CESSION CONTRACTOR CON

Two-channel audio amplifier drives stepper motor

Phill Leyva and Bill Quach, Maxim Integrated Products, Sunnyvale, CA

Although relatively expensive, monofilar-wound, bipolar stepper motors provide strong torque for a given physical size. However, each of the motor's two windings requires eight driving transistors connected in groups of four in an H-bridge configuration. Each transistor must withstand and quickly recover from overloads and short-circuit conditions, and a driver must consequently include complex and large discrete-component protective circuitry. As an alternative, **Figure 1** shows a motor-driver circuit based on Maxim's (www.maxim-ic.com) MAX9715, a tiny, surface-mount, 2.8W Class D audio amplifier, which typically drives 4 or 8Ω speakers. Each of IC₁'s two outputs consists of a MOSFET H-bridge that drives a pair of output lines, OUTR+ and OUTR- and OUTL+ and OUTL-, that connect to the stepper motor's A and B windings, respectively. Each pair delivers a differential-pulse-width-modulated signal

DIs Inside

98 Get power from a telephone line without disturbing it

100 Active-filter circuit and oscilloscope inspect a Class D amplifier's output

102 Voltage-to-pulse-width converter spares microprocessor's resources

104 Precision voltage reference delivers 80 mA

What are your design problems and solutions? Publish them here and receive \$150! Send your Design Ideas to edndesignideas@ reedbusiness.com.

with a nominal switching frequency of 1.22 MHz. The circuit's low-interference design eliminates the requirement for output-line filters.

Capacitors C_1 , C_3 , C_4 , and C_6 provide bypassing for IC₁'s power input and bias pins, and C_5 and C_7 provide bulk-holdup capacitance for the Class D power amplifiers' outputs. Capacitors C_8 and C_9 limit the amplifiers' input bandwidth to 16 Hz, and L₂ and L₃ suppress electrical-noise pickup by the long input cables. Comprising C_1 , C_2 , and ferrite bead L₁, a pi-section noise filter suppresses noise on IC₁'s power-sup-

TABLE 1 A_STEP AND B_ STEP PULSE SEQUENCE		
Step	A_Step	B_Step
0	Н	L
1	L	L
2	L	Н
3	Н	Н
4	Н	L

designideas

ply input. A suitable controller feeds digital pulses to IC₁'s A_Step and B_Step inputs, which respectively drive the motor's right and left channels. Internal short-circuit and thermal protection guards the amplifier against overcurrent and short circuits caused by the stepper motor or its connecting leads.

Table 1 illustrates the A_Step and B_Step pulse sequence that rotates a typical stepper motor in one direction by continuous application of steps 0 through 4. Step 4 returns the motor's shaft to its starting position and completes its 360° rotation. To reverse the motor, begin at the bottom of the **table** to reverse the pulse pattern and work upward. You can disable both of the amplifier's channels by applying a logic-low signal to Pin 8, IC₁'s active-low SHDN input. **Figure 2** illustrates the circuit's input and output waveforms.**EDN**

Figure 2 Waveforms from the circuit in Figure 1 include the A_Step input (Channel 1), B_Step input (Channel 2), outputs OUTR+ (Channel 3) and OUTR- (Channel 4), and the signal that arrives at the motor's windings (OUTR+ minus OUTR-, middle trace), which the oscilloscope's math function computes.