Get Your Motors

Runnin’

The very first experience | had with a hobby servo involved a 555
timer. | had a friend that was deep into RC aviation. One day, we
were sitting in his shop working on a plane and | noticed that he

kept picking up the transmitter to test his servo linkage hookups.

Not only did he have to fire up the transmitter, he had to make
sure the newly installed servo was attached to the receiver. It
looked painful to me. So, | suggested that | create a small box
that could drive the servo directly without the need of a
transmitter and receiver. After some intense reading (no Internet
in those days), | figured out how to make a 555 timer and a
single-axis potentiometer-based joystick do the job of an RC
transmitter and receiver.

distinctive sound. As long as there are humans

By Fred Eady

Post comments on this
article and find any
associated files and/or
downloads at
www.servomagazine.com/
index.php?/magazine/
article/november2013_Eady.

Digilent, Inc.
Digilent Motor Shield
Uno32
MPIDE
Gear Motor
www.digilentinc.com

the bootloader Flash completed successfully, | used MPIDE

\A’hen an RC servo is forced to move, it makes a very ‘ the replacement factory bootloader image. To verify that

walking the earth, there will
be a need for wheels, motors, and
RC servos. With that, this month's
discussion will revolve around driving
RC servos and DC motors using a
Digilent motor shield mounted on a
Uno32.

HD4 18 RGS

ﬂf |"I2V—B EI-W-‘!

Uno32 Revival

The Uno32 smiling in Photo 1
had its original factory bootloader
overwritten. In that the Digilent
motor shield was originally designed

to run under the control of firmware , He= E 5 _ TN
generated by MPIDE, it might be a E= . “—J Ffﬂrmm

good idea to restore the Uno32's ; ' :
factory bootloader image. The re- +[(E_]“ﬂﬁ] W
image process is pain free. o @111 *"'lE
First, | downloaded the Uno32 |- rL) PONER [& - PO
bootloader image from the Digilent . bEl el : i st
website. The second step involved o .
importing the downloaded '_f':’” H':"“' "'[L'—J - |
bootloader hex image into MPLAB.
Once the bootloader hex file was

Photo 1. The name pretty much says it all. The Uno32 is based on a
Microchip PIC32MX microcontroller and is capable of

imported, | used a PICkit 3 to Flash running many of the original Arduino sketches.

48 SErRvVO 11.92013

to load and execute a simple
LED blinky program. The Uno32
is back in business.

The Digilent
Motor Shield

The key to understanding
how to use the motor shield
pictured in Photo 2 is to have a
firm grasp on the hardware
components that make it up.
Please reference Photo 2 and
the motor shield schematics as

we walk through its electrical 5
subsystems. S‘
~ i & 3
DC Motor Drive

Subsystem

As you can see in
Schematic 1, the motor shield is

= 1P
i1 .Jlﬂ-l""]%"

4

Jeiz2Jp

based on the Texas Instruments
DRV8833 dual H-bridge motor
driver. The DRV8833 is capable
of driving one stepper motor or
two DC motors. You can see

Photo 2. The Digilent motor shield can drive up to two DC motors or one stepper
motor. There are also pins to accommodate up to four RC servos. An 12C expander
gives the user an additional two pushbuttons and four LEDs.

