
PROJECTS RC TRANSMITTER INTERFACE

20 elektor electronics - 5/2007

Thank you for Thank you for fl ying USB-FliteSim
Brendan Hughes

Over
the years,
there have been a fair
number of designs published enabling
a radio-control (RC) transmitter to interface with a personal computer.
Having this interface enables prospective model aircraft pilots to hone
their skills using a simulation program rather than aviating their pride
and joy nose-down into the nearby landscape.

Arguably, many RC modelling enthu-
siasts would rather see a PC ‘crash’
than the latest model built with blood
sweat and tears, not forgetting lots of
time and money. In this respect, the
follow a buzzword in modern elec-
tronics: simulation. Simulating fl ights,
landings and takeoffs for a given model
is a great way of familiarising yourself
with its response to your actions (and
errors) on the RC transmitter. Excellent
flight simulators are available these
days that give very realistic results —
to the extent of users actually starting
to sweat and exhaust themselves try-

ing to keep the model where it should
be — up in the air!

The circuit described in this article
is the ‘glue’ between the ‘buddy’ (or
‘trainer’) connection on your RC mod-
el transmitter and the virtual model
aircraft, car, boat or even helicopter
gracefully finding its way across the
PC screen in response to your operating
the joystick(s) and pressing buttons. No
model will be lost to unforgiving rocks,
trees, church steeples or Farmer Jim’s
cowherd. If you crash, simply start the
simulator again and do better.

215/2007 - elektor electronics

Thank you for fl ying USB-FliteSimfl ying USB-FliteSim
An RC transmitter-to-USB interface
Goodbye gameport, welcome USB
Most designs interface to the PC via
the gameport which is now becoming
less common on newer PCs and has
disappeared completely from laptops
and notebooks. The design discussed
in this article utilises the USB port
which offers greater accuracy. Some
commercial designs offer similar capa-
bilities but most only have 6-bit preci-
sion on the linear axis, so small trim
changes may not be effective.

Capabilities and limitations
As published here, four linear controls
and four switched controls are catered
for as would be used in a typical 8-chan-
nel transmitter, i.e., two 2-axis joysticks
and four switched inputs. The linear in-
puts are measured with 12-bit accuracy
although in reality just over 11-bit ac-
curacy is achieved with this software
on a typical RC set. With this level of
resolution, poor joystick centring is eas-
ily measured using the joystick calibra-
tion program in Windows (Select ‘Dis-
play raw data’). More channels could be
easily added but it was felt that eight
would be adequate for most users.

Super simple hardware
The hardware is simplicity itself, see
Figure 1. At the heart of the circuit is
a PIC18F2550 clocked at 8 MHz, with
a simple transistor buffer/inverter on
the input. Eight jumpers have been
included although only four are pres-
ently used to select between different
options. The remainder are to enable
possible future enhancements.
When plugged into an USB connec-
tion on the PC, the HID fi rmware in the
F2550 enables the circuit to be enumer-
ated as a 4-axis with 4-button joystick,
so no additional drivers are required.
Note that due to the PIC software used,
the circuit is a low-speed USB device
and Chapter 6.4.4 of the USB1.1 speci-

fi cation states that USB cables should
be hardwired to the peripheral and not
use the USB ‘B’ connector. However,
considering that the circuit will typi-
cally be for personal use only, the ‘B’
connector was elected.

Software
The following description of the soft-
ware is pertinent to the PIC 16C745.
See the heading ‘Project History’ for a
brief overview of the differences to the
current 18F2550 software.
All the USB dedicated software is
available from the Microchip website
and is included with the source fi les
supplied free of charge through the
Elektor website as file no. 060378-
11.zip (see month of publication). A
snippet of the extremely well-com-
mented source code listing is shown in
Listing 1 — very useful for the jumper

descriptions!
Of the Microchip supplied fi les, both
DESCRIPT.ASM and USB_CH9.ASM
need to be modifi ed. USB_CH9.ASM
needs the following compiler directive
commenting out (or removing) so that
port B is available for our use:

#define SHOW_ENUM_STATUS

DESCRIPT.ASM needs some more seri-
ous editing of the various descriptors
to allow for proper enumeration and
operation of the USB functions. Seven
bytes are sent to the PC every 10 ms.
The arrangement of the data within
these seven bytes is laid out in the re-
port descriptor. Essentially, four blocks
of 12 bits representing the four joystick
axes followed by four bits representing
the four switches are sent. That makes
a total of 52 bits, which falls short of
the 56 bits available in seven bytes,

1
2
3
4

5 6

K9

GND

VDD

C7

220n

GND

VDD

C2

100n

GND

X1

8MHz

C5

22p

C6

22p

T1

BC547

R3

10
k

R4
2k2

R2

10
0k

25V

C4

100u

VDD

C3

10n

GND

K2

K3

K4

K5

K6

K7

K8

K10

19

RB0
21

20

MCLR/Vpp
1

RA0
2

RA1
3

RA2
4

RA3
5

RA4
6

RA5
7

8

OS
C1

9

OS
C2

10

RC0
11

RC1
12

RC2
13

RB1
22

RB2
23

RB3
24

RB4
25

RB5
26

RB6
27

RB7
28

RC7
18

RC6
17

D+
16

D-
15

Vusb 14

IC1

PIC18F2550

K1

GND

R1

10
0k

K11

25V

C1

100u

060378 - 11

USB-B
connector

Figure 1. Circuit diagram of the RC TX to USB interface. Hardware, what hardware?

PROJECTS RC TRANSMITTER INTERFACE

22 elektor electronics - 5/2007

line RB1 adjusts the value of Temp_
Count so that the data is stored in the
correct part of BUFFER.
Certain RC transmitters use a non-
standard sync pulse. This may affect
the operation of the device. Install-
ing the jumper on RB0 causes CCPR1
to capture on the falling edge of the
pulse train. Unfortunately we did not
have access to any of these non-stand-
ard RC radios so we cannot guarantee
that this will help.

Construction
The interface is built on a small prin-
ted circuit board of which the true-size
artwork is reproduced in Figure 2. This
board is available from Elektor’s busi-
ness partner The PCBShop who reside
at www.thepcbshop.com.

With so few parts on the circuit board,
— and all of the ‘leaded’ variety as op-
posed to SMDs — there should be no
problems building the interface if you
exercise normal care in fi tting the parts
to match the component overlay, and of
course the soldering. We recommend
fi tting the PIC micro (IC1) is a 28-way
narrow DIL socket.
We reckon there’s much to be learned,
enjoyed and economised upon if the
project is undertaken as a joint under-
taking by RC modelling club members.
Subtasks can be assigned like compo-
nent/PCB purchasing, soldering, pro-
gramming and software tinkering to
those with the relevant skills or their
arm twisted.

Calibration
When the interface is plugged into a
USB port on a PC, it should enumer-
ate with a message stating that a ‘RC/
USB Interface’ has been found. Open
up the Control Panel and select ‘Game
Controllers’. Listed in the dialogue box
should be ‘RC/U’ or ‘RC/USB Inter-
face’. Select the controller and click on
Properties. Movement of the joysticks
should produce the required move-
ment on the screen. If no movement
is observed, then toggle jumper K10.
Huh, “toggle”? If the jumper is Fitted
then Remove it and vice versa. Simi-
larly, toggling jumper K8 will cause the
two joysticks to be swapped. When
it is working as required, the system
will need to be calibrated. Select ‘Set-
tings’ and in the new dialogue box
select ‘Calibrate’. Follow the instruc-
tions onscreen. This completes the
installation.

