motor is 18o/
pulse, the motor will rotate 20x18o =
360o (one complete revolution) in one
second. So the speed of the motor is
one revolution per second (RPS) or
60 RPM. Now if you increase the PRF
from 20 Hz to 40 Hz, the RPS will also
double to 2 RPS (120 RPM).

Number of rotations. The step reso-
lution of 18°/pulse means if you apply
only one pulse, the motor will rotate by
18°. If you apply 10 pulses sequentially,
the motor will rotate 180o (half of a
revolution). So if you limit the number
of pulses applied to the motor, you can
stop it at any angular position (multi-
ple of 18°) after completing the desired
number of full revolutions. Thus if you
apply only 25 pulses, the motor will
complete one full revolution and rotate
further by 90º (¼ revolution) and stop.

H-bridge. The transistors in the
circuit act as switches. When high logic
(3.49V) is applied to any data pin of
the port, the transistor connected to it
conducts and acts as a closed switch,
allowing the current to pass through it.
When low logic (0.09V) is applied, the
transistor stops conducting and acts as
an open switch, so the current cannot
pass through it.

The pulse sequences to be given
to switch the transistors are shown in

tables. The current will flow into/out
of the coils through the four terminals
of the motor (red, orange, green and
yellow).

Clockwise rotation. In the first
phase, orange and green terminals
should be high and red and yellow
terminals should be low. To achieve
this, out of the eight transistors, four
transistors (T2, T3, T6 and T7) should
conduct. For this, you have to output
hex data word ‘CC’ (1100 1100) from
the LPT port.

In the second phase, red and yel-
low terminals should be high, while
orange and green terminals should be
low. To achieve this, only transistors
T2, T3, T5 and T8 should conduct. For
this, you have to output hex data word
‘3C’ (0011 1100) from the LPT port.

In the next phase, red and green

terminals should be high, while orange
and yellow terminals should be low.
To achieve this, transistors T1, T4, T5
and T8 should conduct. For this, hex
data word will be ‘33’ (0011 0011).

In the next phase, red and yellow
terminals should be low, while orange
and green terminals should be high. To
achieve this, transistors T1, T4, T6 and
T7 should conduct. For the purpose,
hex data word ‘C3’ (1100 0011) has to
be output from the LPT port.

Thus the data sequence to be fed to
the port for clockwise rotation of the
motor is CC-3C-33-C3.

Anticlockwise rotation. To rotate
the motor in anti-clockwise direction,
the sequence of hex data to be output
from the LPT port will be CC-C3-33-
3C.

The software
All the controlling actions are per-
formed by the software program. The
program is written in ‘C++’ language
and compiled in Turbo C++ Version
3. The complete software program
(STEPCNT.CPP) is given at the end
of this article along with necessary
comments. You require the egavga.bgi
graphic file to be in the same directory
as the application program to run the
program. The output of the program is
shown in Fig. 4.

The main functions of the software
are:

1. Change the direction of rotation
of the stepper motor by switching the
eight transistors in proper manner.

2. Vary the RPM of the stepper mo-
tor accurately.

3. Stop the motor at a given angular
position after the desired number of
complete rotations

100 Electronics projects Vol. 26

Fig. 4: Screenshot of the program output

The software is divided into three
parts: graphics, stepper motor control
and mouse interfacing.

Graphics. The graphics part gener-
ates complete view of the control panel.
It draws buttons like clockwise, anti-
clockwise and RPM increase/decrease,
displays instructions, draws borderline,
writes text like ‘RPM,’ ‘rotations,’ ‘num-
ber of rotations,’ etc. Graphic functions
are used to make the program output
screen visually appealing.

Stepper motor control. To change
the direction of rotation of the motor,
the program generates the desired
pulse sequence, either CC-3C-33-C3 (to
rotate the motor in clockwise direction)
or CC-C3-33-3C (to rotate the motor in
anticlockwise direction), on the parallel
port with appropriate delay. The delay
adjustment is done depending upon
the RPM.