this a bit more clearly in s -
. 1)
Figure 1. : jau_:,J h _I_ um_'r :I-
H H [= 5l __
Basically, the output pins R A, 8.k m..-.-mj'!‘,-‘.;.m.n..“l?:-..r.«m e
AOUTx and BOUTx logically s il | 1 me
follow the AINx and BINx : i mem o
. . . L s Sad -1y . 3
input pins. The logical ki BO__| Rrsaie-or By From—
. . . 3 T i apa .'ggn‘: e e 3 8
relationship that exists o o ; Home e g i H
3 BEEIEED ais AisEn . :
between the DRV8833's ‘E’-?'-lh'.'h" Hale | I 'Ef R i IET-BEE-FH
. . . o WLl pHes .
input and output pins is e oA . : £ e T
. . A [= R - e [T o
illustrated in Figure 2. The — 242 E I = @)
Siraight Rale B1oF TH- BRI -3
reverse and forward modes ol aiki
are what one would expect. N e . l-fe:
! A hrrs o 4
Let's talk about the = L bW -
coast and brake modes. S e == =
i] WLTET1R-OF o !'j:;"] IET-5EB-FH M
Coasting occurs when the aZ5 T e
H-bridge is shut down. In ot il e mlo:
coast mode, the recirculation A T8-meemad 2
current is allowed to flow
1ICALIMTL SRS 2
through the MOSFET body AT fo——oc : :
. 1 ML ZAHOLAr a
diodes. The MOSFET body » ‘ i wran
H . L 7
diodes are the reverse biased - B to T R Seraigrn male o |l A
) 100, oo ey _— = oy
diodes located across each i Baf [Baur (IR IS
MOSFET's drain and source. Nl
;- e Iesa wm 4
Brake (slow decay) mode 228 ww v ‘m{i
L ¥ s o
does not allow the
. . . s -} —
recirculation current to flow E A2 .52 7 Bwaig e

through the MOSFET body
diodes by shorting the
motor winding.

The motor speed can be

L] T
A7
L“'\F F7T lDE-\-H'\"".

Schematic 1. This was obviously designed to accommodate all of the
features of the Digilent gear motors. However, it is a flexible design that is
also capable of driving just about any small two-wire DC motor.

SERVO 11.2013 49

Input Output
Y

VM . VINT 252“ S A 0 Y,
! 1y T
Wi Ird=mal 1 chan
s ﬁ:'gg T =] P | PER i I L 7 L
'ItluF.]-_ L — : H H Z H
WM
v L £ v Figure 4.The automatic high impedance
Ll [|AOuTi state change allows the resistors to force their
i Ll HI 3 T | associated demultiplexer input pin logically low.
AN — Gatn i} - -
ﬁ Drive o '/n-',l.a i =4
AINZ : . & b e = . . .)
T i LJ%"| &3 T = Let's shift our attention to Schematic 1.
i H" ; o] :I] AOUTZ | O™ The DRV8833 AINx and BINx inputs are all
I | a3 - tied logically low via resistors R3-R6. The
e —— F— [MSEN g DRV8833 AINx and BINx pins are being fed
VW p)
_ | Loge - '—l from a pair of 1:2 demultiplexers. The logic
MiLEEF L_I_E_" 21} level at the A input of each multiplexer is
T rjBouTH d to the YO or Y1 demultipl
L +] passed to the YO or emultiplexer
mFALLT [—— - i output, depending on the logical state of
L, | Gate i | . . .
F— Dove | () the select pin. The Yx output pin that is not
.:Ep 1 " selected reverts to a high impedance state.
IW_ L | soun In that the DRV8833 inputs are pulled
Tenp o L I' logically low, it is imperative that the
, =1 BISEM & o n deselected demultiplexer output not
— sEy ——a—! AN . X .
L T EL influence the DRV8833 input pin. The
= ' NL7SZ18 1:2 demultiplexer truth table is
——GND

IFigure 1. There are plenty of words describing the DRV8833 in the

datasheet. Once again, a picture is worth 1,000 of them.

controlled by applying a pulse width modulation (PWM)
signal to the DRV8833 input pins. Naturally, the PWM
mode also allows the attached motor or motors to be
reversed. The PWM logic table for the DRV8833 is
contained within Figure 3.

xIN1 xIN2 x0UT1 x0UT2 FUNCTION
0 0 VA Z Coast/fast decay
0 1 L H Reverse
1 0 H L Forward
1 1 L L Brake/slow decay

Figure 2.The relationship between the input pins and output pins
is rather obvious. However, it may not be intuitively obvious that fast
decay disahles the H-bridge and allows the recirculation current to
flow through the MOSFET hody diodes. Slow decay mode shorts the
motor winding.

xIN1 xIN2 FUNCTION

PWM 0 Forward PWM, fast decay
1 PWM Forward PWM, slow decay
0 PWM Reverse PWM, fast decay

PWM 1 Reverse PWM, slow decay

Figure 3. Now that you know what the decay modes consist of,
this too becomes a logical table of operations.

