Microprocessor Control with BASIC (Conclusion)

Adding a 'Tempwatch'" accessory to last month's Microsys development unit creates a 'smart' thermometer

By Jan Axelson \& Jim Hughes

Last month in Part 1 of this article, we showed you how to build and use the Microsys development system for micropro-cessor-based projects. The basic system described so far consists of an 8052AH-BASIC microcontroller, RAM, EPROM, and a serial port for connection to a terminal (or a computer being run as a terminal). Now we'll add inputs and outputs that will turn the Microsys into a complete, stand-alone temperature-measuring instrument. We call this our Tempwatch "smart" thermometer.

Tempwatch isn't just an ordinary thermometer. It displays the present temperature and time and also the maximum and minimum temperatures measured and the times these occurred. To add these capabilities to the basic Microsys, you must add a few more modules. For input, you'll add a temperature sensor, an ADC (analog-to-digital converter), and two pushbutton switches for user control. A 16 -character dot-matrix LCD (liquid-crystal display) module serves as the "output"' device.

About the Circuit

In Fig. 5 is shown the schematic diagram for the ADC and its associated circuitry. Input to the ADC is pro-

vided by LM34 temperature sensor IC13. The output of this three-terminal device is an analog voltage that is proportional to temperature at a rate of 10 millivolts per degree Fahrenheit. At 70 degrees, its output is within 0.8 millivolt of 700 millivolts. Resistor R18 and capacitor C21 form a low-pass filter to reduce noise on the input.

The output from IC13 is the analog input that is applied to input pin 6 of ADC0804 analog-to-digital converter IC12. The ADC converts this analog input into an eight-bit word whose value represents the analog voltage.

LM385-1.2 precision reference diode IC14 provides a stable 1.2 -volt reference at pin 9 of ICI2. The potential at pin 9 is half the voltage that causes a full-scale output on the ADC. That is, a 2.4 -volt input (which is twice the reference voltage) causes an output of 11111111 at ADO through AD7 of IC12. This gives the ADC a resolution of a little less than 10 millivolts, which translates into 1 degree Fahrenheit per bit.

Measurement range of the Tempwatch depends partly on the version of chip used for IC13. The LM34C, for example, is accurate over a range of -40 to +230 degrees Fahrenheit

Fig. 5. Schematic diagram for the temperature-sensor and A/D converter circuitry that connect to the Microsys.
(though the Tempwatch measures only down to zero degrees). The LM34D, on the other hand, has a narrower range of +32 to +212 degrees Fahrenheit, as well as a lower price to match; so it may be a better choice if this range suits your needs.

A separate ground return for analog signals in the sensing circuit helps to reduce noise, which improves measuring aecuracy. Ground connections for IC13, IC14, and C2I connect to IC12's analog ground at pin 8. A single ground wire then connects pin 8 directly to ground on +5 -volt regulator IC11.

The eight data lines on ICl2 (pins 11 through 18) connect directly to AD0 through AD7 on IC2. CHIP SELECT at pin I of ICl2 is generated by Y 7 at pin 7 of IC3. Output Y 7 is low when A13, A14, and Als are all high. This places IC12 at hexadecimal address EOOO. Reading and writing to IC12 are controlled by RDHI at pin 3 of IC7A and WRITE at pin 16 of IC2.

Resistor R17 and capacitor C20 provide the ADC's clock at about 300,000 Hertz (300 kHz).

A low-to-high transition on pin 1 or
pin 3 of IC12 causes the ADC to begin converting its analog input (the temperature voltage) to an eight-bit word. The 8052 can be programmed to read this word on AD0 through AD7 and convert it to a temperature. Next we need a way to display the measurement.

Figure 6 shows the wiring for M1, an Amperex-Philips No. LTNI11R10 LCD module. This module has a 16-character display and contains a CMOS controller/driver and its own ROM and RAM. Each of the 16 characters in the display is created by turning on and off the LCD segments arranged in a 5×7 matrix. (A matrix display was chosen for this project because it allows much more flexibility in character-which can be letters, numbers or other symbols-design than seven-segment displays do.)