To vary the RPM, the program var-
ies the PRF. First, the current RPM (S)
is converted into RPS (S1) by dividing
it by ‘60’ as follows:

S1 = S
60

Now for one complete revolution, you
have to apply 20 pulses. So the RPS
factor (S1) multiplied by ‘20’ will give
you the desired PRF.

The delay (d) between the pulse
sequences is given by:

milliseconds d = 1000
20×S1

= 50
S1

When RPM is greater than ‘10,’ you can
increase or decrease the RPM by a factor
of ±10. For RPM less than ‘10,’ you can
increase or decrease it by ±1 only. There
is no limit on the maximum RPM but the
minimum limit is 1 RPM.

As stated earlier, 20 sequential
pulses are required for a complete
revolution of the stepper motor. Since
a sequence of four pulses is repeated
(for clockwise or anticlockwise move-
ment), we may say that a revolution of
the stepper motor involves five identi-
cal sequences of four pulses. You can
increase or decrease the number of
rotations linearly by ±1. For ‘N’ below
‘1,’ you can decrease or increase ‘N’ by

a factor of ‘0.5.’ The minimum limit is
0.25 (quarter revolution), but there is
no maximum limit.

Mouse interfacing. This is the
most interesting part of the program.
It enables you to perform a task at a
click of mouse. To understand how
the mouse is interfaced, you have to go
through the entire theory of hardware
interfacing using ‘C++.’ Here, only
some references have been made. For
details, refer to the ‘Mouse Interfac-
ing’ chapter of ‘Let Us C’ book by
Kanitkar.

In this program, the functions that
handle the mouse event are initmouse(
), resmptr(int p, int q, int r, int s),
showmptr() and getmpos(int *t, int
*u, int *v).

The initmouse() function loads
mouse driver into the program. You’ve
to pass ‘0’ value through input union
REGS to the int86() function. This
function will return some non-zero
value through output union REGS to
the main program. If this function
returns ‘0,’ it means the mouse driver
is not loaded. So the program displays
the message “mouse driver is not
loaded” and shuts the screen off using
the exit() function.

The resmptr(int p, int q, int r, int
s) function restricts mouse movement
within the boundary specified by the
four variables passed to it. Pass all
these boundary limits through input
union REGS to the int86() function.
So the resmptr(int p, int q, int r, int s)
function will restrict mouse movement

out of this bound-
ary.

The showmptr(
) function displays
mouse pointer on
the program screen.
For this, you just
have to pass value
‘1’ through input
union REGS to the
int86() function.
The showmptr()
function will now
show mouse pointer
on the screen.

The getmpos(int
*t, int *u, int *v) function performs two
tasks: determines whether the mouse
button is pressed or not, and captures
the current mouse pointer position
from the screen. You have to pass
value ‘3’ through input union REGS to
the int86() function. This function will
return ‘x’ and ‘y’ coordinates of the
mouse pointer and also return value
‘1’ if the mouse button (left) is pressed
or ‘0’ if the button is not pressed.

How the program works?
The program output screen includes
the control panel for speed, direction
and number of rotations of the step-
per motor.

The program continuously checks
for mouse-click event. Whenever
there is a mouse click, the getmpos()
function instantly captures ‘x’ and ‘y’
coordinates of the mouse pointer and
passes them to the main program.

The main program decides on
which position the click event has oc-
cured. If the click event occured on any
button (clockwise, anti-clockwise, etc),
it performs the desired task. For exam-
ple, if you click the ‘RPM increase’ but-
ton, the program gets the coordinates
and directly switches them to ‘if’ loop,
increases the RPM and also displays it
on the screen.

Construction and
operation
Construct the hardware on a bread-
board or on a PCB. An actual-size,
single-side PCB layout is shown in

101Electronics Projects vol. 26

Fig. 5: Actual-size, single-side PCB layout for PC-based
stepper motor controller

Fig. 6: Component layout for the PCB

Fig. 5 and its component layout in Fig.
6. Connect the bases of the transistors
to the respective data pins of the port
DB25 (25-pin, D type male connector)
as shown in Fig. 1. Insert DB25 into the
PC’s LPT-port female connector. Con-
nect all the coil terminals (red, orange,
green and yellow) to respective points
as shown in the schematic.