50 SERVO 11.2013

shown in Figure 4.

We can close out our DRV8833 input
circuitry examination by observing that
shorting J2 will put the DRV8833 to sleep
and disable the H-bridge circuitry. We can
also say with certainty that if we manage
to overcurrent, overheat, or undervoltage the DRV8833
outputs, an active low fault signal will be presented at pin 1
of J4. If the fault continues to occur while driving a single
motor with a single output, we have the option to parallel
the DRV8833 outputs which will increase its output current
handling capability. The DRV8833 can drive motors in the
voltage range of 2.7 to 10.8 VDC. The motor drive voltage
must be supplied at J1.

We can also put a cap on the walk through of the
DRV8833 output circuitry. The Digilent gear motor resting
in Photo 3 generates those SAx quadrature encoder signals
you see at J3 and J6. The quadrature-formatted encoder
signals are used to indicate speed and direction of the
motor shaft. The raw quadrature-encoded signals are
buffered by IC4 and IC5. The quadrature encoder signals
are optional, and a standard two-wire DC motor can be
driven without the assistance of the SAx quadrature
encoder signals using J5 and J7.

As you can see, the DRV8833’s AISEN and BISEN
current sense pins are both grounded. This indicates that
the motor shield design is not taking advantage of the
DRV8833's current monitoring pins.

Stepper Motor Driver Hardware

This subsystem does not depend on the DRV8833.

s

j
AN
r:lI
u:L =
E
faL’
o

& o
EmuL% Ly
S L 'g- b g i
i o:
i g) —"-I:o’_zl
1= I IEE_‘h‘-Ja | 13
F=14
. gut e
= £

Schematic 2. There's not much to say about this circuit.
However, if you don't drive a stepper motor with your motor
shield, you can use the MOSFETs as high current solid-state
switches.

Instead, the stepper motor drive electronics consist of four
open drain MOSFETs and four associated steering diodes.
The stepper motor driver hardware is graphically depicted in
Schematic 2. The quad of open drain MOSFETs can also be
used as independent solid-state switches. The stepper
motor driver subsystem can be powered externally by
removing JP5 and supplying power via J10.

Servo Drive Subsystem

The servo drive subsystem consists of a couple resistors
and a capacitor. Hobby servos are driven with a logic level
signal. Thus, the servo drive motor is the only power

UCCEIY

e
2;!.-_ ﬂﬂ‘a M_"_-i :

Lkl
TpgzaRa
133TELLY

ICd
e Fie A IR TE PR !EE A FCP23888-E/TI

Jma

L]
]

e |

if

43

Schematic 4. The motor shield takes advantage of the Uno32's 12C bus
and employs the services of the MCP23008 to add LEDs, pushbuttons,

and a pair of user inputs.

1G220019°00001

DC 6V 0817 5.Y. Talwan

Photo 3. This Digilent gear motor interfaces directly to
the motor shield via J3 or J6. A pair of Hall-effect sensors
produces a quadrature signal as the motor shaft rotates.

consuming element. This is reflected in Schematic 3, which
details four servo positions. Resistors R23 and R24 form a
simple voltage divider that allows the servo power source
voltage to be monitored by the host microcontroller. Like
the stepper motor driver subsystem, the servo drive
subsystem can be powered externally or from the host

5 VDC rail.

I’C Expander Subsystem

This is a very interesting part of the motor shield. The
center of this subsystem is a Microchip MCP23008 I*)C
expander. The expander IC you see in Schematic 4 is
nothing more than an eight-bit I/0 expander that is

E
e

|

L

EnsmEs
wr HR
O3
T
s o
._§§
% TR
P
a%8
P
I Fugy 5
Fit re 55y Ls
L X T7 Toawr
L] mm_J

L5

Schematic 3. Again, there
is not much to discuss. The
magic that positions each
servo is performed by the host
microcontroller.

