
28 November & December 2017 www.elektormagazine.com

Nowadays when
you need to auto-
mate something,
the solution is obvi-
ous: you take an
Arduino or Rasp-
berry Pi module or choose one of
the countless other single-board computers, put together a
shield, a hat or whatever you want to call it, write some code,
and you’re done.

But using a complete minicomputer just to
control a traffic signal is naturally a bit like
using a cannon to swat flies. There must be
an easier way, with a microcontroller and a
little bit of I/O.

PLC
In the real world, traffic signals are often oper-

ated by programmable logic controllers (PLCs), which are
also used extensively for industrial control tasks. PLCs are
usually programmed using ladder diagrams – and for good
reason.
Microcontrollers are normally programmed using a high-level
language such as C, which should not present any difficul-
ties for most Elektor readers. However, service technicians
and electricians in the industrial sector are not as fluent in
these programming languages. On the other hand, they are
perfectly at home with relay-based control circuits. That is
the main advantage of ladder diagrams: if you can build a

Traffic Signals
for Model Railroads
Programming with ladder diagrams

By Rob van Hest (The Netherlands)

It all started with a simple
question: could the author make
a controller for traffic signals on
a model railroad? That led to the
rediscovery of ladder
diagrams as a
simple and effective
way to create
program logic.

PROJECTLABS

project info
LED traffic signal

Æ

1 hour approx.

€25 / £20 / $30 approx.

Normal soldering tools,
programmer (optional)

Microcontroller
Ladder diagram

Features
•	 Traffic signal for model railroads
•	 Ladder diagram programming
•	 Free programming environment
•	 Suitable for 12 V and 24 V
•	 All components through-hole

intermediate level
entry level

expert level

www.elektormagazine.com November & December 2017 29

A mental exercise
As a sort of mental exercise, let’s see if we can use this
knowledge to do something useful – without actually draw-
ing a circuit diagram.
Anyone interested in electronics is probably familiar with the
“quizmaster” circuit: several contestants hear the quizmas-
ter ask a question, and the one who presses the button first
gets the chance to answer the question and score a point.
Now let’s try to implement this circuit in the form of a lad-
der diagram.
We start with a master signal called “enable,” which is only
active when none of the contestants has pressed their but-
ton. When a contestant presses the button, an associated
bistable relay is set and a lamp or something similar is
switched on. The corresponding ladder rung looks like this:

 Yenable XAplay YAplay
----] [----+----] [-----------------(S)----
 |
 | XBplay YBplay
 +----] [-----------------(S)----
 |
 | XCplay YCplay
 +----] [-----------------(S)----

The “Yenable” signal is only true (active) when none of the
contestant buttons is pressed:

 YAplay YBplay YCplay Yenable
----]/[--------]/[--------]/[-------()----

Of course, we also need a way to reset everything for the
next round. That could look something like this:

 Yenable Xreset YAplay
----]/[---------] [----+------------(R)----
 |
 | YBplay
 +------------(R)----
 |
 | YCplay
 +------------(R)----

Finally, “END” indicates that we are done:

----[END]----------------------------------

As you can see, it is easy to construct a logic circuit with
just a bit of logical thinking, without putting a single mark
on a piece of paper.

LDmicro
That’s all well and good, but we naturally need a program-
ming environment if we want to draw ladder diagrams and
compile them to produce hex files that can be loaded into
a microcontroller. That is exactly what we want to present
here. The program in question is called LDmicro, and it

circuit using electromechanical relays, you can program a
PLC with the aid of ladder diagrams.
The author actually worked with ladder diagrams many
years ago, and with a very convenient ladder compiler that
runs perfectly under Windows 7 now available, the choice
was easy: build the traffic signal controller as a mini-PLC
and program it with ladder diagrams.

An introduction to ladder diagrams
As the name suggests, a ladder diagram looks something
like a ladder with several rungs. Each rung consists of one
or more switch contacts, which are drawn from left to right,
and an actuator (the coil of a relay). For this brief introduc-
tion, we remain within the realm of electromagnetic relays.
The switch contacts are depicted as follows:

---] [---
Normally open (NO) contact

---]\[---
Normally closed (NC) contact

As you can see, switch contacts are represented by square
brackets in “reverse” order.

Actuators are indicated by round brackets (parentheses):

---()---
Normally inactive actuator (unenergized relay coil)

---(/)---
Normally active actuator (energized relay coil)

As you probably already guessed, we can use these sym-
bols to depict logical relationships.

A logic AND looks like this:

---] [----------------] [---------------()---
 sw1 sw2 motor

Here the motor is only activated (switched on) when con-
tact sw1 and contact sw2 are both closed.

A logic OR takes the following form:

---+---] [---+---------------------------()---
 | sw1 | motor
 | |
 +---] [---+
 sw2

A logic NOT (inversion) is indicated by a slash:

---] [----------------]/[----------------()---
 sw1 sw2 motor

Here the motor is activated when contact sw1 is closed and
contact sw2 is not closed.
Using this method, you can construct a logic controller step
by step (rung by rung) using switches and relays.

