
AN AC PROPORTIONAL VOLTAGE
CONTROLLER FOR YOUR PC
NEIL BUNGARD

W hile it is easy to control
appliances from a PC,
that type of control

usually has one of two conditions:
on or off. There are many applica-
tions where it would be desirable to
proportionally control the voltage
level of an appliance that uses 11 O-
volt AC service. Light dimming is
one obvious application. Other
uses include motor-speed control;
heater control; and the ability to
easily create an inexpensive, pro-
grammable DC power source.

In this article, we’re going to show
you how to use the parallel port of a
PC, a few optical-coupling devices,
and a Microchip PIC microcontroller
to control the conduction angle of
a 1 10-volt AC source, and hence to
proportionally control a device con-
nected to the PC’s parallel port.

Controlling AC. Let’s begin by look-
ing at a 60-Hz 11 O-volt AC sine wave
and talk about the concept of con-
duction angle. Figure 1 A is the circuit
that will be used for this discussion.
We’ll assume that S1 is an electronic
switch that can be activated in-
stantly at any time. If S1 is closed
and remains closed, Fig. 1B would
represent a single cycle of the signal
that would be seen by load resistor
R1 . In that case, the load draws cur-
rent during the entire cycle and
would have a conduction angle of
360 degrees. In Fig. lC, S1 does not
close until the sinewave reaches 90
degrees in the cycle. As the signal
passes through zero at 180 degrees,
S1 is opened, stopping the flow of
current to R1 for the next 90
degrees. At 270 degrees, S1 closes
again and current once again flows
through R1 until the zero crossing at
360 degrees. The signal in Fig. 1 C has
a conduction angle of 180 degrees.
Since, in general, the conduction
angle is the number of degrees that
current passes through the load in

Use YOUR PC to control appliance voltage levels.

each cycle, that means that the
amountbf current seen by R1 would
be half the amount that would oth-
erwise have passed through it.

In general, that is the way that an
ordinary wall-mounted light dimmer
works. The physical position of the
light-dimmer knob sets the conduc-
tion angle at which conduction will
begin after each zero crossing.
Additionally, when the sinewave
passes through zero, conduction is
automatically stopped. Of course,
that example controls the conduc-
tion angle mechanically. Such an
arrangement is fine for open-loop
control applications where you set
the control once and leave it
alone. For many control applica-
tions, however, you are not interest-
ed in just setting a conduction
angle and letting the process run.
You will want to monitor the process
and dynamically adjust the con-
duction angle to keep the process
operating at a preset level.

To dynamically control the con-
duction angle, you will need to know
precisely what the angle is and be
able to make adjustments accord-
ingly. That is done by finding when
the sinewave passes through zero
volts. There are many circuits for

determining the zero-crossing point.
If you need a high degree of preci-
sion, op-amps can be used to get
within a few microvolts. Most applica-
tions, however, do not need that level
of precision and a ‘quick and dirty”
way of determining the zero-cross-
ing point with a TTL-compatible out-
put signal is to use an opto-coupler.

The opto-coupler circuit shown in
Fig. 2A will work well but has some
inherent shortcomings. Current-limit-
ing resistor R1 must limit the forward
current through the opto-coupler’s
diode and the external clamping
diode to within the maximum limits
for the devices at the peak voltage,
which is about 156 volts when using
wall current. The peak-inverse-volt-
age ratings of the diodes should
also be at least 160 volts.

Another consideration is that the
opto-coupler’s output waveform will
be non-symmetrical. That is because
the input signal on the opto-cou-
pler’s diode must exceed the
diode’s forward-bias turn-on volt-
age before the diode conducts.
That phenomenon has been exag-
gerated in Fig. 2B to illustrate the
concept. Since the actual turn-on
voltage is slightly above zero volts,
the output will not have a perfect

50% duty cycle. Another problem
that is related to the turn-on-voltage
condition-and is much subtler-is
that the diode’s turn-on and turn-off
voltages are not exactly the same.
This principle, called hysteresis, is
exhibited by most electronic com-
ponents. It is especially noticeable in
devices that monitor or control
threshold activities such as zero
crossing. The symmetry and hystersis
effects can be compensated for;
we will see how to use software to
compensate for those conditions
later in this article.