SERVO 11.2013 51

configured and controlled using the I’C protocol. The
MCP23008’s eight I/O pins are configured as inputs on
high nibble and output on the low nibble. The low nibble
drives a quad of LEDs. Pushbuttons are attached to the two
most significant bits of the high nibble. GP4 and GP5 are
dedicated to jumper switches that provide a logical high or
logical low input.

Digilent Motor Shield Firmware

The motor shield can be driven using the SoftPWMServo
and Wire libraries. However, there is also a dedicated
MotorShield library that takes the pain out of communicating
with the MCP23008. Let's see what it takes to spin some
motor shafts and blink some LEDs using the I°C bus.

Driving Miss DC Gear Motor

Referencing the chipKIT Motor Shield Reference
Manual, we find that the J3 motor interface’s Arduino
enable pin (Enable1) is Uno32 pin 3. The associated
direction pin (Direction1) is assigned to pin 4. We will use
the SoftPWMServo library to place a PWM signal on the
Enable1 pin:

#include <SoftPWMServo.h>

// Uno32 Enable and Direction Pin Assignments
const int pEnablel = 3;

const int pDirectionl = 4;

The motor control logic behind the enable and
direction versus PWM signals is contained within Figure 5.
We'll need a place holder for the PWM value, and we'll also
need a logical switch to toggle the Direction1 pin:

int pwmval; // PWM value

bool bToggle; // forward/reverse switch
Okay. Now that all of our variables and pins are

defined, let's go ahead and initialize them. While we're at

it, let's initiate a serial link so we can use the serial monitor

as a debugger:

void setup()

{
pinMode (pEnablel, OUTPUT) ;
pinMode (pDirectionl, OUTPUT) ;

[pend |
[Pormars =] Screenshot 1.
Ry T - .
franp ncem = This display serves
i two purposes. |
[hy = use it to notify me
Y——
: of the progress of
s the program and
o to verify that the
Lo— motor was really
it doing what | told
|Foacny TOSTR .
4] itto do.
[¥] Pastomcrgl Maeming » ®0bsd

52 SERVO 11.2013

bToggle = true;
Serial.begin(9600) ;

-

The plan is to accelerate the gear motor, decelerate it,
change directions, and repeat the whole process again:

void loop ()
{
switch (bToggle)
{
case true:

digitalWrite (pDirectionl, LOW) ;
// forward
Serial.println(“Forward”) ;
delay (1000) ;
break;
case false:
digitelWrite (pDirectionl, HIGH) ;
// reverse
Serial.println(“Reverse”) ;
delay (1000) ;
break;

1
J

Serial .println (“Ramp UP”);
for (pwmVal= 0x00;pwnVal < 0x0100;pwnVal++)
{
SoftPWMServoPWMWrite (pEnablel, pwmVal) ;
// send PWM value
delay (50) ;
.
}
Serial.println(“*Ramp DOWN\r\n”) ;
for (pwmVal=0xFF;pwnvVal > 0;pwmVal—)
{
SoftPWMServoPWMWrite (pEnablel, pwmVal) ;
// send PWM value
delay (50) ;
}
bToggle = !bToggle;

[

Our little motor twister program checks the condition
of the bToggle variable and determines how to set the
logical value of the Direction1 pin. The gear motor is then
ramped up and ramped down in the selected direction. The
bToggle variable gets inverted and we perform the ramp
up/ramp down in the opposite direction. To check things
along the way, the direction and ramp status is sent out to
the serial monitor which is captured in Screenshot 1.
Power consumption with the motor running is 70 mA.