The module's ROM stores the patterns that create 160 different characters, and the RAM stores display data. As Fig. 7 shows, virtually all of the circuitry of M1 is contained in one LSI surface-mount device. Figure 8 shows a sample display on MI.

Data and instructions are written

PARTS LIST
Semiconductors
1C12-ADC0804 analog-to-digital converter
IC13-LM34 precision Fahrenheit temerature sensor (Digi-Key)
1C14-LM385-1.2 voltage-reference diode (Digi-Key)
IC15-74LS00 quad NAND gate
Capacitors (25-WV)
C19,C21-1.0- FF tantalum electrolytic
C20-300-pF ceramic
Resistors ($1 / 4$-watt, 5% tolerance)
R17-10,000 ohms
R18-75 ohms
R19- 100,000 ohms
R20-5,000-ohm pc-mount potentiometer
Miscellaneous
M1-LTN111R-10 16-character LCD module (Digi-Key Cat. No.
AMX116-ND)
S2,S3-Spst normally-open, momentary action pushbutton switch Three-conductor shielded cable (60 inches long); 34 -conductor ribbon cable with connectors at both ends (8 inch long-see text); 14-pin singlerow header; 34 -pin double-row header; Wire Wrap IC sockets and hardware; rubber grommet; small-diameter heat-shrinkable tubing; machine hardware; hookup wire; solder; etc.
Note: For a 2764 EPROM containing the 10 programs listed in this article, plus tem-perature-alarm program, send $\$ 19$ to Lakeview Microdesigns, 2209 Winnebago St., Madison, WI 53704: Include \$2 P\&H per order. Wisconsin residents, please add 5% state sales tax.

Supplier Addresses

 DigitKey Corp. 701 Brooks Ave. S. Thief River Falls, MN 56701-0677 1-800-344-4539 Jameco Electronics 1355 Shoreway Rd. Belmont, CA 94002 415-592-8097
Sources of Information

Applications information for LTN111R10 LCD module (and others)-DigiKey (Cat. No. AMXDS)
National Semiconductor 1988 Linear Data Book . H_{2}; contains data sheets and applications notes for ADC0804, LM34, LM385-1.2-Digi-Key (Cat. No. 9052B) or Jameco (Cat. No. 400042)

Fig. 6. Schematic diagram of LCD module and switches that connect to the Microsys.
to $M 1$ on AD0 through AD7 on pins 7 through 14. Three control lines at pins 4,5 and 6 complete the interface with IC2. Pin 3 is a contrast-adjust input for the display, and connections to +5 volts and ground are at pins 2 and 1 , respectively.

To display a character on M1, IC2 writes the address of the position desired to M1. (Alternatively, M1 increments or decrements the address automatically after a character is written to the display.) IC2 next writes the code for the character desired to M1. The module then displays the character desired at the position requested.

Logic gates IC15A, IC15B and IC7D generate an enable signal at pin 6 of M1. When Y6 at pin 9 of IC3 is low and either RDHI or WRITE is low, Ml can be read or written to. Line y6 is low when A14 and A15 are high and A13 is low, which places M1 at hexadecimal address C000.

Address lines A8 and A9 select the operation to be performed when MI is enabled. When A8 and A9 are both low, instructions can be received by

M1 on AD0 through AD7. When A8 is low and A9 is high, character codes can be received.

The applications notes for $M 1$ describe the various instruction codes and their functions. They also illustrate the possible characters and their character codes.

Momentary-action pushbutton switches $S 2$ and $S 3$ permit user input to the system. Each switch connects to a line on Port 1, an I/O (input/ output) Port of IC2. In the Tempwatch program, S2 resets the maximum and minimum temperatures and times to the present temperature and time, and $S 3$ lets the user set the Tempwatch's clock.