30 November & December 2017 www.elektormagazine.com

Finally, before compiling the program you have to assign
the various signals to the microcontroller pins. To do so,
click on an input or output in the bottom pane and select
the appropriate pin in the resulting pop-up window, as
illustrated in Figure 4. Then compile the program and
download the resulting hex file to the microcontroller. The
author used a Velleman K8048 programmer for this, but
the TL866A universal programmer available in the Elektor
Store [3] also works well.
The download for this article [2] also includes the quizmas-
ter example in a more elaborate version with an output
for a buzzer. We leave it up to you (as a good exercise) to
figure out how that works.

Getting down to business
Let’s get back to where we started with this article: a traffic
signal for a model railway. The object here is to safeguard
an intersection, so we need four traffic signals in total,
operating in pairs.
This could of course be constructed with a ring counter
(using a couple of CD4017 ICs, for example) and a diode

works well, looks good, and does not cost anything [1]. The
program takes the form of an executable file that does not
have to be separately installed. Figure 1 gives an impres-
sion of the user interface.
The diagram for our quizmaster experiment is shown in Fig-
ure 2. As you can see, each rung of the ladder is assigned
a number, and the various contacts and actuators are listed
in the bottom pane as inputs and outputs (this is done fully
automatically).

The program documentation is exemplary in all regards, so
it will not take you very long to learn to use the program
and there is no need to go into the details of how to enter
the various components of the diagram.
In order to translate the ladder diagram into a file that can
be used to program a microcontroller (in other words, to
compile it), you first have to select the target microcontrol-
ler as illustrated in Figure 3. As you can see, the program
supports a variety of microcontrollers. Here the author
selected the PIC16F628A, simply because he had a large
number of these devices on hand.

Figure 1. LDmicro starts with a clean sheet.

Figure 3. You can select the right microcontroller under Settings. LDmicro
supports many different types.

Figure 2. The quizmaster mental exercise in LDmicro.

Figure 4. Assigning inputs and outputs is very straightforward.

www.elektormagazine.com November & December 2017 31

The hardware
Figure 6 shows the schematic diagram of the traffic signal
controller. This does not need much explanation. The sup-
ply voltage input is on connector K7. The supply voltage
stated on the schematic is 12 VDC, which is commonly used
for model railroads, but the circuit can be used unchanged
with supply voltages from 9 V to 24 V. In the latter case,
it is a good idea to fit a small finned heat sink on voltage
regulator IC2 (type 78L05). The 5 V output from IC2 is
used solely to power the microcontroller. Diode D1 provides
reverse-polarity protection.

The circuit is built around the microcontroller IC1. No crys-
tal is used here; the clock signal for the processor is gen-
erated by the free-running internal oscillator of IC1. It is
more that sufficiently accurate for our purposes.
The inputs (connectors K4–K6) are protected by voltage
dividers and series resistors, so that voltages up to a max-
imum of 24 V can be used as input signals without any
problem.

The microcontroller outputs are buffered by the driver IC3
(type ULN2803). It should be familiar to most readers.
The outputs of this IC switch to ground. The driver can
handle approximately 60 mA per output when all outputs
are active at the same time. That is more than enough for
model railroad traffic signals. If you need more current, you
can connect relays to the outputs, and the free-wheeling
diodes necessary for this are already integrated in the IC.
Jumper JP1 selects between normal operating mode (2-3)
and programming mode (1-2). In programming mode, the
microcontroller can be programmed through connector K8
without removing it for the circuit (in-system programming,
ISP). Of course, you can always program the microcontrol-
ler in a separate programmer.

matrix, but that has two disadvantages: you need a rel-
atively large number of components, and it is difficult to
modify the traffic signal behavior. We will therefore build a
simple PLC that can be programmed using ladder diagrams.
The core of the program actually consists of a counter which
counts 30 steps (from 0 to 29), of which 15 are allocated
to one set of signals (which we call north/south) and the
other 15 to the other set (east/west).
This counter can be programmed in LDmicro as a single
rung.

 Rclock Ton Toff Rclock

---]/[----[TOF 500.0 ms]--[TON 500.0 ms]--+-------()------

 |

 | Ccycle1

 +---{CTC 0:29}---

Here we employ two delays of 500 ms each, resulting in
a cycle time of 1 second (1 Hz repeat rate). To keep track
of the cycles, we use a counter which counts from 0 to 29
and then resets to 0.
The timing of the signal lights is determined by the counter
state. For example, for the north/south pair we have:

1 or less:	 red
2–8:		 green
9:		 yellow
10 or more:	 red

This is fairly easy to translate into a ladder diagram:

 [Ccycle1 >=] [Ccycle <] Ygreen

---[2]-----[9]----------()---

 [Ccycle1 ==] Yyellow

---[9]-------------------------()---

 [Ccycle1 >=] Yred

---[10]--+----------------------()---

 |

 [Ccycle1 <] |

---[2]---+

For the east/west pair, we simply add 15 to the previous
counter states:

16 or less:	 red
17–23:		 green
24:		 yellow
25 or more:	 red

This is the main part of the traffic signal program. The com-
plete program is included in the download file. There we
added a pedestrian signal, an option for selecting either the
signal sequence with yellow before green as well as yellow
before red (as used in Germany) or the sequence without
yellow before green, and a night mode (all signals blinking
yellow). Figure 5 shows part of the complete program in
LDmicro, as well as the pin assignments.

