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 Direct torque control (DTC) of induction motor is prominent to offer instant 

torque and flux control with a simple control structure. However, this scheme 

suffers from two major drawbacks namely high torque ripple and variable 

switching frequency of the inverter, especially during low-speed operation. 

During the low-speed condition, the positive torque slope is very steep and 

torque overshoot frequently occurs, resulting in the torque ripple becoming of 

great significance. This paper proposes a novel and effective technique to 

reduce the torque ripple by integrating the alternate switching technique to the 

inverter switching status to limit the torque slope surge. By varying the 

frequency and duty cycle of the alternate switching, the surge rate can be 

controlled resulting in the chances of overshoots, and selection of reverse 

voltage vector can be avoided. The feasibility of the proposed technique has 

been validated using MATLAB/Simulink software and through experimental 

results. The results show the proposed alternate switching technique 

minimizes over 40% reduction in the torque ripple while maintaining the 

simple structure of DTC. 
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1. INTRODUCTION  

Direct torque control (DTC) was developed over a decade ago to provide quick and accurate dynamic 

torque response and flux control with a simple construction [1]. This method is well-known for its control 

robustness [2]–[14]. It relies less on machine parameters [15], [16] and does not require the complicated speed 

encoder, inner current regulation loop and field orientation block [17]. However, this system addressed two 

main problems namely high torque ripple and the variation of the switching frequency of the inverter according 

to operating conditions [18]–[27].  

Many methods have been proposed in recent years with various approaches to tackle these issues. For 

example, the implementation of the direct torque control space vector modulation (DTC-SVM) technique [28]–

[54]. This technique ensures that the inverter switching frequency remains constant and combines with the 

benefits of the DTC method to improves the torque ripple. However, calculation of reference voltage space 

vectors is required and complex to solve. Another technique namely adjustable hysteresis band presented in 

[47], [55], [56], enables the reduction of the hysteresis band size resulting in accurate torque regulation, 

https://creativecommons.org/licenses/by-sa/4.0/
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particularly when the pre-set sampling time is small. However, in practice, dSPACE-based DTC operates at a 

minimum sample rate of 50μs, which may cause the torque to travel between the upper and lower band 

vigorously, resulting in overshoot and undershoot. In addition, the system will often select the reverse voltage 

vector during overshoot and undershoot, which may cause the system to produce the common DTC problem, 

namely variable switching frequency [57]–[59]. Integrating the DTC with predictive control has lately received 

much attention due to its capacity to minimise torque ripple and operate at a constant switching frequency 

[60]–[62]. However, this system demands a correct selection of weighting factors as incorrect weighting factors 

result in a greater torque and flux ripple. Several studies covered in [63]–[66] mainly use the duty cycle control 

concept employing an active voltage vector for a portion of a control period, which then switches to a zero-

voltage vector for the remainder of the control cycle.  

This paper proposes a novel technique to minimize the torque ripple by integrating the alternate digital 

pulsation into the inverter switching status of DTC. This technique is a simple and effective method as it 

improves the torque rate to travel within the hysteresis band precisely, thus avoiding the need for reverse 

voltage vectors. Theoretically, the rate of torque slope can be controlled by adjusting the DC link voltage 

manually. However, it is not practical for real DTC applications such as electric vehicle (EV) where the real 

EV uses supercapacitor or batteries as its main supply. The proposed technique practically limits the DC link 

voltage by using alternate digital pulsation in the form of duty cycle. This study is verified through simulation 

(MATLAB/Simulink) as well as experimental setup using dSPACE 1104 board and compared with 

conventional DTC scheme. The proposed structure of DTC is briefly described in section 2 of the paper. 

Section 3 demonstrates the operation of the torque under the proposed scheme. Section 4 presents simulation 

and experimental findings for the conventional and proposed techniques, respectively. Finally, section 5 gives 

the conclusions to the paper. 