Construction

Creating the Tempwatch from the Microsys you built last month requires you to add the circuitry for the ADC, sensor, LCD module and switches. The control program must also be written and saved in the EPROM. Figure 9 shows a completed Tempwatch mounted in its enclosure. Add-
ing the hardware is the first step. Here is where the locking connectors we specified for the Microsys come in handy. Unplug both connectors and remove the circuit-board assembly from the Microsys' enclosure.
Wire Wrap the new components specified here on this circuit-board assembly. Begin by mounting the sockets for IC12 and IC15. Do not install the ICs themselves in the sockets until after you have ascertained that your wiring is correct and pow-er-distribution tests have been conducted. As you did last month, solder the pins of the sockets to the copper rings through which they pass on the board. Then wire the power-supply and ground pins to the +5 -volt and ground buses on the circuit board.
Using Fig. 5 as a guide, wire the circuitry associated with ICl2, adding IC14, R17, R18, R19, C19, C20 and $C 21$ to the board as required. Mount IC14, R18, R19 and C21 as close to IC12 as possible, to minimize noise in IC12's analog circuitry. Wire the analog grounds (ground connections to C21, IC13 and IC14) directly to pin 8 of IC12. Connect and solder one wire from pin 8 of ICl2 to a ground point near IC11.
To permit flexible use of the project, it is a good idea to mount temperature sensor IC13 at the end of a 5 -foot-long cable. Use threeconductor shielded cable for this to assure good immunity to noise.

Prepare the sensor cable as follows. First remove 2 inches of the outer plastic jacket from each end. If the shield is made up of wire mesh, separate the wires at both ends back to the cut-off plastic jacket and clip its conductors off ar only one end. Twist together the fine wires of the braid at the other end and sparingly tin with solder. If the shield is foil with a wire tracer, unwind it back to the cut-off plastic jacket, trim the foil at both ends and clip the wire tracer at only one end. Strip $1 / 2$ inch of insulation from all conductors at both ends of the cable, tightly twist
together the fine wires of each conductor and sparingly tin with solder.

At the end of the cable from which the shield (and tracer wire) was clipped, slide a 1 -inch length of small-diameter heat-shrinkable tubing over and form a small hook in the end of each conductor. Next, trim the leads of ICl 3 to a length of about $3 / 4$ inch and also form small hooks at the ends of the remaining lead lengths. Crimp and solder a cable conductor to each lead on IC13. At the other end of the cable, identify conductors, for later use in wiring them. Do this either by recording the insulation colors for each conductor at IC13, or by using an ohmmeter to identify the wires and temporarily labeling each with masking tape.

Slide the tubing over the soldered connections until it is flush with the bottom of IC13's case and shrink the tubing into place. Slide a 4 -inch length of larger-diameter heat-shrinkable tubing over the entire cable so it overlaps slightly the bottom of the IC's case and shrink it into place.

Slide a $11 / 2$-inch length of tubing onto the shield at the other end of the cable and shrink it into place. Slide another larger-diameter piece of tubing onto the cable, placed so that about 1 inch of the cable conductors extends out the end of the tubing, and shrink into place.

Insert the three cable conductors in the circuit board and solder connections to pins 6, 7, and 20 of IC12, using Fig. 5 and your previous identification of the conductors as guides. Solder a connection between the shield and pin 8 of $I C 12$.

Because module MI contains CMOS integrated circuits, be sure to exercise the normal safety precautions for handling devices that are subject to damage from electrostatic discharge. In addition, the display can be damaged by mechanical shock or pressure; so handle it with care.

The MI circuit board has a single row of 14 holes on 0.1 -inch centers for mounting on it an interface-cable

Fig. 7. LCD module has one IC that contains virtually all of the module's controller and driver circuitry.
connector. Unfortunately, this configuration doesn't seem to match any readily available connectors; so some improvisation is in order.

For the sake of convenience, a 34 -pin ribbon cable is used to connect MI to the circuit board, even though many of the cable's conductors will go unused. You can buy or make the cable, which should be about 5 inches long and have socket connectors at each end.

