

D.C. motor control

This circuit will control most types of d.c. motor and enable full torque to be produced at any speed from maximum down to below 100 r.p.m. Transistors Tr₃, Tr₄ and Tr₅ form a switching regulator where the base drive for Tr₃ is

derived from the on-state base-emitter drop of Tr₅. Advantages of this unusual configuration are the ability to control high currents with a low on-state voltage drop, and the elimination of protection diodes at Tr₃ base as the voltage swing on C₃ is automatically limited to around 1V pk to pk.

When ${\rm Tr}_5$ is off, the motor back-emf is compared with a reference from R_{11} . The resulting collector current in ${\rm Tr}_1$ determines the mark/space ratio of the regulator. Resistors R_4 and R_7 attenuate the motor voltage by 10% to ensure that full speed may be reached within the range of R_{11} .

To prevent the inductive overshoot pulse, produced when Tr_5 switches off, from overcharging C_2 , the circuit around Tr_2 is included which senses this pulse and clamps the junction of R_4 R_7 to ground. Resistor R_{12} provides adjustment of the clamp pulse length to suit the characteristics of different motors, and is adjusted to the point where the applied power responds to load changes in a critically damped manner.

The circuit will operate from almost any power supply, even rectified a.c., although the addition of a smoothing capacitor improves the speed stability. Because no attempt has been made to stabilize the supply to R₁₁, the motor speed will be proportional to the supply voltage. If accuracy of speed is important, R₁₁ may be fed from a zener diode or i.c. regulator.

I. W. Rudge, Edinburgh.