Now that we are able to detect
the zero-crossing portion of an AC
cycle with a TTL output signal, how
do we control the current to a load
with a desired conduction angle? A
general solution to that problem is
shown in Fig. 3. A PIC microcontroller
monitors both the zero-crossing sig-
nal from the opto-coupler and an 8-
bit data byte from the PC’s parallel
port, which represents the desired
conduction angle. By comparing
the two pieces of input data, the
PIC decides when to trigger the
electronic switch. The electronic

switch we’ll use in our controller cir-
cuit is actually a Triac that is trig-
gered by the PIC. The sidebar,
“Triacs, Diacs, and Control”, explains
the basics of how four-layer semi-
conductors are designed and used.

Using an 8-bit word to represent
the desired conduction angle lets us
control the conduction angle of the
AC waveform in 256 discrete steps.
That is probably more than enough
resolution for most applications and
appears continuous when being
used in light-dimmer or heater-con-
trol applications. The sidebar, “The
Parallel Port,” reviews the operation
of the PC parallel port and how it
interfaces to the outside world.

Circuit Description. Bringing all of
the concepts we’ve discussed so
far together yields our project,
called the Parallel-Port Controller. Its
schematic drawing is shown in Fig. 4.
Hardware operation for the entire
circuit should be familiar based on
the previous discussions.

Wall-socket current is applied to

PARTS LIST FOR THE
PARALLEL-PORT

CONTROLLER

IC1-PIC14C544 microcontroller, integrated
circuit

IC2-H1 1AX optoisolatar, transistor-
based, integrated circuit

IC3--MOC3010 optoisolator, Triac output,
integrated circuit

TR1-2N6347 Triac,
D1--1N4004 silicon diode
D2-lN523 1 Zener diode

(All resistors are ¼-watt, 5% units unless
otherwise noted)

Rl, R5-100-ohm
R2-1 OOO-ohm
R3-11,000-ohm, ½-watt
R4-l8O-ohm

ADDlTIONAL PARTS
AND MATERlALS
C1--O.Ol-µF capacitor, ceramic-disc
Jl, J2-4-pin right-angle connector

(Molex 26-60-5040 or similar)
J3---DB25 right-angle male connector

(Mouser 152-3325 or similar)
J4---Co-axial power connector, male

(Mouser 161-3112 or similar)
RES1--8-MHz ceramic resonator
Wall transformer, Plexiglas covers,

hardware, etc.

J2. The AC waveform is applied to
IC2 through R3 with D1 providing a
reverse path as discussed before.
The TTL squarewave is applied to pin
17 of IC1.

When the PIC program decides
that the output should be turned
on, an output signal from pin 18 of
IC1 activates the photodiode of
IC3. Current for the diode is supplied

by Rl. The output of IC3 is applied
to the gate of TR1, which completes
a path between the main connec-
tions of J1 and J2. The load being
controlled is connected to J1 .

An 8-bit value for the amount of
delay is applied to J3 from a PC’s
parallel port. Power for the circuit is
connected to J4 and regulated by
D2

SPP

Pin

2
3
4
5
6
7
a
9
10
11
12
13

? 14
15
16

 17
 18

19
 20
 21
 22
 23

24
25

ABLE 1-
MODE PHYSICAL iiqD LOGICAL PIN ASSIGNMENTS

Signal In/Out Register Inverted
Strobe In/Out control Yes
Data 0 Out Data N O

Data 1 Out Data N o

Data 2 out Data N O
Data 3 Out Data NO
Data 4 Out Data No
Data 5 Out Data No
Data 6 out Data No
Data 7 out Rata INo

Ack in status No
Busy In Status Yes
Paper Out / End In Status N o

In Status No
Auto Linefeed In/Out Control Yes
Error/Fault In status N o
Initialize In/Out Control No
Select Printer In/Out Control Y e s

Ground Gnd
Ground Gnd
Ground Gnd
Ground Gnd
Ground Gnd
Ground Gnd
Ground Gnd
Ground Gnd

Software. Overall operation of the
Parallel-Port Controller is really a
function of the program running in
IC1 , Compensation for the non-sym-
metry and hysteresis problems men-
tioned before are accomplished by
“tweaking” certain variables in the
program.