 

 

2. THE PROPOSED DTC BASED ON AN ALTERNATE SWITCHING TECHNIQUE  

The conventional DTC proposed [1] is straightforward. It combines of subsystems comprised of a pair 

of hysteresis comparators, torque and flux calculators, a look-up table, and a voltage-source inverter (VSI). In 

the proposed DTC system, each of the subsystems are described in terms of space vectors by the following 

equations written in stator stationary reference frame: 

 

𝑣𝑠 = r𝑠𝑖𝑠 +
dΨ𝑠

dt
 (1) 

 

0 = r𝑟𝑖𝑟 - jω𝑟𝛹𝑟  +
dΨ𝑟

dt
 (2) 

 

𝛹𝑠  = L𝑠𝑖𝑠+L𝑚𝑖𝑟  (3) 

 

𝛹𝑟  = L𝑟𝑖𝑟+L𝑚𝑖𝑠 (4) 

 

𝑇𝑒  = 
3

2
p | Ψ𝑠 || i𝑠 | sinδ (5) 

 

where p denotes the number of pole pairs, 𝜔𝑟denotes the rotor electric angular speed in rad/s, 𝐿𝑠, 𝐿𝑟 and 

𝐿𝑚denote the motor inductances, and𝛿is the angle between the stator flux linkage and the stator current space 

vectors. Based on (1), the 𝑑𝑠 − and 𝑞𝑠 − axis stator flux in a stationary reference frame may be expressed as: 

 

𝛹s,d
𝑠 = ∫(𝑣s,d

𝑠- is,d
𝑠𝑟𝑠)  dt  (6a) 

 

𝛹s,q
𝑠 = ∫(𝑣s,q

𝑠- is,q
𝑠𝑟𝑠)  dt  (6b) 

 

The scope for this study will use the standard two-level inverter. Therefore the (6a) and (6b) can be further 

expressed in term of switching states 𝑆𝑎,𝑆𝑏and 𝑆𝑐. 

 

𝑣s,d
𝑠 =

1

3
𝑉dc(2S𝑎- S𝑏  - S𝑐) (7a) 

 

𝑣s,q
𝑠 =

1

√3
𝑉dc(𝑆𝑏  - S𝑐) (7b) 

 

The electromagnetic torque given in (5) can be rewritten in 𝑑𝑠 − and 𝑞𝑠 − coordinates as: 



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Torque ripple minimization in direct torque control at … (Muhammad Zaid Aihsan) 

633 

𝑇𝑒  = 
3

2
𝑝(Ψ s,d

𝑠  i s,q
𝑠 - Ψ s,q

𝑠  i s,d
𝑠 ) (8) 

 

The (1) to (8) are modelled as in Figure 1 with an additional proposed alternate switching strategy. 

The proposed technique is in the form of a duty cycle will be added to the inverter switching state from the 

look-up table. By default, the conventional DTC system working principle is based on the output stator voltage 

applied based on the selection of the switching states 𝑆𝑎,𝑆𝑏and 𝑆𝑐 obtained from the look-up table. These 

switching states are chosen based on the need to increase or reduce the torque and stator flux, as well as the 

stator flux position.  

The alternate switching technique will not affect the nature of the DTC concept; instead, it will control 

the rate of torque to travel inside the hysteresis band. As shown in Figure 2, the suggested method utilized the 

precise signal from the inverter switching state to integrate with square wave pulsation using an AND logic 

gate. The newly generated signals are defined as ΔS𝑎, ΔS𝑏 and ΔS𝑐while the timing diagram for each signal is 

shown in Figure 3. The new signals are produced in the same sequence as the original DTC switching status, 

but with a different switching pattern.  
 

 

 
 

Figure 1. Proposed system with alternate switching technique 

 

 

 
 

Figure 2. Proposed alternate switching technique 

 
 

Figure 3. Alternated DTC switching signals 

 

 

3. OPERATION OF TORQUE USING ALTERNATE SWITCHING TECHNIQUE 

Whenever the induction motor is operated at a low speed, the low back electromotive force (EMF) 

may cause higher torque increment rates, resulting in an extremely steep torque slope to the point that torque 

excursion can be driven far beyond the hysteresis band. This situation generates a significant torque ripple, 

which must be corrected, particularly at low speeds [67]–[69]. Using the alternate switching technique injects 

the active voltage vector in the sequencing/alternate scheme, improving the performance for both torque and 

stator flux as it simultaneously limits the torque excursion within the hysteresis band. Furthermore, this allows 
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the stator flux to move in the better zig-zag pattern, thus avoiding selecting a reserve voltage vector. To analyse 

the effect of voltage vectors on the torque ripple in DTC-hysteresis-based drives, the torque equation will be 

written in terms of stator and rotor flux magnitudes as (9). 