Apply 5V DC supply to the circuit
and connect the 5V stepper motor
with its terminals as shown in Fig. 1.
Now run the program on a computer
powered by Windows 95/98 operating
system. You will see the control panel
on the computer screen. Switch on the
5V supply and LED1 will glow. Move
the mouse pointer to any of the buttons
as desired.

To rotate the motor clockwise,
press and hold ‘clockwise’ button with
left mouse button on the control panel.
Similarly, for anticlockwise rotation,
press and hold ‘anticlockwise’ button.
The motor will rotate in the desired
direction along with the beep sound
as long as the button is kept pressed.
When you release the button, the beep
sound as well as the motor will stop.

If the motor rotates in anticlock-
wise direction when you press ‘clock-
wise’ button, just reverse any pair of
terminals of the motor coils.

Run the stepcnt.exe file on your
computer. You will see the control
panel for the stepper motor control-
ler on your screen. Default RPM and
number of rotations are 60 RPM and 1,
respectively. If you press ‘clockwise’ or
‘anticlockwise’ button, the motor will
rotate until the desired rotations com-
plete. You can increase or decrease the
RPM or even the number of rotations
by simply left-clicking that button once.
Pressing these buttons more than once
will increase/decrease the RPM/num-

ber of rotations by the same amount.
The RPM and the number of rota-

tions are perfectly calibrated for this
particular stepper motor and you will
get the accurate result for the RPM.
That means if you choose 1 RPM, the
motor will complete one revolution
in one minute exactly. For the num-
ber of rotations also, if you choose
one rotation, the motor will complete
only one rotation. If you choose 0.25,
the motor will complete only quarter
revolution (90o).

Note. The stepper motor you
choose should have the same specifi-
cations as given in this project. In the
program, first enter RPM as ‘60’ and
then the number of rotations as ‘1.’
Select clockwise or anticlockwise di-
rection and then press ‘Enter’ key. The

program will now
display the PRF
(=20 Hz) and the
current RPM (=60)
with a melodious
sound output.

If the motor
doesn’t rotate, it
means you have
connected its four
terminals wrongly.
You can correct
this using trial-
and-error method.
If the motor runs
in a direction op-
posite to that you
have selected, just
reverse one pair of
the coil terminals.

Because you
h a v e e n t e r e d
o n e r o t a t i o n
with 60 RPM,
the motor will
complete only

one rotation in one second. If
it doesn’t, your stepper motor
has some different specification.
To check the specifications of the
stepper motor, in the sample pro-
gram select RPM as ‘5’ and change
the number of rotations (like 1.25,
1.5, etc) to get the step resolution.
The delay factor (d) can be changed
in the software. When you are satis-
fied with the result, switch to main
program ‘stepcnt.exe’

In case you wish to use the step-
per motor with a step size of 1.8º per
pulse, the software program for the
same will differ. The same is included
in the source code download folder.

Download source code: http://
www.efymag.com/admin/issuepdf/
Stepper%20Motor%20Control.zip

Stepcnt.cpp
#include<graphics.h>
#include<conio.h>
#include<dos.h>
#include<process.h>
#include<iostream.h>
union REGS i,o;
void main()
 {
 int driver,mode,x,y,but; //intialitions of all vari-
ables and functions

 driver = DETECT;
 int initmouse(); // to load mouse driver
 int resmptr(int p,int q,int r,int s); //restric mouse
pointer within boundry
 int showmptr(); // shows mouse pointer
 int getmpos(int *t,int *u, int *v); // captures the cur-
rent position of mouse pointer
 int text(int e,int f); // changes the size and color
of text
 float s1,d=50,s=60; // default RPM=60 and no. of

rotations = 1
 float r=1,n=5;
 initgraph(&driver, &mode, “C:\\tc\\bgi”); //initial-
ize graphics mode
 outport(0x0378,0x00); // clear parallel port
 if(initmouse() == 0)
 { // load mouse driver if not
	 closegraph(); // exit the
program
	 restorecrtmode();