Positioning the Servo

Again referencing the motor shield manual, we find

DIR1 EN1 Result
0 0 Stop
0 1/PWM Forward
1 0 Stop
1 1/PWM Reverse
DIR2 EN2 Result
0 0 Stop
0 1/PWM Forward
1 0 Stop
1 1/PWM Reverse
Figure 5. This table is valid for steady state and PWM motor
control.

that Servol and Servo2 are accessed via Uno32 Arduino
pins 30 and 31, respectively. Oh, heck. We'll enumerate all
four and we’ll reuse the SoftPWMServo library:

#include <SoftPWMServo.h>

congt int servol = 30; // Servo 1
const int servo2 = 31; // Servo 2
congt int servo3 = 30; // Servo 3
const int servod = 31; // Servo 4

The library function call SoftPWMServoServoWrite(pin,
position) will move the servo motor associated with the
Arduino pin number to a position represented by
microseconds. The extent of a typical hobby servo is 1,000
uS to 2,000 S, with center at 1,500 uS. So, to center
Servo1, we would substitute 30 for pin and 1500 (1.5 mS)
for position. Typing out the servo library call could get to be
a pain. To keep our fingers sane, let's wrap the servo
movement library call into a couple of C functions:

static void centerServo(int servonum)

{

SoftPWMServoServoWrite (servonum, 1500);
static void moveServo (int servonum, int pos)
{

SoftPWMServoServoWrite (servonum, pos);

As you can see, the centerServo function simply
commands the servo to center its shoe. If we need to
arbitrarily move the servo shoe, we place a call to the
moveServo function. Let's go ahead and perform the servo
Arduino pins setup:

void setup ()
{

pinMode (servol, QUTPUT) ;
pinMode (servo2,0UTPUT) ;
pinMode (gervo3,OQUTPUT) ;
pinMode (gervo4d, OQUTPUT) ;
Serial .begin(9600) ;

Once again, we'll fire up the MPIDE serial monitor for
the same reasons we did before. The code will be very easy
to read since our servo function calls are self-documenting:

void loop ()

{
centerServo (servol) ;
Serial.println(“Centered”) ;
delay (2000) ;
moveServo (servol,1000) ;
Serial.println(™1000");
delay (2000) ;
centerServo (servol) ;
Serial.println(“Centered”) ;
delay (2000) ;

moveServo (servol,2000) ;
Serizal.println(™2000");
delay (2000) ;

The delay function calls provide way more time than
required for the servo shoe to complete the predetermined
moves that are programmed in. The serial monitor output

for our servo application is shown in Screenshot 2.

Mastering the I’C Expander

The I°C expander IC can be manipulated with the
Arduino wire library. When you get your homebrew wire
code, you will come to the realization that you have spent a
bunch of time reinventing the MotorShield library code.

The format of an I°C exchange between the Uno32 and
the MCP23008 begins with a start bit, followed by a control
byte. The control byte encapsulates the slave address and
the R/W (Read/Write) bit. The most significant seven bits of
the control byte contain the slave address.

Take another look at Schematic 4. The MCP23008's
address lines AO, A1, and A2 are all pulled to ground with
ZeroQ resistors. Thus, one would say the I°C address of the
MCP23008 is zero (000). Wrong!

The MCP23008 datasheet tells us that the MCP23008
address bits are located in the three least significant bits of
the seven-bit slave address field. The upper four bits of the
MCP23008 slave address are 0100. This is a bit confusing
as a discussion. So, let's map it out:

S 0100 A2 Al AQ R/W
Where:
S = Start bit
Slave Address = 0100000
R/W = Read/Write bit
The Slave Address 1s partitioned as
0x20.