 

𝑇𝑒 =
3

2
𝑝

𝐿𝑚

σL𝑠𝐿𝑟
𝛹𝑠𝛹𝑟sinδsr (9) 

 

where 𝜎 is the total leakage factor, while 𝛿𝑠𝑟 is the angle between the stator and rotor flux vectors. This angle 

difference is critical in regulating the output torque. 

Following from here, in (9) can be rewritten by considering sampling time for every cycle, 𝑇sp given 

as: 

 

𝛹𝑠(k+1)= Ψ𝑠(𝑘) + [−
𝑅𝑠

σL𝑠
𝛹𝑠(𝑘) + 

𝑅𝑠𝐿𝑀

σL𝑠𝐿𝑟
𝛹𝑟(𝑘)+v𝑠] 𝑇sp (10) 

 

𝛹𝑟(k+1)= Ψ𝑟(𝑘) + [
𝑅𝑟𝐿𝑀

σL𝑠𝐿𝑟
𝛹𝑠(𝑘)+ π (jω𝑟 −

𝑅𝑠

σL𝑠
) 𝛹𝑟(𝑘)] 𝑇sp (11) 

 

By substituting (10) and (11) into discrete form of (9), torque slopes during increment and decrement can be 

expressed as: 

 

𝑇𝑒
+= -T𝑒 (𝑘) (

𝑅𝑠

σL𝑠
+

𝑅𝑟

σL𝑟
) +

3

2

𝑝

2

𝐿𝑚

σL𝑠𝐿𝑟
𝑖[(𝑣𝑠• Ψ𝑟)- jω𝑟(𝛹𝑠• Ψ𝑟)] (12) 

 

𝑇𝑒
− = -T𝑒(𝑘) (

𝑅𝑠

σL𝑠
+

𝑅𝑟

σL𝑟
) −

3

2

𝑝

2

𝐿𝑚

σL𝑠𝐿𝑟
𝑖[jω𝑟(𝛹𝑠• jΨ𝑟)] (13) 

 

 

Moreover, the percentage of torque ripple can be calculated as follows: 

 

% of torque ripple = 
𝛥 torque ripple

average torque
×100%  (14) 

 

Figure 4 shows the torque slope condition, and the Figure 4 (a) illustrated the conventional DTC 

torque increment, 𝑇𝑒
+ and torque decrement, 𝑇𝑒

− within one complete cycle of sampling time, 𝑇sp. In each 

sampling time, the torque slope varies according to the duration of varies according to the duration of 𝑇𝑠 of 

injected voltage vector, 𝑣𝑠. Figure 4 (b) shows how the proposed alternate switching technique allows the active 

voltage vector to be in the form of an alternating sequence which it can limit the torque excursion rate. The 

alternate switching technique makes the value of 𝑇𝑠 become way smaller, thus changing the state between 

positive torque slope and negative torque slope in a short time due to the alternating active voltage vector. The 

alternate switching technique uses the square waveform with a 50% duty ratio for ON-state and OFF-state 

respectively. For this study, the switching frequency used for the alternate switching is 2.5 kHz resulting in the 

rise and fall in the period of 200 μs during ON-state and OFF-state respectively. Using this concept allows 

limiting the torque excursion within the torque reference, 𝑇𝑒
∗.  

 

 
 
 

Figure 4. Torque slope condition (a) conventional DTC (b) proposed alternate DTC  
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The complete comparison of the conventional DTC to the proposed DTC demonstrated in Figure 5. 

In the conventional DTC, the active voltage vectors, 𝑉𝑠 tend to generate the different variations of torque slopes 

which causes the high torque ripples and variable switching frequency. When the torque excursion is too high 

and exceed the hysteresis band, the system starts to choose reverse voltage vectors, -V𝑠 to ensure the sudden 

decrement in the torque magnitude. However, this will cause the torque to become unstable in a short period 

of time, increasing the probability of selecting reserve voltage vectors. The proposed DTC employs an alternate 

switching technique that allows the torque slopes to move in a zig-zag pattern, thus limiting the rate of 

excursion and resulting in a magnitude of torque within the torque estimation range. Since the magnitude of 

the torque does not exceed the hysteresis band limit, no reverse voltage vector selection is required. This 

enables the DTC system to operate with regulated torque performance, resulting in less ripple and an 

improvement in frequency variations. 