102 Electronics projects Vol. 26

	 cout<<”\nMouse driver not loaded”;
	 exit(1);
 }
 gotoxy(14,10);
 cout<<s; // display current RPM
 gotoxy(71,10); // and no. of rotations
 cout<<r;
 showmptr();
 resmptr(30,30,635,460);
 setcolor(LIGHTRED);
 rectangle(30,30,635,460); //Border line
 rectangle(70,135,160,165); //RPM Box
 rectangle(520,135,610,165); //No.of Rotation box
 setfillstyle(SOLID_FILL,YELLOW);
 rectangle(180,130,320,170);
 floodfill(202,132,LIGHTRED); //clockwise button
 rectangle(80,240,170,270);
 floodfill(82,242,LIGHTRED); //RPM inc button
 rectangle(350,130,490,170);
 floodfill(352,132,LIGHTRED); //anticlockwise
button
 rectangle(200,240,290,270);
 floodfill(202,242,LIGHTRED); //RPM dec button
 rectangle(380,240,470,270);
 floodfill(382,242,LIGHTRED); //rotation inc button
 rectangle(500,240,590,270);
 floodfill(502,242,LIGHTRED); //rotation dec button
 line(125,220,245,220);
 line(425,220,545,220);
 line(185,220,185,210);
 line(485,220,485,210);
 line(245,220,245,240);
 line(545,220,545,240);
 line(125,220,125,240);
 line(425,220,425,240);
 text(8,13);
 outtextxy(195,60,”-: Control Panel :-”);
 text(6,4);
 outtextxy(60,290,”Instructions :-”);
 outtextxy(210,140,”Clockwise”);
 outtextxy(360,140,”Anticlockwise”);
 outtextxy(90,245,”Increase”);
 outtextxy(210,245,”Decrease”);
 outtextxy(390,245,”Increase”);
 outtextxy(510,245,”Decrease”);
 setcolor(10);
 outtextxy(175,190,”RPM”);
 outtextxy(445,190,”Rotations”);
 outtextxy(60,110,”Current RPM”);
 outtextxy(495,110,”No.of Rotations”);
 text(5,10);
 outtextxy(70,310,”# Press ‘Clockwise’ button to rotate
Stepper Motor clockwise”);
 outtextxy(70,330,”# Press ‘Anticlockwise’ button to
rotate Stepper Motor anticlockwise”);
 outtextxy(70,350,”# Press ‘increase’/’decrease’ button
to change the RPM”);
 outtextxy(70,370,”# Press ‘increase’/’decrease’ button
to change the No. of rotations”);
 setcolor(13);
 outtextxy(95,400,”Stepper Motor control using C++
design and developed by”);
 outtextxy(250,420,”Ashutosh Bhatt”);
 setcolor(YELLOW);
 outtextxy(200,440,”Press any key to exit program”);
 while(!kbhit()) // loop until any key is pressed
 {
 getmpos(&but,&x,&y); // capture
current pointer position when click event happens
 if(x>=200 && x<=300 && y>=130 && y<=170 && (but
& 1) == 1) // and switch to that if loop
	 {
	 text(6,13);
	 outtextxy(210,140,”Clockwise”);
	 for(int i=1;i<=n;i++)
		 {
		 sound(500);
		 outport(0x0378,0xcc);
		 delay(d);
		 outport(0x0378,0x3c);
		 delay(d);
		 outport(0x0378,0x33);
		 delay(d);
		 outport(0x0378,0xc3);
		 delay(d);
		 nosound();
		 } //for loop ends
	 text(6,4);
	 outtextxy(210,140,”Clockwise”);
	 } // first if ends

 else if(x>=350 && x<=490 && y>=130 && y<=170
&& (but & 1) == 1)