therefore a further four bits of padding
are sent.
The RC_USB.ASM source file has a
good number of comments so should
be fairly easy to follow. Because the
USB functions make unpredictable use
of the interrupts, these are not used for
pulsewidth measurements. Therefore,
the only user of the interrupt facility is
the USB routine.
Pulsewidth measurements are made
using the Capture/Compare/PWM
module. Capture register CCPR1 is
a 16-bit register configured to cap-
ture the contents of Timer1 on either
the High-to-Low or the Low-to-High
transitions on the input (as selected
by jumper K10 on RB0). Timer1 runs
continuously with a ÷2 prescaler at
3 MHz and therefore increments eve-
ry 333 ns. Pulsewidth can therefore be
detected to an accuracy within 666 ns.
Due to the way servos are controlled,
pulsewidths vary from 1-2 ms for each
channel, therefore we have a range of
approximately 0 to 3000.
When the program starts, InitRC_USB
is called that confi gures the ports, sets
up the CCPR to capture on a rising
edge and starts Timer1. Next, InitUSB
is called and the device is enumerated.
The fi rmware waits until enumeration
is complete.

LOOP is the main body of the pro-
gram. If a pulse is detected (CCP1IF
bit set), we check if it is a synchroni-
sation pulse (>2.7 ms) or one of the
channel pulses, which vary between
1 and 2 ms pulsewidth. The last value
of CCPR1 (Tmr1Lo and Tmr1Hi) is sub-
tracted from CCPR1 to give pulsewidth
in units of 333 ns. If it is a sync pulse,
we send the data in the BUFFER to
the USB routines for transmission to
the PC. Else, if a normal channel pulse
is detected, we subtract 4500 (4500
counts of 333 ns = 1.5 ms) to central-
ise the pulse on 1.5 ms so that posi-
tive numbers indicate a positive swing
from neutral on the joystick and neg-
ative numbers indicate a negative
swing. Next, the pulse width infor-
mation is stored at the appropriate
place in BUFFER as pointed to by the
Pulse_Count variable. Temp_Count is a
working copy of Pulse_Count that can
be manipulated without losing track of
the channel number.

Jumpers for unusual cases
Left-handed modellers may wish to
have the aileron/elevator joystick on
the left. To this end, jumper K8 on port

Figure 2. Copper track layout and component mounting plan
of the miniature PCB designed for the interface.

COMPONENTS
LIST
Resistors
R1,R2 = 100kΩ
R3 = 10kΩ
R4 = 2kΩ2

Capacitors
C1,C4 = 100µF 25V radial
C2 = 100nF
C3 = 10nF
C5,C6 = 22pF

Semiconductors
IC1 = PIC18F2550-I/S, programmed, or-

der code 060378-41
T1 = BC547

Miscellaneous
K1 = 5-way SIL pinheader
K2-K10 = 2-way SIL pinheader with

jumper
K11 = 2-way SIL pinheader
K9 = USB-B connector, PCB mount
X1 = 8MHz quartz crystal
PCB no. 060378-1 from The PCBShop
PIC source code fi les, free download no.

060378-11 from www.elektor-elec-
tronics.co.uk

235/2007 - elektor electronics

Wrong enumeration

For some reason the device may be re-
ferred to as ‘RC/U’ even though Win-
dows retrieves the full name of ‘RC/
USB Interface’ during enumeration. If
this bothers you, simply edit the regi-
stry setting at

HKEY_LOCAL_MACHINE\SYSTEM\
ControlSet\Control\MediaProper-
ties\PrivateProperties\
Joystick\OEM\VID_04D8&PID_FE70

Each USB device manufacturer is allo-
cated a unique Vendor ID code (VID)
and each device model that the manu-
facturer produces is allocated a Pro-
duct ID code (PID). We have obtained
a sub-licence from Microchip to use the
Microchip VID (04D8) with a PID code
of FE70. This should ensure that this
device will not confl ict with any other
commercial USB device.

Interlude — odds & ends
Note that the interface will only de-
code Pulse Position Modulation (PPM)
pulses and not Pulse Code Modulation
(PCM), and therefore the transmitter
will need to be in PPM mode.

A list of the buddy-lead pinouts for var-
ious RC transmitter manufacturers can
be found at [1] and [2].
A good tutorial on the on the principles
of PPM can be found at [3] and [4].