010 0000 or

The 0x20 gets you to the MCP23008's front door. The
next thing you better have is the room address. The “room”
address is really one of 11 MCP23008 register addresses.
Once you enter the right room, you can deliver that pizza in
the bag you're carrying. Here's what that front door, room,
and pizza look like in the MotorShield.h file:

// unigue I2C device address
#define DEVADDR 0x20

//Register Addresses

#define TIODIR 0x00
/ Data direction register (setting pins
// for input/output)

#define IPOL 0x01
#define GPINTEN 0x02
#define DEFVAL 0x03
#define INTCON 0x04
#define IOCON 0x05
[==d |
(et
- p LT
Screenshot 2. |eems
I've moved my [resssms
share of servo [0, .
shoes. This has to |== z

Cexzared

be the easiest way |.x-
to do it that I've o7
seen so far.

|Canzannd
|2ar0

| ¢ Mastomcrad Maneemdng « SObsd o

SERVO 11.2013 53

#define GPPU 0x06

#define INTF 0x07
#define INTCAP 0x08
#define GPIO 0x09

// the main data port for reading and
// writing
#define OLAT Ox0A

The pizza is the data you load into the appropriate
MCP23008 register. Here's a typical write register sequence
that targets the GPIO register:

Wire.beginTransmission (DEVADDR) ;

// transmit to motor shield

Wire.gend (GPIO) ;

// select the GPIO register

Wire.gend (value) ;

// data to load into the GPIO register
Wire.endTransmission () ;

// stop transmitting

The MotorShield library contains the following publically
accessible functions:

void begin(void)

vold writeLEDs (byte value)

byte readInputs (void)

void readButtons (bool* btnl, bool* btn2)

The GPIO register code snippet is actually part of the
writeLEDs library call. To use the library functions, we must
first instantiate a MotorShield class. Here is the class code
that lies within the MotorShield library:

//*******************

* MotorShield Class

******************/

class MotorShield
{
public:
void begin (void) ;
void writeLEDs (byte wvalue);
byte readInputs (void) ;
vold readButtons (bool* btnl, bool* btn2);

private:
vold reorder_LEDs (byte* wvalue) ;

}i
Here's how to instantiate a MotorShield class:

// Wire.h must be included when using the
// MotorShield.h library

#include <Wire.h>

#include <MotorShield.h>

// Create an instance of MotorShield called
// extender
MotorShield extender;

The next step is to finish up our variable declarations
and kick off extender:

byte x;
bool btnl, btn2;

void setup ()

{

// initialize the 1/0
// extender

extender.begin() ;

3

54 sErvO 11.2013

The setup function code is pretty vague. A peek under
the hood will clear things up:

void MotorShield: :begin (void)
{
Wire.begin();
// join the I2C bus as master

Wire.beginTransmission (DEVADDR) ;

// transmit to motor shield

Wire.send (IODIR) ;

// select the data direction register
Wire.send (0xFO0) ;

// configure high half of I/0 as inputs,
// and the low half as outputs
Wire.endTransmission () ;

// stop transmitting

—

Setting the MCP23008's IODIR register is analogous to
setting PIC 1/O pins as inputs or outputs.

Let's write an application that reads the pushbuttons
and illuminates the motor shield’s onboard LEDs
accordingly. Here’s the truth table we will code by:

btnl depressed - btn2 released = LED1 ON
btnl released - btn2 depressed = LED2 ON
btnl depressed - btn2 depressed = LED3 ON

| cant show you the LEDs, but | can show you the code:

void loop ()

{
// readButtons sets the bool values, 1 for
// pressed button, 0 for unpressed button
extender.readButtong (&btnl, &btn2);

x = 0x00;

if (btnl && !btn2)

x = x | 0x01; //illuminate LEDL
if (!btnl && btn2)

x = x | 0x02; //1lluminate LED2
if (btnl && btn2)

x = x | 0x04; //1lluminate LED3

// writes the binary value of x (first 4 bits)
// to the LEDs
extender.writeLEDs (x) ;

}
Double-check my code when you get your own motor shield.

The Possibilities

You can drive a pair of DC motors, a stepper motor,
and control up to four servos simultaneously. You can use
the motor shield pushbuttons to activate or deactivate a
motor or servo. The state of a motor, servo, or LED can be
altered according to the logic levels of the jumper-switch
inputs. Extend the I°C bus to control external I’C slave
devices via J21. Drive small relays using the stepper motor
MOSFETs. Or, just have fun writing code to make stuff
move and blink LEDs. SV