Solder a 14 -pin single-row header to MI. On the Microsys circuit
board, a 34 -pin double-row header is recommended, to match the connector and minimize the chances of plugging it in incorrectly. Use an indelible marker to place an identifying dot near pin 1 of each header. On $M 1$, pin 1 is nearest the corner of the module's circuit board. On the Microsys circuit board, pin 1 will be the pin that is nearest the pin 1 arrow when the connector is plugged in.
Plug the ribbon cable's connectors into the headers, matching pin 1 to pin 1 on the connector and header at

Fig. 8. LCD modute used in this project can display message of up to 16 characters, using letters, numbers, or other symbols.

Fig. 9. Circuit board, transformer and batteries mount on the floor of the enclosure; serial-port connector and sensor cable exit through rear panel.
each end. On M1, plug the socket nearest the pin 1 arrow into pin 1 on MI's header. One entire row of sockets on the connector, as well as the bottom three sockets of the other row, are not used in this project.
Once you are satisfied that everything physically meshes together, disconnect the cable. Then install $R 20$ on the circuit board, and wire the circuitry shown in Fig. 6. To wire $S 2$ and S3, prepare three 8 -inch and one 4inch lengths of hookup wire by stripping $1 / 2$ inch of insulation from the ends of each. Twist together one end of the 4 -inch wire and one end of one 8 -inch wire and crimp and solder the twisted pair to one lug of $S 2$. Crimp and solder the free end of the 4 -inch wire to one lug on S3. Then crimp and solder the other two wires to the remaining switch lugs.

Connect the wire common to both switches to ground on the circuit board. Connect S2's other wire to pin 1 of IC2, and S3's other wire to pin 2 of IC2.

Route the sensor cable through a rubber-grommet-lined hole in the enclosure's rear panel.

Switches S2 and S3 and module M1 mount on the front panel, the switches in suitable-size holes and the module in a 2% by $1 / 1 / 6$-inch slot you must cut into the panel. In addition
to the slot, M1 requires that you drill four mounting holes for it in the front panel. Cut the larger display window opening first, making it large enough that the module fits easily into it to obviate mechanical stress on the display.

When the opening is ready, insert M1 in the front panel and mark the locations for the four mounting holes. Remove and set aside the module and drill appropriate size holes in the marked locations.

Temporarily remove S 1 from the front panel and label S1's positions ON and OFF, S2 RESET, and S3 SET CLOCK on the front panel. Use a drytransfer lettering kit and protect the legends with two light coats of clear spray acrylic. Allow the first coat to dry before spraying on the next.

Mount M1, using spacers of sufficient length to assure that fit between M1 and the front panel is correct. In-
stall the circuit board in its enclosure and connect the two sets of locking connectors. Tie a knot in the sensor cable to act as a strain relief, and route this cable through the rubber grommet in the back panel. Do not connect the ribbon cable until preliminary power supply checks have been made and you are certain that the circuit has been wired correctly. Mount S1, S2 and S3 in their respective holes on the front panel.

Checkout

Power up the Microsys and use a dc voltmeter or multimeter set to the dc volts function for the presence of +5 volts, ± 0.2 volt, between output of IC11 and circuit ground. Connect the meter's common lead to any convenient circuit-ground point in the circuit and use the "hot" lead to probe the circuit for this measurement. Also measure for +5 volts from pin 2 to

Program 6. Write Temperature to Screen

```
1 REM Program 6. write temperature to screen
10 DO
XBY(OEDDOH)=255 : REM write to adc to start conversion
ADC=XBY(OE\emptyset\emptyset\emptysetH): REM read adc output
TEMP=ADC*2.47*100/255: REM calculate temperature
    PRINT "The temperature is ",TEMP," degrees Fahrenheit"
    WHILE l=1
    END
```