The block diagram of the PIC
program is shown in Fig. 5. After ini-
tializing the variables that the pro-
gram uses, the PIC waits for a posi-
tive-going zero crossing to occur.
At that time, a value from the par-
allel port is read and used to deter-
mine when to trigger the Triac.
Once the Triac has been pulsed
on, the program waits for the neg-
ative-going zero crossing. When
that occurs, the current parallel-
port value is again obtained and
the precise turn-on time for the
negative half of the cycle is calcu-
lated. Once the Triac is triggered
on for the negative half cycle, the
program loops back to the top
and the process is repeated.

A study of the source code will
show the inner workings of The
Parallel-Port Controller. The source
code is available at the Gernsback
FTP site (ftp.gernsback.com/pub/
EN/ppc.txt).

After initialization of the program
variables, a starting point is estab-
lished and the “wait_for_pos” rou-
tine begins looking for a positive-
going zero crossing. When the zero
crossing is detected, the PIC moves
a value from the parallel port into
the variable “temp1 “. At this point, a
check is made to see if the Triac
should be full on (temp1=0) or full
off (temp1=255); if so. the appropri-
ate action is performed, otherwise a
call is made to a subroutine called
“dwell”.

The “dwell” subroutine does two
things. First, it executes a timing
loop that compensates for the pre-
mature zero crossing caused by the
forward voltage drop of the detec-
tion diode. At the same time, the
loop compensates for the hysteresis
effect. The values for the compen-
sation loop were found by testing
several diodes and looking at their
responses on an oscilloscope.
Once an average time delay until
the actual zero crossing occurs was
found, compensation for the differ-
ence was done by manipulating

the loop variables “await_cntrl "
and “await_cntr2”.

The second thing that dwell does
is to use the value obtained from
the parallel port in a second timing
loop that decides when to turn on
the Triac. The larger the parallel-
port value, the longer the loop runs
before it times out. A longer delay
will fire the Triac later in the cycle
resulting in less average current
through the load.

When the second loop times out,
program execution resumes at the
“wait_for_pos” routine where the

Triac is actually turned on by clear-
ing and setting RA.~ Once the Triac
is turned on, the “wait_for_neg” loop
looks for a negative-going zero
crossing. When that condition is
found, dwell1 is called again, using
the parallel-port value to determine
when to activate the Triac during
the negative half cycle. Notice that
compensation for the diode drop
and the hystersis is missing in the pos-
itive-going zero-crossing case. That is
because the detection occurs after
the actual zero crossing. Since it is
very difficult to travel into the past,

the program code has been kept
simple by ignoring that section of
the waveform. The result is a small
loss of control in terms of the entire
cycle time. However, that presents
no problem for most control appli-
cations. If that loss of precision is
troublesome in your particular appli-
cation, you can always replace the
detection circuit (IC2) with an op-
amp circuit to detect true zero
crossing and regain the lost preci-
sion Of course, sections of the pro-
gram would have to be modified to
ignore hysterisis and symmetry com-
pensation; those types of modifica-
tions are beyond the scope of this
article.

Construction. While the Parallel-Port
Controller can be built on a perf-
board using standard construction
techniques, a PC board is recom-
mended because of the high volt-
ages involved. Any error in construc-
tion can damage equipment or

TRIACS, DIACS AND CONTROL
Both Triacs and diacs are four-layer

semiconductor devices that can conduct
current in either direction, The diac has two
terminals. It is normally in an “off” state
until a certain voltage level (the breakover
voltage) is reached. At that point, the diac
begins conducting current in the direction
of the voltage polarity that is being applied
across It.