 

 

 
 

Figure 5. The comparison between conventional DTC and proposed DTC using alternate switching technique 

 

 

4. RESULTS AND DISCUSSION 

The efficacy of the proposed alternate switching technique was simulated using MATLAB/Simulink. 

Here, an experimental evaluation was carried out to show workability in the real DTC drive system. The 

parameters and specifications used for this experimental setup are shown in Table 1. Since this study focuses 

on the low-speed application, the induction motor speed is set to 30 rad/s, while the selected torque is 1.5 Nm 

for both conventional and proposed alternate switching techniques. Furthermore, rated torque and flux are 4Nm 

and 0.8452 Wb, respectively. The conventional DTC and the proposed method will be evaluated using two 

different hysteresis band sizes of 0.5 Nm and 0.25 Nm. 

 

 

Table 1. Induction Machine parameters 
Induction Machine 

Parameter Value 

Rated power, P 1.1 kW 

Rated speed, 𝜔m rated 2800 rpm 

Stator Resistance, 𝑅𝑠 6.1 𝛺 

Rotor Resistance, 𝑅𝑟 6.2293 𝛺 

Mutual Inductance, 𝐿𝑚 0.4634 mH 

Rotor self inductance, 𝐿𝑟 0.47979 mH 

Stator self inductance, 𝐿𝑠 0.47979 mH 

Number of pole pairs, p 2 
Conventional and alternate switching of DTC system 

Torque Hysteresis band, HBTe 0.25 Nm and 0.5 Nm 

Flux Hysteresis band, HB𝛹 0.0080 Wb 
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4.1.  Simulation results 

In this study, the focus is mainly on measuring the torque ripple's performance when using the 

alternate switching technique. Figure 6 shows the results of torque, phase voltages, and the condition of inverter 

switching status with the hysteresis band size 0.5. Initially, it is conducted in the conventional DTC method 

for the duration of 1.04 seconds before the alternate switching technique is employed. It is noticeable that the 

behaviour of phase voltage and inverter switching status started to be in high pulsation condition after 1.04 

seconds, and the ripple of torque started to reduce when the alternate switching was initiated. Figure 6 (a) 

shows in full scale, and the magnified version is shown in Figure 6 (b). The condition of torque in the 

conventional DTC is steeper and can easily reach the torque reference in a very short time. For the proposed 

technique, the torque is less steep, while the condition of torque slope imitates the pulsation pattern of the 

alternate switching technique. This feature allows the rate of torque to be controlled directly without adjusting 

the DC-link voltage. Moreover, the potential of torque to overshoot over the hysteresis band can be reduced 

efficiently. The uniform alternate voltage generation from the proposed technique allows the condition of 

increment and decrement of torque slope to travel within the hysteresis band with less overshoot and undershoot 

condition [54]. 

The performance of the alternate switching is further tested with the lower hysteresis band size as the 

behaviour of torque using the alternate switching technique shown in Figure 7. It has a lower torque slope, 

while the rate of steepness can be controlled evenly for every peak cycle. Figure 7 (a) shows the same results 

of torque, phase voltages, and the inverter switching status with the hysteresis band size 0.25. The magnified 

version can be observed in Figure 7 (b). It can be observed that the condition of torque during conventional 

DTC greatly suffers in high ripple conditions resulting in the selection of reverse voltage vectors occurring 

frequently.  

 

 

 
(a) 

 
(b) 

 

Figure 6. The performance of torque, phase voltage and inverter switching status under hysteresis band size 

0.5 Nm (a) full scale and (b) magnified scale 

 

 

 
(a) 

 
(b) 

 

Figure 7. The performance of torque, phase voltage and inverter switching status under hysteresis band size 

0.25 Nm (a) full scale and (b) magnified scale 
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This condition is due to the torque being extremely steep during the low-speed condition and the small 

size of the hysteresis band, allowing the torque to be easily driven far beyond the hysteresis band regularly 

[16], [68]. However, when the alternate switching technique is utilized, the condition of torque ripple has a 

massive reduction, and the selection of reserve voltage vector is also reduced. 