Program 7. Write Temperature to LCD Module

```
1
10
10
XBY(OCOOOH)=1 % REM clear display
XBY(OCDDDH)=38H:REM select 8-bit data, 2 logical lines
XBY(\varnothingCDDDH)=\varnothingCH : REM turn display on, cursor off
XBY(OC\emptyset\rho\emptysetH)=6: REM increment address counter after each write
XBY(\emptysetC\emptyset\emptyset\emptysetH)=8\emptysetH : REM select position l on display
    FOR I=l TO 4: REM write m****" to display
XBY(DC20日H)=2AH
    NEXT I
XBY(DC200H)=ASC(T) : REM write "TEMP" to display
XBY (OC200H)=ASC(E)
XBY(OC200H)=ASC(M)
XBY (DC2\emptysetDH)=ASC(P)
XBY(DCD\rho\emptysetH)=\varnothingC\emptysetH : REM select position 9 on display
XBY(OC20\emptysetH)=ASC(W) & REM write "WATCH" to display
XBY(OC200H)=ASC(A)
XBY(DC20日H)=ASC (T)
XBY(DC2DOH) =ASC(C)
XBY(OC 200H)=ASC (H)
    FOR I=1 TO 3: REM write "**** to display
XBY (OC2ODH)=2AH
    NEXT I
    END
```

pin 1 on the double-row header, and from pin 20 to pin 10 of ICl2.

If at any point the meter doesn't register the proper voltage, power down the circuit and locate the source of and rectify the problem before continuing.

When everything looks okay, power down the circuit and plug IC12 and IC15 into therr respective sockets, making sure you properly orient each IC and that no pins overhang the sockets or fold under bet ween the ICs and the sockets. Then connect MI's ribbon cable, being sure to observe proper orientation for pin 1. If possible, insert a new or freshly erased EPROM into IC9's socket. This will allow you to take advantage of the 8052's special PROG2 command, which will be described later.

Boot the Microsys to MCS BASIC52 as before: configure your terminal for communication with eight bits, one stop bit, and no parity. Connect the Microsys to the serial port of your terminal, power up the Microsys and press the SPACE bar at the terminal.

If you don't see the READY prompt, power down and locate and fix the problem before continuing. Re-examine the added wiring on the Microsys. Be sure your terminal is configured properly, as described last month.

When you do obtain the READY prompt, ycu can begin measuring temperature. The listing given in Program 6 "reads" the output of IC12, converts it to a temperature and displays the result on the terminal's videc display screen. Key in Program 6 at your terminal and follow this by typing RUN and a carriage return (ENTER key) to run it. The terminal screen will now display any measurements, in degrees Fahrenheit, taken by the sensor.
Program 6 uses the special operator XBY in MCS BASIC-52 to read and write to external memory. Line 20 writes the value 255 to IC12, which is located at hex address E000. Writing to ICl2 causes this IC to

Program 8. Test Operation of Switches

REM Program 8, switch test
PRINT " (CONTROL/C to quit)"
DO
$X=P O R T 1$: REM read pore 1
$\mathrm{Y}=\mathrm{X}-$ 4* $^{*} \mathrm{INT}(\mathrm{X} / 4)$: REN calculate (bit $1+$ bit 2) of port 1 IF $Y=2$ THEN PRINT "Bit 0 of port $1=0$; 52 pressed" IF $Y=1$ THEN PRINT "Bit 1 of port $1=0$; $s 3$ pressed" WHILE $1=1$ END
begin converting its analog input to a digital word. (The actual value written to the ADC is unimportant; any write command serves the purpose.)
Line 30 reads the byte at ADO through AD7 of IC12 and stores it in the variable ADC. Line 40 converts the byte to a Fahrenheit temperature, and line 50 displays the temperature on the terminal screen.
The number 2.47 in line 40 represents twice the reference volage at pin 9 of IC12. Although the voltage across the reference diode is stable, it can vary among individual ICs from 1.223 to 1.247 volts. For greatest accuracy in the temperature-measuring circuit, measure the voltage from pin 9 to pin 8 of IC14 on your system and enter twice this value in line 40, in place of 2.47 .
To exit Program 6's infinite loop, use CONTROL/C.
Program 7 writes the message "****TEMPWATCH***" (minus the quotation marks) in the LCD module's display. Type in and run this program as you did before. After running Program 2, adjust R2O to give the desired contrast on the display.
Because $M 1$ is quite powerful in itself, programming it is relatively straightforward. Lines 10 through 40 in Program 7 initialize and configure the module by writing values to hex address C 000 . Address C 000 enables $M 1$ by bringing line Y 6 low. The initialization and configuration codes are described in the applications notes for MI .
Line 50 selects position 1 on $M 1$, at hex location 80 , and lines 60 through 130 cause the message "****TEMP"
(again, without the quotation marks) to appear in the first eight character positions of MI. The character codes for the letters in the message are the standard ASCII codes for the letters, specified by the ASC operator in BASIC.