Figure 5. The traffic signal program in LDmicro.

Pocket-size traffic signals

32 November & December 2017 www.elektormagazine.com

the controller sets all lights to red for safety before chang-
ing to normal mode. Finally, S3 allows you to select either
“NA/UK” or “Germany” signal sequence.
One final tip: If you use a 24 V supply voltage, it is a good
idea to increase the value of R17–R24 to 4.7 kΩ. This will
prevent the voltage on pin 4 of the microcontroller from
rising too high. Although that would not cause any serious
damage, it might unintentionally put the microcontroller in
programming mode.

Conclusion
A model railroad traffic signal is of course a perfectly legit-
imate application for this circuit. However, we hope this
project has aroused your interest in programming with
ladder diagrams — using the board described here (with its
wealth of inputs and outputs), you can implement a wide
range of attractive applications without any programming
language experience. Be sure to tell us what you use this
PLC for — we’re keen to know!

(160456-I)

Construction and use
For the traffic signal controller we designed a PCB (sin-
gle-sided) using exclusively conventional through-hole com-
ponents (Figure 7). Assembling the board should not pres-
ent any problems for most readers. Start with the sockets for
IC1 and IC3, then mount the low-profile components (diodes
and resistors), followed by the capacitors and connectors.
After a careful visual inspection, you can connect a 12 V
power source to connector K7 (pay attention to the right
polarity) and check for a clean and stable 5 V supply volt-
age on pin 3 of JP1. If that test is passed, switch off the
power and place a jumper on pins 2 and 3 of JP1 (where
it can remain forever if you never need to program the
microcontroller in system) and insert the microcontroller
(IC1) and the driver (IC3) in their sockets. Next, connect
the LEDs of the various traffic signals and the switches as
indicated in Figure 8. Note that if you want to use a 24 V
supply voltage instead of 12 V, it is probably a good idea to
increase the series resistor values for the LEDs to 2.2 kΩ.
Using the controller is easy: press S1 briefly to activate the
pedestrian light (just like real life, where you always have
to press a button before you can cross safely).
Switch S2 activates night mode; when it is switched off,

ULN2803
IC3

GND

CD+

11
12
13
14
15
16
17
18 I1

I2
I3
I4
I5
I6
I7
I8

O1
O2
O3
O4
O5
O6
O7
O8

10

1
2
3

6
7
8

4
5

9

K2
3

1
2

K3
3

1
2

C6

100n

K1
3

1
2

O-6

O-4
O-5

+

+

O-7
O-8

O-3

O-1
O-2

+12V +5V

C1

100n

K5
3

1
2

K4
3

1
2

K6
3

1
2

I-4

I-6
I-5

I-1

I-3
I-2

I-7
I-8

R1
100k

R2
1k

R3
100k

R4
1k

R5
100k

R6
1k

R7
100k

R8
1k

R9
100k

R10
1k

R11
100k

R12
1k

R13
100k

R14
1k

R15
100k

R16
1k

+12V

K8
12345

ISP

JP1
1
2
3

+5V

C5

10u
50V

C3

10u
50V

C412VDC

100n

78L05
IC2

C2

100n

D1

1N4004K7
1
2

PWR

PGR

T0CKI/RA4

PIC16F

IC1

628A
MCLR

OSC2
OSC1

RA1
RA0

RA2
RA3

RB0
RB1
RB2
RB3
RB4
RB5
RB6
RB7

VDD

VSS

18
1713

12
11
10

14

15
16

1

39
8
7
6

2

4

5

+12V

160465 - 11

R17
2k2

R18
2k2

R19
2k2

R20
2k2

R21
2k2

R22
2k2

R23
2k2

R24
2k2

Figure 6. Schematic diagram of the traffic signal controller. This is actually a small general-purpose PLC, which with suitable software can control traffic
signals on a model railroad.

www.elektormagazine.com November & December 2017 33

Web Links

[1] http://cq.cx/ladder.pl

[2] www.elektormagazine.com/160456

[3] www.elektor.com/tl866a-universal-programmer

component list

123

O I

E
LE

K
T

O
R

 (C
)

IC
3

Figure 7. The PCB for the PLC / traffic signal controller.

1
2

3

O
I

ELEKTOR (C)

IC3

1k2

1k2

1k2

1k2

1k2

S1

S2

S3

12VDC

Figure 8. Wiring diagram for the LEDs and switches.

from the store
ª160465-1
PCB

ª160465-41
Programmed microcontroller