The Triac, on the other hand, is like a
diac with a third gate terminal. The Triac
can be turned on by a pulse of gate cur-
rent; there is no fixed breakover voltage
needed. The breakover voltage in the
Triac actually decreases with an increase
in the gate current. The Triac can be
thought of as two silicon-controlted recti-
fiers (SCRs) connected in inverse parallel
with a common gate terminal. With that
arrangement, the Triac can conduct cur-
rem in either direction when it is triggered
on, Like the diac, the current direction
depends on the polarity of the voltage
across the Triac’s main terminals, Like the
SCR, the Triac turns off when the anode
current drops below a specified value,
called the holding current The only way
to turn off a Triac is to reduce the anode
current to a sufficiently low level.

Triacs are primarily used to control
average power to a load by phase control.
In that method, the Triac is not triggered
until a certain amount of time after the
zero-crossing point of an AC waveform for
both the positive and negative portions of
the cycle.

47

TABLE 2-SOFTWARE REGISTERS

Offset Name Read/Write Bit No.
Base +O Data Write Bit 7

Port (Read/Write if Bit 6
port is bidirectional)

Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0

Base +1 Status Port Read Only Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0

Base +2 Control Port Read/Write Bit 7
Bit 6
Bit 5

Note: Italics indicates external signals

Bit 4

Bit 3
Bit 2
Bit 1
Bit 0

TABLE 3-

Properties
Data 7
Data 6

Data 5
Data 4
Data 3
Dafa 2
Data 1
Data 0

Busy
Ack
Paper Out/End
Select
Error/Fault
IRQ (Active Low)
Reserved
Reserved

Unused
Unused
Enable Bi-
Directional Port
Enable IRQ
Via Ack Line
Select Printer
Initialize
Auto Linefeed
Strobe

LOGICAL PARALLEL PORT ADDRESSES
Address Notes:
3BCh - 3BFh Used for Parallel Ports which were incorporated on to Video Card-

Doesn’t Support ECP Addresses
378h - 37Fh Standard Address For LPT 1
278h - 27Fh Standard Address For LPT 2
300h - 340h Used for Prototype Board Development (64 individual Addresses)

THE PARALLEL PORT
Prior to 1994, the interface to parallel ports was not formally standardized other than

the information released by IBM when the first PC came out in the early 1980s. That lead
to some frustration when trying to develop devices that could be used universally on dif-
ferent computers. In 1994, a formal standard, IEEE 1284-1994, was developed that
defined the electrical, physical, and logical standards for the parallel port, That standard-
ization efiminated many of the problems connected with designing hardware that could be
used on any machine reliably. However, even today you will find hardware vendors that do
not adhere to the IEEE 1284 standard-still making interfacing to a particular parallel port
a process full of testing and guesswork.

The IEEE 1284-1994 Standard defines 5 modes of operation:
1. Compatibility Mode
2. Nibble Mode
3. Byte Mode
4. EPP (Enhanced Parallel Part) Mode
5. ECP (Extended Capabilities Port) Mode

The idea was to create a new standard that improved performance (speed and control)
over the existing parallel-port specification, while at the same time maintaining backward
comparability The compatibility, nibble, and byte modes can use the original hardware with-
out any redesigning needed; they are collectively referred to as the SPP (standard parallel
port) mode. The EPP and ECP modes are improved performance modes that imply back-
ward comparability with the earlier SPP standard.

The compatibility mode is also referred to as the “Centronics” (named after the print-
er manufacturer that devised the hardware connector and pinout specifications) mode and
is a write-only specification. In that mode, data can be transferred from the computer to a
device at a maximum rate of 150 bytes per second. The nibble and byte modes are used
for read operations and transfer data from external devices to the computer at a speed
similar to the compatibility mode. All three of those standards use software handshaking
techniques, which is responsible for their relatively low transfer rates. The EPP and ECP
modes rely on additional hardware that is used for handshaking. That means that fewer
I/O instructions are needed to transfer the same amount of data-increasing the data-
transfer rate up to about two megabyte per second. The ECP has the additional advan-
tages of direct-memory access (DMA) capability, which eliminates the I/O bottleneck and
gives the port direct access to the microprocessor bus. In addition, ECP mode utilizes run-
length-encoded (RLE) data compression to improve the overall speed of data transfer.