Characters are written to M1 at hex address C200. The " 2 " in C200 sets A9 high, to program M1 to receive the character codes. The module increments its address counter after each character is displayed, so the eight-character message fills the first eight positions on the module.

Although the 16 character positions of M1 are physically arranged in a single line, they are addressed in two logical lines. Positions 1 through 8 are at hex 80 through 87 , while positions 9 through 16 are at C 0 through C7. The jump in addresses between the two lines has to be taken into account when programming the module.

This is why line 140 sets Ml's address counter to C 0 , to specify position 9. Lines 150 through 220 write "WATCH"**," to positions 9 through 16 to finish the message.

Program 8 tests the operation of switches $S 2$ and $S 3$ by continuously monitoring Port 1 and giving a message on the terminal screen when a switch is pressed. Type in and run this program. Then press $S 2$ and $S 3$ and watch for the appropriate messages.

The switches connect to otherwise unused lines on Port 1, an eight-bit I/O port of IC2. Line 30 reads the value of Port 1 , and line 40 finds the sum of bit 0 and bit 1 . If the sum equals 2 , bit 0 is low, which means $S 2$ has been pressed. If the sum equals 1 ,

Program 9．Combine Features of Programs 6 \＆ 7

```
REM Prcigram 9, display temperature on LCD module
PRINT "(CONTROL/C to quit)"
XBY(0C0\emptyset0H)=1 : REM clear display
XBY(\varnothingC\varnothingD日H)=38H : REM select 8-bit data, 2 logical lines
XBY(\varnothingC\varnothing\varnothing\emptysetH)=\varnothingCH : REM turn display on, cursor off
XBY(\varnothingC0\emptyset\emptysetH)=6 : REM increment address counter after each write
    DO
XBY(GEODOH)=255 : REM write to adc to start conversion
TEMP=XBY(6EØØ\emptysetH)*2.47*100/255: REM get & calculate temperature
    IF TEMP-INT (TEMP) >=. 5 THEN TEMP=INT (TEMP) +1 ELSE TEMP=INT (TEMP)
DIGITl=INT(TEMP/1|0) : REM divide temperature into 3 digits
DIGIT 2=INT(TEMP/16)-DIGIT1*10
DIGIT 3=TEMP-DIGIT1*1@b-DIGIT2*10
XBY}(0C0\emptyset0H)=80H : REM select position l on display
XBY(8C20日H)=DIGITI +48: REM write ASCII codes of digits to display
XBY(0C200H)=DIGIT 2+48
XBY (0C200H)=DIGIT 3+48
XBY(日C20日H)=\emptysetDFH : REM write degree symbol to display
XBY(OC200H)=ASC(F) : REM write "F" to display
    WHILE l=1
    END
```

bit 1 is low，which means $S 3$ has been pressed．

Listing 9 combines features of Pro－ grams 6 and 7．It reads the tempera－ ture at ICI2＇s output，then displays it on M1．Lines 20 through 50 initialize M1．Lines 70 through 80 get and cal－ culate the temperature at ICI2．Lines 100 through 120 divide the tempera－ ture reading into three digits，and lines 130 through 180 write the three digits to the display．To give the cor－ rect character codes， 48 is added to each digit＇s value．

Finally，the listing in Program 10 gives the full－featured Tempwatch． With this program，the Tempwatch monitors temperature and displays the present，maximum，and mini－ mum temperatures and the times they occurred．