	 {
	 text(6,13);
	 outtextxy(360,140,”Anticlockwise”);
	 for(int i=1;i<=n;i++)
		 {
		 sound(750);
		 outport(0x0378,0xcc);
		 delay(d);
		 outport(0x0378,0xc3);
		 delay(d);
		 outport(0x0378,0x33);
		 delay(d);
		 outport(0x0378,0x3c);
		 delay(d);
		 nosound();
		 } // for loop ends
		 text(6,4);
		 outtextxy(360,140,”Anticlockw
ise”);
	 } //second if ends

 else if(x>=80 && x<=170 && y>=240 && y<=270 &&
(but & 1) == 1)
	 {
	 gotoxy(10,10);
	 cout<<” “;
	 text(6,2);
	 outtextxy(90,245,”Increase”);
	 sound(1000);
	 delay(200);
	 nosound();
	 if(s>=10) s=s+10;
	 else s++; // when this button
is pressed
	 s1 = s/60; // increase current
RPM and also
	 d = 50/s1; // change delay
	 gotoxy(14,10);
	 cout<<s;
	 text(6,4);
	 outtextxy(90,245,”Increase”);
	 } // third if ends

	 else if(x>=200 && x<=290 && y>=240 &&
y<=270 && (but & 1) == 1)
	 {
	 gotoxy(10,10);
	 cout<<” “;
	 text(6,2);
	 outtextxy(210,245,”Decrease”);
	 sound(1000);
	 delay(200);
	 nosound();
	 if(s>10)
		 {
		 s=s-10; // when
this button is pressed
		 gotoxy(14,10); //
decrease it till s>1
		 cout<<s; // if
s<=1 stop decreasing
		 } // and
display massage
	 else
		 {
		 if(s>1)
		 {
		 s--;
		 gotoxy(14,10);
		 cout<<s;
		 }
		 else
		 {
		 gotoxy(11,10);
		 cout<<”min limit”;
		 }
		 }
	 s1 = s/60;
	 d = 50/s1;
	 text(6,4);
	 outtextxy(210,245,”Decrease”);
	 } // forth if ends

	 else if(x>=380 && x<=470 && y>=240 &&
y<=270 && (but & 1) == 1)
	 {
	 gotoxy(67,10);
	 cout<<” “;
	 text(6,2);
	 outtextxy(390,245,”Increase”);
	 sound(1000);
	 delay(200);
	 nosound();

	 if(r<1) r=r*2; 		
// when this button is pressed
	 else r++; // increase no. of rota-
tion
	 gotoxy(71,10); // if rotations are <
1 then
	 cout<<r; // double it every
time
	 n=r*5; // otherwise increase it
linearly
	 text(6,4);
	 outtextxy(390,245,”Increase”);
	 } // fifth if ends

	 else if(x>=500 && x<=590 && y>=240 &&
y<=270 && (but & 1) == 1)
	 {
	 gotoxy(67,10);
	 cout<<” “;
	 text(6,2);
	 outtextxy(510,245,”Decrease”);
	 sound(1000);
	 delay(200);
	 nosound();
	 if(r>1)
		 {
		 r--; // when this button
is pressed
	 gotoxy(71,10); // decrease No. of
rotations
	 cout<<r; // till r=0.25 if r<0.25
stop decreasing
		 } //and display a massage
	 else
		 {
		 if(r>0.25)
		 {
			 r=r/2;
			 gotoxy(71,10);
			 cout<<r;
		 }
		 else
		 {
			 gotoxy(67,10);
			
cout<<”Ooppps...”;
		 }
		 }
	 n=r*5;
	 text(6,4);
	 outtextxy(510,245,”Decrease”);
	 } // last if ends
 } // while loop ends
 } // main ends

 getmpos(int *but,int *x,int *y)
	 {
	 i.x.ax = 3;
	 int86(0x33,&i,&o);
	 *but = o.x.bx;
	 *x = o.x.cx;
	 *y = o.x.dx;
	 }
 initmouse()
 {
	 i.x.ax = 0;
	 int86(0x33,&i,&o);
	 return(o.x.ax);
	 }
 showmptr()
	 {
	 i.x.ax = 1;
	 int86(0x33,&i,&o);
	 }
 resmptr(int a,int b,int c,int d)
	 {
	 i.x.ax = 7;
	 i.x.cx = a;
	 i.x.dx = c;
	 int86(0x33,&i,&o);
	 i.x.ax = 8;
	 i.x.cx = b;
	 i.x.dx = d;
	 int86(0x33,&i,&o);
	 }
	 text(int e,int f)
	 {
	 setcolor(f);
	 settextstyle(SMALL_FONT,HORIZ_DIR,e);
	 } 	 