The connector standard specified by IEEE 1284 will work physically with SPP-, EPP,
and ECP-mode devices, However, the logical pin assignments are different for the three
modes, and are backward compatible from the ECP mode. In other words, SPP-mode
devices will work with SPP-, EPC-, and EPP-mode interface boards. The EPP-mode
devices will work with both EPP- and ECP-mode interface boards, and the ECP-mode
devices only work with ECP-mode interface boards.

nut will not touch any of the PC
board traces.

Microcontroller IC1 will have to
be programmed before installing it
in the circuit. Note that object
code has not been supplied-only
source code. That source code will
have to be “compiled” into the
numbers that IC1 will recognize as
machine-code instructions. While it
is tempting to “tinker” with the pro-
gram, it is a good idea to compile
the original source code first. Once
the Parallel-Port Controller is work-
ing, modifications will no doubt sug-
gest themselves to the person who
has the knowledge and ability to
rewrite the program. Again, those
topics are beyond the scope of this
article.

Follow the parts-placement dia-
gram in Fig. 6. Before mounting J1
and J2, it’s a good idea to “key” the
two connectors in order to prevent
anyone from accidentally attach-
ing the AC voltage source to the
wrong connector, Clip the fourth pin
from J1 and the third pin from J2.

An important consideration is
that all of the components be
below the height of J3. When
mounting TR1, bend the leads over
so that the component lies flat on
the PC board. Sockets can be used
for the integrated circuits; their use
will not make the height of the com-
ponents excessive as long as low-
profile sockets are used.

The plastic shields are held in
place with screws and nuts. Start by
placing the screws through the
shield that will protect the solder
side of the PC board. Use nuts to
tighten the screws in place. Next,
place the PC board over the
screws. Run another nut down the
screw that is between J1 and J2.
The height of the nut should match
the height of J3. Place the upper
shield over the screws and tighten it
down with three additional nuts.
The whole unit will become a solid
assembly.

Testing. Checking the Parallel-Port
Controller can be done without writ-
ing a single line of code by using the
old MS-DOS utility DEBUG. That pro-
gramming utility still exists in today’s
operating systems; it can be found
in the WINDOWS\COMMAND folder
under Windows 95 or Windows 98.

To test the Parallel-Port Controller, of making the controller more acces-
plug the controller directly into the sible, which can be a big help if any
PC’s parallel port (LPT1) or use a 25- troubleshooting is needed
pin extension cable between the Connect a common lamp to J 1;
controller and the PC. Using an be sure that the lamp switch is on
extension cable has the advantage and that the bulb is good. Carefully

connect a 1 10-volt AC cable to J2
and to a 1 10-volt outlet. Start DEBUG

by going to a DOS prompt (or open-
ing a DQS window). Change to a
directory that contains the debug
program and type DEBUG at the DOS
prompt. Debug will respond to the
command with a prompt of its own
(-). That is known as the debug
prompt (as opposed to the more
familiar DOS prompt). At the debug
prompt, you will type a simple out-
put port command to send hexa-
decimal values between 00 and FF
to LPT1. The command to turn the
lamp full on is:

0 378,0

To turn the lamp full off again is:

0 378,ff

The command starts with the let-
ter “o” followed by a space and the
address of the printer port. If you
are using LPT1, the address is 378;
for LPT2, it is 278. Separate the data
from the address with a comma.
Any number between 00 and ff
(hex) in the output port command
will vary the intensity of the lamp
between full on and full off. Try sev-
eral values; remember that the
higher the value, the dimmer the
lamp.

With the Parallel-Port Controller
working, you can now control the
world from your desktop...or at
least a few handy appliances!