Carefully key in this program，just as you did the previous ones and run it．You＇ll see three alternating dis－ plays，giving the three temperatures and times．If you don＇t see these dis－ plays，LIST the program and careful－ ly check it against the one shown here．Rekey any portions of the pro－ gram that contain errors in them．Use CONTROL／S and CONTROL／Q to stop and start the listing for this pro－ gram on the monitor＇s screen．

On power－up，the time is set to 24：00．To set the correct time，mo－ mentarily press and release S3．The display will now show a rotating dis－
play of numbers from 1 to 24 （for a 24 －hour clock）．When the correct hour is displayed，once again press and release S3．You＇ll then see num－ bers from 0 to 59 rotate on the dis－ play．When the correct minute is dis－ played，again press and release $S 3$ and the program will return to nor－ mal operation，with its clock set to the correct time．

To test the capability of the Temp－ watch to store maximum and mini－ mum temperatures，heat and cool the sensor and monitor the results on the display．Heat the sensor by holding it near（not on）a heated soldering iron． When the sensed temperature has risen several degrees，move the sen－ sor away from the soldering iron and allow it to return to room tempera－ ture．The maximum－temperature display should now show the highest value measured and the time it occurred．
Similarly，you can test the mini－ mum－temperature display by spray－ ing the sensor with an aerosol com－ ponent cooler．The minimum－tem－ perature display should show the coldest temperature measured，along with the time it occurred．

To reset the maximum and mini－ mum temperatures to the current temperature，momentarily press and release $S 2$ ．

If you have any problems in run－ ning this program，use the LIST com－

Program 10．Full－Featured Tempwatch Program

```
10
    REM *****************Tempwatch program***************************
    STRING 25,5
XTAL=4915200 : CLOCK 1 : TIME=0
TEMP=0 : MIN=255 : MAX=0 : HOUR=24 : MINUTE=0
VREF=1.225 : REM reference-diode voltage
$(1)="Now " : $(2)="Max " : $(3)="Min "
XBY(0C000H)=1 : REM clear display
XBY(0C000H)=38H : REM select 8-bit data, 2 logical lines
XBY(@C\emptyset\emptyset\varrhoH)=6 : REM automatic increment of display address counter
XBY(øCøø日H)=\varnothingCH : REM turn display on, cursor off
DO
ONTIME 60,770
XBY(0E|00H)=255 : REM write to adc to start convert
TEMP = XBY(0E0日0H)*VREF*200/255 : REM get temperature
IF TEMP-INT(TEMP)<.5 THEN TEMP=INT(TEMP) ELSE TEMP=INT(TEMP) +1
IF TEMP>=MAX THEN MAX=TEMP : XHR=HOUR : XMIN=MINUTE
IF TEMP<=MIN THEN MIN=TEMP : NHR=HOUR : NMIN=MINUTE
N=1 : DTEMP=TEMP : DHR=HOUR : DMIN=MINUTE : GOSUB 230
N=2 : DTEMP=MAX : DHR=XHR : DMIN=XMIN : GOSUB 23@
N=3 : DTEMP=MIN : DHR=NHR : DMIN=NMIN : GOSUB 230
WHILE 1=1
END
REM ***********write-to-display subroutine***********************
XBY(0C0日0H)=80H : REM select position l on display
FOR I=1 TO 4 : XBY(øC2ø日H)=ASC($(N),I) : NEXT : REM display message
REM display temperature (3 digits)
D1=INT(DTEMP/100) : D2=INT(DTEMP/10)-D1*10: D3=DTEMP-D1*100-D2*10
IF Dl=\emptyset THEN XBY(\varnothingC2\emptysetबH)=32 ELSE XBY(øC200H)=D1+48
IF D1. AND.D2=@ THEN XBY (बC2\emptyset日H)=32 ELSE XBY(@C200H)=D2+48
XBY (बC20日H)=D3+48
XBY(\varnothingC200H)=0DFH : REM display degree symbol
XBY(@C\propto@\omegaH)=@COH : REM select position 9 on display
XBY(0C200H)=ASC(F) : XBY(0C200H)=32
    REM display time
    IF DHR>9 THEN XBY(बC2\emptysetबH)=INT(DHR/1@)+48 ELSE XBY(0C200H)=32
XBY(बC2\emptysetबH)=DHR-10#INT (DHR/10)+48: XBY(बC2\emptyset\emptysetH)=ASC( : )
XBY(\varnothingC200H) =INT (DMIN/10) +48
XBY(0C200H.)=DMIN-10*INT(DMIN/10)+48 : XBY(0C200H)=32
    FOR I=1 TO 50
```

mand to review it and verify that all lines are entered correctly. (CONTROL/S and CONTROL/Q will stop and start the listing of a long program on the screen.)