Figure 6 and Figure 7 show that the conventional DTC suffers from high selection of reverse voltage 

vectors and the waveform of phase voltage is not properly generated. The condition of phase voltage is 

improved when the alternate switching technique is used, and the reverse voltage vectors are rarely selected. 

Figure 7 depicts the worse case situation at the phase voltage compared to Figure 6, in which the system is 

operated with a smaller hysteresis band, making it easier to exceed the torque reference and hysteresis band 

limit. It is proven that the alternate switching technique allows the torque to be regulated uniformly even in the 

smaller size of the hysteresis band.  

 

4.2.  Experimental results 

The complete DTC drive system, as in Figure 8, is set up to verify the proposed alternate switching 

technique experimentally. A three-phase two-level inverter drives the induction motor, while the load unit used 

in this system is the DC motor. Note that the load is proportional to the DC motor speed with additional resistive 

load. The main controller for this study is the dSPACE 1104, while the optimum sampling period for this 

device is 50 μs [70].  

 For the experimental results, the same measurements are taken for the torque performance, phase 

voltage, and inverter switching status for both conventional DTC and proposed alternate switching techniques. 

Figure 9 (a) shows the waveform capture under the duration of 40 ms. It is noticeable that the torque condition 

in the conventional DTC is very high in ripple, which has significantly reduced when the alternate switching 

technique is employed. Here, the torque starts to oscillate regularly under the torque reference. 

Figure 9 (b) shows the magnified version, which shows that the torque pattern changes drastically and 

in a uniform zig-zag pattern. As illustrated previously in Figure 4 (b), the torque increment, 𝑇𝑒
+and decrement, 

𝑇𝑒
− now have a shorter time. The phase voltage and inverter switching status also start to operate in a high 

pulsation, but it does not change the initial condition of the DTC switching concept. This is due to the high 

pulsation operated under the same sequence as the conventional DTC, as shown in Figure 3. 

The same investigation with lower hysteresis band size is tested for experimental testing, where the 

results are shown in Figures 10 (a) and 10 (b). The condition of torque in Figure 10 (a) suffers even higher 

ripple compared to torque ripple in Figure 9 (a) during the conventional DTC operation. In the same situation, 

when the alternate switching is employed, the torque ripple reduces significantly and follows the torque 

reference condition. As mentioned in section 3, the inverter switching status of the proposed technique will follow 

the same pattern of the conventional DTC scheme but with an alternate switching condition as in Figure 10 (b). 

The torque pattern during the alternate switching technique is also in a uniform zig-zag pattern and rarely 

crosses the torque reference [71]. 

 

 

 
 

Figure 8. Experimental setup of DTC drive system 
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(a) 

 
(b) 

 

Figure 9. The performance of torque, phase voltage and inverter switching status under hysteresis band size 

0.50 Nm. (a) full scale and (b) magnified scale 

 

 

 
(a) 

 
(b) 

 

Figure 10. The performance of torque, phase voltage and inverter switching status under hysteresis band     

size 0.25 Nm. (a) full scale and (b) magnified scale 

 

 

5. CONCLUSION 

This paper proposes a novel and effective method to reduce the torque ripple in induction motor drives 

during low-speed operation. The proposed technique converts the standard voltage vectors into pulsation 

voltage vectors where the active and zero voltage vectors are separated into smaller widths, allowing the rate 

of torque increment and decrement to be reduced. By following the pulsation pattern, the increment of torque 

is now in a zig-zag pattern. This prevents the torque from crossing the torque reference and hysteresis band 

limit, which helps restrict the system from selecting the reserve voltage vectors. With this pattern, the proposed 

alternate switching technique in DTC promises the system to operate with regulated torque with less ripple and 

better frequency variations compared to the conventional DTC system. The viability of the proposed DTC has 

been demonstrated using MATLAB/Simulink and proven through lab-scale experimental assessment. The 

reduction in torque ripple using the alternate switching technique has significantly reduced over 40% in the 

low-speed operation while maintaining the basic structure of conventional DTC. 
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