Project History
Originally the software was written for
the PIC16C745, and later modifi ed to
work on a 18F2550. Microchip did not
(yet) release USB framework code for
the 18F2550 in assembler format. For-
tunately, Brad Minch of Olin College
has generated an assembler frame-
work that is freely available [5]. This
code was adapted and mated to the
fi le rc_usb.asm that was tweaked for
18F2550 code to produce the fi le RC_
USB_18F2550.asm which needs to be
compiled with the included ENGR2210.
inc and usb_defs.inc files. The code
should also run on the 18F2455 with-
out any further adjustments.

The advantage of the 18F devices is
that they are fl ash-programmable and
faster to erase. K1 is a 5-pin header
that allows in-circuit programming of
the device with an appropriate pro-
grammer, like the Microchip PICkit2
(pin 1 of PiCkit podule not used).

Those interested in learning more
about USB are advised to have a look
at websites [6] through [9].

A full set of source fi les for both the
16C745 and 18F2550 processors is
supplied through Elektor’s website. It
should be noted though that hardware
changes are required in the circuit if
the C745 is used: change the quartz
crsystal to 6 MHz and fi t a 1kΩ5 resis-
tor between Vusb and the USB D-line.

(060378-I)

Web links

[1] http://users.belgacom.net/TX2TX/tx2tx/en-
glish/tx2txgb3.htm

[2] www.rc-circuits.com/
Transmitter%20Connector%20Pinout.htm

[3] www.mh.ttu.ee/risto/rc/electronics/radio/
signal.htm

[4[http://rc-circuits.com/PPM%20signal.htm
5] http://pe.ece.olin.edu/ece/projects.html
[6] www.usb.org
[7] www.lvr.com/
[8] www.beyondlogic.org/usbnutshell/usb1.htm
[9] http://pe.ece.olin.edu/ece/projects.html

Listing 1. Source code snippet
;**
; filename: RC_USB_18F2550.ASM Ver 1.0 - 01 Dec 2006
;
; This file implements the conversion of a PPM mo-

dulated output from a radio
; control transmitter to a 3 axis plus throt-

tle and 4 button USB joystick.
; PORTB,0 pin header selects inverted in-

put i.e. pulses are active low
; PORTB,1 pin header selects joystick swapping
; PORTB,2 pin header selects the Airtronics option
; PORTB,3 pin header selects the JR option
; PORTB,4..7 not used
; The code is written for a Futaba transmit-

ter but by installing EITHER PortB,2 or 3
; pin header, then it can be configu-

red for an Airtronics or JR radio
; The USB port is configured to interrupt eve-

ry 10mS and sends 7 bytes of data
; (maximum is 8). The 4 joystick chan-

nels are sent as 12 bit values and the 4
; switches as boolean values. Therefore, 52

bits are required to be sent and the
; 7th byte is filled with 4 bits of ‘padding’
; The following shows how the bits are saved

in the Buffer prior to being sent
; to the USB port
; Throttle=T Rudder=R Aileron=A Elevator=E

Switches=S Padding=P
; MSB LSB
; Buffer0 A7 A6 A5 A4 A3 A2 A1 A0
; Buffer1 E3 E2 E1 E0 A11 A10 A9 A8
; Buffer2 E11 E10 E9 E8 E7 E6 E5 E4
; Buffer3 T7 T6 T5 T4 T3 T2 T1 T0
; Buffer4 R3 R2 R1 R0 T11 T10 T9 T8
; Buffer5 R11 R10 R9 R8 R7 R6 R5 R4
; Buffer6 P P P P S4 S3 S2 S1
;
;**

; All USB routines kindly provided by Brad-

ley A. Minch of the Franklin W. Olin
; College of Engineering and the origi-

nal source can be obtained from
; http://pe.ece.olin.edu/ece/projects.html.
; The source was the Lab2 project that was

then modified by myself with
; permission from the author to distribu-

te as required. The main areas of
; change are the descriptors up to line 265

and all code after line 1178 is
; new. There are a few small changes in between.
;
; Revision History:
; 2006-12-01 Versi-

on 1.0 Brendan Hughes
;**

#include <p18F2550.inc>
#include <usb_defs.inc>
#include <ENGR2210.inc>