MCS BASIC-52 is usually quite helpful in generating error messages, so these may also help you in tracking down the source of problems.

To save the program in EPROM, snap $B 1$ and $B 2$ into their battery connectors type "PROG" (do not type the quotation marks in this or any other instruction to key in a command), and the Microsys will program the EPROM with the program currently in RAM. An additional command allows you to configure Tempwatch to begin running immediately upon power-up, which frees you from having to connect to the terminal at all to use the Tempwatch.

To provide this capability, type "PROG2." This command is required in addition to the PROG command that saved the program. It causes the 8052 to run Program

1 in the EPROM immediately on power-up.
Now you can power down the Tempwatch, disconnect it from the terminal, and move it to a new location. When you power up again, the Tempwatch program runs automatically.
There are plenty of enhancements, in both the hardware and the software areas, that you can add to the Tempwatch. For example, you could add a temperature alarm or a program that measures and stores the temperatures at a particular time of day. Or, you can turn your Microsys into something else, such as an instrument to measure sound or light, to control relays, or to monitor or control whatever real-world conditions or devices you wish.
The great appeal of the Microsys is that you are ultimately in control. By adding appropriate inputs, outputs, and programs, you can tailor the Microsys to fit your own requirements, whatever they may be.

```
X=PORT1-4*INT(PORT1/4): REM check for awitch prese
    IF X=1 THEN GOSUB 450
    IF X=2 THEN GOSUB 730
    NEXT I
    RETURN
```



```
    XBY(0C\sigma\sigma\sigmaH)=1 : REM clear display
    COUNT=24: POS=6C2H:CHAR=58: UNIT=HOUR: GOSUB 510
    COUNT=60: POS=8C5H:CHAR=32:UNIT=MINUTE:GOSUB 516
    GOSUB 730
    RETURN
```



```
    DO : X=PORT1-4*INT(PORT1/4): UNTIL X>1 : REM wait for switch open
SELECT=6
    DO
    IF COUNT=24 THEN J=1 ELSE J=\sigma
    DO
DELAY=6
    DO
    DELAY=DELAY +1
    XBY(\sigmaC\sigmaG\sigmaH)=POS : REM set display poction
    XBY}(\sigmaC2\sigma\sigmaH)=INT(J/16)+48: REM display digit l of hour or minut
    XBY(\sigmaC2\sigma\sigmaH)=J-INT(J/1\sigma)* 1\sigma+48: REM display digit 2 of hour or minute
    XBY(BC2\sigmaठH)=CHAR : REM display colon or space
    X=PORTl-4*INT(PORT1/4) : REM check for switch press
    UNTIL DELAY=6.OR.X<2
    IF X=1 THEN SELECT=1 : TIME=g
J=J+1
    UNTIL J=COUNT+1.OR.SELECT=1
    UATILL SELECT=1
    IF UNIT=HOUR THEN KOOUR=J-1 ELSE MINUTE=J-1
    DO : X=PORT1-4*INT(PORT1/4): UNTIL X=3 : REM wait for switch open
    RETURN
```



```
MAX=TEMP & XHR=HOUR : XMIN=MINUTE
MIN=TEMP : NHR=HOUR : NMIN=MINUTE
    RETURN
    REM************** update-time subroutine*****************************)
TIME=TIME-66 : MINUTE=MINUTE+1
    IF MINUTE=66 THEN BOUR=HOUR+1 : MINUTE=6
    IF HOUR=25 THEN HOUR=1
    RETI
```

